mmu_oea64.c revision 266019
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/10/sys/powerpc/aim/mmu_oea64.c 266019 2014-05-14 14:08:45Z ian $");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_compat.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/kernel.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/ktr.h>
113#include <sys/lock.h>
114#include <sys/msgbuf.h>
115#include <sys/malloc.h>
116#include <sys/mutex.h>
117#include <sys/proc.h>
118#include <sys/rwlock.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/systm.h>
122#include <sys/vmmeter.h>
123
124#include <sys/kdb.h>
125
126#include <dev/ofw/openfirm.h>
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/uma.h>
137
138#include <machine/_inttypes.h>
139#include <machine/cpu.h>
140#include <machine/platform.h>
141#include <machine/frame.h>
142#include <machine/md_var.h>
143#include <machine/psl.h>
144#include <machine/bat.h>
145#include <machine/hid.h>
146#include <machine/pte.h>
147#include <machine/sr.h>
148#include <machine/trap.h>
149#include <machine/mmuvar.h>
150
151#include "mmu_oea64.h"
152#include "mmu_if.h"
153#include "moea64_if.h"
154
155void moea64_release_vsid(uint64_t vsid);
156uintptr_t moea64_get_unique_vsid(void);
157
158#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159#define ENABLE_TRANS(msr)	mtmsr(msr)
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163#define	VSID_HASH_MASK		0x0000007fffffffffULL
164
165/*
166 * Locking semantics:
167 * -- Read lock: if no modifications are being made to either the PVO lists
168 *    or page table or if any modifications being made result in internal
169 *    changes (e.g. wiring, protection) such that the existence of the PVOs
170 *    is unchanged and they remain associated with the same pmap (in which
171 *    case the changes should be protected by the pmap lock)
172 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173 */
174
175#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	uint64_t om_pa;
184	cell_t	om_mode;
185};
186
187extern unsigned char _etext[];
188extern unsigned char _end[];
189
190extern int dumpsys_minidump;
191
192/*
193 * Map of physical memory regions.
194 */
195static struct	mem_region *regions;
196static struct	mem_region *pregions;
197static u_int	phys_avail_count;
198static int	regions_sz, pregions_sz;
199
200extern void bs_remap_earlyboot(void);
201
202/*
203 * Lock for the pteg and pvo tables.
204 */
205struct rwlock	moea64_table_lock;
206struct mtx	moea64_slb_mutex;
207
208/*
209 * PTEG data.
210 */
211u_int		moea64_pteg_count;
212u_int		moea64_pteg_mask;
213
214/*
215 * PVO data.
216 */
217struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
218
219uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
220uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
221
222#define	BPVO_POOL_SIZE	327680
223static struct	pvo_entry *moea64_bpvo_pool;
224static int	moea64_bpvo_pool_index = 0;
225
226#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227#ifdef __powerpc64__
228#define	NVSIDS		(NPMAPS * 16)
229#define VSID_HASHMASK	0xffffffffUL
230#else
231#define NVSIDS		NPMAPS
232#define VSID_HASHMASK	0xfffffUL
233#endif
234static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
235
236static boolean_t moea64_initialized = FALSE;
237
238/*
239 * Statistics.
240 */
241u_int	moea64_pte_valid = 0;
242u_int	moea64_pte_overflow = 0;
243u_int	moea64_pvo_entries = 0;
244u_int	moea64_pvo_enter_calls = 0;
245u_int	moea64_pvo_remove_calls = 0;
246SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
247    &moea64_pte_valid, 0, "");
248SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
249    &moea64_pte_overflow, 0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
251    &moea64_pvo_entries, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
253    &moea64_pvo_enter_calls, 0, "");
254SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
255    &moea64_pvo_remove_calls, 0, "");
256
257vm_offset_t	moea64_scratchpage_va[2];
258struct pvo_entry *moea64_scratchpage_pvo[2];
259uintptr_t	moea64_scratchpage_pte[2];
260struct	mtx	moea64_scratchpage_mtx;
261
262uint64_t 	moea64_large_page_mask = 0;
263uint64_t	moea64_large_page_size = 0;
264int		moea64_large_page_shift = 0;
265
266/*
267 * PVO calls.
268 */
269static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
270		    vm_offset_t, vm_offset_t, uint64_t, int);
271static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
272static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
273
274/*
275 * Utility routines.
276 */
277static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279static void		moea64_kremove(mmu_t, vm_offset_t);
280static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281			    vm_offset_t pa, vm_size_t sz);
282
283/*
284 * Kernel MMU interface
285 */
286void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
287void moea64_clear_modify(mmu_t, vm_page_t);
288void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
289void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
290    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
291void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
292void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
293    vm_prot_t);
294void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
295vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
296vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
297void moea64_init(mmu_t);
298boolean_t moea64_is_modified(mmu_t, vm_page_t);
299boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
300boolean_t moea64_is_referenced(mmu_t, vm_page_t);
301int moea64_ts_referenced(mmu_t, vm_page_t);
302vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
303boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
304int moea64_page_wired_mappings(mmu_t, vm_page_t);
305void moea64_pinit(mmu_t, pmap_t);
306void moea64_pinit0(mmu_t, pmap_t);
307void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
308void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
309void moea64_qremove(mmu_t, vm_offset_t, int);
310void moea64_release(mmu_t, pmap_t);
311void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
312void moea64_remove_pages(mmu_t, pmap_t);
313void moea64_remove_all(mmu_t, vm_page_t);
314void moea64_remove_write(mmu_t, vm_page_t);
315void moea64_zero_page(mmu_t, vm_page_t);
316void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
317void moea64_zero_page_idle(mmu_t, vm_page_t);
318void moea64_activate(mmu_t, struct thread *);
319void moea64_deactivate(mmu_t, struct thread *);
320void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
321void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
322void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
323vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
324void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
325void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
326void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
327boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
328static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
329vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
330    vm_size_t *sz);
331struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
332
333static mmu_method_t moea64_methods[] = {
334	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
335	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
336	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
337	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
338	MMUMETHOD(mmu_enter,		moea64_enter),
339	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
340	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
341	MMUMETHOD(mmu_extract,		moea64_extract),
342	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
343	MMUMETHOD(mmu_init,		moea64_init),
344	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
345	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
346	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
347	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
348	MMUMETHOD(mmu_map,     		moea64_map),
349	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
350	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
351	MMUMETHOD(mmu_pinit,		moea64_pinit),
352	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
353	MMUMETHOD(mmu_protect,		moea64_protect),
354	MMUMETHOD(mmu_qenter,		moea64_qenter),
355	MMUMETHOD(mmu_qremove,		moea64_qremove),
356	MMUMETHOD(mmu_release,		moea64_release),
357	MMUMETHOD(mmu_remove,		moea64_remove),
358	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
359	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
360	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
361	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
362	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
363	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
364	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
365	MMUMETHOD(mmu_activate,		moea64_activate),
366	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
367	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
368
369	/* Internal interfaces */
370	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
371	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
372	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
373	MMUMETHOD(mmu_kextract,		moea64_kextract),
374	MMUMETHOD(mmu_kenter,		moea64_kenter),
375	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
376	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
377	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
378	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
379
380	{ 0, 0 }
381};
382
383MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
384
385static __inline u_int
386va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
387{
388	uint64_t hash;
389	int shift;
390
391	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
392	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
393	    shift);
394	return (hash & moea64_pteg_mask);
395}
396
397static __inline struct pvo_head *
398vm_page_to_pvoh(vm_page_t m)
399{
400
401	return (&m->md.mdpg_pvoh);
402}
403
404static __inline void
405moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
406    uint64_t pte_lo, int flags)
407{
408
409	/*
410	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
411	 * set when the real pte is set in memory.
412	 *
413	 * Note: Don't set the valid bit for correct operation of tlb update.
414	 */
415	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
416	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
417
418	if (flags & PVO_LARGE)
419		pt->pte_hi |= LPTE_BIG;
420
421	pt->pte_lo = pte_lo;
422}
423
424static __inline uint64_t
425moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
426{
427	uint64_t pte_lo;
428	int i;
429
430	if (ma != VM_MEMATTR_DEFAULT) {
431		switch (ma) {
432		case VM_MEMATTR_UNCACHEABLE:
433			return (LPTE_I | LPTE_G);
434		case VM_MEMATTR_WRITE_COMBINING:
435		case VM_MEMATTR_WRITE_BACK:
436		case VM_MEMATTR_PREFETCHABLE:
437			return (LPTE_I);
438		case VM_MEMATTR_WRITE_THROUGH:
439			return (LPTE_W | LPTE_M);
440		}
441	}
442
443	/*
444	 * Assume the page is cache inhibited and access is guarded unless
445	 * it's in our available memory array.
446	 */
447	pte_lo = LPTE_I | LPTE_G;
448	for (i = 0; i < pregions_sz; i++) {
449		if ((pa >= pregions[i].mr_start) &&
450		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
451			pte_lo &= ~(LPTE_I | LPTE_G);
452			pte_lo |= LPTE_M;
453			break;
454		}
455	}
456
457	return pte_lo;
458}
459
460/*
461 * Quick sort callout for comparing memory regions.
462 */
463static int	om_cmp(const void *a, const void *b);
464
465static int
466om_cmp(const void *a, const void *b)
467{
468	const struct	ofw_map *mapa;
469	const struct	ofw_map *mapb;
470
471	mapa = a;
472	mapb = b;
473	if (mapa->om_pa < mapb->om_pa)
474		return (-1);
475	else if (mapa->om_pa > mapb->om_pa)
476		return (1);
477	else
478		return (0);
479}
480
481static void
482moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
483{
484	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
485	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
486	register_t	msr;
487	vm_offset_t	off;
488	vm_paddr_t	pa_base;
489	int		i, j;
490
491	bzero(translations, sz);
492	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
493	    sizeof(acells));
494	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
495		panic("moea64_bootstrap: can't get ofw translations");
496
497	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
498	sz /= sizeof(cell_t);
499	for (i = 0, j = 0; i < sz; j++) {
500		translations[j].om_va = trans_cells[i++];
501		translations[j].om_len = trans_cells[i++];
502		translations[j].om_pa = trans_cells[i++];
503		if (acells == 2) {
504			translations[j].om_pa <<= 32;
505			translations[j].om_pa |= trans_cells[i++];
506		}
507		translations[j].om_mode = trans_cells[i++];
508	}
509	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
510	    i, sz));
511
512	sz = j;
513	qsort(translations, sz, sizeof (*translations), om_cmp);
514
515	for (i = 0; i < sz; i++) {
516		pa_base = translations[i].om_pa;
517	      #ifndef __powerpc64__
518		if ((translations[i].om_pa >> 32) != 0)
519			panic("OFW translations above 32-bit boundary!");
520	      #endif
521
522		if (pa_base % PAGE_SIZE)
523			panic("OFW translation not page-aligned (phys)!");
524		if (translations[i].om_va % PAGE_SIZE)
525			panic("OFW translation not page-aligned (virt)!");
526
527		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
528		    pa_base, translations[i].om_va, translations[i].om_len);
529
530		/* Now enter the pages for this mapping */
531
532		DISABLE_TRANS(msr);
533		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
534			if (moea64_pvo_find_va(kernel_pmap,
535			    translations[i].om_va + off) != NULL)
536				continue;
537
538			moea64_kenter(mmup, translations[i].om_va + off,
539			    pa_base + off);
540		}
541		ENABLE_TRANS(msr);
542	}
543}
544
545#ifdef __powerpc64__
546static void
547moea64_probe_large_page(void)
548{
549	uint16_t pvr = mfpvr() >> 16;
550
551	switch (pvr) {
552	case IBM970:
553	case IBM970FX:
554	case IBM970MP:
555		powerpc_sync(); isync();
556		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
557		powerpc_sync(); isync();
558
559		/* FALLTHROUGH */
560	default:
561		moea64_large_page_size = 0x1000000; /* 16 MB */
562		moea64_large_page_shift = 24;
563	}
564
565	moea64_large_page_mask = moea64_large_page_size - 1;
566}
567
568static void
569moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
570{
571	struct slb *cache;
572	struct slb entry;
573	uint64_t esid, slbe;
574	uint64_t i;
575
576	cache = PCPU_GET(slb);
577	esid = va >> ADDR_SR_SHFT;
578	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
579
580	for (i = 0; i < 64; i++) {
581		if (cache[i].slbe == (slbe | i))
582			return;
583	}
584
585	entry.slbe = slbe;
586	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
587	if (large)
588		entry.slbv |= SLBV_L;
589
590	slb_insert_kernel(entry.slbe, entry.slbv);
591}
592#endif
593
594static void
595moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
596    vm_offset_t kernelend)
597{
598	register_t msr;
599	vm_paddr_t pa;
600	vm_offset_t size, off;
601	uint64_t pte_lo;
602	int i;
603
604	if (moea64_large_page_size == 0)
605		hw_direct_map = 0;
606
607	DISABLE_TRANS(msr);
608	if (hw_direct_map) {
609		LOCK_TABLE_WR();
610		PMAP_LOCK(kernel_pmap);
611		for (i = 0; i < pregions_sz; i++) {
612		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
613		     pregions[i].mr_size; pa += moea64_large_page_size) {
614			pte_lo = LPTE_M;
615
616			/*
617			 * Set memory access as guarded if prefetch within
618			 * the page could exit the available physmem area.
619			 */
620			if (pa & moea64_large_page_mask) {
621				pa &= moea64_large_page_mask;
622				pte_lo |= LPTE_G;
623			}
624			if (pa + moea64_large_page_size >
625			    pregions[i].mr_start + pregions[i].mr_size)
626				pte_lo |= LPTE_G;
627
628			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
629				    NULL, pa, pa, pte_lo,
630				    PVO_WIRED | PVO_LARGE);
631		  }
632		}
633		PMAP_UNLOCK(kernel_pmap);
634		UNLOCK_TABLE_WR();
635	} else {
636		size = sizeof(struct pvo_head) * moea64_pteg_count;
637		off = (vm_offset_t)(moea64_pvo_table);
638		for (pa = off; pa < off + size; pa += PAGE_SIZE)
639			moea64_kenter(mmup, pa, pa);
640		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
641		off = (vm_offset_t)(moea64_bpvo_pool);
642		for (pa = off; pa < off + size; pa += PAGE_SIZE)
643		moea64_kenter(mmup, pa, pa);
644
645		/*
646		 * Map certain important things, like ourselves.
647		 *
648		 * NOTE: We do not map the exception vector space. That code is
649		 * used only in real mode, and leaving it unmapped allows us to
650		 * catch NULL pointer deferences, instead of making NULL a valid
651		 * address.
652		 */
653
654		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
655		    pa += PAGE_SIZE)
656			moea64_kenter(mmup, pa, pa);
657	}
658	ENABLE_TRANS(msr);
659
660	/*
661	 * Allow user to override unmapped_buf_allowed for testing.
662	 * XXXKIB Only direct map implementation was tested.
663	 */
664	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
665	    &unmapped_buf_allowed))
666		unmapped_buf_allowed = hw_direct_map;
667}
668
669void
670moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
671{
672	int		i, j;
673	vm_size_t	physsz, hwphyssz;
674
675#ifndef __powerpc64__
676	/* We don't have a direct map since there is no BAT */
677	hw_direct_map = 0;
678
679	/* Make sure battable is zero, since we have no BAT */
680	for (i = 0; i < 16; i++) {
681		battable[i].batu = 0;
682		battable[i].batl = 0;
683	}
684#else
685	moea64_probe_large_page();
686
687	/* Use a direct map if we have large page support */
688	if (moea64_large_page_size > 0)
689		hw_direct_map = 1;
690	else
691		hw_direct_map = 0;
692#endif
693
694	/* Get physical memory regions from firmware */
695	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
696	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
697
698	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
699		panic("moea64_bootstrap: phys_avail too small");
700
701	phys_avail_count = 0;
702	physsz = 0;
703	hwphyssz = 0;
704	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
705	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
706		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
707		    regions[i].mr_start, regions[i].mr_start +
708		    regions[i].mr_size, regions[i].mr_size);
709		if (hwphyssz != 0 &&
710		    (physsz + regions[i].mr_size) >= hwphyssz) {
711			if (physsz < hwphyssz) {
712				phys_avail[j] = regions[i].mr_start;
713				phys_avail[j + 1] = regions[i].mr_start +
714				    hwphyssz - physsz;
715				physsz = hwphyssz;
716				phys_avail_count++;
717			}
718			break;
719		}
720		phys_avail[j] = regions[i].mr_start;
721		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
722		phys_avail_count++;
723		physsz += regions[i].mr_size;
724	}
725
726	/* Check for overlap with the kernel and exception vectors */
727	for (j = 0; j < 2*phys_avail_count; j+=2) {
728		if (phys_avail[j] < EXC_LAST)
729			phys_avail[j] += EXC_LAST;
730
731		if (kernelstart >= phys_avail[j] &&
732		    kernelstart < phys_avail[j+1]) {
733			if (kernelend < phys_avail[j+1]) {
734				phys_avail[2*phys_avail_count] =
735				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
736				phys_avail[2*phys_avail_count + 1] =
737				    phys_avail[j+1];
738				phys_avail_count++;
739			}
740
741			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
742		}
743
744		if (kernelend >= phys_avail[j] &&
745		    kernelend < phys_avail[j+1]) {
746			if (kernelstart > phys_avail[j]) {
747				phys_avail[2*phys_avail_count] = phys_avail[j];
748				phys_avail[2*phys_avail_count + 1] =
749				    kernelstart & ~PAGE_MASK;
750				phys_avail_count++;
751			}
752
753			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
754		}
755	}
756
757	physmem = btoc(physsz);
758
759#ifdef PTEGCOUNT
760	moea64_pteg_count = PTEGCOUNT;
761#else
762	moea64_pteg_count = 0x1000;
763
764	while (moea64_pteg_count < physmem)
765		moea64_pteg_count <<= 1;
766
767	moea64_pteg_count >>= 1;
768#endif /* PTEGCOUNT */
769}
770
771void
772moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
773{
774	vm_size_t	size;
775	register_t	msr;
776	int		i;
777
778	/*
779	 * Set PTEG mask
780	 */
781	moea64_pteg_mask = moea64_pteg_count - 1;
782
783	/*
784	 * Allocate pv/overflow lists.
785	 */
786	size = sizeof(struct pvo_head) * moea64_pteg_count;
787
788	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
789	    PAGE_SIZE);
790	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
791
792	DISABLE_TRANS(msr);
793	for (i = 0; i < moea64_pteg_count; i++)
794		LIST_INIT(&moea64_pvo_table[i]);
795	ENABLE_TRANS(msr);
796
797	/*
798	 * Initialize the lock that synchronizes access to the pteg and pvo
799	 * tables.
800	 */
801	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
802	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
803
804	/*
805	 * Initialise the unmanaged pvo pool.
806	 */
807	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
808		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
809	moea64_bpvo_pool_index = 0;
810
811	/*
812	 * Make sure kernel vsid is allocated as well as VSID 0.
813	 */
814	#ifndef __powerpc64__
815	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
816		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
817	moea64_vsid_bitmap[0] |= 1;
818	#endif
819
820	/*
821	 * Initialize the kernel pmap (which is statically allocated).
822	 */
823	#ifdef __powerpc64__
824	for (i = 0; i < 64; i++) {
825		pcpup->pc_slb[i].slbv = 0;
826		pcpup->pc_slb[i].slbe = 0;
827	}
828	#else
829	for (i = 0; i < 16; i++)
830		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
831	#endif
832
833	kernel_pmap->pmap_phys = kernel_pmap;
834	CPU_FILL(&kernel_pmap->pm_active);
835	RB_INIT(&kernel_pmap->pmap_pvo);
836
837	PMAP_LOCK_INIT(kernel_pmap);
838
839	/*
840	 * Now map in all the other buffers we allocated earlier
841	 */
842
843	moea64_setup_direct_map(mmup, kernelstart, kernelend);
844}
845
846void
847moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
848{
849	ihandle_t	mmui;
850	phandle_t	chosen;
851	phandle_t	mmu;
852	size_t		sz;
853	int		i;
854	vm_offset_t	pa, va;
855	void		*dpcpu;
856
857	/*
858	 * Set up the Open Firmware pmap and add its mappings if not in real
859	 * mode.
860	 */
861
862	chosen = OF_finddevice("/chosen");
863	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
864	    mmu = OF_instance_to_package(mmui);
865	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
866		sz = 0;
867	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
868		panic("moea64_bootstrap: too many ofw translations");
869
870	    if (sz > 0)
871		moea64_add_ofw_mappings(mmup, mmu, sz);
872	}
873
874	/*
875	 * Calculate the last available physical address.
876	 */
877	for (i = 0; phys_avail[i + 2] != 0; i += 2)
878		;
879	Maxmem = powerpc_btop(phys_avail[i + 1]);
880
881	/*
882	 * Initialize MMU and remap early physical mappings
883	 */
884	MMU_CPU_BOOTSTRAP(mmup,0);
885	mtmsr(mfmsr() | PSL_DR | PSL_IR);
886	pmap_bootstrapped++;
887	bs_remap_earlyboot();
888
889	/*
890	 * Set the start and end of kva.
891	 */
892	virtual_avail = VM_MIN_KERNEL_ADDRESS;
893	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
894
895	/*
896	 * Map the entire KVA range into the SLB. We must not fault there.
897	 */
898	#ifdef __powerpc64__
899	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
900		moea64_bootstrap_slb_prefault(va, 0);
901	#endif
902
903	/*
904	 * Figure out how far we can extend virtual_end into segment 16
905	 * without running into existing mappings. Segment 16 is guaranteed
906	 * to contain neither RAM nor devices (at least on Apple hardware),
907	 * but will generally contain some OFW mappings we should not
908	 * step on.
909	 */
910
911	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
912	PMAP_LOCK(kernel_pmap);
913	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
914	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
915		virtual_end += PAGE_SIZE;
916	PMAP_UNLOCK(kernel_pmap);
917	#endif
918
919	/*
920	 * Allocate a kernel stack with a guard page for thread0 and map it
921	 * into the kernel page map.
922	 */
923	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
924	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
925	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
926	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
927	thread0.td_kstack = va;
928	thread0.td_kstack_pages = KSTACK_PAGES;
929	for (i = 0; i < KSTACK_PAGES; i++) {
930		moea64_kenter(mmup, va, pa);
931		pa += PAGE_SIZE;
932		va += PAGE_SIZE;
933	}
934
935	/*
936	 * Allocate virtual address space for the message buffer.
937	 */
938	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
939	msgbufp = (struct msgbuf *)virtual_avail;
940	va = virtual_avail;
941	virtual_avail += round_page(msgbufsize);
942	while (va < virtual_avail) {
943		moea64_kenter(mmup, va, pa);
944		pa += PAGE_SIZE;
945		va += PAGE_SIZE;
946	}
947
948	/*
949	 * Allocate virtual address space for the dynamic percpu area.
950	 */
951	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
952	dpcpu = (void *)virtual_avail;
953	va = virtual_avail;
954	virtual_avail += DPCPU_SIZE;
955	while (va < virtual_avail) {
956		moea64_kenter(mmup, va, pa);
957		pa += PAGE_SIZE;
958		va += PAGE_SIZE;
959	}
960	dpcpu_init(dpcpu, 0);
961
962	/*
963	 * Allocate some things for page zeroing. We put this directly
964	 * in the page table, marked with LPTE_LOCKED, to avoid any
965	 * of the PVO book-keeping or other parts of the VM system
966	 * from even knowing that this hack exists.
967	 */
968
969	if (!hw_direct_map) {
970		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
971		    MTX_DEF);
972		for (i = 0; i < 2; i++) {
973			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
974			virtual_end -= PAGE_SIZE;
975
976			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
977
978			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
979			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
980			LOCK_TABLE_RD();
981			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
982			    mmup, moea64_scratchpage_pvo[i]);
983			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
984			    |= LPTE_LOCKED;
985			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
986			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
987			    moea64_scratchpage_pvo[i]->pvo_vpn);
988			UNLOCK_TABLE_RD();
989		}
990	}
991}
992
993/*
994 * Activate a user pmap.  The pmap must be activated before its address
995 * space can be accessed in any way.
996 */
997void
998moea64_activate(mmu_t mmu, struct thread *td)
999{
1000	pmap_t	pm;
1001
1002	pm = &td->td_proc->p_vmspace->vm_pmap;
1003	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1004
1005	#ifdef __powerpc64__
1006	PCPU_SET(userslb, pm->pm_slb);
1007	#else
1008	PCPU_SET(curpmap, pm->pmap_phys);
1009	#endif
1010}
1011
1012void
1013moea64_deactivate(mmu_t mmu, struct thread *td)
1014{
1015	pmap_t	pm;
1016
1017	pm = &td->td_proc->p_vmspace->vm_pmap;
1018	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1019	#ifdef __powerpc64__
1020	PCPU_SET(userslb, NULL);
1021	#else
1022	PCPU_SET(curpmap, NULL);
1023	#endif
1024}
1025
1026void
1027moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1028{
1029	struct	pvo_entry *pvo;
1030	uintptr_t pt;
1031	uint64_t vsid;
1032	int	i, ptegidx;
1033
1034	LOCK_TABLE_WR();
1035	PMAP_LOCK(pm);
1036	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1037
1038	if (pvo != NULL) {
1039		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1040
1041		if (wired) {
1042			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1043				pm->pm_stats.wired_count++;
1044			pvo->pvo_vaddr |= PVO_WIRED;
1045			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1046		} else {
1047			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1048				pm->pm_stats.wired_count--;
1049			pvo->pvo_vaddr &= ~PVO_WIRED;
1050			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1051		}
1052
1053		if (pt != -1) {
1054			/* Update wiring flag in page table. */
1055			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1056			    pvo->pvo_vpn);
1057		} else if (wired) {
1058			/*
1059			 * If we are wiring the page, and it wasn't in the
1060			 * page table before, add it.
1061			 */
1062			vsid = PVO_VSID(pvo);
1063			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1064			    pvo->pvo_vaddr & PVO_LARGE);
1065
1066			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1067
1068			if (i >= 0) {
1069				PVO_PTEGIDX_CLR(pvo);
1070				PVO_PTEGIDX_SET(pvo, i);
1071			}
1072		}
1073
1074	}
1075	UNLOCK_TABLE_WR();
1076	PMAP_UNLOCK(pm);
1077}
1078
1079/*
1080 * This goes through and sets the physical address of our
1081 * special scratch PTE to the PA we want to zero or copy. Because
1082 * of locking issues (this can get called in pvo_enter() by
1083 * the UMA allocator), we can't use most other utility functions here
1084 */
1085
1086static __inline
1087void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1088
1089	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1090	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1091
1092	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1093	    ~(LPTE_WIMG | LPTE_RPGN);
1094	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1095	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1096	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1097	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1098	    moea64_scratchpage_pvo[which]->pvo_vpn);
1099	isync();
1100}
1101
1102void
1103moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1104{
1105	vm_offset_t	dst;
1106	vm_offset_t	src;
1107
1108	dst = VM_PAGE_TO_PHYS(mdst);
1109	src = VM_PAGE_TO_PHYS(msrc);
1110
1111	if (hw_direct_map) {
1112		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1113	} else {
1114		mtx_lock(&moea64_scratchpage_mtx);
1115
1116		moea64_set_scratchpage_pa(mmu, 0, src);
1117		moea64_set_scratchpage_pa(mmu, 1, dst);
1118
1119		bcopy((void *)moea64_scratchpage_va[0],
1120		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1121
1122		mtx_unlock(&moea64_scratchpage_mtx);
1123	}
1124}
1125
1126static inline void
1127moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1128    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1129{
1130	void *a_cp, *b_cp;
1131	vm_offset_t a_pg_offset, b_pg_offset;
1132	int cnt;
1133
1134	while (xfersize > 0) {
1135		a_pg_offset = a_offset & PAGE_MASK;
1136		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1137		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1138		    a_pg_offset;
1139		b_pg_offset = b_offset & PAGE_MASK;
1140		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1141		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1142		    b_pg_offset;
1143		bcopy(a_cp, b_cp, cnt);
1144		a_offset += cnt;
1145		b_offset += cnt;
1146		xfersize -= cnt;
1147	}
1148}
1149
1150static inline void
1151moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1152    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1153{
1154	void *a_cp, *b_cp;
1155	vm_offset_t a_pg_offset, b_pg_offset;
1156	int cnt;
1157
1158	mtx_lock(&moea64_scratchpage_mtx);
1159	while (xfersize > 0) {
1160		a_pg_offset = a_offset & PAGE_MASK;
1161		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1162		moea64_set_scratchpage_pa(mmu, 0,
1163		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1164		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1165		b_pg_offset = b_offset & PAGE_MASK;
1166		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1167		moea64_set_scratchpage_pa(mmu, 1,
1168		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1169		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1170		bcopy(a_cp, b_cp, cnt);
1171		a_offset += cnt;
1172		b_offset += cnt;
1173		xfersize -= cnt;
1174	}
1175	mtx_unlock(&moea64_scratchpage_mtx);
1176}
1177
1178void
1179moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1180    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1181{
1182
1183	if (hw_direct_map) {
1184		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1185		    xfersize);
1186	} else {
1187		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1188		    xfersize);
1189	}
1190}
1191
1192void
1193moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1194{
1195	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1196
1197	if (size + off > PAGE_SIZE)
1198		panic("moea64_zero_page: size + off > PAGE_SIZE");
1199
1200	if (hw_direct_map) {
1201		bzero((caddr_t)pa + off, size);
1202	} else {
1203		mtx_lock(&moea64_scratchpage_mtx);
1204		moea64_set_scratchpage_pa(mmu, 0, pa);
1205		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1206		mtx_unlock(&moea64_scratchpage_mtx);
1207	}
1208}
1209
1210/*
1211 * Zero a page of physical memory by temporarily mapping it
1212 */
1213void
1214moea64_zero_page(mmu_t mmu, vm_page_t m)
1215{
1216	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1217	vm_offset_t va, off;
1218
1219	if (!hw_direct_map) {
1220		mtx_lock(&moea64_scratchpage_mtx);
1221
1222		moea64_set_scratchpage_pa(mmu, 0, pa);
1223		va = moea64_scratchpage_va[0];
1224	} else {
1225		va = pa;
1226	}
1227
1228	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1229		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1230
1231	if (!hw_direct_map)
1232		mtx_unlock(&moea64_scratchpage_mtx);
1233}
1234
1235void
1236moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1237{
1238
1239	moea64_zero_page(mmu, m);
1240}
1241
1242/*
1243 * Map the given physical page at the specified virtual address in the
1244 * target pmap with the protection requested.  If specified the page
1245 * will be wired down.
1246 */
1247
1248void
1249moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1250    vm_prot_t prot, boolean_t wired)
1251{
1252	struct		pvo_head *pvo_head;
1253	uma_zone_t	zone;
1254	vm_page_t	pg;
1255	uint64_t	pte_lo;
1256	u_int		pvo_flags;
1257	int		error;
1258
1259	if (!moea64_initialized) {
1260		pvo_head = NULL;
1261		pg = NULL;
1262		zone = moea64_upvo_zone;
1263		pvo_flags = 0;
1264	} else {
1265		pvo_head = vm_page_to_pvoh(m);
1266		pg = m;
1267		zone = moea64_mpvo_zone;
1268		pvo_flags = PVO_MANAGED;
1269	}
1270
1271	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1272		VM_OBJECT_ASSERT_LOCKED(m->object);
1273
1274	/* XXX change the pvo head for fake pages */
1275	if ((m->oflags & VPO_UNMANAGED) != 0) {
1276		pvo_flags &= ~PVO_MANAGED;
1277		pvo_head = NULL;
1278		zone = moea64_upvo_zone;
1279	}
1280
1281	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1282
1283	if (prot & VM_PROT_WRITE) {
1284		pte_lo |= LPTE_BW;
1285		if (pmap_bootstrapped &&
1286		    (m->oflags & VPO_UNMANAGED) == 0)
1287			vm_page_aflag_set(m, PGA_WRITEABLE);
1288	} else
1289		pte_lo |= LPTE_BR;
1290
1291	if ((prot & VM_PROT_EXECUTE) == 0)
1292		pte_lo |= LPTE_NOEXEC;
1293
1294	if (wired)
1295		pvo_flags |= PVO_WIRED;
1296
1297	LOCK_TABLE_WR();
1298	PMAP_LOCK(pmap);
1299	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1300	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1301	PMAP_UNLOCK(pmap);
1302	UNLOCK_TABLE_WR();
1303
1304	/*
1305	 * Flush the page from the instruction cache if this page is
1306	 * mapped executable and cacheable.
1307	 */
1308	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1309	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1310		vm_page_aflag_set(m, PGA_EXECUTABLE);
1311		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1312	}
1313}
1314
1315static void
1316moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1317    vm_size_t sz)
1318{
1319
1320	/*
1321	 * This is much trickier than on older systems because
1322	 * we can't sync the icache on physical addresses directly
1323	 * without a direct map. Instead we check a couple of cases
1324	 * where the memory is already mapped in and, failing that,
1325	 * use the same trick we use for page zeroing to create
1326	 * a temporary mapping for this physical address.
1327	 */
1328
1329	if (!pmap_bootstrapped) {
1330		/*
1331		 * If PMAP is not bootstrapped, we are likely to be
1332		 * in real mode.
1333		 */
1334		__syncicache((void *)pa, sz);
1335	} else if (pmap == kernel_pmap) {
1336		__syncicache((void *)va, sz);
1337	} else if (hw_direct_map) {
1338		__syncicache((void *)pa, sz);
1339	} else {
1340		/* Use the scratch page to set up a temp mapping */
1341
1342		mtx_lock(&moea64_scratchpage_mtx);
1343
1344		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1345		__syncicache((void *)(moea64_scratchpage_va[1] +
1346		    (va & ADDR_POFF)), sz);
1347
1348		mtx_unlock(&moea64_scratchpage_mtx);
1349	}
1350}
1351
1352/*
1353 * Maps a sequence of resident pages belonging to the same object.
1354 * The sequence begins with the given page m_start.  This page is
1355 * mapped at the given virtual address start.  Each subsequent page is
1356 * mapped at a virtual address that is offset from start by the same
1357 * amount as the page is offset from m_start within the object.  The
1358 * last page in the sequence is the page with the largest offset from
1359 * m_start that can be mapped at a virtual address less than the given
1360 * virtual address end.  Not every virtual page between start and end
1361 * is mapped; only those for which a resident page exists with the
1362 * corresponding offset from m_start are mapped.
1363 */
1364void
1365moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1366    vm_page_t m_start, vm_prot_t prot)
1367{
1368	vm_page_t m;
1369	vm_pindex_t diff, psize;
1370
1371	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1372
1373	psize = atop(end - start);
1374	m = m_start;
1375	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1376		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1377		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1378		m = TAILQ_NEXT(m, listq);
1379	}
1380}
1381
1382void
1383moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1384    vm_prot_t prot)
1385{
1386
1387	moea64_enter(mmu, pm, va, m,
1388	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1389}
1390
1391vm_paddr_t
1392moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1393{
1394	struct	pvo_entry *pvo;
1395	vm_paddr_t pa;
1396
1397	PMAP_LOCK(pm);
1398	pvo = moea64_pvo_find_va(pm, va);
1399	if (pvo == NULL)
1400		pa = 0;
1401	else
1402		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1403		    (va - PVO_VADDR(pvo));
1404	PMAP_UNLOCK(pm);
1405	return (pa);
1406}
1407
1408/*
1409 * Atomically extract and hold the physical page with the given
1410 * pmap and virtual address pair if that mapping permits the given
1411 * protection.
1412 */
1413vm_page_t
1414moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1415{
1416	struct	pvo_entry *pvo;
1417	vm_page_t m;
1418        vm_paddr_t pa;
1419
1420	m = NULL;
1421	pa = 0;
1422	PMAP_LOCK(pmap);
1423retry:
1424	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1425	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1426	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1427	     (prot & VM_PROT_WRITE) == 0)) {
1428		if (vm_page_pa_tryrelock(pmap,
1429			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1430			goto retry;
1431		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1432		vm_page_hold(m);
1433	}
1434	PA_UNLOCK_COND(pa);
1435	PMAP_UNLOCK(pmap);
1436	return (m);
1437}
1438
1439static mmu_t installed_mmu;
1440
1441static void *
1442moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1443{
1444	/*
1445	 * This entire routine is a horrible hack to avoid bothering kmem
1446	 * for new KVA addresses. Because this can get called from inside
1447	 * kmem allocation routines, calling kmem for a new address here
1448	 * can lead to multiply locking non-recursive mutexes.
1449	 */
1450        vm_offset_t va;
1451
1452        vm_page_t m;
1453        int pflags, needed_lock;
1454
1455	*flags = UMA_SLAB_PRIV;
1456	needed_lock = !PMAP_LOCKED(kernel_pmap);
1457	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1458
1459        for (;;) {
1460                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1461                if (m == NULL) {
1462                        if (wait & M_NOWAIT)
1463                                return (NULL);
1464                        VM_WAIT;
1465                } else
1466                        break;
1467        }
1468
1469	va = VM_PAGE_TO_PHYS(m);
1470
1471	LOCK_TABLE_WR();
1472	if (needed_lock)
1473		PMAP_LOCK(kernel_pmap);
1474
1475	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1476	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1477
1478	if (needed_lock)
1479		PMAP_UNLOCK(kernel_pmap);
1480	UNLOCK_TABLE_WR();
1481
1482	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1483                bzero((void *)va, PAGE_SIZE);
1484
1485	return (void *)va;
1486}
1487
1488extern int elf32_nxstack;
1489
1490void
1491moea64_init(mmu_t mmu)
1492{
1493
1494	CTR0(KTR_PMAP, "moea64_init");
1495
1496	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1497	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1498	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1499	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1500	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1501	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1502
1503	if (!hw_direct_map) {
1504		installed_mmu = mmu;
1505		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1506		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1507	}
1508
1509#ifdef COMPAT_FREEBSD32
1510	elf32_nxstack = 1;
1511#endif
1512
1513	moea64_initialized = TRUE;
1514}
1515
1516boolean_t
1517moea64_is_referenced(mmu_t mmu, vm_page_t m)
1518{
1519
1520	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1521	    ("moea64_is_referenced: page %p is not managed", m));
1522	return (moea64_query_bit(mmu, m, PTE_REF));
1523}
1524
1525boolean_t
1526moea64_is_modified(mmu_t mmu, vm_page_t m)
1527{
1528
1529	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1530	    ("moea64_is_modified: page %p is not managed", m));
1531
1532	/*
1533	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1534	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1535	 * is clear, no PTEs can have LPTE_CHG set.
1536	 */
1537	VM_OBJECT_ASSERT_LOCKED(m->object);
1538	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1539		return (FALSE);
1540	return (moea64_query_bit(mmu, m, LPTE_CHG));
1541}
1542
1543boolean_t
1544moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1545{
1546	struct pvo_entry *pvo;
1547	boolean_t rv;
1548
1549	PMAP_LOCK(pmap);
1550	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1551	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1552	PMAP_UNLOCK(pmap);
1553	return (rv);
1554}
1555
1556void
1557moea64_clear_modify(mmu_t mmu, vm_page_t m)
1558{
1559
1560	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1561	    ("moea64_clear_modify: page %p is not managed", m));
1562	VM_OBJECT_ASSERT_WLOCKED(m->object);
1563	KASSERT(!vm_page_xbusied(m),
1564	    ("moea64_clear_modify: page %p is exclusive busied", m));
1565
1566	/*
1567	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1568	 * set.  If the object containing the page is locked and the page is
1569	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1570	 */
1571	if ((m->aflags & PGA_WRITEABLE) == 0)
1572		return;
1573	moea64_clear_bit(mmu, m, LPTE_CHG);
1574}
1575
1576/*
1577 * Clear the write and modified bits in each of the given page's mappings.
1578 */
1579void
1580moea64_remove_write(mmu_t mmu, vm_page_t m)
1581{
1582	struct	pvo_entry *pvo;
1583	uintptr_t pt;
1584	pmap_t	pmap;
1585	uint64_t lo = 0;
1586
1587	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1588	    ("moea64_remove_write: page %p is not managed", m));
1589
1590	/*
1591	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1592	 * set by another thread while the object is locked.  Thus,
1593	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1594	 */
1595	VM_OBJECT_ASSERT_WLOCKED(m->object);
1596	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1597		return;
1598	powerpc_sync();
1599	LOCK_TABLE_RD();
1600	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1601		pmap = pvo->pvo_pmap;
1602		PMAP_LOCK(pmap);
1603		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1604			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1605			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1606			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1607			if (pt != -1) {
1608				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1609				lo |= pvo->pvo_pte.lpte.pte_lo;
1610				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1611				MOEA64_PTE_CHANGE(mmu, pt,
1612				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1613				if (pvo->pvo_pmap == kernel_pmap)
1614					isync();
1615			}
1616		}
1617		if ((lo & LPTE_CHG) != 0)
1618			vm_page_dirty(m);
1619		PMAP_UNLOCK(pmap);
1620	}
1621	UNLOCK_TABLE_RD();
1622	vm_page_aflag_clear(m, PGA_WRITEABLE);
1623}
1624
1625/*
1626 *	moea64_ts_referenced:
1627 *
1628 *	Return a count of reference bits for a page, clearing those bits.
1629 *	It is not necessary for every reference bit to be cleared, but it
1630 *	is necessary that 0 only be returned when there are truly no
1631 *	reference bits set.
1632 *
1633 *	XXX: The exact number of bits to check and clear is a matter that
1634 *	should be tested and standardized at some point in the future for
1635 *	optimal aging of shared pages.
1636 */
1637int
1638moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1639{
1640
1641	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1642	    ("moea64_ts_referenced: page %p is not managed", m));
1643	return (moea64_clear_bit(mmu, m, LPTE_REF));
1644}
1645
1646/*
1647 * Modify the WIMG settings of all mappings for a page.
1648 */
1649void
1650moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1651{
1652	struct	pvo_entry *pvo;
1653	struct  pvo_head *pvo_head;
1654	uintptr_t pt;
1655	pmap_t	pmap;
1656	uint64_t lo;
1657
1658	if ((m->oflags & VPO_UNMANAGED) != 0) {
1659		m->md.mdpg_cache_attrs = ma;
1660		return;
1661	}
1662
1663	pvo_head = vm_page_to_pvoh(m);
1664	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1665	LOCK_TABLE_RD();
1666	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1667		pmap = pvo->pvo_pmap;
1668		PMAP_LOCK(pmap);
1669		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1670		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1671		pvo->pvo_pte.lpte.pte_lo |= lo;
1672		if (pt != -1) {
1673			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1674			    pvo->pvo_vpn);
1675			if (pvo->pvo_pmap == kernel_pmap)
1676				isync();
1677		}
1678		PMAP_UNLOCK(pmap);
1679	}
1680	UNLOCK_TABLE_RD();
1681	m->md.mdpg_cache_attrs = ma;
1682}
1683
1684/*
1685 * Map a wired page into kernel virtual address space.
1686 */
1687void
1688moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1689{
1690	uint64_t	pte_lo;
1691	int		error;
1692
1693	pte_lo = moea64_calc_wimg(pa, ma);
1694
1695	LOCK_TABLE_WR();
1696	PMAP_LOCK(kernel_pmap);
1697	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1698	    NULL, va, pa, pte_lo, PVO_WIRED);
1699	PMAP_UNLOCK(kernel_pmap);
1700	UNLOCK_TABLE_WR();
1701
1702	if (error != 0 && error != ENOENT)
1703		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1704		    pa, error);
1705}
1706
1707void
1708moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1709{
1710
1711	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1712}
1713
1714/*
1715 * Extract the physical page address associated with the given kernel virtual
1716 * address.
1717 */
1718vm_paddr_t
1719moea64_kextract(mmu_t mmu, vm_offset_t va)
1720{
1721	struct		pvo_entry *pvo;
1722	vm_paddr_t pa;
1723
1724	/*
1725	 * Shortcut the direct-mapped case when applicable.  We never put
1726	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1727	 */
1728	if (va < VM_MIN_KERNEL_ADDRESS)
1729		return (va);
1730
1731	PMAP_LOCK(kernel_pmap);
1732	pvo = moea64_pvo_find_va(kernel_pmap, va);
1733	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1734	    va));
1735	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1736	PMAP_UNLOCK(kernel_pmap);
1737	return (pa);
1738}
1739
1740/*
1741 * Remove a wired page from kernel virtual address space.
1742 */
1743void
1744moea64_kremove(mmu_t mmu, vm_offset_t va)
1745{
1746	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1747}
1748
1749/*
1750 * Map a range of physical addresses into kernel virtual address space.
1751 *
1752 * The value passed in *virt is a suggested virtual address for the mapping.
1753 * Architectures which can support a direct-mapped physical to virtual region
1754 * can return the appropriate address within that region, leaving '*virt'
1755 * unchanged.  We cannot and therefore do not; *virt is updated with the
1756 * first usable address after the mapped region.
1757 */
1758vm_offset_t
1759moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1760    vm_paddr_t pa_end, int prot)
1761{
1762	vm_offset_t	sva, va;
1763
1764	sva = *virt;
1765	va = sva;
1766	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1767		moea64_kenter(mmu, va, pa_start);
1768	*virt = va;
1769
1770	return (sva);
1771}
1772
1773/*
1774 * Returns true if the pmap's pv is one of the first
1775 * 16 pvs linked to from this page.  This count may
1776 * be changed upwards or downwards in the future; it
1777 * is only necessary that true be returned for a small
1778 * subset of pmaps for proper page aging.
1779 */
1780boolean_t
1781moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1782{
1783        int loops;
1784	struct pvo_entry *pvo;
1785	boolean_t rv;
1786
1787	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1788	    ("moea64_page_exists_quick: page %p is not managed", m));
1789	loops = 0;
1790	rv = FALSE;
1791	LOCK_TABLE_RD();
1792	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1793		if (pvo->pvo_pmap == pmap) {
1794			rv = TRUE;
1795			break;
1796		}
1797		if (++loops >= 16)
1798			break;
1799	}
1800	UNLOCK_TABLE_RD();
1801	return (rv);
1802}
1803
1804/*
1805 * Return the number of managed mappings to the given physical page
1806 * that are wired.
1807 */
1808int
1809moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1810{
1811	struct pvo_entry *pvo;
1812	int count;
1813
1814	count = 0;
1815	if ((m->oflags & VPO_UNMANAGED) != 0)
1816		return (count);
1817	LOCK_TABLE_RD();
1818	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1819		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1820			count++;
1821	UNLOCK_TABLE_RD();
1822	return (count);
1823}
1824
1825static uintptr_t	moea64_vsidcontext;
1826
1827uintptr_t
1828moea64_get_unique_vsid(void) {
1829	u_int entropy;
1830	register_t hash;
1831	uint32_t mask;
1832	int i;
1833
1834	entropy = 0;
1835	__asm __volatile("mftb %0" : "=r"(entropy));
1836
1837	mtx_lock(&moea64_slb_mutex);
1838	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1839		u_int	n;
1840
1841		/*
1842		 * Create a new value by mutiplying by a prime and adding in
1843		 * entropy from the timebase register.  This is to make the
1844		 * VSID more random so that the PT hash function collides
1845		 * less often.  (Note that the prime casues gcc to do shifts
1846		 * instead of a multiply.)
1847		 */
1848		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1849		hash = moea64_vsidcontext & (NVSIDS - 1);
1850		if (hash == 0)		/* 0 is special, avoid it */
1851			continue;
1852		n = hash >> 5;
1853		mask = 1 << (hash & (VSID_NBPW - 1));
1854		hash = (moea64_vsidcontext & VSID_HASHMASK);
1855		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1856			/* anything free in this bucket? */
1857			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1858				entropy = (moea64_vsidcontext >> 20);
1859				continue;
1860			}
1861			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1862			mask = 1 << i;
1863			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1864			hash |= i;
1865		}
1866		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1867		    ("Allocating in-use VSID %#zx\n", hash));
1868		moea64_vsid_bitmap[n] |= mask;
1869		mtx_unlock(&moea64_slb_mutex);
1870		return (hash);
1871	}
1872
1873	mtx_unlock(&moea64_slb_mutex);
1874	panic("%s: out of segments",__func__);
1875}
1876
1877#ifdef __powerpc64__
1878void
1879moea64_pinit(mmu_t mmu, pmap_t pmap)
1880{
1881
1882	RB_INIT(&pmap->pmap_pvo);
1883
1884	pmap->pm_slb_tree_root = slb_alloc_tree();
1885	pmap->pm_slb = slb_alloc_user_cache();
1886	pmap->pm_slb_len = 0;
1887}
1888#else
1889void
1890moea64_pinit(mmu_t mmu, pmap_t pmap)
1891{
1892	int	i;
1893	uint32_t hash;
1894
1895	RB_INIT(&pmap->pmap_pvo);
1896
1897	if (pmap_bootstrapped)
1898		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1899		    (vm_offset_t)pmap);
1900	else
1901		pmap->pmap_phys = pmap;
1902
1903	/*
1904	 * Allocate some segment registers for this pmap.
1905	 */
1906	hash = moea64_get_unique_vsid();
1907
1908	for (i = 0; i < 16; i++)
1909		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1910
1911	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1912}
1913#endif
1914
1915/*
1916 * Initialize the pmap associated with process 0.
1917 */
1918void
1919moea64_pinit0(mmu_t mmu, pmap_t pm)
1920{
1921
1922	PMAP_LOCK_INIT(pm);
1923	moea64_pinit(mmu, pm);
1924	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1925}
1926
1927/*
1928 * Set the physical protection on the specified range of this map as requested.
1929 */
1930static void
1931moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1932{
1933	uintptr_t pt;
1934	struct	vm_page *pg;
1935	uint64_t oldlo;
1936
1937	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1938
1939	/*
1940	 * Grab the PTE pointer before we diddle with the cached PTE
1941	 * copy.
1942	 */
1943	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1944
1945	/*
1946	 * Change the protection of the page.
1947	 */
1948	oldlo = pvo->pvo_pte.lpte.pte_lo;
1949	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1950	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1951	if ((prot & VM_PROT_EXECUTE) == 0)
1952		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1953	if (prot & VM_PROT_WRITE)
1954		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1955	else
1956		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1957
1958	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1959
1960	/*
1961	 * If the PVO is in the page table, update that pte as well.
1962	 */
1963	if (pt != -1)
1964		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1965		    pvo->pvo_vpn);
1966	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1967	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1968		if ((pg->oflags & VPO_UNMANAGED) == 0)
1969			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1970		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1971		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1972	}
1973
1974	/*
1975	 * Update vm about the REF/CHG bits if the page is managed and we have
1976	 * removed write access.
1977	 */
1978	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1979	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1980		if (pg != NULL) {
1981			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1982				vm_page_dirty(pg);
1983			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1984				vm_page_aflag_set(pg, PGA_REFERENCED);
1985		}
1986	}
1987}
1988
1989void
1990moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1991    vm_prot_t prot)
1992{
1993	struct	pvo_entry *pvo, *tpvo, key;
1994
1995	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1996	    sva, eva, prot);
1997
1998	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1999	    ("moea64_protect: non current pmap"));
2000
2001	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2002		moea64_remove(mmu, pm, sva, eva);
2003		return;
2004	}
2005
2006	LOCK_TABLE_RD();
2007	PMAP_LOCK(pm);
2008	key.pvo_vaddr = sva;
2009	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2010	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2011		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2012		moea64_pvo_protect(mmu, pm, pvo, prot);
2013	}
2014	UNLOCK_TABLE_RD();
2015	PMAP_UNLOCK(pm);
2016}
2017
2018/*
2019 * Map a list of wired pages into kernel virtual address space.  This is
2020 * intended for temporary mappings which do not need page modification or
2021 * references recorded.  Existing mappings in the region are overwritten.
2022 */
2023void
2024moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2025{
2026	while (count-- > 0) {
2027		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2028		va += PAGE_SIZE;
2029		m++;
2030	}
2031}
2032
2033/*
2034 * Remove page mappings from kernel virtual address space.  Intended for
2035 * temporary mappings entered by moea64_qenter.
2036 */
2037void
2038moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2039{
2040	while (count-- > 0) {
2041		moea64_kremove(mmu, va);
2042		va += PAGE_SIZE;
2043	}
2044}
2045
2046void
2047moea64_release_vsid(uint64_t vsid)
2048{
2049	int idx, mask;
2050
2051	mtx_lock(&moea64_slb_mutex);
2052	idx = vsid & (NVSIDS-1);
2053	mask = 1 << (idx % VSID_NBPW);
2054	idx /= VSID_NBPW;
2055	KASSERT(moea64_vsid_bitmap[idx] & mask,
2056	    ("Freeing unallocated VSID %#jx", vsid));
2057	moea64_vsid_bitmap[idx] &= ~mask;
2058	mtx_unlock(&moea64_slb_mutex);
2059}
2060
2061
2062void
2063moea64_release(mmu_t mmu, pmap_t pmap)
2064{
2065
2066	/*
2067	 * Free segment registers' VSIDs
2068	 */
2069    #ifdef __powerpc64__
2070	slb_free_tree(pmap);
2071	slb_free_user_cache(pmap->pm_slb);
2072    #else
2073	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2074
2075	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2076    #endif
2077}
2078
2079/*
2080 * Remove all pages mapped by the specified pmap
2081 */
2082void
2083moea64_remove_pages(mmu_t mmu, pmap_t pm)
2084{
2085	struct	pvo_entry *pvo, *tpvo;
2086
2087	LOCK_TABLE_WR();
2088	PMAP_LOCK(pm);
2089	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2090		if (!(pvo->pvo_vaddr & PVO_WIRED))
2091			moea64_pvo_remove(mmu, pvo);
2092	}
2093	UNLOCK_TABLE_WR();
2094	PMAP_UNLOCK(pm);
2095}
2096
2097/*
2098 * Remove the given range of addresses from the specified map.
2099 */
2100void
2101moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2102{
2103	struct	pvo_entry *pvo, *tpvo, key;
2104
2105	/*
2106	 * Perform an unsynchronized read.  This is, however, safe.
2107	 */
2108	if (pm->pm_stats.resident_count == 0)
2109		return;
2110
2111	LOCK_TABLE_WR();
2112	PMAP_LOCK(pm);
2113	key.pvo_vaddr = sva;
2114	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2115	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2116		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2117		moea64_pvo_remove(mmu, pvo);
2118	}
2119	UNLOCK_TABLE_WR();
2120	PMAP_UNLOCK(pm);
2121}
2122
2123/*
2124 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2125 * will reflect changes in pte's back to the vm_page.
2126 */
2127void
2128moea64_remove_all(mmu_t mmu, vm_page_t m)
2129{
2130	struct	pvo_entry *pvo, *next_pvo;
2131	pmap_t	pmap;
2132
2133	LOCK_TABLE_WR();
2134	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2135		pmap = pvo->pvo_pmap;
2136		PMAP_LOCK(pmap);
2137		moea64_pvo_remove(mmu, pvo);
2138		PMAP_UNLOCK(pmap);
2139	}
2140	UNLOCK_TABLE_WR();
2141	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2142		vm_page_dirty(m);
2143	vm_page_aflag_clear(m, PGA_WRITEABLE);
2144	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2145}
2146
2147/*
2148 * Allocate a physical page of memory directly from the phys_avail map.
2149 * Can only be called from moea64_bootstrap before avail start and end are
2150 * calculated.
2151 */
2152vm_offset_t
2153moea64_bootstrap_alloc(vm_size_t size, u_int align)
2154{
2155	vm_offset_t	s, e;
2156	int		i, j;
2157
2158	size = round_page(size);
2159	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2160		if (align != 0)
2161			s = (phys_avail[i] + align - 1) & ~(align - 1);
2162		else
2163			s = phys_avail[i];
2164		e = s + size;
2165
2166		if (s < phys_avail[i] || e > phys_avail[i + 1])
2167			continue;
2168
2169		if (s + size > platform_real_maxaddr())
2170			continue;
2171
2172		if (s == phys_avail[i]) {
2173			phys_avail[i] += size;
2174		} else if (e == phys_avail[i + 1]) {
2175			phys_avail[i + 1] -= size;
2176		} else {
2177			for (j = phys_avail_count * 2; j > i; j -= 2) {
2178				phys_avail[j] = phys_avail[j - 2];
2179				phys_avail[j + 1] = phys_avail[j - 1];
2180			}
2181
2182			phys_avail[i + 3] = phys_avail[i + 1];
2183			phys_avail[i + 1] = s;
2184			phys_avail[i + 2] = e;
2185			phys_avail_count++;
2186		}
2187
2188		return (s);
2189	}
2190	panic("moea64_bootstrap_alloc: could not allocate memory");
2191}
2192
2193static int
2194moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2195    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2196    uint64_t pte_lo, int flags)
2197{
2198	struct	 pvo_entry *pvo;
2199	uint64_t vsid;
2200	int	 first;
2201	u_int	 ptegidx;
2202	int	 i;
2203	int      bootstrap;
2204
2205	/*
2206	 * One nasty thing that can happen here is that the UMA calls to
2207	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2208	 * which calls UMA...
2209	 *
2210	 * We break the loop by detecting recursion and allocating out of
2211	 * the bootstrap pool.
2212	 */
2213
2214	first = 0;
2215	bootstrap = (flags & PVO_BOOTSTRAP);
2216
2217	if (!moea64_initialized)
2218		bootstrap = 1;
2219
2220	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2221	rw_assert(&moea64_table_lock, RA_WLOCKED);
2222
2223	/*
2224	 * Compute the PTE Group index.
2225	 */
2226	va &= ~ADDR_POFF;
2227	vsid = va_to_vsid(pm, va);
2228	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2229
2230	/*
2231	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2232	 * there is a mapping.
2233	 */
2234	moea64_pvo_enter_calls++;
2235
2236	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2237		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2238			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2239			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2240			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2241			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2242					/* Re-insert if spilled */
2243					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2244					    &pvo->pvo_pte.lpte);
2245					if (i >= 0)
2246						PVO_PTEGIDX_SET(pvo, i);
2247					moea64_pte_overflow--;
2248				}
2249				return (0);
2250			}
2251			moea64_pvo_remove(mmu, pvo);
2252			break;
2253		}
2254	}
2255
2256	/*
2257	 * If we aren't overwriting a mapping, try to allocate.
2258	 */
2259	if (bootstrap) {
2260		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2261			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2262			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2263			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2264		}
2265		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2266		moea64_bpvo_pool_index++;
2267		bootstrap = 1;
2268	} else {
2269		pvo = uma_zalloc(zone, M_NOWAIT);
2270	}
2271
2272	if (pvo == NULL)
2273		return (ENOMEM);
2274
2275	moea64_pvo_entries++;
2276	pvo->pvo_vaddr = va;
2277	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2278	    | (vsid << 16);
2279	pvo->pvo_pmap = pm;
2280	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2281	pvo->pvo_vaddr &= ~ADDR_POFF;
2282
2283	if (flags & PVO_WIRED)
2284		pvo->pvo_vaddr |= PVO_WIRED;
2285	if (pvo_head != NULL)
2286		pvo->pvo_vaddr |= PVO_MANAGED;
2287	if (bootstrap)
2288		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2289	if (flags & PVO_LARGE)
2290		pvo->pvo_vaddr |= PVO_LARGE;
2291
2292	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2293	    (uint64_t)(pa) | pte_lo, flags);
2294
2295	/*
2296	 * Add to pmap list
2297	 */
2298	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2299
2300	/*
2301	 * Remember if the list was empty and therefore will be the first
2302	 * item.
2303	 */
2304	if (pvo_head != NULL) {
2305		if (LIST_FIRST(pvo_head) == NULL)
2306			first = 1;
2307		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2308	}
2309
2310	if (pvo->pvo_vaddr & PVO_WIRED) {
2311		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2312		pm->pm_stats.wired_count++;
2313	}
2314	pm->pm_stats.resident_count++;
2315
2316	/*
2317	 * We hope this succeeds but it isn't required.
2318	 */
2319	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2320	if (i >= 0) {
2321		PVO_PTEGIDX_SET(pvo, i);
2322	} else {
2323		panic("moea64_pvo_enter: overflow");
2324		moea64_pte_overflow++;
2325	}
2326
2327	if (pm == kernel_pmap)
2328		isync();
2329
2330#ifdef __powerpc64__
2331	/*
2332	 * Make sure all our bootstrap mappings are in the SLB as soon
2333	 * as virtual memory is switched on.
2334	 */
2335	if (!pmap_bootstrapped)
2336		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2337#endif
2338
2339	return (first ? ENOENT : 0);
2340}
2341
2342static void
2343moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2344{
2345	struct	vm_page *pg;
2346	uintptr_t pt;
2347
2348	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2349	rw_assert(&moea64_table_lock, RA_WLOCKED);
2350
2351	/*
2352	 * If there is an active pte entry, we need to deactivate it (and
2353	 * save the ref & cfg bits).
2354	 */
2355	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2356	if (pt != -1) {
2357		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2358		PVO_PTEGIDX_CLR(pvo);
2359	} else {
2360		moea64_pte_overflow--;
2361	}
2362
2363	/*
2364	 * Update our statistics.
2365	 */
2366	pvo->pvo_pmap->pm_stats.resident_count--;
2367	if (pvo->pvo_vaddr & PVO_WIRED)
2368		pvo->pvo_pmap->pm_stats.wired_count--;
2369
2370	/*
2371	 * Remove this PVO from the pmap list.
2372	 */
2373	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2374
2375	/*
2376	 * Remove this from the overflow list and return it to the pool
2377	 * if we aren't going to reuse it.
2378	 */
2379	LIST_REMOVE(pvo, pvo_olink);
2380
2381	/*
2382	 * Update vm about the REF/CHG bits if the page is managed.
2383	 */
2384	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2385
2386	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2387		LIST_REMOVE(pvo, pvo_vlink);
2388		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2389			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2390				vm_page_dirty(pg);
2391			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2392				vm_page_aflag_set(pg, PGA_REFERENCED);
2393			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2394				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2395		}
2396		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2397			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2398	}
2399
2400	moea64_pvo_entries--;
2401	moea64_pvo_remove_calls++;
2402
2403	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2404		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2405		    moea64_upvo_zone, pvo);
2406}
2407
2408static struct pvo_entry *
2409moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2410{
2411	struct pvo_entry key;
2412
2413	key.pvo_vaddr = va & ~ADDR_POFF;
2414	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2415}
2416
2417static boolean_t
2418moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2419{
2420	struct	pvo_entry *pvo;
2421	uintptr_t pt;
2422
2423	LOCK_TABLE_RD();
2424	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2425		/*
2426		 * See if we saved the bit off.  If so, return success.
2427		 */
2428		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2429			UNLOCK_TABLE_RD();
2430			return (TRUE);
2431		}
2432	}
2433
2434	/*
2435	 * No luck, now go through the hard part of looking at the PTEs
2436	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2437	 * the PTEs.
2438	 */
2439	powerpc_sync();
2440	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2441
2442		/*
2443		 * See if this pvo has a valid PTE.  if so, fetch the
2444		 * REF/CHG bits from the valid PTE.  If the appropriate
2445		 * ptebit is set, return success.
2446		 */
2447		PMAP_LOCK(pvo->pvo_pmap);
2448		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2449		if (pt != -1) {
2450			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2451			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2452				PMAP_UNLOCK(pvo->pvo_pmap);
2453				UNLOCK_TABLE_RD();
2454				return (TRUE);
2455			}
2456		}
2457		PMAP_UNLOCK(pvo->pvo_pmap);
2458	}
2459
2460	UNLOCK_TABLE_RD();
2461	return (FALSE);
2462}
2463
2464static u_int
2465moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2466{
2467	u_int	count;
2468	struct	pvo_entry *pvo;
2469	uintptr_t pt;
2470
2471	/*
2472	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2473	 * we can reset the right ones).  note that since the pvo entries and
2474	 * list heads are accessed via BAT0 and are never placed in the page
2475	 * table, we don't have to worry about further accesses setting the
2476	 * REF/CHG bits.
2477	 */
2478	powerpc_sync();
2479
2480	/*
2481	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2482	 * valid pte clear the ptebit from the valid pte.
2483	 */
2484	count = 0;
2485	LOCK_TABLE_RD();
2486	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2487		PMAP_LOCK(pvo->pvo_pmap);
2488		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2489		if (pt != -1) {
2490			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2491			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2492				count++;
2493				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2494				    pvo->pvo_vpn, ptebit);
2495			}
2496		}
2497		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2498		PMAP_UNLOCK(pvo->pvo_pmap);
2499	}
2500
2501	UNLOCK_TABLE_RD();
2502	return (count);
2503}
2504
2505boolean_t
2506moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2507{
2508	struct pvo_entry *pvo, key;
2509	vm_offset_t ppa;
2510	int error = 0;
2511
2512	PMAP_LOCK(kernel_pmap);
2513	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2514	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2515	    ppa < pa + size; ppa += PAGE_SIZE,
2516	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2517		if (pvo == NULL ||
2518		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2519			error = EFAULT;
2520			break;
2521		}
2522	}
2523	PMAP_UNLOCK(kernel_pmap);
2524
2525	return (error);
2526}
2527
2528/*
2529 * Map a set of physical memory pages into the kernel virtual
2530 * address space. Return a pointer to where it is mapped. This
2531 * routine is intended to be used for mapping device memory,
2532 * NOT real memory.
2533 */
2534void *
2535moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2536{
2537	vm_offset_t va, tmpva, ppa, offset;
2538
2539	ppa = trunc_page(pa);
2540	offset = pa & PAGE_MASK;
2541	size = roundup2(offset + size, PAGE_SIZE);
2542
2543	va = kva_alloc(size);
2544
2545	if (!va)
2546		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2547
2548	for (tmpva = va; size > 0;) {
2549		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2550		size -= PAGE_SIZE;
2551		tmpva += PAGE_SIZE;
2552		ppa += PAGE_SIZE;
2553	}
2554
2555	return ((void *)(va + offset));
2556}
2557
2558void *
2559moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2560{
2561
2562	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2563}
2564
2565void
2566moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2567{
2568	vm_offset_t base, offset;
2569
2570	base = trunc_page(va);
2571	offset = va & PAGE_MASK;
2572	size = roundup2(offset + size, PAGE_SIZE);
2573
2574	kva_free(base, size);
2575}
2576
2577void
2578moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2579{
2580	struct pvo_entry *pvo;
2581	vm_offset_t lim;
2582	vm_paddr_t pa;
2583	vm_size_t len;
2584
2585	PMAP_LOCK(pm);
2586	while (sz > 0) {
2587		lim = round_page(va);
2588		len = MIN(lim - va, sz);
2589		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2590		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2591			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2592			    (va & ADDR_POFF);
2593			moea64_syncicache(mmu, pm, va, pa, len);
2594		}
2595		va += len;
2596		sz -= len;
2597	}
2598	PMAP_UNLOCK(pm);
2599}
2600
2601vm_offset_t
2602moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2603    vm_size_t *sz)
2604{
2605	if (md->md_vaddr == ~0UL)
2606	    return (md->md_paddr + ofs);
2607	else
2608	    return (md->md_vaddr + ofs);
2609}
2610
2611struct pmap_md *
2612moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2613{
2614	static struct pmap_md md;
2615	struct pvo_entry *pvo;
2616	vm_offset_t va;
2617
2618	if (dumpsys_minidump) {
2619		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2620		if (prev == NULL) {
2621			/* 1st: kernel .data and .bss. */
2622			md.md_index = 1;
2623			md.md_vaddr = trunc_page((uintptr_t)_etext);
2624			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2625			return (&md);
2626		}
2627		switch (prev->md_index) {
2628		case 1:
2629			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2630			md.md_index = 2;
2631			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2632			md.md_size = round_page(msgbufp->msg_size);
2633			break;
2634		case 2:
2635			/* 3rd: kernel VM. */
2636			va = prev->md_vaddr + prev->md_size;
2637			/* Find start of next chunk (from va). */
2638			while (va < virtual_end) {
2639				/* Don't dump the buffer cache. */
2640				if (va >= kmi.buffer_sva &&
2641				    va < kmi.buffer_eva) {
2642					va = kmi.buffer_eva;
2643					continue;
2644				}
2645				pvo = moea64_pvo_find_va(kernel_pmap,
2646				    va & ~ADDR_POFF);
2647				if (pvo != NULL &&
2648				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2649					break;
2650				va += PAGE_SIZE;
2651			}
2652			if (va < virtual_end) {
2653				md.md_vaddr = va;
2654				va += PAGE_SIZE;
2655				/* Find last page in chunk. */
2656				while (va < virtual_end) {
2657					/* Don't run into the buffer cache. */
2658					if (va == kmi.buffer_sva)
2659						break;
2660					pvo = moea64_pvo_find_va(kernel_pmap,
2661					    va & ~ADDR_POFF);
2662					if (pvo == NULL ||
2663					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2664						break;
2665					va += PAGE_SIZE;
2666				}
2667				md.md_size = va - md.md_vaddr;
2668				break;
2669			}
2670			md.md_index = 3;
2671			/* FALLTHROUGH */
2672		default:
2673			return (NULL);
2674		}
2675	} else { /* minidumps */
2676		if (prev == NULL) {
2677			/* first physical chunk. */
2678			md.md_paddr = pregions[0].mr_start;
2679			md.md_size = pregions[0].mr_size;
2680			md.md_vaddr = ~0UL;
2681			md.md_index = 1;
2682		} else if (md.md_index < pregions_sz) {
2683			md.md_paddr = pregions[md.md_index].mr_start;
2684			md.md_size = pregions[md.md_index].mr_size;
2685			md.md_vaddr = ~0UL;
2686			md.md_index++;
2687		} else {
2688			/* There's no next physical chunk. */
2689			return (NULL);
2690		}
2691	}
2692
2693	return (&md);
2694}
2695