mmu_oea64.c revision 270439
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/10/sys/powerpc/aim/mmu_oea64.c 270439 2014-08-24 07:53:15Z kib $");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_compat.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/kernel.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/ktr.h>
113#include <sys/lock.h>
114#include <sys/msgbuf.h>
115#include <sys/malloc.h>
116#include <sys/mutex.h>
117#include <sys/proc.h>
118#include <sys/rwlock.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/systm.h>
122#include <sys/vmmeter.h>
123
124#include <sys/kdb.h>
125
126#include <dev/ofw/openfirm.h>
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/uma.h>
137
138#include <machine/_inttypes.h>
139#include <machine/cpu.h>
140#include <machine/platform.h>
141#include <machine/frame.h>
142#include <machine/md_var.h>
143#include <machine/psl.h>
144#include <machine/bat.h>
145#include <machine/hid.h>
146#include <machine/pte.h>
147#include <machine/sr.h>
148#include <machine/trap.h>
149#include <machine/mmuvar.h>
150
151#include "mmu_oea64.h"
152#include "mmu_if.h"
153#include "moea64_if.h"
154
155void moea64_release_vsid(uint64_t vsid);
156uintptr_t moea64_get_unique_vsid(void);
157
158#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159#define ENABLE_TRANS(msr)	mtmsr(msr)
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163#define	VSID_HASH_MASK		0x0000007fffffffffULL
164
165/*
166 * Locking semantics:
167 * -- Read lock: if no modifications are being made to either the PVO lists
168 *    or page table or if any modifications being made result in internal
169 *    changes (e.g. wiring, protection) such that the existence of the PVOs
170 *    is unchanged and they remain associated with the same pmap (in which
171 *    case the changes should be protected by the pmap lock)
172 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173 */
174
175#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	uint64_t om_pa;
184	cell_t	om_mode;
185};
186
187extern unsigned char _etext[];
188extern unsigned char _end[];
189
190extern int dumpsys_minidump;
191
192/*
193 * Map of physical memory regions.
194 */
195static struct	mem_region *regions;
196static struct	mem_region *pregions;
197static u_int	phys_avail_count;
198static int	regions_sz, pregions_sz;
199
200extern void bs_remap_earlyboot(void);
201
202/*
203 * Lock for the pteg and pvo tables.
204 */
205struct rwlock	moea64_table_lock;
206struct mtx	moea64_slb_mutex;
207
208/*
209 * PTEG data.
210 */
211u_int		moea64_pteg_count;
212u_int		moea64_pteg_mask;
213
214/*
215 * PVO data.
216 */
217struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
218
219uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
220uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
221
222#define	BPVO_POOL_SIZE	327680
223static struct	pvo_entry *moea64_bpvo_pool;
224static int	moea64_bpvo_pool_index = 0;
225
226#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227#ifdef __powerpc64__
228#define	NVSIDS		(NPMAPS * 16)
229#define VSID_HASHMASK	0xffffffffUL
230#else
231#define NVSIDS		NPMAPS
232#define VSID_HASHMASK	0xfffffUL
233#endif
234static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
235
236static boolean_t moea64_initialized = FALSE;
237
238/*
239 * Statistics.
240 */
241u_int	moea64_pte_valid = 0;
242u_int	moea64_pte_overflow = 0;
243u_int	moea64_pvo_entries = 0;
244u_int	moea64_pvo_enter_calls = 0;
245u_int	moea64_pvo_remove_calls = 0;
246SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
247    &moea64_pte_valid, 0, "");
248SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
249    &moea64_pte_overflow, 0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
251    &moea64_pvo_entries, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
253    &moea64_pvo_enter_calls, 0, "");
254SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
255    &moea64_pvo_remove_calls, 0, "");
256
257vm_offset_t	moea64_scratchpage_va[2];
258struct pvo_entry *moea64_scratchpage_pvo[2];
259uintptr_t	moea64_scratchpage_pte[2];
260struct	mtx	moea64_scratchpage_mtx;
261
262uint64_t 	moea64_large_page_mask = 0;
263uint64_t	moea64_large_page_size = 0;
264int		moea64_large_page_shift = 0;
265
266/*
267 * PVO calls.
268 */
269static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
270		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
271static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
272static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
273
274/*
275 * Utility routines.
276 */
277static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279static void		moea64_kremove(mmu_t, vm_offset_t);
280static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281			    vm_offset_t pa, vm_size_t sz);
282
283/*
284 * Kernel MMU interface
285 */
286void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
287void moea64_clear_modify(mmu_t, vm_page_t);
288void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
289void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
290    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
291int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
292    u_int flags, int8_t psind);
293void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
294    vm_prot_t);
295void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
296vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
297vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
298void moea64_init(mmu_t);
299boolean_t moea64_is_modified(mmu_t, vm_page_t);
300boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
301boolean_t moea64_is_referenced(mmu_t, vm_page_t);
302int moea64_ts_referenced(mmu_t, vm_page_t);
303vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
304boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
305int moea64_page_wired_mappings(mmu_t, vm_page_t);
306void moea64_pinit(mmu_t, pmap_t);
307void moea64_pinit0(mmu_t, pmap_t);
308void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
309void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
310void moea64_qremove(mmu_t, vm_offset_t, int);
311void moea64_release(mmu_t, pmap_t);
312void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313void moea64_remove_pages(mmu_t, pmap_t);
314void moea64_remove_all(mmu_t, vm_page_t);
315void moea64_remove_write(mmu_t, vm_page_t);
316void moea64_zero_page(mmu_t, vm_page_t);
317void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
318void moea64_zero_page_idle(mmu_t, vm_page_t);
319void moea64_activate(mmu_t, struct thread *);
320void moea64_deactivate(mmu_t, struct thread *);
321void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
322void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
323void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
324vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
325void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
326void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
327void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
328boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
329static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
330vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
331    vm_size_t *sz);
332struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
333
334static mmu_method_t moea64_methods[] = {
335	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
337	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
338	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
339	MMUMETHOD(mmu_enter,		moea64_enter),
340	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
341	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
342	MMUMETHOD(mmu_extract,		moea64_extract),
343	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
344	MMUMETHOD(mmu_init,		moea64_init),
345	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
346	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
347	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
348	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
349	MMUMETHOD(mmu_map,     		moea64_map),
350	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
351	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
352	MMUMETHOD(mmu_pinit,		moea64_pinit),
353	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
354	MMUMETHOD(mmu_protect,		moea64_protect),
355	MMUMETHOD(mmu_qenter,		moea64_qenter),
356	MMUMETHOD(mmu_qremove,		moea64_qremove),
357	MMUMETHOD(mmu_release,		moea64_release),
358	MMUMETHOD(mmu_remove,		moea64_remove),
359	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
360	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
361	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
362	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
363	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
364	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
365	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
366	MMUMETHOD(mmu_activate,		moea64_activate),
367	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
368	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
369
370	/* Internal interfaces */
371	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
372	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
373	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
374	MMUMETHOD(mmu_kextract,		moea64_kextract),
375	MMUMETHOD(mmu_kenter,		moea64_kenter),
376	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
377	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
378	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
379	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
380
381	{ 0, 0 }
382};
383
384MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
385
386static __inline u_int
387va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
388{
389	uint64_t hash;
390	int shift;
391
392	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
393	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
394	    shift);
395	return (hash & moea64_pteg_mask);
396}
397
398static __inline struct pvo_head *
399vm_page_to_pvoh(vm_page_t m)
400{
401
402	return (&m->md.mdpg_pvoh);
403}
404
405static __inline void
406moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
407    uint64_t pte_lo, int flags)
408{
409
410	/*
411	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
412	 * set when the real pte is set in memory.
413	 *
414	 * Note: Don't set the valid bit for correct operation of tlb update.
415	 */
416	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
417	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
418
419	if (flags & PVO_LARGE)
420		pt->pte_hi |= LPTE_BIG;
421
422	pt->pte_lo = pte_lo;
423}
424
425static __inline uint64_t
426moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
427{
428	uint64_t pte_lo;
429	int i;
430
431	if (ma != VM_MEMATTR_DEFAULT) {
432		switch (ma) {
433		case VM_MEMATTR_UNCACHEABLE:
434			return (LPTE_I | LPTE_G);
435		case VM_MEMATTR_WRITE_COMBINING:
436		case VM_MEMATTR_WRITE_BACK:
437		case VM_MEMATTR_PREFETCHABLE:
438			return (LPTE_I);
439		case VM_MEMATTR_WRITE_THROUGH:
440			return (LPTE_W | LPTE_M);
441		}
442	}
443
444	/*
445	 * Assume the page is cache inhibited and access is guarded unless
446	 * it's in our available memory array.
447	 */
448	pte_lo = LPTE_I | LPTE_G;
449	for (i = 0; i < pregions_sz; i++) {
450		if ((pa >= pregions[i].mr_start) &&
451		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
452			pte_lo &= ~(LPTE_I | LPTE_G);
453			pte_lo |= LPTE_M;
454			break;
455		}
456	}
457
458	return pte_lo;
459}
460
461/*
462 * Quick sort callout for comparing memory regions.
463 */
464static int	om_cmp(const void *a, const void *b);
465
466static int
467om_cmp(const void *a, const void *b)
468{
469	const struct	ofw_map *mapa;
470	const struct	ofw_map *mapb;
471
472	mapa = a;
473	mapb = b;
474	if (mapa->om_pa < mapb->om_pa)
475		return (-1);
476	else if (mapa->om_pa > mapb->om_pa)
477		return (1);
478	else
479		return (0);
480}
481
482static void
483moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
484{
485	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
486	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
487	register_t	msr;
488	vm_offset_t	off;
489	vm_paddr_t	pa_base;
490	int		i, j;
491
492	bzero(translations, sz);
493	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
494	    sizeof(acells));
495	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
496		panic("moea64_bootstrap: can't get ofw translations");
497
498	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
499	sz /= sizeof(cell_t);
500	for (i = 0, j = 0; i < sz; j++) {
501		translations[j].om_va = trans_cells[i++];
502		translations[j].om_len = trans_cells[i++];
503		translations[j].om_pa = trans_cells[i++];
504		if (acells == 2) {
505			translations[j].om_pa <<= 32;
506			translations[j].om_pa |= trans_cells[i++];
507		}
508		translations[j].om_mode = trans_cells[i++];
509	}
510	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
511	    i, sz));
512
513	sz = j;
514	qsort(translations, sz, sizeof (*translations), om_cmp);
515
516	for (i = 0; i < sz; i++) {
517		pa_base = translations[i].om_pa;
518	      #ifndef __powerpc64__
519		if ((translations[i].om_pa >> 32) != 0)
520			panic("OFW translations above 32-bit boundary!");
521	      #endif
522
523		if (pa_base % PAGE_SIZE)
524			panic("OFW translation not page-aligned (phys)!");
525		if (translations[i].om_va % PAGE_SIZE)
526			panic("OFW translation not page-aligned (virt)!");
527
528		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
529		    pa_base, translations[i].om_va, translations[i].om_len);
530
531		/* Now enter the pages for this mapping */
532
533		DISABLE_TRANS(msr);
534		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
535			if (moea64_pvo_find_va(kernel_pmap,
536			    translations[i].om_va + off) != NULL)
537				continue;
538
539			moea64_kenter(mmup, translations[i].om_va + off,
540			    pa_base + off);
541		}
542		ENABLE_TRANS(msr);
543	}
544}
545
546#ifdef __powerpc64__
547static void
548moea64_probe_large_page(void)
549{
550	uint16_t pvr = mfpvr() >> 16;
551
552	switch (pvr) {
553	case IBM970:
554	case IBM970FX:
555	case IBM970MP:
556		powerpc_sync(); isync();
557		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
558		powerpc_sync(); isync();
559
560		/* FALLTHROUGH */
561	default:
562		moea64_large_page_size = 0x1000000; /* 16 MB */
563		moea64_large_page_shift = 24;
564	}
565
566	moea64_large_page_mask = moea64_large_page_size - 1;
567}
568
569static void
570moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
571{
572	struct slb *cache;
573	struct slb entry;
574	uint64_t esid, slbe;
575	uint64_t i;
576
577	cache = PCPU_GET(slb);
578	esid = va >> ADDR_SR_SHFT;
579	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
580
581	for (i = 0; i < 64; i++) {
582		if (cache[i].slbe == (slbe | i))
583			return;
584	}
585
586	entry.slbe = slbe;
587	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
588	if (large)
589		entry.slbv |= SLBV_L;
590
591	slb_insert_kernel(entry.slbe, entry.slbv);
592}
593#endif
594
595static void
596moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
597    vm_offset_t kernelend)
598{
599	register_t msr;
600	vm_paddr_t pa;
601	vm_offset_t size, off;
602	uint64_t pte_lo;
603	int i;
604
605	if (moea64_large_page_size == 0)
606		hw_direct_map = 0;
607
608	DISABLE_TRANS(msr);
609	if (hw_direct_map) {
610		LOCK_TABLE_WR();
611		PMAP_LOCK(kernel_pmap);
612		for (i = 0; i < pregions_sz; i++) {
613		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
614		     pregions[i].mr_size; pa += moea64_large_page_size) {
615			pte_lo = LPTE_M;
616
617			/*
618			 * Set memory access as guarded if prefetch within
619			 * the page could exit the available physmem area.
620			 */
621			if (pa & moea64_large_page_mask) {
622				pa &= moea64_large_page_mask;
623				pte_lo |= LPTE_G;
624			}
625			if (pa + moea64_large_page_size >
626			    pregions[i].mr_start + pregions[i].mr_size)
627				pte_lo |= LPTE_G;
628
629			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
630				    NULL, pa, pa, pte_lo,
631				    PVO_WIRED | PVO_LARGE, 0);
632		  }
633		}
634		PMAP_UNLOCK(kernel_pmap);
635		UNLOCK_TABLE_WR();
636	} else {
637		size = sizeof(struct pvo_head) * moea64_pteg_count;
638		off = (vm_offset_t)(moea64_pvo_table);
639		for (pa = off; pa < off + size; pa += PAGE_SIZE)
640			moea64_kenter(mmup, pa, pa);
641		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
642		off = (vm_offset_t)(moea64_bpvo_pool);
643		for (pa = off; pa < off + size; pa += PAGE_SIZE)
644		moea64_kenter(mmup, pa, pa);
645
646		/*
647		 * Map certain important things, like ourselves.
648		 *
649		 * NOTE: We do not map the exception vector space. That code is
650		 * used only in real mode, and leaving it unmapped allows us to
651		 * catch NULL pointer deferences, instead of making NULL a valid
652		 * address.
653		 */
654
655		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
656		    pa += PAGE_SIZE)
657			moea64_kenter(mmup, pa, pa);
658	}
659	ENABLE_TRANS(msr);
660
661	/*
662	 * Allow user to override unmapped_buf_allowed for testing.
663	 * XXXKIB Only direct map implementation was tested.
664	 */
665	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
666	    &unmapped_buf_allowed))
667		unmapped_buf_allowed = hw_direct_map;
668}
669
670void
671moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
672{
673	int		i, j;
674	vm_size_t	physsz, hwphyssz;
675
676#ifndef __powerpc64__
677	/* We don't have a direct map since there is no BAT */
678	hw_direct_map = 0;
679
680	/* Make sure battable is zero, since we have no BAT */
681	for (i = 0; i < 16; i++) {
682		battable[i].batu = 0;
683		battable[i].batl = 0;
684	}
685#else
686	moea64_probe_large_page();
687
688	/* Use a direct map if we have large page support */
689	if (moea64_large_page_size > 0)
690		hw_direct_map = 1;
691	else
692		hw_direct_map = 0;
693#endif
694
695	/* Get physical memory regions from firmware */
696	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
697	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
698
699	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
700		panic("moea64_bootstrap: phys_avail too small");
701
702	phys_avail_count = 0;
703	physsz = 0;
704	hwphyssz = 0;
705	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
706	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
707		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
708		    regions[i].mr_start, regions[i].mr_start +
709		    regions[i].mr_size, regions[i].mr_size);
710		if (hwphyssz != 0 &&
711		    (physsz + regions[i].mr_size) >= hwphyssz) {
712			if (physsz < hwphyssz) {
713				phys_avail[j] = regions[i].mr_start;
714				phys_avail[j + 1] = regions[i].mr_start +
715				    hwphyssz - physsz;
716				physsz = hwphyssz;
717				phys_avail_count++;
718			}
719			break;
720		}
721		phys_avail[j] = regions[i].mr_start;
722		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
723		phys_avail_count++;
724		physsz += regions[i].mr_size;
725	}
726
727	/* Check for overlap with the kernel and exception vectors */
728	for (j = 0; j < 2*phys_avail_count; j+=2) {
729		if (phys_avail[j] < EXC_LAST)
730			phys_avail[j] += EXC_LAST;
731
732		if (kernelstart >= phys_avail[j] &&
733		    kernelstart < phys_avail[j+1]) {
734			if (kernelend < phys_avail[j+1]) {
735				phys_avail[2*phys_avail_count] =
736				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
737				phys_avail[2*phys_avail_count + 1] =
738				    phys_avail[j+1];
739				phys_avail_count++;
740			}
741
742			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
743		}
744
745		if (kernelend >= phys_avail[j] &&
746		    kernelend < phys_avail[j+1]) {
747			if (kernelstart > phys_avail[j]) {
748				phys_avail[2*phys_avail_count] = phys_avail[j];
749				phys_avail[2*phys_avail_count + 1] =
750				    kernelstart & ~PAGE_MASK;
751				phys_avail_count++;
752			}
753
754			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
755		}
756	}
757
758	physmem = btoc(physsz);
759
760#ifdef PTEGCOUNT
761	moea64_pteg_count = PTEGCOUNT;
762#else
763	moea64_pteg_count = 0x1000;
764
765	while (moea64_pteg_count < physmem)
766		moea64_pteg_count <<= 1;
767
768	moea64_pteg_count >>= 1;
769#endif /* PTEGCOUNT */
770}
771
772void
773moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
774{
775	vm_size_t	size;
776	register_t	msr;
777	int		i;
778
779	/*
780	 * Set PTEG mask
781	 */
782	moea64_pteg_mask = moea64_pteg_count - 1;
783
784	/*
785	 * Allocate pv/overflow lists.
786	 */
787	size = sizeof(struct pvo_head) * moea64_pteg_count;
788
789	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
790	    PAGE_SIZE);
791	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
792
793	DISABLE_TRANS(msr);
794	for (i = 0; i < moea64_pteg_count; i++)
795		LIST_INIT(&moea64_pvo_table[i]);
796	ENABLE_TRANS(msr);
797
798	/*
799	 * Initialize the lock that synchronizes access to the pteg and pvo
800	 * tables.
801	 */
802	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
803	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
804
805	/*
806	 * Initialise the unmanaged pvo pool.
807	 */
808	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
809		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
810	moea64_bpvo_pool_index = 0;
811
812	/*
813	 * Make sure kernel vsid is allocated as well as VSID 0.
814	 */
815	#ifndef __powerpc64__
816	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
817		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
818	moea64_vsid_bitmap[0] |= 1;
819	#endif
820
821	/*
822	 * Initialize the kernel pmap (which is statically allocated).
823	 */
824	#ifdef __powerpc64__
825	for (i = 0; i < 64; i++) {
826		pcpup->pc_slb[i].slbv = 0;
827		pcpup->pc_slb[i].slbe = 0;
828	}
829	#else
830	for (i = 0; i < 16; i++)
831		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
832	#endif
833
834	kernel_pmap->pmap_phys = kernel_pmap;
835	CPU_FILL(&kernel_pmap->pm_active);
836	RB_INIT(&kernel_pmap->pmap_pvo);
837
838	PMAP_LOCK_INIT(kernel_pmap);
839
840	/*
841	 * Now map in all the other buffers we allocated earlier
842	 */
843
844	moea64_setup_direct_map(mmup, kernelstart, kernelend);
845}
846
847void
848moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
849{
850	ihandle_t	mmui;
851	phandle_t	chosen;
852	phandle_t	mmu;
853	size_t		sz;
854	int		i;
855	vm_offset_t	pa, va;
856	void		*dpcpu;
857
858	/*
859	 * Set up the Open Firmware pmap and add its mappings if not in real
860	 * mode.
861	 */
862
863	chosen = OF_finddevice("/chosen");
864	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
865	    mmu = OF_instance_to_package(mmui);
866	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
867		sz = 0;
868	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
869		panic("moea64_bootstrap: too many ofw translations");
870
871	    if (sz > 0)
872		moea64_add_ofw_mappings(mmup, mmu, sz);
873	}
874
875	/*
876	 * Calculate the last available physical address.
877	 */
878	for (i = 0; phys_avail[i + 2] != 0; i += 2)
879		;
880	Maxmem = powerpc_btop(phys_avail[i + 1]);
881
882	/*
883	 * Initialize MMU and remap early physical mappings
884	 */
885	MMU_CPU_BOOTSTRAP(mmup,0);
886	mtmsr(mfmsr() | PSL_DR | PSL_IR);
887	pmap_bootstrapped++;
888	bs_remap_earlyboot();
889
890	/*
891	 * Set the start and end of kva.
892	 */
893	virtual_avail = VM_MIN_KERNEL_ADDRESS;
894	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
895
896	/*
897	 * Map the entire KVA range into the SLB. We must not fault there.
898	 */
899	#ifdef __powerpc64__
900	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
901		moea64_bootstrap_slb_prefault(va, 0);
902	#endif
903
904	/*
905	 * Figure out how far we can extend virtual_end into segment 16
906	 * without running into existing mappings. Segment 16 is guaranteed
907	 * to contain neither RAM nor devices (at least on Apple hardware),
908	 * but will generally contain some OFW mappings we should not
909	 * step on.
910	 */
911
912	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
913	PMAP_LOCK(kernel_pmap);
914	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
915	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
916		virtual_end += PAGE_SIZE;
917	PMAP_UNLOCK(kernel_pmap);
918	#endif
919
920	/*
921	 * Allocate a kernel stack with a guard page for thread0 and map it
922	 * into the kernel page map.
923	 */
924	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
925	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
926	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
927	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
928	thread0.td_kstack = va;
929	thread0.td_kstack_pages = KSTACK_PAGES;
930	for (i = 0; i < KSTACK_PAGES; i++) {
931		moea64_kenter(mmup, va, pa);
932		pa += PAGE_SIZE;
933		va += PAGE_SIZE;
934	}
935
936	/*
937	 * Allocate virtual address space for the message buffer.
938	 */
939	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
940	msgbufp = (struct msgbuf *)virtual_avail;
941	va = virtual_avail;
942	virtual_avail += round_page(msgbufsize);
943	while (va < virtual_avail) {
944		moea64_kenter(mmup, va, pa);
945		pa += PAGE_SIZE;
946		va += PAGE_SIZE;
947	}
948
949	/*
950	 * Allocate virtual address space for the dynamic percpu area.
951	 */
952	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
953	dpcpu = (void *)virtual_avail;
954	va = virtual_avail;
955	virtual_avail += DPCPU_SIZE;
956	while (va < virtual_avail) {
957		moea64_kenter(mmup, va, pa);
958		pa += PAGE_SIZE;
959		va += PAGE_SIZE;
960	}
961	dpcpu_init(dpcpu, 0);
962
963	/*
964	 * Allocate some things for page zeroing. We put this directly
965	 * in the page table, marked with LPTE_LOCKED, to avoid any
966	 * of the PVO book-keeping or other parts of the VM system
967	 * from even knowing that this hack exists.
968	 */
969
970	if (!hw_direct_map) {
971		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
972		    MTX_DEF);
973		for (i = 0; i < 2; i++) {
974			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
975			virtual_end -= PAGE_SIZE;
976
977			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
978
979			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
980			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
981			LOCK_TABLE_RD();
982			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
983			    mmup, moea64_scratchpage_pvo[i]);
984			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
985			    |= LPTE_LOCKED;
986			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
987			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
988			    moea64_scratchpage_pvo[i]->pvo_vpn);
989			UNLOCK_TABLE_RD();
990		}
991	}
992}
993
994/*
995 * Activate a user pmap.  The pmap must be activated before its address
996 * space can be accessed in any way.
997 */
998void
999moea64_activate(mmu_t mmu, struct thread *td)
1000{
1001	pmap_t	pm;
1002
1003	pm = &td->td_proc->p_vmspace->vm_pmap;
1004	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1005
1006	#ifdef __powerpc64__
1007	PCPU_SET(userslb, pm->pm_slb);
1008	#else
1009	PCPU_SET(curpmap, pm->pmap_phys);
1010	#endif
1011}
1012
1013void
1014moea64_deactivate(mmu_t mmu, struct thread *td)
1015{
1016	pmap_t	pm;
1017
1018	pm = &td->td_proc->p_vmspace->vm_pmap;
1019	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1020	#ifdef __powerpc64__
1021	PCPU_SET(userslb, NULL);
1022	#else
1023	PCPU_SET(curpmap, NULL);
1024	#endif
1025}
1026
1027void
1028moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1029{
1030	struct	pvo_entry *pvo;
1031	uintptr_t pt;
1032	uint64_t vsid;
1033	int	i, ptegidx;
1034
1035	LOCK_TABLE_WR();
1036	PMAP_LOCK(pm);
1037	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1038
1039	if (pvo != NULL) {
1040		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1041
1042		if (wired) {
1043			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1044				pm->pm_stats.wired_count++;
1045			pvo->pvo_vaddr |= PVO_WIRED;
1046			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1047		} else {
1048			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1049				pm->pm_stats.wired_count--;
1050			pvo->pvo_vaddr &= ~PVO_WIRED;
1051			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1052		}
1053
1054		if (pt != -1) {
1055			/* Update wiring flag in page table. */
1056			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1057			    pvo->pvo_vpn);
1058		} else if (wired) {
1059			/*
1060			 * If we are wiring the page, and it wasn't in the
1061			 * page table before, add it.
1062			 */
1063			vsid = PVO_VSID(pvo);
1064			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1065			    pvo->pvo_vaddr & PVO_LARGE);
1066
1067			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1068
1069			if (i >= 0) {
1070				PVO_PTEGIDX_CLR(pvo);
1071				PVO_PTEGIDX_SET(pvo, i);
1072			}
1073		}
1074
1075	}
1076	UNLOCK_TABLE_WR();
1077	PMAP_UNLOCK(pm);
1078}
1079
1080/*
1081 * This goes through and sets the physical address of our
1082 * special scratch PTE to the PA we want to zero or copy. Because
1083 * of locking issues (this can get called in pvo_enter() by
1084 * the UMA allocator), we can't use most other utility functions here
1085 */
1086
1087static __inline
1088void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1089
1090	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1091	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1092
1093	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1094	    ~(LPTE_WIMG | LPTE_RPGN);
1095	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1096	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1097	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1098	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1099	    moea64_scratchpage_pvo[which]->pvo_vpn);
1100	isync();
1101}
1102
1103void
1104moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1105{
1106	vm_offset_t	dst;
1107	vm_offset_t	src;
1108
1109	dst = VM_PAGE_TO_PHYS(mdst);
1110	src = VM_PAGE_TO_PHYS(msrc);
1111
1112	if (hw_direct_map) {
1113		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1114	} else {
1115		mtx_lock(&moea64_scratchpage_mtx);
1116
1117		moea64_set_scratchpage_pa(mmu, 0, src);
1118		moea64_set_scratchpage_pa(mmu, 1, dst);
1119
1120		bcopy((void *)moea64_scratchpage_va[0],
1121		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1122
1123		mtx_unlock(&moea64_scratchpage_mtx);
1124	}
1125}
1126
1127static inline void
1128moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1129    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1130{
1131	void *a_cp, *b_cp;
1132	vm_offset_t a_pg_offset, b_pg_offset;
1133	int cnt;
1134
1135	while (xfersize > 0) {
1136		a_pg_offset = a_offset & PAGE_MASK;
1137		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1138		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1139		    a_pg_offset;
1140		b_pg_offset = b_offset & PAGE_MASK;
1141		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1142		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1143		    b_pg_offset;
1144		bcopy(a_cp, b_cp, cnt);
1145		a_offset += cnt;
1146		b_offset += cnt;
1147		xfersize -= cnt;
1148	}
1149}
1150
1151static inline void
1152moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1153    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1154{
1155	void *a_cp, *b_cp;
1156	vm_offset_t a_pg_offset, b_pg_offset;
1157	int cnt;
1158
1159	mtx_lock(&moea64_scratchpage_mtx);
1160	while (xfersize > 0) {
1161		a_pg_offset = a_offset & PAGE_MASK;
1162		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1163		moea64_set_scratchpage_pa(mmu, 0,
1164		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1165		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1166		b_pg_offset = b_offset & PAGE_MASK;
1167		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1168		moea64_set_scratchpage_pa(mmu, 1,
1169		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1170		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1171		bcopy(a_cp, b_cp, cnt);
1172		a_offset += cnt;
1173		b_offset += cnt;
1174		xfersize -= cnt;
1175	}
1176	mtx_unlock(&moea64_scratchpage_mtx);
1177}
1178
1179void
1180moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1181    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1182{
1183
1184	if (hw_direct_map) {
1185		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1186		    xfersize);
1187	} else {
1188		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1189		    xfersize);
1190	}
1191}
1192
1193void
1194moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1195{
1196	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1197
1198	if (size + off > PAGE_SIZE)
1199		panic("moea64_zero_page: size + off > PAGE_SIZE");
1200
1201	if (hw_direct_map) {
1202		bzero((caddr_t)pa + off, size);
1203	} else {
1204		mtx_lock(&moea64_scratchpage_mtx);
1205		moea64_set_scratchpage_pa(mmu, 0, pa);
1206		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1207		mtx_unlock(&moea64_scratchpage_mtx);
1208	}
1209}
1210
1211/*
1212 * Zero a page of physical memory by temporarily mapping it
1213 */
1214void
1215moea64_zero_page(mmu_t mmu, vm_page_t m)
1216{
1217	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1218	vm_offset_t va, off;
1219
1220	if (!hw_direct_map) {
1221		mtx_lock(&moea64_scratchpage_mtx);
1222
1223		moea64_set_scratchpage_pa(mmu, 0, pa);
1224		va = moea64_scratchpage_va[0];
1225	} else {
1226		va = pa;
1227	}
1228
1229	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1230		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1231
1232	if (!hw_direct_map)
1233		mtx_unlock(&moea64_scratchpage_mtx);
1234}
1235
1236void
1237moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1238{
1239
1240	moea64_zero_page(mmu, m);
1241}
1242
1243/*
1244 * Map the given physical page at the specified virtual address in the
1245 * target pmap with the protection requested.  If specified the page
1246 * will be wired down.
1247 */
1248
1249int
1250moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1251    vm_prot_t prot, u_int flags, int8_t psind)
1252{
1253	struct		pvo_head *pvo_head;
1254	uma_zone_t	zone;
1255	vm_page_t	pg;
1256	uint64_t	pte_lo;
1257	u_int		pvo_flags;
1258	int		error;
1259
1260	if (!moea64_initialized) {
1261		pvo_head = NULL;
1262		pg = NULL;
1263		zone = moea64_upvo_zone;
1264		pvo_flags = 0;
1265	} else {
1266		pvo_head = vm_page_to_pvoh(m);
1267		pg = m;
1268		zone = moea64_mpvo_zone;
1269		pvo_flags = PVO_MANAGED;
1270	}
1271
1272	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1273		VM_OBJECT_ASSERT_LOCKED(m->object);
1274
1275	/* XXX change the pvo head for fake pages */
1276	if ((m->oflags & VPO_UNMANAGED) != 0) {
1277		pvo_flags &= ~PVO_MANAGED;
1278		pvo_head = NULL;
1279		zone = moea64_upvo_zone;
1280	}
1281
1282	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1283
1284	if (prot & VM_PROT_WRITE) {
1285		pte_lo |= LPTE_BW;
1286		if (pmap_bootstrapped &&
1287		    (m->oflags & VPO_UNMANAGED) == 0)
1288			vm_page_aflag_set(m, PGA_WRITEABLE);
1289	} else
1290		pte_lo |= LPTE_BR;
1291
1292	if ((prot & VM_PROT_EXECUTE) == 0)
1293		pte_lo |= LPTE_NOEXEC;
1294
1295	if ((flags & PMAP_ENTER_WIRED) != 0)
1296		pvo_flags |= PVO_WIRED;
1297
1298	for (;;) {
1299		LOCK_TABLE_WR();
1300		PMAP_LOCK(pmap);
1301		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1302		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1303		PMAP_UNLOCK(pmap);
1304		UNLOCK_TABLE_WR();
1305		if (error != ENOMEM)
1306			break;
1307		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1308			return (KERN_RESOURCE_SHORTAGE);
1309		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1310		VM_WAIT;
1311	}
1312
1313	/*
1314	 * Flush the page from the instruction cache if this page is
1315	 * mapped executable and cacheable.
1316	 */
1317	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1318	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1319		vm_page_aflag_set(m, PGA_EXECUTABLE);
1320		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1321	}
1322	return (KERN_SUCCESS);
1323}
1324
1325static void
1326moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1327    vm_size_t sz)
1328{
1329
1330	/*
1331	 * This is much trickier than on older systems because
1332	 * we can't sync the icache on physical addresses directly
1333	 * without a direct map. Instead we check a couple of cases
1334	 * where the memory is already mapped in and, failing that,
1335	 * use the same trick we use for page zeroing to create
1336	 * a temporary mapping for this physical address.
1337	 */
1338
1339	if (!pmap_bootstrapped) {
1340		/*
1341		 * If PMAP is not bootstrapped, we are likely to be
1342		 * in real mode.
1343		 */
1344		__syncicache((void *)pa, sz);
1345	} else if (pmap == kernel_pmap) {
1346		__syncicache((void *)va, sz);
1347	} else if (hw_direct_map) {
1348		__syncicache((void *)pa, sz);
1349	} else {
1350		/* Use the scratch page to set up a temp mapping */
1351
1352		mtx_lock(&moea64_scratchpage_mtx);
1353
1354		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1355		__syncicache((void *)(moea64_scratchpage_va[1] +
1356		    (va & ADDR_POFF)), sz);
1357
1358		mtx_unlock(&moea64_scratchpage_mtx);
1359	}
1360}
1361
1362/*
1363 * Maps a sequence of resident pages belonging to the same object.
1364 * The sequence begins with the given page m_start.  This page is
1365 * mapped at the given virtual address start.  Each subsequent page is
1366 * mapped at a virtual address that is offset from start by the same
1367 * amount as the page is offset from m_start within the object.  The
1368 * last page in the sequence is the page with the largest offset from
1369 * m_start that can be mapped at a virtual address less than the given
1370 * virtual address end.  Not every virtual page between start and end
1371 * is mapped; only those for which a resident page exists with the
1372 * corresponding offset from m_start are mapped.
1373 */
1374void
1375moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1376    vm_page_t m_start, vm_prot_t prot)
1377{
1378	vm_page_t m;
1379	vm_pindex_t diff, psize;
1380
1381	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1382
1383	psize = atop(end - start);
1384	m = m_start;
1385	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1386		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1387		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1388		m = TAILQ_NEXT(m, listq);
1389	}
1390}
1391
1392void
1393moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1394    vm_prot_t prot)
1395{
1396
1397	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1398	    PMAP_ENTER_NOSLEEP, 0);
1399}
1400
1401vm_paddr_t
1402moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1403{
1404	struct	pvo_entry *pvo;
1405	vm_paddr_t pa;
1406
1407	PMAP_LOCK(pm);
1408	pvo = moea64_pvo_find_va(pm, va);
1409	if (pvo == NULL)
1410		pa = 0;
1411	else
1412		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1413		    (va - PVO_VADDR(pvo));
1414	PMAP_UNLOCK(pm);
1415	return (pa);
1416}
1417
1418/*
1419 * Atomically extract and hold the physical page with the given
1420 * pmap and virtual address pair if that mapping permits the given
1421 * protection.
1422 */
1423vm_page_t
1424moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1425{
1426	struct	pvo_entry *pvo;
1427	vm_page_t m;
1428        vm_paddr_t pa;
1429
1430	m = NULL;
1431	pa = 0;
1432	PMAP_LOCK(pmap);
1433retry:
1434	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1435	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1436	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1437	     (prot & VM_PROT_WRITE) == 0)) {
1438		if (vm_page_pa_tryrelock(pmap,
1439			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1440			goto retry;
1441		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1442		vm_page_hold(m);
1443	}
1444	PA_UNLOCK_COND(pa);
1445	PMAP_UNLOCK(pmap);
1446	return (m);
1447}
1448
1449static mmu_t installed_mmu;
1450
1451static void *
1452moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1453{
1454	/*
1455	 * This entire routine is a horrible hack to avoid bothering kmem
1456	 * for new KVA addresses. Because this can get called from inside
1457	 * kmem allocation routines, calling kmem for a new address here
1458	 * can lead to multiply locking non-recursive mutexes.
1459	 */
1460        vm_offset_t va;
1461
1462        vm_page_t m;
1463        int pflags, needed_lock;
1464
1465	*flags = UMA_SLAB_PRIV;
1466	needed_lock = !PMAP_LOCKED(kernel_pmap);
1467	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1468
1469        for (;;) {
1470                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1471                if (m == NULL) {
1472                        if (wait & M_NOWAIT)
1473                                return (NULL);
1474                        VM_WAIT;
1475                } else
1476                        break;
1477        }
1478
1479	va = VM_PAGE_TO_PHYS(m);
1480
1481	LOCK_TABLE_WR();
1482	if (needed_lock)
1483		PMAP_LOCK(kernel_pmap);
1484
1485	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1486	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1487	    0);
1488
1489	if (needed_lock)
1490		PMAP_UNLOCK(kernel_pmap);
1491	UNLOCK_TABLE_WR();
1492
1493	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1494                bzero((void *)va, PAGE_SIZE);
1495
1496	return (void *)va;
1497}
1498
1499extern int elf32_nxstack;
1500
1501void
1502moea64_init(mmu_t mmu)
1503{
1504
1505	CTR0(KTR_PMAP, "moea64_init");
1506
1507	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1508	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1509	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1510	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1511	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1512	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1513
1514	if (!hw_direct_map) {
1515		installed_mmu = mmu;
1516		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1517		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1518	}
1519
1520#ifdef COMPAT_FREEBSD32
1521	elf32_nxstack = 1;
1522#endif
1523
1524	moea64_initialized = TRUE;
1525}
1526
1527boolean_t
1528moea64_is_referenced(mmu_t mmu, vm_page_t m)
1529{
1530
1531	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1532	    ("moea64_is_referenced: page %p is not managed", m));
1533	return (moea64_query_bit(mmu, m, PTE_REF));
1534}
1535
1536boolean_t
1537moea64_is_modified(mmu_t mmu, vm_page_t m)
1538{
1539
1540	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1541	    ("moea64_is_modified: page %p is not managed", m));
1542
1543	/*
1544	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1545	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1546	 * is clear, no PTEs can have LPTE_CHG set.
1547	 */
1548	VM_OBJECT_ASSERT_LOCKED(m->object);
1549	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1550		return (FALSE);
1551	return (moea64_query_bit(mmu, m, LPTE_CHG));
1552}
1553
1554boolean_t
1555moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1556{
1557	struct pvo_entry *pvo;
1558	boolean_t rv;
1559
1560	PMAP_LOCK(pmap);
1561	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1562	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1563	PMAP_UNLOCK(pmap);
1564	return (rv);
1565}
1566
1567void
1568moea64_clear_modify(mmu_t mmu, vm_page_t m)
1569{
1570
1571	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1572	    ("moea64_clear_modify: page %p is not managed", m));
1573	VM_OBJECT_ASSERT_WLOCKED(m->object);
1574	KASSERT(!vm_page_xbusied(m),
1575	    ("moea64_clear_modify: page %p is exclusive busied", m));
1576
1577	/*
1578	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1579	 * set.  If the object containing the page is locked and the page is
1580	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1581	 */
1582	if ((m->aflags & PGA_WRITEABLE) == 0)
1583		return;
1584	moea64_clear_bit(mmu, m, LPTE_CHG);
1585}
1586
1587/*
1588 * Clear the write and modified bits in each of the given page's mappings.
1589 */
1590void
1591moea64_remove_write(mmu_t mmu, vm_page_t m)
1592{
1593	struct	pvo_entry *pvo;
1594	uintptr_t pt;
1595	pmap_t	pmap;
1596	uint64_t lo = 0;
1597
1598	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1599	    ("moea64_remove_write: page %p is not managed", m));
1600
1601	/*
1602	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1603	 * set by another thread while the object is locked.  Thus,
1604	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1605	 */
1606	VM_OBJECT_ASSERT_WLOCKED(m->object);
1607	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1608		return;
1609	powerpc_sync();
1610	LOCK_TABLE_RD();
1611	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1612		pmap = pvo->pvo_pmap;
1613		PMAP_LOCK(pmap);
1614		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1615			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1616			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1617			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1618			if (pt != -1) {
1619				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1620				lo |= pvo->pvo_pte.lpte.pte_lo;
1621				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1622				MOEA64_PTE_CHANGE(mmu, pt,
1623				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1624				if (pvo->pvo_pmap == kernel_pmap)
1625					isync();
1626			}
1627		}
1628		if ((lo & LPTE_CHG) != 0)
1629			vm_page_dirty(m);
1630		PMAP_UNLOCK(pmap);
1631	}
1632	UNLOCK_TABLE_RD();
1633	vm_page_aflag_clear(m, PGA_WRITEABLE);
1634}
1635
1636/*
1637 *	moea64_ts_referenced:
1638 *
1639 *	Return a count of reference bits for a page, clearing those bits.
1640 *	It is not necessary for every reference bit to be cleared, but it
1641 *	is necessary that 0 only be returned when there are truly no
1642 *	reference bits set.
1643 *
1644 *	XXX: The exact number of bits to check and clear is a matter that
1645 *	should be tested and standardized at some point in the future for
1646 *	optimal aging of shared pages.
1647 */
1648int
1649moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1650{
1651
1652	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1653	    ("moea64_ts_referenced: page %p is not managed", m));
1654	return (moea64_clear_bit(mmu, m, LPTE_REF));
1655}
1656
1657/*
1658 * Modify the WIMG settings of all mappings for a page.
1659 */
1660void
1661moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1662{
1663	struct	pvo_entry *pvo;
1664	struct  pvo_head *pvo_head;
1665	uintptr_t pt;
1666	pmap_t	pmap;
1667	uint64_t lo;
1668
1669	if ((m->oflags & VPO_UNMANAGED) != 0) {
1670		m->md.mdpg_cache_attrs = ma;
1671		return;
1672	}
1673
1674	pvo_head = vm_page_to_pvoh(m);
1675	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1676	LOCK_TABLE_RD();
1677	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1678		pmap = pvo->pvo_pmap;
1679		PMAP_LOCK(pmap);
1680		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1681		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1682		pvo->pvo_pte.lpte.pte_lo |= lo;
1683		if (pt != -1) {
1684			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1685			    pvo->pvo_vpn);
1686			if (pvo->pvo_pmap == kernel_pmap)
1687				isync();
1688		}
1689		PMAP_UNLOCK(pmap);
1690	}
1691	UNLOCK_TABLE_RD();
1692	m->md.mdpg_cache_attrs = ma;
1693}
1694
1695/*
1696 * Map a wired page into kernel virtual address space.
1697 */
1698void
1699moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1700{
1701	uint64_t	pte_lo;
1702	int		error;
1703
1704	pte_lo = moea64_calc_wimg(pa, ma);
1705
1706	LOCK_TABLE_WR();
1707	PMAP_LOCK(kernel_pmap);
1708	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1709	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1710	PMAP_UNLOCK(kernel_pmap);
1711	UNLOCK_TABLE_WR();
1712
1713	if (error != 0 && error != ENOENT)
1714		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1715		    pa, error);
1716}
1717
1718void
1719moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1720{
1721
1722	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1723}
1724
1725/*
1726 * Extract the physical page address associated with the given kernel virtual
1727 * address.
1728 */
1729vm_paddr_t
1730moea64_kextract(mmu_t mmu, vm_offset_t va)
1731{
1732	struct		pvo_entry *pvo;
1733	vm_paddr_t pa;
1734
1735	/*
1736	 * Shortcut the direct-mapped case when applicable.  We never put
1737	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1738	 */
1739	if (va < VM_MIN_KERNEL_ADDRESS)
1740		return (va);
1741
1742	PMAP_LOCK(kernel_pmap);
1743	pvo = moea64_pvo_find_va(kernel_pmap, va);
1744	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1745	    va));
1746	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1747	PMAP_UNLOCK(kernel_pmap);
1748	return (pa);
1749}
1750
1751/*
1752 * Remove a wired page from kernel virtual address space.
1753 */
1754void
1755moea64_kremove(mmu_t mmu, vm_offset_t va)
1756{
1757	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1758}
1759
1760/*
1761 * Map a range of physical addresses into kernel virtual address space.
1762 *
1763 * The value passed in *virt is a suggested virtual address for the mapping.
1764 * Architectures which can support a direct-mapped physical to virtual region
1765 * can return the appropriate address within that region, leaving '*virt'
1766 * unchanged.  We cannot and therefore do not; *virt is updated with the
1767 * first usable address after the mapped region.
1768 */
1769vm_offset_t
1770moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1771    vm_paddr_t pa_end, int prot)
1772{
1773	vm_offset_t	sva, va;
1774
1775	sva = *virt;
1776	va = sva;
1777	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1778		moea64_kenter(mmu, va, pa_start);
1779	*virt = va;
1780
1781	return (sva);
1782}
1783
1784/*
1785 * Returns true if the pmap's pv is one of the first
1786 * 16 pvs linked to from this page.  This count may
1787 * be changed upwards or downwards in the future; it
1788 * is only necessary that true be returned for a small
1789 * subset of pmaps for proper page aging.
1790 */
1791boolean_t
1792moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1793{
1794        int loops;
1795	struct pvo_entry *pvo;
1796	boolean_t rv;
1797
1798	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1799	    ("moea64_page_exists_quick: page %p is not managed", m));
1800	loops = 0;
1801	rv = FALSE;
1802	LOCK_TABLE_RD();
1803	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1804		if (pvo->pvo_pmap == pmap) {
1805			rv = TRUE;
1806			break;
1807		}
1808		if (++loops >= 16)
1809			break;
1810	}
1811	UNLOCK_TABLE_RD();
1812	return (rv);
1813}
1814
1815/*
1816 * Return the number of managed mappings to the given physical page
1817 * that are wired.
1818 */
1819int
1820moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1821{
1822	struct pvo_entry *pvo;
1823	int count;
1824
1825	count = 0;
1826	if ((m->oflags & VPO_UNMANAGED) != 0)
1827		return (count);
1828	LOCK_TABLE_RD();
1829	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1830		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1831			count++;
1832	UNLOCK_TABLE_RD();
1833	return (count);
1834}
1835
1836static uintptr_t	moea64_vsidcontext;
1837
1838uintptr_t
1839moea64_get_unique_vsid(void) {
1840	u_int entropy;
1841	register_t hash;
1842	uint32_t mask;
1843	int i;
1844
1845	entropy = 0;
1846	__asm __volatile("mftb %0" : "=r"(entropy));
1847
1848	mtx_lock(&moea64_slb_mutex);
1849	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1850		u_int	n;
1851
1852		/*
1853		 * Create a new value by mutiplying by a prime and adding in
1854		 * entropy from the timebase register.  This is to make the
1855		 * VSID more random so that the PT hash function collides
1856		 * less often.  (Note that the prime casues gcc to do shifts
1857		 * instead of a multiply.)
1858		 */
1859		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1860		hash = moea64_vsidcontext & (NVSIDS - 1);
1861		if (hash == 0)		/* 0 is special, avoid it */
1862			continue;
1863		n = hash >> 5;
1864		mask = 1 << (hash & (VSID_NBPW - 1));
1865		hash = (moea64_vsidcontext & VSID_HASHMASK);
1866		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1867			/* anything free in this bucket? */
1868			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1869				entropy = (moea64_vsidcontext >> 20);
1870				continue;
1871			}
1872			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1873			mask = 1 << i;
1874			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1875			hash |= i;
1876		}
1877		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1878		    ("Allocating in-use VSID %#zx\n", hash));
1879		moea64_vsid_bitmap[n] |= mask;
1880		mtx_unlock(&moea64_slb_mutex);
1881		return (hash);
1882	}
1883
1884	mtx_unlock(&moea64_slb_mutex);
1885	panic("%s: out of segments",__func__);
1886}
1887
1888#ifdef __powerpc64__
1889void
1890moea64_pinit(mmu_t mmu, pmap_t pmap)
1891{
1892
1893	RB_INIT(&pmap->pmap_pvo);
1894
1895	pmap->pm_slb_tree_root = slb_alloc_tree();
1896	pmap->pm_slb = slb_alloc_user_cache();
1897	pmap->pm_slb_len = 0;
1898}
1899#else
1900void
1901moea64_pinit(mmu_t mmu, pmap_t pmap)
1902{
1903	int	i;
1904	uint32_t hash;
1905
1906	RB_INIT(&pmap->pmap_pvo);
1907
1908	if (pmap_bootstrapped)
1909		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1910		    (vm_offset_t)pmap);
1911	else
1912		pmap->pmap_phys = pmap;
1913
1914	/*
1915	 * Allocate some segment registers for this pmap.
1916	 */
1917	hash = moea64_get_unique_vsid();
1918
1919	for (i = 0; i < 16; i++)
1920		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1921
1922	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1923}
1924#endif
1925
1926/*
1927 * Initialize the pmap associated with process 0.
1928 */
1929void
1930moea64_pinit0(mmu_t mmu, pmap_t pm)
1931{
1932
1933	PMAP_LOCK_INIT(pm);
1934	moea64_pinit(mmu, pm);
1935	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1936}
1937
1938/*
1939 * Set the physical protection on the specified range of this map as requested.
1940 */
1941static void
1942moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1943{
1944	uintptr_t pt;
1945	struct	vm_page *pg;
1946	uint64_t oldlo;
1947
1948	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1949
1950	/*
1951	 * Grab the PTE pointer before we diddle with the cached PTE
1952	 * copy.
1953	 */
1954	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1955
1956	/*
1957	 * Change the protection of the page.
1958	 */
1959	oldlo = pvo->pvo_pte.lpte.pte_lo;
1960	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1961	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1962	if ((prot & VM_PROT_EXECUTE) == 0)
1963		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1964	if (prot & VM_PROT_WRITE)
1965		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1966	else
1967		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1968
1969	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1970
1971	/*
1972	 * If the PVO is in the page table, update that pte as well.
1973	 */
1974	if (pt != -1)
1975		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1976		    pvo->pvo_vpn);
1977	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1978	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1979		if ((pg->oflags & VPO_UNMANAGED) == 0)
1980			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1981		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1982		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1983	}
1984
1985	/*
1986	 * Update vm about the REF/CHG bits if the page is managed and we have
1987	 * removed write access.
1988	 */
1989	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1990	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1991		if (pg != NULL) {
1992			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1993				vm_page_dirty(pg);
1994			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1995				vm_page_aflag_set(pg, PGA_REFERENCED);
1996		}
1997	}
1998}
1999
2000void
2001moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2002    vm_prot_t prot)
2003{
2004	struct	pvo_entry *pvo, *tpvo, key;
2005
2006	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2007	    sva, eva, prot);
2008
2009	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2010	    ("moea64_protect: non current pmap"));
2011
2012	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2013		moea64_remove(mmu, pm, sva, eva);
2014		return;
2015	}
2016
2017	LOCK_TABLE_RD();
2018	PMAP_LOCK(pm);
2019	key.pvo_vaddr = sva;
2020	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2021	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2022		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2023		moea64_pvo_protect(mmu, pm, pvo, prot);
2024	}
2025	UNLOCK_TABLE_RD();
2026	PMAP_UNLOCK(pm);
2027}
2028
2029/*
2030 * Map a list of wired pages into kernel virtual address space.  This is
2031 * intended for temporary mappings which do not need page modification or
2032 * references recorded.  Existing mappings in the region are overwritten.
2033 */
2034void
2035moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2036{
2037	while (count-- > 0) {
2038		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2039		va += PAGE_SIZE;
2040		m++;
2041	}
2042}
2043
2044/*
2045 * Remove page mappings from kernel virtual address space.  Intended for
2046 * temporary mappings entered by moea64_qenter.
2047 */
2048void
2049moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2050{
2051	while (count-- > 0) {
2052		moea64_kremove(mmu, va);
2053		va += PAGE_SIZE;
2054	}
2055}
2056
2057void
2058moea64_release_vsid(uint64_t vsid)
2059{
2060	int idx, mask;
2061
2062	mtx_lock(&moea64_slb_mutex);
2063	idx = vsid & (NVSIDS-1);
2064	mask = 1 << (idx % VSID_NBPW);
2065	idx /= VSID_NBPW;
2066	KASSERT(moea64_vsid_bitmap[idx] & mask,
2067	    ("Freeing unallocated VSID %#jx", vsid));
2068	moea64_vsid_bitmap[idx] &= ~mask;
2069	mtx_unlock(&moea64_slb_mutex);
2070}
2071
2072
2073void
2074moea64_release(mmu_t mmu, pmap_t pmap)
2075{
2076
2077	/*
2078	 * Free segment registers' VSIDs
2079	 */
2080    #ifdef __powerpc64__
2081	slb_free_tree(pmap);
2082	slb_free_user_cache(pmap->pm_slb);
2083    #else
2084	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2085
2086	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2087    #endif
2088}
2089
2090/*
2091 * Remove all pages mapped by the specified pmap
2092 */
2093void
2094moea64_remove_pages(mmu_t mmu, pmap_t pm)
2095{
2096	struct	pvo_entry *pvo, *tpvo;
2097
2098	LOCK_TABLE_WR();
2099	PMAP_LOCK(pm);
2100	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2101		if (!(pvo->pvo_vaddr & PVO_WIRED))
2102			moea64_pvo_remove(mmu, pvo);
2103	}
2104	UNLOCK_TABLE_WR();
2105	PMAP_UNLOCK(pm);
2106}
2107
2108/*
2109 * Remove the given range of addresses from the specified map.
2110 */
2111void
2112moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2113{
2114	struct	pvo_entry *pvo, *tpvo, key;
2115
2116	/*
2117	 * Perform an unsynchronized read.  This is, however, safe.
2118	 */
2119	if (pm->pm_stats.resident_count == 0)
2120		return;
2121
2122	LOCK_TABLE_WR();
2123	PMAP_LOCK(pm);
2124	key.pvo_vaddr = sva;
2125	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2126	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2127		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2128		moea64_pvo_remove(mmu, pvo);
2129	}
2130	UNLOCK_TABLE_WR();
2131	PMAP_UNLOCK(pm);
2132}
2133
2134/*
2135 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2136 * will reflect changes in pte's back to the vm_page.
2137 */
2138void
2139moea64_remove_all(mmu_t mmu, vm_page_t m)
2140{
2141	struct	pvo_entry *pvo, *next_pvo;
2142	pmap_t	pmap;
2143
2144	LOCK_TABLE_WR();
2145	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2146		pmap = pvo->pvo_pmap;
2147		PMAP_LOCK(pmap);
2148		moea64_pvo_remove(mmu, pvo);
2149		PMAP_UNLOCK(pmap);
2150	}
2151	UNLOCK_TABLE_WR();
2152	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2153		vm_page_dirty(m);
2154	vm_page_aflag_clear(m, PGA_WRITEABLE);
2155	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2156}
2157
2158/*
2159 * Allocate a physical page of memory directly from the phys_avail map.
2160 * Can only be called from moea64_bootstrap before avail start and end are
2161 * calculated.
2162 */
2163vm_offset_t
2164moea64_bootstrap_alloc(vm_size_t size, u_int align)
2165{
2166	vm_offset_t	s, e;
2167	int		i, j;
2168
2169	size = round_page(size);
2170	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2171		if (align != 0)
2172			s = (phys_avail[i] + align - 1) & ~(align - 1);
2173		else
2174			s = phys_avail[i];
2175		e = s + size;
2176
2177		if (s < phys_avail[i] || e > phys_avail[i + 1])
2178			continue;
2179
2180		if (s + size > platform_real_maxaddr())
2181			continue;
2182
2183		if (s == phys_avail[i]) {
2184			phys_avail[i] += size;
2185		} else if (e == phys_avail[i + 1]) {
2186			phys_avail[i + 1] -= size;
2187		} else {
2188			for (j = phys_avail_count * 2; j > i; j -= 2) {
2189				phys_avail[j] = phys_avail[j - 2];
2190				phys_avail[j + 1] = phys_avail[j - 1];
2191			}
2192
2193			phys_avail[i + 3] = phys_avail[i + 1];
2194			phys_avail[i + 1] = s;
2195			phys_avail[i + 2] = e;
2196			phys_avail_count++;
2197		}
2198
2199		return (s);
2200	}
2201	panic("moea64_bootstrap_alloc: could not allocate memory");
2202}
2203
2204static int
2205moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2206    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2207    uint64_t pte_lo, int flags, int8_t psind __unused)
2208{
2209	struct	 pvo_entry *pvo;
2210	uint64_t vsid;
2211	int	 first;
2212	u_int	 ptegidx;
2213	int	 i;
2214	int      bootstrap;
2215
2216	/*
2217	 * One nasty thing that can happen here is that the UMA calls to
2218	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2219	 * which calls UMA...
2220	 *
2221	 * We break the loop by detecting recursion and allocating out of
2222	 * the bootstrap pool.
2223	 */
2224
2225	first = 0;
2226	bootstrap = (flags & PVO_BOOTSTRAP);
2227
2228	if (!moea64_initialized)
2229		bootstrap = 1;
2230
2231	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2232	rw_assert(&moea64_table_lock, RA_WLOCKED);
2233
2234	/*
2235	 * Compute the PTE Group index.
2236	 */
2237	va &= ~ADDR_POFF;
2238	vsid = va_to_vsid(pm, va);
2239	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2240
2241	/*
2242	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2243	 * there is a mapping.
2244	 */
2245	moea64_pvo_enter_calls++;
2246
2247	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2248		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2249			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2250			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2251			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2252			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2253					/* Re-insert if spilled */
2254					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2255					    &pvo->pvo_pte.lpte);
2256					if (i >= 0)
2257						PVO_PTEGIDX_SET(pvo, i);
2258					moea64_pte_overflow--;
2259				}
2260				return (0);
2261			}
2262			moea64_pvo_remove(mmu, pvo);
2263			break;
2264		}
2265	}
2266
2267	/*
2268	 * If we aren't overwriting a mapping, try to allocate.
2269	 */
2270	if (bootstrap) {
2271		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2272			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2273			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2274			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2275		}
2276		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2277		moea64_bpvo_pool_index++;
2278		bootstrap = 1;
2279	} else {
2280		pvo = uma_zalloc(zone, M_NOWAIT);
2281	}
2282
2283	if (pvo == NULL)
2284		return (ENOMEM);
2285
2286	moea64_pvo_entries++;
2287	pvo->pvo_vaddr = va;
2288	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2289	    | (vsid << 16);
2290	pvo->pvo_pmap = pm;
2291	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2292	pvo->pvo_vaddr &= ~ADDR_POFF;
2293
2294	if (flags & PVO_WIRED)
2295		pvo->pvo_vaddr |= PVO_WIRED;
2296	if (pvo_head != NULL)
2297		pvo->pvo_vaddr |= PVO_MANAGED;
2298	if (bootstrap)
2299		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2300	if (flags & PVO_LARGE)
2301		pvo->pvo_vaddr |= PVO_LARGE;
2302
2303	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2304	    (uint64_t)(pa) | pte_lo, flags);
2305
2306	/*
2307	 * Add to pmap list
2308	 */
2309	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2310
2311	/*
2312	 * Remember if the list was empty and therefore will be the first
2313	 * item.
2314	 */
2315	if (pvo_head != NULL) {
2316		if (LIST_FIRST(pvo_head) == NULL)
2317			first = 1;
2318		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2319	}
2320
2321	if (pvo->pvo_vaddr & PVO_WIRED) {
2322		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2323		pm->pm_stats.wired_count++;
2324	}
2325	pm->pm_stats.resident_count++;
2326
2327	/*
2328	 * We hope this succeeds but it isn't required.
2329	 */
2330	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2331	if (i >= 0) {
2332		PVO_PTEGIDX_SET(pvo, i);
2333	} else {
2334		panic("moea64_pvo_enter: overflow");
2335		moea64_pte_overflow++;
2336	}
2337
2338	if (pm == kernel_pmap)
2339		isync();
2340
2341#ifdef __powerpc64__
2342	/*
2343	 * Make sure all our bootstrap mappings are in the SLB as soon
2344	 * as virtual memory is switched on.
2345	 */
2346	if (!pmap_bootstrapped)
2347		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2348#endif
2349
2350	return (first ? ENOENT : 0);
2351}
2352
2353static void
2354moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2355{
2356	struct	vm_page *pg;
2357	uintptr_t pt;
2358
2359	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2360	rw_assert(&moea64_table_lock, RA_WLOCKED);
2361
2362	/*
2363	 * If there is an active pte entry, we need to deactivate it (and
2364	 * save the ref & cfg bits).
2365	 */
2366	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2367	if (pt != -1) {
2368		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2369		PVO_PTEGIDX_CLR(pvo);
2370	} else {
2371		moea64_pte_overflow--;
2372	}
2373
2374	/*
2375	 * Update our statistics.
2376	 */
2377	pvo->pvo_pmap->pm_stats.resident_count--;
2378	if (pvo->pvo_vaddr & PVO_WIRED)
2379		pvo->pvo_pmap->pm_stats.wired_count--;
2380
2381	/*
2382	 * Remove this PVO from the pmap list.
2383	 */
2384	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2385
2386	/*
2387	 * Remove this from the overflow list and return it to the pool
2388	 * if we aren't going to reuse it.
2389	 */
2390	LIST_REMOVE(pvo, pvo_olink);
2391
2392	/*
2393	 * Update vm about the REF/CHG bits if the page is managed.
2394	 */
2395	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2396
2397	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2398		LIST_REMOVE(pvo, pvo_vlink);
2399		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2400			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2401				vm_page_dirty(pg);
2402			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2403				vm_page_aflag_set(pg, PGA_REFERENCED);
2404			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2405				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2406		}
2407		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2408			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2409	}
2410
2411	moea64_pvo_entries--;
2412	moea64_pvo_remove_calls++;
2413
2414	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2415		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2416		    moea64_upvo_zone, pvo);
2417}
2418
2419static struct pvo_entry *
2420moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2421{
2422	struct pvo_entry key;
2423
2424	key.pvo_vaddr = va & ~ADDR_POFF;
2425	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2426}
2427
2428static boolean_t
2429moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2430{
2431	struct	pvo_entry *pvo;
2432	uintptr_t pt;
2433
2434	LOCK_TABLE_RD();
2435	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2436		/*
2437		 * See if we saved the bit off.  If so, return success.
2438		 */
2439		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2440			UNLOCK_TABLE_RD();
2441			return (TRUE);
2442		}
2443	}
2444
2445	/*
2446	 * No luck, now go through the hard part of looking at the PTEs
2447	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2448	 * the PTEs.
2449	 */
2450	powerpc_sync();
2451	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2452
2453		/*
2454		 * See if this pvo has a valid PTE.  if so, fetch the
2455		 * REF/CHG bits from the valid PTE.  If the appropriate
2456		 * ptebit is set, return success.
2457		 */
2458		PMAP_LOCK(pvo->pvo_pmap);
2459		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2460		if (pt != -1) {
2461			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2462			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2463				PMAP_UNLOCK(pvo->pvo_pmap);
2464				UNLOCK_TABLE_RD();
2465				return (TRUE);
2466			}
2467		}
2468		PMAP_UNLOCK(pvo->pvo_pmap);
2469	}
2470
2471	UNLOCK_TABLE_RD();
2472	return (FALSE);
2473}
2474
2475static u_int
2476moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2477{
2478	u_int	count;
2479	struct	pvo_entry *pvo;
2480	uintptr_t pt;
2481
2482	/*
2483	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2484	 * we can reset the right ones).  note that since the pvo entries and
2485	 * list heads are accessed via BAT0 and are never placed in the page
2486	 * table, we don't have to worry about further accesses setting the
2487	 * REF/CHG bits.
2488	 */
2489	powerpc_sync();
2490
2491	/*
2492	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2493	 * valid pte clear the ptebit from the valid pte.
2494	 */
2495	count = 0;
2496	LOCK_TABLE_RD();
2497	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2498		PMAP_LOCK(pvo->pvo_pmap);
2499		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2500		if (pt != -1) {
2501			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2502			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2503				count++;
2504				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2505				    pvo->pvo_vpn, ptebit);
2506			}
2507		}
2508		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2509		PMAP_UNLOCK(pvo->pvo_pmap);
2510	}
2511
2512	UNLOCK_TABLE_RD();
2513	return (count);
2514}
2515
2516boolean_t
2517moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2518{
2519	struct pvo_entry *pvo, key;
2520	vm_offset_t ppa;
2521	int error = 0;
2522
2523	PMAP_LOCK(kernel_pmap);
2524	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2525	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2526	    ppa < pa + size; ppa += PAGE_SIZE,
2527	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2528		if (pvo == NULL ||
2529		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2530			error = EFAULT;
2531			break;
2532		}
2533	}
2534	PMAP_UNLOCK(kernel_pmap);
2535
2536	return (error);
2537}
2538
2539/*
2540 * Map a set of physical memory pages into the kernel virtual
2541 * address space. Return a pointer to where it is mapped. This
2542 * routine is intended to be used for mapping device memory,
2543 * NOT real memory.
2544 */
2545void *
2546moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2547{
2548	vm_offset_t va, tmpva, ppa, offset;
2549
2550	ppa = trunc_page(pa);
2551	offset = pa & PAGE_MASK;
2552	size = roundup2(offset + size, PAGE_SIZE);
2553
2554	va = kva_alloc(size);
2555
2556	if (!va)
2557		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2558
2559	for (tmpva = va; size > 0;) {
2560		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2561		size -= PAGE_SIZE;
2562		tmpva += PAGE_SIZE;
2563		ppa += PAGE_SIZE;
2564	}
2565
2566	return ((void *)(va + offset));
2567}
2568
2569void *
2570moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2571{
2572
2573	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2574}
2575
2576void
2577moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2578{
2579	vm_offset_t base, offset;
2580
2581	base = trunc_page(va);
2582	offset = va & PAGE_MASK;
2583	size = roundup2(offset + size, PAGE_SIZE);
2584
2585	kva_free(base, size);
2586}
2587
2588void
2589moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2590{
2591	struct pvo_entry *pvo;
2592	vm_offset_t lim;
2593	vm_paddr_t pa;
2594	vm_size_t len;
2595
2596	PMAP_LOCK(pm);
2597	while (sz > 0) {
2598		lim = round_page(va);
2599		len = MIN(lim - va, sz);
2600		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2601		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2602			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2603			    (va & ADDR_POFF);
2604			moea64_syncicache(mmu, pm, va, pa, len);
2605		}
2606		va += len;
2607		sz -= len;
2608	}
2609	PMAP_UNLOCK(pm);
2610}
2611
2612vm_offset_t
2613moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2614    vm_size_t *sz)
2615{
2616	if (md->md_vaddr == ~0UL)
2617	    return (md->md_paddr + ofs);
2618	else
2619	    return (md->md_vaddr + ofs);
2620}
2621
2622struct pmap_md *
2623moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2624{
2625	static struct pmap_md md;
2626	struct pvo_entry *pvo;
2627	vm_offset_t va;
2628
2629	if (dumpsys_minidump) {
2630		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2631		if (prev == NULL) {
2632			/* 1st: kernel .data and .bss. */
2633			md.md_index = 1;
2634			md.md_vaddr = trunc_page((uintptr_t)_etext);
2635			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2636			return (&md);
2637		}
2638		switch (prev->md_index) {
2639		case 1:
2640			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2641			md.md_index = 2;
2642			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2643			md.md_size = round_page(msgbufp->msg_size);
2644			break;
2645		case 2:
2646			/* 3rd: kernel VM. */
2647			va = prev->md_vaddr + prev->md_size;
2648			/* Find start of next chunk (from va). */
2649			while (va < virtual_end) {
2650				/* Don't dump the buffer cache. */
2651				if (va >= kmi.buffer_sva &&
2652				    va < kmi.buffer_eva) {
2653					va = kmi.buffer_eva;
2654					continue;
2655				}
2656				pvo = moea64_pvo_find_va(kernel_pmap,
2657				    va & ~ADDR_POFF);
2658				if (pvo != NULL &&
2659				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2660					break;
2661				va += PAGE_SIZE;
2662			}
2663			if (va < virtual_end) {
2664				md.md_vaddr = va;
2665				va += PAGE_SIZE;
2666				/* Find last page in chunk. */
2667				while (va < virtual_end) {
2668					/* Don't run into the buffer cache. */
2669					if (va == kmi.buffer_sva)
2670						break;
2671					pvo = moea64_pvo_find_va(kernel_pmap,
2672					    va & ~ADDR_POFF);
2673					if (pvo == NULL ||
2674					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2675						break;
2676					va += PAGE_SIZE;
2677				}
2678				md.md_size = va - md.md_vaddr;
2679				break;
2680			}
2681			md.md_index = 3;
2682			/* FALLTHROUGH */
2683		default:
2684			return (NULL);
2685		}
2686	} else { /* minidumps */
2687		if (prev == NULL) {
2688			/* first physical chunk. */
2689			md.md_paddr = pregions[0].mr_start;
2690			md.md_size = pregions[0].mr_size;
2691			md.md_vaddr = ~0UL;
2692			md.md_index = 1;
2693		} else if (md.md_index < pregions_sz) {
2694			md.md_paddr = pregions[md.md_index].mr_start;
2695			md.md_size = pregions[md.md_index].mr_size;
2696			md.md_vaddr = ~0UL;
2697			md.md_index++;
2698		} else {
2699			/* There's no next physical chunk. */
2700			return (NULL);
2701		}
2702	}
2703
2704	return (&md);
2705}
2706