mmu_oea64.c revision 263687
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/10/sys/powerpc/aim/mmu_oea64.c 263687 2014-03-24 13:48:04Z emaste $");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_compat.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/kernel.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/ktr.h>
113#include <sys/lock.h>
114#include <sys/msgbuf.h>
115#include <sys/malloc.h>
116#include <sys/mutex.h>
117#include <sys/proc.h>
118#include <sys/rwlock.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/systm.h>
122#include <sys/vmmeter.h>
123
124#include <sys/kdb.h>
125
126#include <dev/ofw/openfirm.h>
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/uma.h>
137
138#include <machine/_inttypes.h>
139#include <machine/cpu.h>
140#include <machine/platform.h>
141#include <machine/frame.h>
142#include <machine/md_var.h>
143#include <machine/psl.h>
144#include <machine/bat.h>
145#include <machine/hid.h>
146#include <machine/pte.h>
147#include <machine/sr.h>
148#include <machine/trap.h>
149#include <machine/mmuvar.h>
150
151#include "mmu_oea64.h"
152#include "mmu_if.h"
153#include "moea64_if.h"
154
155void moea64_release_vsid(uint64_t vsid);
156uintptr_t moea64_get_unique_vsid(void);
157
158#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159#define ENABLE_TRANS(msr)	mtmsr(msr)
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163#define	VSID_HASH_MASK		0x0000007fffffffffULL
164
165/*
166 * Locking semantics:
167 * -- Read lock: if no modifications are being made to either the PVO lists
168 *    or page table or if any modifications being made result in internal
169 *    changes (e.g. wiring, protection) such that the existence of the PVOs
170 *    is unchanged and they remain associated with the same pmap (in which
171 *    case the changes should be protected by the pmap lock)
172 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173 */
174
175#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	cell_t	om_pa_hi;
184	cell_t	om_pa_lo;
185	cell_t	om_mode;
186};
187
188extern unsigned char _etext[];
189extern unsigned char _end[];
190
191extern int dumpsys_minidump;
192
193/*
194 * Map of physical memory regions.
195 */
196static struct	mem_region *regions;
197static struct	mem_region *pregions;
198static u_int	phys_avail_count;
199static int	regions_sz, pregions_sz;
200
201extern void bs_remap_earlyboot(void);
202
203/*
204 * Lock for the pteg and pvo tables.
205 */
206struct rwlock	moea64_table_lock;
207struct mtx	moea64_slb_mutex;
208
209/*
210 * PTEG data.
211 */
212u_int		moea64_pteg_count;
213u_int		moea64_pteg_mask;
214
215/*
216 * PVO data.
217 */
218struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
219
220uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
221uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
222
223#define	BPVO_POOL_SIZE	327680
224static struct	pvo_entry *moea64_bpvo_pool;
225static int	moea64_bpvo_pool_index = 0;
226
227#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
228#ifdef __powerpc64__
229#define	NVSIDS		(NPMAPS * 16)
230#define VSID_HASHMASK	0xffffffffUL
231#else
232#define NVSIDS		NPMAPS
233#define VSID_HASHMASK	0xfffffUL
234#endif
235static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
236
237static boolean_t moea64_initialized = FALSE;
238
239/*
240 * Statistics.
241 */
242u_int	moea64_pte_valid = 0;
243u_int	moea64_pte_overflow = 0;
244u_int	moea64_pvo_entries = 0;
245u_int	moea64_pvo_enter_calls = 0;
246u_int	moea64_pvo_remove_calls = 0;
247SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
248    &moea64_pte_valid, 0, "");
249SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
250    &moea64_pte_overflow, 0, "");
251SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
252    &moea64_pvo_entries, 0, "");
253SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
254    &moea64_pvo_enter_calls, 0, "");
255SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
256    &moea64_pvo_remove_calls, 0, "");
257
258vm_offset_t	moea64_scratchpage_va[2];
259struct pvo_entry *moea64_scratchpage_pvo[2];
260uintptr_t	moea64_scratchpage_pte[2];
261struct	mtx	moea64_scratchpage_mtx;
262
263uint64_t 	moea64_large_page_mask = 0;
264uint64_t	moea64_large_page_size = 0;
265int		moea64_large_page_shift = 0;
266
267/*
268 * PVO calls.
269 */
270static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
271		    vm_offset_t, vm_offset_t, uint64_t, int);
272static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
273static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
274
275/*
276 * Utility routines.
277 */
278static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
279static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
280static void		moea64_kremove(mmu_t, vm_offset_t);
281static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
282			    vm_offset_t pa, vm_size_t sz);
283
284/*
285 * Kernel MMU interface
286 */
287void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
288void moea64_clear_modify(mmu_t, vm_page_t);
289void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
290void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
291    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
292void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
293void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
294    vm_prot_t);
295void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
296vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
297vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
298void moea64_init(mmu_t);
299boolean_t moea64_is_modified(mmu_t, vm_page_t);
300boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
301boolean_t moea64_is_referenced(mmu_t, vm_page_t);
302int moea64_ts_referenced(mmu_t, vm_page_t);
303vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
304boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
305int moea64_page_wired_mappings(mmu_t, vm_page_t);
306void moea64_pinit(mmu_t, pmap_t);
307void moea64_pinit0(mmu_t, pmap_t);
308void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
309void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
310void moea64_qremove(mmu_t, vm_offset_t, int);
311void moea64_release(mmu_t, pmap_t);
312void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
313void moea64_remove_pages(mmu_t, pmap_t);
314void moea64_remove_all(mmu_t, vm_page_t);
315void moea64_remove_write(mmu_t, vm_page_t);
316void moea64_zero_page(mmu_t, vm_page_t);
317void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
318void moea64_zero_page_idle(mmu_t, vm_page_t);
319void moea64_activate(mmu_t, struct thread *);
320void moea64_deactivate(mmu_t, struct thread *);
321void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
322void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
323void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
324vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
325void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
326void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
327void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
328boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
329static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
330vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
331    vm_size_t *sz);
332struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
333
334static mmu_method_t moea64_methods[] = {
335	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
337	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
338	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
339	MMUMETHOD(mmu_enter,		moea64_enter),
340	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
341	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
342	MMUMETHOD(mmu_extract,		moea64_extract),
343	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
344	MMUMETHOD(mmu_init,		moea64_init),
345	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
346	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
347	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
348	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
349	MMUMETHOD(mmu_map,     		moea64_map),
350	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
351	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
352	MMUMETHOD(mmu_pinit,		moea64_pinit),
353	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
354	MMUMETHOD(mmu_protect,		moea64_protect),
355	MMUMETHOD(mmu_qenter,		moea64_qenter),
356	MMUMETHOD(mmu_qremove,		moea64_qremove),
357	MMUMETHOD(mmu_release,		moea64_release),
358	MMUMETHOD(mmu_remove,		moea64_remove),
359	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
360	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
361	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
362	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
363	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
364	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
365	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
366	MMUMETHOD(mmu_activate,		moea64_activate),
367	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
368	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
369
370	/* Internal interfaces */
371	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
372	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
373	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
374	MMUMETHOD(mmu_kextract,		moea64_kextract),
375	MMUMETHOD(mmu_kenter,		moea64_kenter),
376	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
377	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
378	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
379	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
380
381	{ 0, 0 }
382};
383
384MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
385
386static __inline u_int
387va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
388{
389	uint64_t hash;
390	int shift;
391
392	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
393	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
394	    shift);
395	return (hash & moea64_pteg_mask);
396}
397
398static __inline struct pvo_head *
399vm_page_to_pvoh(vm_page_t m)
400{
401
402	return (&m->md.mdpg_pvoh);
403}
404
405static __inline void
406moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
407    uint64_t pte_lo, int flags)
408{
409
410	/*
411	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
412	 * set when the real pte is set in memory.
413	 *
414	 * Note: Don't set the valid bit for correct operation of tlb update.
415	 */
416	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
417	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
418
419	if (flags & PVO_LARGE)
420		pt->pte_hi |= LPTE_BIG;
421
422	pt->pte_lo = pte_lo;
423}
424
425static __inline uint64_t
426moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
427{
428	uint64_t pte_lo;
429	int i;
430
431	if (ma != VM_MEMATTR_DEFAULT) {
432		switch (ma) {
433		case VM_MEMATTR_UNCACHEABLE:
434			return (LPTE_I | LPTE_G);
435		case VM_MEMATTR_WRITE_COMBINING:
436		case VM_MEMATTR_WRITE_BACK:
437		case VM_MEMATTR_PREFETCHABLE:
438			return (LPTE_I);
439		case VM_MEMATTR_WRITE_THROUGH:
440			return (LPTE_W | LPTE_M);
441		}
442	}
443
444	/*
445	 * Assume the page is cache inhibited and access is guarded unless
446	 * it's in our available memory array.
447	 */
448	pte_lo = LPTE_I | LPTE_G;
449	for (i = 0; i < pregions_sz; i++) {
450		if ((pa >= pregions[i].mr_start) &&
451		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
452			pte_lo &= ~(LPTE_I | LPTE_G);
453			pte_lo |= LPTE_M;
454			break;
455		}
456	}
457
458	return pte_lo;
459}
460
461/*
462 * Quick sort callout for comparing memory regions.
463 */
464static int	om_cmp(const void *a, const void *b);
465
466static int
467om_cmp(const void *a, const void *b)
468{
469	const struct	ofw_map *mapa;
470	const struct	ofw_map *mapb;
471
472	mapa = a;
473	mapb = b;
474	if (mapa->om_pa_hi < mapb->om_pa_hi)
475		return (-1);
476	else if (mapa->om_pa_hi > mapb->om_pa_hi)
477		return (1);
478	else if (mapa->om_pa_lo < mapb->om_pa_lo)
479		return (-1);
480	else if (mapa->om_pa_lo > mapb->om_pa_lo)
481		return (1);
482	else
483		return (0);
484}
485
486static void
487moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
488{
489	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
490	register_t	msr;
491	vm_offset_t	off;
492	vm_paddr_t	pa_base;
493	int		i;
494
495	bzero(translations, sz);
496	if (OF_getprop(mmu, "translations", translations, sz) == -1)
497		panic("moea64_bootstrap: can't get ofw translations");
498
499	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
500	sz /= sizeof(*translations);
501	qsort(translations, sz, sizeof (*translations), om_cmp);
502
503	for (i = 0; i < sz; i++) {
504		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
505		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
506		    translations[i].om_len);
507
508		if (translations[i].om_pa_lo % PAGE_SIZE)
509			panic("OFW translation not page-aligned!");
510
511		pa_base = translations[i].om_pa_lo;
512
513	      #ifdef __powerpc64__
514		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
515	      #else
516		if (translations[i].om_pa_hi)
517			panic("OFW translations above 32-bit boundary!");
518	      #endif
519
520		/* Now enter the pages for this mapping */
521
522		DISABLE_TRANS(msr);
523		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
524			if (moea64_pvo_find_va(kernel_pmap,
525			    translations[i].om_va + off) != NULL)
526				continue;
527
528			moea64_kenter(mmup, translations[i].om_va + off,
529			    pa_base + off);
530		}
531		ENABLE_TRANS(msr);
532	}
533}
534
535#ifdef __powerpc64__
536static void
537moea64_probe_large_page(void)
538{
539	uint16_t pvr = mfpvr() >> 16;
540
541	switch (pvr) {
542	case IBM970:
543	case IBM970FX:
544	case IBM970MP:
545		powerpc_sync(); isync();
546		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
547		powerpc_sync(); isync();
548
549		/* FALLTHROUGH */
550	default:
551		moea64_large_page_size = 0x1000000; /* 16 MB */
552		moea64_large_page_shift = 24;
553	}
554
555	moea64_large_page_mask = moea64_large_page_size - 1;
556}
557
558static void
559moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
560{
561	struct slb *cache;
562	struct slb entry;
563	uint64_t esid, slbe;
564	uint64_t i;
565
566	cache = PCPU_GET(slb);
567	esid = va >> ADDR_SR_SHFT;
568	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
569
570	for (i = 0; i < 64; i++) {
571		if (cache[i].slbe == (slbe | i))
572			return;
573	}
574
575	entry.slbe = slbe;
576	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
577	if (large)
578		entry.slbv |= SLBV_L;
579
580	slb_insert_kernel(entry.slbe, entry.slbv);
581}
582#endif
583
584static void
585moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
586    vm_offset_t kernelend)
587{
588	register_t msr;
589	vm_paddr_t pa;
590	vm_offset_t size, off;
591	uint64_t pte_lo;
592	int i;
593
594	if (moea64_large_page_size == 0)
595		hw_direct_map = 0;
596
597	DISABLE_TRANS(msr);
598	if (hw_direct_map) {
599		LOCK_TABLE_WR();
600		PMAP_LOCK(kernel_pmap);
601		for (i = 0; i < pregions_sz; i++) {
602		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
603		     pregions[i].mr_size; pa += moea64_large_page_size) {
604			pte_lo = LPTE_M;
605
606			/*
607			 * Set memory access as guarded if prefetch within
608			 * the page could exit the available physmem area.
609			 */
610			if (pa & moea64_large_page_mask) {
611				pa &= moea64_large_page_mask;
612				pte_lo |= LPTE_G;
613			}
614			if (pa + moea64_large_page_size >
615			    pregions[i].mr_start + pregions[i].mr_size)
616				pte_lo |= LPTE_G;
617
618			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
619				    NULL, pa, pa, pte_lo,
620				    PVO_WIRED | PVO_LARGE);
621		  }
622		}
623		PMAP_UNLOCK(kernel_pmap);
624		UNLOCK_TABLE_WR();
625	} else {
626		size = sizeof(struct pvo_head) * moea64_pteg_count;
627		off = (vm_offset_t)(moea64_pvo_table);
628		for (pa = off; pa < off + size; pa += PAGE_SIZE)
629			moea64_kenter(mmup, pa, pa);
630		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
631		off = (vm_offset_t)(moea64_bpvo_pool);
632		for (pa = off; pa < off + size; pa += PAGE_SIZE)
633		moea64_kenter(mmup, pa, pa);
634
635		/*
636		 * Map certain important things, like ourselves.
637		 *
638		 * NOTE: We do not map the exception vector space. That code is
639		 * used only in real mode, and leaving it unmapped allows us to
640		 * catch NULL pointer deferences, instead of making NULL a valid
641		 * address.
642		 */
643
644		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
645		    pa += PAGE_SIZE)
646			moea64_kenter(mmup, pa, pa);
647	}
648	ENABLE_TRANS(msr);
649
650	/*
651	 * Allow user to override unmapped_buf_allowed for testing.
652	 * XXXKIB Only direct map implementation was tested.
653	 */
654	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
655	    &unmapped_buf_allowed))
656		unmapped_buf_allowed = hw_direct_map;
657}
658
659void
660moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
661{
662	int		i, j;
663	vm_size_t	physsz, hwphyssz;
664
665#ifndef __powerpc64__
666	/* We don't have a direct map since there is no BAT */
667	hw_direct_map = 0;
668
669	/* Make sure battable is zero, since we have no BAT */
670	for (i = 0; i < 16; i++) {
671		battable[i].batu = 0;
672		battable[i].batl = 0;
673	}
674#else
675	moea64_probe_large_page();
676
677	/* Use a direct map if we have large page support */
678	if (moea64_large_page_size > 0)
679		hw_direct_map = 1;
680	else
681		hw_direct_map = 0;
682#endif
683
684	/* Get physical memory regions from firmware */
685	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
686	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
687
688	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
689		panic("moea64_bootstrap: phys_avail too small");
690
691	phys_avail_count = 0;
692	physsz = 0;
693	hwphyssz = 0;
694	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
695	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
696		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
697		    regions[i].mr_start + regions[i].mr_size,
698		    regions[i].mr_size);
699		if (hwphyssz != 0 &&
700		    (physsz + regions[i].mr_size) >= hwphyssz) {
701			if (physsz < hwphyssz) {
702				phys_avail[j] = regions[i].mr_start;
703				phys_avail[j + 1] = regions[i].mr_start +
704				    hwphyssz - physsz;
705				physsz = hwphyssz;
706				phys_avail_count++;
707			}
708			break;
709		}
710		phys_avail[j] = regions[i].mr_start;
711		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
712		phys_avail_count++;
713		physsz += regions[i].mr_size;
714	}
715
716	/* Check for overlap with the kernel and exception vectors */
717	for (j = 0; j < 2*phys_avail_count; j+=2) {
718		if (phys_avail[j] < EXC_LAST)
719			phys_avail[j] += EXC_LAST;
720
721		if (kernelstart >= phys_avail[j] &&
722		    kernelstart < phys_avail[j+1]) {
723			if (kernelend < phys_avail[j+1]) {
724				phys_avail[2*phys_avail_count] =
725				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
726				phys_avail[2*phys_avail_count + 1] =
727				    phys_avail[j+1];
728				phys_avail_count++;
729			}
730
731			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
732		}
733
734		if (kernelend >= phys_avail[j] &&
735		    kernelend < phys_avail[j+1]) {
736			if (kernelstart > phys_avail[j]) {
737				phys_avail[2*phys_avail_count] = phys_avail[j];
738				phys_avail[2*phys_avail_count + 1] =
739				    kernelstart & ~PAGE_MASK;
740				phys_avail_count++;
741			}
742
743			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
744		}
745	}
746
747	physmem = btoc(physsz);
748
749#ifdef PTEGCOUNT
750	moea64_pteg_count = PTEGCOUNT;
751#else
752	moea64_pteg_count = 0x1000;
753
754	while (moea64_pteg_count < physmem)
755		moea64_pteg_count <<= 1;
756
757	moea64_pteg_count >>= 1;
758#endif /* PTEGCOUNT */
759}
760
761void
762moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
763{
764	vm_size_t	size;
765	register_t	msr;
766	int		i;
767
768	/*
769	 * Set PTEG mask
770	 */
771	moea64_pteg_mask = moea64_pteg_count - 1;
772
773	/*
774	 * Allocate pv/overflow lists.
775	 */
776	size = sizeof(struct pvo_head) * moea64_pteg_count;
777
778	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
779	    PAGE_SIZE);
780	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
781
782	DISABLE_TRANS(msr);
783	for (i = 0; i < moea64_pteg_count; i++)
784		LIST_INIT(&moea64_pvo_table[i]);
785	ENABLE_TRANS(msr);
786
787	/*
788	 * Initialize the lock that synchronizes access to the pteg and pvo
789	 * tables.
790	 */
791	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
792	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
793
794	/*
795	 * Initialise the unmanaged pvo pool.
796	 */
797	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
798		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
799	moea64_bpvo_pool_index = 0;
800
801	/*
802	 * Make sure kernel vsid is allocated as well as VSID 0.
803	 */
804	#ifndef __powerpc64__
805	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
806		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
807	moea64_vsid_bitmap[0] |= 1;
808	#endif
809
810	/*
811	 * Initialize the kernel pmap (which is statically allocated).
812	 */
813	#ifdef __powerpc64__
814	for (i = 0; i < 64; i++) {
815		pcpup->pc_slb[i].slbv = 0;
816		pcpup->pc_slb[i].slbe = 0;
817	}
818	#else
819	for (i = 0; i < 16; i++)
820		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
821	#endif
822
823	kernel_pmap->pmap_phys = kernel_pmap;
824	CPU_FILL(&kernel_pmap->pm_active);
825	RB_INIT(&kernel_pmap->pmap_pvo);
826
827	PMAP_LOCK_INIT(kernel_pmap);
828
829	/*
830	 * Now map in all the other buffers we allocated earlier
831	 */
832
833	moea64_setup_direct_map(mmup, kernelstart, kernelend);
834}
835
836void
837moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
838{
839	ihandle_t	mmui;
840	phandle_t	chosen;
841	phandle_t	mmu;
842	size_t		sz;
843	int		i;
844	vm_offset_t	pa, va;
845	void		*dpcpu;
846
847	/*
848	 * Set up the Open Firmware pmap and add its mappings if not in real
849	 * mode.
850	 */
851
852	chosen = OF_finddevice("/chosen");
853	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
854	    mmu = OF_instance_to_package(mmui);
855	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
856		sz = 0;
857	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
858		panic("moea64_bootstrap: too many ofw translations");
859
860	    if (sz > 0)
861		moea64_add_ofw_mappings(mmup, mmu, sz);
862	}
863
864	/*
865	 * Calculate the last available physical address.
866	 */
867	for (i = 0; phys_avail[i + 2] != 0; i += 2)
868		;
869	Maxmem = powerpc_btop(phys_avail[i + 1]);
870
871	/*
872	 * Initialize MMU and remap early physical mappings
873	 */
874	MMU_CPU_BOOTSTRAP(mmup,0);
875	mtmsr(mfmsr() | PSL_DR | PSL_IR);
876	pmap_bootstrapped++;
877	bs_remap_earlyboot();
878
879	/*
880	 * Set the start and end of kva.
881	 */
882	virtual_avail = VM_MIN_KERNEL_ADDRESS;
883	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
884
885	/*
886	 * Map the entire KVA range into the SLB. We must not fault there.
887	 */
888	#ifdef __powerpc64__
889	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
890		moea64_bootstrap_slb_prefault(va, 0);
891	#endif
892
893	/*
894	 * Figure out how far we can extend virtual_end into segment 16
895	 * without running into existing mappings. Segment 16 is guaranteed
896	 * to contain neither RAM nor devices (at least on Apple hardware),
897	 * but will generally contain some OFW mappings we should not
898	 * step on.
899	 */
900
901	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
902	PMAP_LOCK(kernel_pmap);
903	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
904	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
905		virtual_end += PAGE_SIZE;
906	PMAP_UNLOCK(kernel_pmap);
907	#endif
908
909	/*
910	 * Allocate a kernel stack with a guard page for thread0 and map it
911	 * into the kernel page map.
912	 */
913	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
914	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
915	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
916	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
917	thread0.td_kstack = va;
918	thread0.td_kstack_pages = KSTACK_PAGES;
919	for (i = 0; i < KSTACK_PAGES; i++) {
920		moea64_kenter(mmup, va, pa);
921		pa += PAGE_SIZE;
922		va += PAGE_SIZE;
923	}
924
925	/*
926	 * Allocate virtual address space for the message buffer.
927	 */
928	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
929	msgbufp = (struct msgbuf *)virtual_avail;
930	va = virtual_avail;
931	virtual_avail += round_page(msgbufsize);
932	while (va < virtual_avail) {
933		moea64_kenter(mmup, va, pa);
934		pa += PAGE_SIZE;
935		va += PAGE_SIZE;
936	}
937
938	/*
939	 * Allocate virtual address space for the dynamic percpu area.
940	 */
941	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
942	dpcpu = (void *)virtual_avail;
943	va = virtual_avail;
944	virtual_avail += DPCPU_SIZE;
945	while (va < virtual_avail) {
946		moea64_kenter(mmup, va, pa);
947		pa += PAGE_SIZE;
948		va += PAGE_SIZE;
949	}
950	dpcpu_init(dpcpu, 0);
951
952	/*
953	 * Allocate some things for page zeroing. We put this directly
954	 * in the page table, marked with LPTE_LOCKED, to avoid any
955	 * of the PVO book-keeping or other parts of the VM system
956	 * from even knowing that this hack exists.
957	 */
958
959	if (!hw_direct_map) {
960		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
961		    MTX_DEF);
962		for (i = 0; i < 2; i++) {
963			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
964			virtual_end -= PAGE_SIZE;
965
966			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
967
968			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
969			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
970			LOCK_TABLE_RD();
971			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
972			    mmup, moea64_scratchpage_pvo[i]);
973			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
974			    |= LPTE_LOCKED;
975			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
976			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
977			    moea64_scratchpage_pvo[i]->pvo_vpn);
978			UNLOCK_TABLE_RD();
979		}
980	}
981}
982
983/*
984 * Activate a user pmap.  The pmap must be activated before its address
985 * space can be accessed in any way.
986 */
987void
988moea64_activate(mmu_t mmu, struct thread *td)
989{
990	pmap_t	pm;
991
992	pm = &td->td_proc->p_vmspace->vm_pmap;
993	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
994
995	#ifdef __powerpc64__
996	PCPU_SET(userslb, pm->pm_slb);
997	#else
998	PCPU_SET(curpmap, pm->pmap_phys);
999	#endif
1000}
1001
1002void
1003moea64_deactivate(mmu_t mmu, struct thread *td)
1004{
1005	pmap_t	pm;
1006
1007	pm = &td->td_proc->p_vmspace->vm_pmap;
1008	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1009	#ifdef __powerpc64__
1010	PCPU_SET(userslb, NULL);
1011	#else
1012	PCPU_SET(curpmap, NULL);
1013	#endif
1014}
1015
1016void
1017moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1018{
1019	struct	pvo_entry *pvo;
1020	uintptr_t pt;
1021	uint64_t vsid;
1022	int	i, ptegidx;
1023
1024	LOCK_TABLE_WR();
1025	PMAP_LOCK(pm);
1026	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1027
1028	if (pvo != NULL) {
1029		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1030
1031		if (wired) {
1032			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1033				pm->pm_stats.wired_count++;
1034			pvo->pvo_vaddr |= PVO_WIRED;
1035			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1036		} else {
1037			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1038				pm->pm_stats.wired_count--;
1039			pvo->pvo_vaddr &= ~PVO_WIRED;
1040			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1041		}
1042
1043		if (pt != -1) {
1044			/* Update wiring flag in page table. */
1045			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1046			    pvo->pvo_vpn);
1047		} else if (wired) {
1048			/*
1049			 * If we are wiring the page, and it wasn't in the
1050			 * page table before, add it.
1051			 */
1052			vsid = PVO_VSID(pvo);
1053			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1054			    pvo->pvo_vaddr & PVO_LARGE);
1055
1056			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1057
1058			if (i >= 0) {
1059				PVO_PTEGIDX_CLR(pvo);
1060				PVO_PTEGIDX_SET(pvo, i);
1061			}
1062		}
1063
1064	}
1065	UNLOCK_TABLE_WR();
1066	PMAP_UNLOCK(pm);
1067}
1068
1069/*
1070 * This goes through and sets the physical address of our
1071 * special scratch PTE to the PA we want to zero or copy. Because
1072 * of locking issues (this can get called in pvo_enter() by
1073 * the UMA allocator), we can't use most other utility functions here
1074 */
1075
1076static __inline
1077void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1078
1079	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1080	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1081
1082	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1083	    ~(LPTE_WIMG | LPTE_RPGN);
1084	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1085	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1086	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1087	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1088	    moea64_scratchpage_pvo[which]->pvo_vpn);
1089	isync();
1090}
1091
1092void
1093moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1094{
1095	vm_offset_t	dst;
1096	vm_offset_t	src;
1097
1098	dst = VM_PAGE_TO_PHYS(mdst);
1099	src = VM_PAGE_TO_PHYS(msrc);
1100
1101	if (hw_direct_map) {
1102		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1103	} else {
1104		mtx_lock(&moea64_scratchpage_mtx);
1105
1106		moea64_set_scratchpage_pa(mmu, 0, src);
1107		moea64_set_scratchpage_pa(mmu, 1, dst);
1108
1109		bcopy((void *)moea64_scratchpage_va[0],
1110		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1111
1112		mtx_unlock(&moea64_scratchpage_mtx);
1113	}
1114}
1115
1116static inline void
1117moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1118    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1119{
1120	void *a_cp, *b_cp;
1121	vm_offset_t a_pg_offset, b_pg_offset;
1122	int cnt;
1123
1124	while (xfersize > 0) {
1125		a_pg_offset = a_offset & PAGE_MASK;
1126		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1127		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1128		    a_pg_offset;
1129		b_pg_offset = b_offset & PAGE_MASK;
1130		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1131		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1132		    b_pg_offset;
1133		bcopy(a_cp, b_cp, cnt);
1134		a_offset += cnt;
1135		b_offset += cnt;
1136		xfersize -= cnt;
1137	}
1138}
1139
1140static inline void
1141moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1142    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1143{
1144	void *a_cp, *b_cp;
1145	vm_offset_t a_pg_offset, b_pg_offset;
1146	int cnt;
1147
1148	mtx_lock(&moea64_scratchpage_mtx);
1149	while (xfersize > 0) {
1150		a_pg_offset = a_offset & PAGE_MASK;
1151		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1152		moea64_set_scratchpage_pa(mmu, 0,
1153		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1154		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1155		b_pg_offset = b_offset & PAGE_MASK;
1156		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1157		moea64_set_scratchpage_pa(mmu, 1,
1158		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1159		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1160		bcopy(a_cp, b_cp, cnt);
1161		a_offset += cnt;
1162		b_offset += cnt;
1163		xfersize -= cnt;
1164	}
1165	mtx_unlock(&moea64_scratchpage_mtx);
1166}
1167
1168void
1169moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1170    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1171{
1172
1173	if (hw_direct_map) {
1174		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1175		    xfersize);
1176	} else {
1177		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1178		    xfersize);
1179	}
1180}
1181
1182void
1183moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1184{
1185	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1186
1187	if (size + off > PAGE_SIZE)
1188		panic("moea64_zero_page: size + off > PAGE_SIZE");
1189
1190	if (hw_direct_map) {
1191		bzero((caddr_t)pa + off, size);
1192	} else {
1193		mtx_lock(&moea64_scratchpage_mtx);
1194		moea64_set_scratchpage_pa(mmu, 0, pa);
1195		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1196		mtx_unlock(&moea64_scratchpage_mtx);
1197	}
1198}
1199
1200/*
1201 * Zero a page of physical memory by temporarily mapping it
1202 */
1203void
1204moea64_zero_page(mmu_t mmu, vm_page_t m)
1205{
1206	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1207	vm_offset_t va, off;
1208
1209	if (!hw_direct_map) {
1210		mtx_lock(&moea64_scratchpage_mtx);
1211
1212		moea64_set_scratchpage_pa(mmu, 0, pa);
1213		va = moea64_scratchpage_va[0];
1214	} else {
1215		va = pa;
1216	}
1217
1218	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1219		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1220
1221	if (!hw_direct_map)
1222		mtx_unlock(&moea64_scratchpage_mtx);
1223}
1224
1225void
1226moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1227{
1228
1229	moea64_zero_page(mmu, m);
1230}
1231
1232/*
1233 * Map the given physical page at the specified virtual address in the
1234 * target pmap with the protection requested.  If specified the page
1235 * will be wired down.
1236 */
1237
1238void
1239moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1240    vm_prot_t prot, boolean_t wired)
1241{
1242	struct		pvo_head *pvo_head;
1243	uma_zone_t	zone;
1244	vm_page_t	pg;
1245	uint64_t	pte_lo;
1246	u_int		pvo_flags;
1247	int		error;
1248
1249	if (!moea64_initialized) {
1250		pvo_head = NULL;
1251		pg = NULL;
1252		zone = moea64_upvo_zone;
1253		pvo_flags = 0;
1254	} else {
1255		pvo_head = vm_page_to_pvoh(m);
1256		pg = m;
1257		zone = moea64_mpvo_zone;
1258		pvo_flags = PVO_MANAGED;
1259	}
1260
1261	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1262		VM_OBJECT_ASSERT_LOCKED(m->object);
1263
1264	/* XXX change the pvo head for fake pages */
1265	if ((m->oflags & VPO_UNMANAGED) != 0) {
1266		pvo_flags &= ~PVO_MANAGED;
1267		pvo_head = NULL;
1268		zone = moea64_upvo_zone;
1269	}
1270
1271	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1272
1273	if (prot & VM_PROT_WRITE) {
1274		pte_lo |= LPTE_BW;
1275		if (pmap_bootstrapped &&
1276		    (m->oflags & VPO_UNMANAGED) == 0)
1277			vm_page_aflag_set(m, PGA_WRITEABLE);
1278	} else
1279		pte_lo |= LPTE_BR;
1280
1281	if ((prot & VM_PROT_EXECUTE) == 0)
1282		pte_lo |= LPTE_NOEXEC;
1283
1284	if (wired)
1285		pvo_flags |= PVO_WIRED;
1286
1287	LOCK_TABLE_WR();
1288	PMAP_LOCK(pmap);
1289	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1290	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1291	PMAP_UNLOCK(pmap);
1292	UNLOCK_TABLE_WR();
1293
1294	/*
1295	 * Flush the page from the instruction cache if this page is
1296	 * mapped executable and cacheable.
1297	 */
1298	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1299	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1300		vm_page_aflag_set(m, PGA_EXECUTABLE);
1301		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1302	}
1303}
1304
1305static void
1306moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1307    vm_size_t sz)
1308{
1309
1310	/*
1311	 * This is much trickier than on older systems because
1312	 * we can't sync the icache on physical addresses directly
1313	 * without a direct map. Instead we check a couple of cases
1314	 * where the memory is already mapped in and, failing that,
1315	 * use the same trick we use for page zeroing to create
1316	 * a temporary mapping for this physical address.
1317	 */
1318
1319	if (!pmap_bootstrapped) {
1320		/*
1321		 * If PMAP is not bootstrapped, we are likely to be
1322		 * in real mode.
1323		 */
1324		__syncicache((void *)pa, sz);
1325	} else if (pmap == kernel_pmap) {
1326		__syncicache((void *)va, sz);
1327	} else if (hw_direct_map) {
1328		__syncicache((void *)pa, sz);
1329	} else {
1330		/* Use the scratch page to set up a temp mapping */
1331
1332		mtx_lock(&moea64_scratchpage_mtx);
1333
1334		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1335		__syncicache((void *)(moea64_scratchpage_va[1] +
1336		    (va & ADDR_POFF)), sz);
1337
1338		mtx_unlock(&moea64_scratchpage_mtx);
1339	}
1340}
1341
1342/*
1343 * Maps a sequence of resident pages belonging to the same object.
1344 * The sequence begins with the given page m_start.  This page is
1345 * mapped at the given virtual address start.  Each subsequent page is
1346 * mapped at a virtual address that is offset from start by the same
1347 * amount as the page is offset from m_start within the object.  The
1348 * last page in the sequence is the page with the largest offset from
1349 * m_start that can be mapped at a virtual address less than the given
1350 * virtual address end.  Not every virtual page between start and end
1351 * is mapped; only those for which a resident page exists with the
1352 * corresponding offset from m_start are mapped.
1353 */
1354void
1355moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1356    vm_page_t m_start, vm_prot_t prot)
1357{
1358	vm_page_t m;
1359	vm_pindex_t diff, psize;
1360
1361	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1362
1363	psize = atop(end - start);
1364	m = m_start;
1365	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1366		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1367		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1368		m = TAILQ_NEXT(m, listq);
1369	}
1370}
1371
1372void
1373moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1374    vm_prot_t prot)
1375{
1376
1377	moea64_enter(mmu, pm, va, m,
1378	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1379}
1380
1381vm_paddr_t
1382moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1383{
1384	struct	pvo_entry *pvo;
1385	vm_paddr_t pa;
1386
1387	PMAP_LOCK(pm);
1388	pvo = moea64_pvo_find_va(pm, va);
1389	if (pvo == NULL)
1390		pa = 0;
1391	else
1392		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1393		    (va - PVO_VADDR(pvo));
1394	PMAP_UNLOCK(pm);
1395	return (pa);
1396}
1397
1398/*
1399 * Atomically extract and hold the physical page with the given
1400 * pmap and virtual address pair if that mapping permits the given
1401 * protection.
1402 */
1403vm_page_t
1404moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1405{
1406	struct	pvo_entry *pvo;
1407	vm_page_t m;
1408        vm_paddr_t pa;
1409
1410	m = NULL;
1411	pa = 0;
1412	PMAP_LOCK(pmap);
1413retry:
1414	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1415	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1416	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1417	     (prot & VM_PROT_WRITE) == 0)) {
1418		if (vm_page_pa_tryrelock(pmap,
1419			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1420			goto retry;
1421		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1422		vm_page_hold(m);
1423	}
1424	PA_UNLOCK_COND(pa);
1425	PMAP_UNLOCK(pmap);
1426	return (m);
1427}
1428
1429static mmu_t installed_mmu;
1430
1431static void *
1432moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1433{
1434	/*
1435	 * This entire routine is a horrible hack to avoid bothering kmem
1436	 * for new KVA addresses. Because this can get called from inside
1437	 * kmem allocation routines, calling kmem for a new address here
1438	 * can lead to multiply locking non-recursive mutexes.
1439	 */
1440        vm_offset_t va;
1441
1442        vm_page_t m;
1443        int pflags, needed_lock;
1444
1445	*flags = UMA_SLAB_PRIV;
1446	needed_lock = !PMAP_LOCKED(kernel_pmap);
1447	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1448
1449        for (;;) {
1450                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1451                if (m == NULL) {
1452                        if (wait & M_NOWAIT)
1453                                return (NULL);
1454                        VM_WAIT;
1455                } else
1456                        break;
1457        }
1458
1459	va = VM_PAGE_TO_PHYS(m);
1460
1461	LOCK_TABLE_WR();
1462	if (needed_lock)
1463		PMAP_LOCK(kernel_pmap);
1464
1465	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1466	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1467
1468	if (needed_lock)
1469		PMAP_UNLOCK(kernel_pmap);
1470	UNLOCK_TABLE_WR();
1471
1472	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1473                bzero((void *)va, PAGE_SIZE);
1474
1475	return (void *)va;
1476}
1477
1478extern int elf32_nxstack;
1479
1480void
1481moea64_init(mmu_t mmu)
1482{
1483
1484	CTR0(KTR_PMAP, "moea64_init");
1485
1486	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1487	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1488	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1489	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1490	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1491	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1492
1493	if (!hw_direct_map) {
1494		installed_mmu = mmu;
1495		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1496		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1497	}
1498
1499#ifdef COMPAT_FREEBSD32
1500	elf32_nxstack = 1;
1501#endif
1502
1503	moea64_initialized = TRUE;
1504}
1505
1506boolean_t
1507moea64_is_referenced(mmu_t mmu, vm_page_t m)
1508{
1509
1510	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1511	    ("moea64_is_referenced: page %p is not managed", m));
1512	return (moea64_query_bit(mmu, m, PTE_REF));
1513}
1514
1515boolean_t
1516moea64_is_modified(mmu_t mmu, vm_page_t m)
1517{
1518
1519	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1520	    ("moea64_is_modified: page %p is not managed", m));
1521
1522	/*
1523	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1524	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1525	 * is clear, no PTEs can have LPTE_CHG set.
1526	 */
1527	VM_OBJECT_ASSERT_LOCKED(m->object);
1528	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1529		return (FALSE);
1530	return (moea64_query_bit(mmu, m, LPTE_CHG));
1531}
1532
1533boolean_t
1534moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1535{
1536	struct pvo_entry *pvo;
1537	boolean_t rv;
1538
1539	PMAP_LOCK(pmap);
1540	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1541	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1542	PMAP_UNLOCK(pmap);
1543	return (rv);
1544}
1545
1546void
1547moea64_clear_modify(mmu_t mmu, vm_page_t m)
1548{
1549
1550	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1551	    ("moea64_clear_modify: page %p is not managed", m));
1552	VM_OBJECT_ASSERT_WLOCKED(m->object);
1553	KASSERT(!vm_page_xbusied(m),
1554	    ("moea64_clear_modify: page %p is exclusive busied", m));
1555
1556	/*
1557	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1558	 * set.  If the object containing the page is locked and the page is
1559	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1560	 */
1561	if ((m->aflags & PGA_WRITEABLE) == 0)
1562		return;
1563	moea64_clear_bit(mmu, m, LPTE_CHG);
1564}
1565
1566/*
1567 * Clear the write and modified bits in each of the given page's mappings.
1568 */
1569void
1570moea64_remove_write(mmu_t mmu, vm_page_t m)
1571{
1572	struct	pvo_entry *pvo;
1573	uintptr_t pt;
1574	pmap_t	pmap;
1575	uint64_t lo = 0;
1576
1577	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1578	    ("moea64_remove_write: page %p is not managed", m));
1579
1580	/*
1581	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1582	 * set by another thread while the object is locked.  Thus,
1583	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1584	 */
1585	VM_OBJECT_ASSERT_WLOCKED(m->object);
1586	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1587		return;
1588	powerpc_sync();
1589	LOCK_TABLE_RD();
1590	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1591		pmap = pvo->pvo_pmap;
1592		PMAP_LOCK(pmap);
1593		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1594			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1595			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1596			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1597			if (pt != -1) {
1598				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1599				lo |= pvo->pvo_pte.lpte.pte_lo;
1600				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1601				MOEA64_PTE_CHANGE(mmu, pt,
1602				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1603				if (pvo->pvo_pmap == kernel_pmap)
1604					isync();
1605			}
1606		}
1607		if ((lo & LPTE_CHG) != 0)
1608			vm_page_dirty(m);
1609		PMAP_UNLOCK(pmap);
1610	}
1611	UNLOCK_TABLE_RD();
1612	vm_page_aflag_clear(m, PGA_WRITEABLE);
1613}
1614
1615/*
1616 *	moea64_ts_referenced:
1617 *
1618 *	Return a count of reference bits for a page, clearing those bits.
1619 *	It is not necessary for every reference bit to be cleared, but it
1620 *	is necessary that 0 only be returned when there are truly no
1621 *	reference bits set.
1622 *
1623 *	XXX: The exact number of bits to check and clear is a matter that
1624 *	should be tested and standardized at some point in the future for
1625 *	optimal aging of shared pages.
1626 */
1627int
1628moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1629{
1630
1631	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1632	    ("moea64_ts_referenced: page %p is not managed", m));
1633	return (moea64_clear_bit(mmu, m, LPTE_REF));
1634}
1635
1636/*
1637 * Modify the WIMG settings of all mappings for a page.
1638 */
1639void
1640moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1641{
1642	struct	pvo_entry *pvo;
1643	struct  pvo_head *pvo_head;
1644	uintptr_t pt;
1645	pmap_t	pmap;
1646	uint64_t lo;
1647
1648	if ((m->oflags & VPO_UNMANAGED) != 0) {
1649		m->md.mdpg_cache_attrs = ma;
1650		return;
1651	}
1652
1653	pvo_head = vm_page_to_pvoh(m);
1654	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1655	LOCK_TABLE_RD();
1656	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1657		pmap = pvo->pvo_pmap;
1658		PMAP_LOCK(pmap);
1659		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1660		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1661		pvo->pvo_pte.lpte.pte_lo |= lo;
1662		if (pt != -1) {
1663			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1664			    pvo->pvo_vpn);
1665			if (pvo->pvo_pmap == kernel_pmap)
1666				isync();
1667		}
1668		PMAP_UNLOCK(pmap);
1669	}
1670	UNLOCK_TABLE_RD();
1671	m->md.mdpg_cache_attrs = ma;
1672}
1673
1674/*
1675 * Map a wired page into kernel virtual address space.
1676 */
1677void
1678moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1679{
1680	uint64_t	pte_lo;
1681	int		error;
1682
1683	pte_lo = moea64_calc_wimg(pa, ma);
1684
1685	LOCK_TABLE_WR();
1686	PMAP_LOCK(kernel_pmap);
1687	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1688	    NULL, va, pa, pte_lo, PVO_WIRED);
1689	PMAP_UNLOCK(kernel_pmap);
1690	UNLOCK_TABLE_WR();
1691
1692	if (error != 0 && error != ENOENT)
1693		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1694		    pa, error);
1695}
1696
1697void
1698moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1699{
1700
1701	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1702}
1703
1704/*
1705 * Extract the physical page address associated with the given kernel virtual
1706 * address.
1707 */
1708vm_paddr_t
1709moea64_kextract(mmu_t mmu, vm_offset_t va)
1710{
1711	struct		pvo_entry *pvo;
1712	vm_paddr_t pa;
1713
1714	/*
1715	 * Shortcut the direct-mapped case when applicable.  We never put
1716	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1717	 */
1718	if (va < VM_MIN_KERNEL_ADDRESS)
1719		return (va);
1720
1721	PMAP_LOCK(kernel_pmap);
1722	pvo = moea64_pvo_find_va(kernel_pmap, va);
1723	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1724	    va));
1725	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1726	PMAP_UNLOCK(kernel_pmap);
1727	return (pa);
1728}
1729
1730/*
1731 * Remove a wired page from kernel virtual address space.
1732 */
1733void
1734moea64_kremove(mmu_t mmu, vm_offset_t va)
1735{
1736	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1737}
1738
1739/*
1740 * Map a range of physical addresses into kernel virtual address space.
1741 *
1742 * The value passed in *virt is a suggested virtual address for the mapping.
1743 * Architectures which can support a direct-mapped physical to virtual region
1744 * can return the appropriate address within that region, leaving '*virt'
1745 * unchanged.  We cannot and therefore do not; *virt is updated with the
1746 * first usable address after the mapped region.
1747 */
1748vm_offset_t
1749moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1750    vm_paddr_t pa_end, int prot)
1751{
1752	vm_offset_t	sva, va;
1753
1754	sva = *virt;
1755	va = sva;
1756	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1757		moea64_kenter(mmu, va, pa_start);
1758	*virt = va;
1759
1760	return (sva);
1761}
1762
1763/*
1764 * Returns true if the pmap's pv is one of the first
1765 * 16 pvs linked to from this page.  This count may
1766 * be changed upwards or downwards in the future; it
1767 * is only necessary that true be returned for a small
1768 * subset of pmaps for proper page aging.
1769 */
1770boolean_t
1771moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1772{
1773        int loops;
1774	struct pvo_entry *pvo;
1775	boolean_t rv;
1776
1777	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1778	    ("moea64_page_exists_quick: page %p is not managed", m));
1779	loops = 0;
1780	rv = FALSE;
1781	LOCK_TABLE_RD();
1782	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1783		if (pvo->pvo_pmap == pmap) {
1784			rv = TRUE;
1785			break;
1786		}
1787		if (++loops >= 16)
1788			break;
1789	}
1790	UNLOCK_TABLE_RD();
1791	return (rv);
1792}
1793
1794/*
1795 * Return the number of managed mappings to the given physical page
1796 * that are wired.
1797 */
1798int
1799moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1800{
1801	struct pvo_entry *pvo;
1802	int count;
1803
1804	count = 0;
1805	if ((m->oflags & VPO_UNMANAGED) != 0)
1806		return (count);
1807	LOCK_TABLE_RD();
1808	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1809		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1810			count++;
1811	UNLOCK_TABLE_RD();
1812	return (count);
1813}
1814
1815static uintptr_t	moea64_vsidcontext;
1816
1817uintptr_t
1818moea64_get_unique_vsid(void) {
1819	u_int entropy;
1820	register_t hash;
1821	uint32_t mask;
1822	int i;
1823
1824	entropy = 0;
1825	__asm __volatile("mftb %0" : "=r"(entropy));
1826
1827	mtx_lock(&moea64_slb_mutex);
1828	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1829		u_int	n;
1830
1831		/*
1832		 * Create a new value by mutiplying by a prime and adding in
1833		 * entropy from the timebase register.  This is to make the
1834		 * VSID more random so that the PT hash function collides
1835		 * less often.  (Note that the prime casues gcc to do shifts
1836		 * instead of a multiply.)
1837		 */
1838		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1839		hash = moea64_vsidcontext & (NVSIDS - 1);
1840		if (hash == 0)		/* 0 is special, avoid it */
1841			continue;
1842		n = hash >> 5;
1843		mask = 1 << (hash & (VSID_NBPW - 1));
1844		hash = (moea64_vsidcontext & VSID_HASHMASK);
1845		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1846			/* anything free in this bucket? */
1847			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1848				entropy = (moea64_vsidcontext >> 20);
1849				continue;
1850			}
1851			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1852			mask = 1 << i;
1853			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1854			hash |= i;
1855		}
1856		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1857		    ("Allocating in-use VSID %#zx\n", hash));
1858		moea64_vsid_bitmap[n] |= mask;
1859		mtx_unlock(&moea64_slb_mutex);
1860		return (hash);
1861	}
1862
1863	mtx_unlock(&moea64_slb_mutex);
1864	panic("%s: out of segments",__func__);
1865}
1866
1867#ifdef __powerpc64__
1868void
1869moea64_pinit(mmu_t mmu, pmap_t pmap)
1870{
1871
1872	RB_INIT(&pmap->pmap_pvo);
1873
1874	pmap->pm_slb_tree_root = slb_alloc_tree();
1875	pmap->pm_slb = slb_alloc_user_cache();
1876	pmap->pm_slb_len = 0;
1877}
1878#else
1879void
1880moea64_pinit(mmu_t mmu, pmap_t pmap)
1881{
1882	int	i;
1883	uint32_t hash;
1884
1885	RB_INIT(&pmap->pmap_pvo);
1886
1887	if (pmap_bootstrapped)
1888		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1889		    (vm_offset_t)pmap);
1890	else
1891		pmap->pmap_phys = pmap;
1892
1893	/*
1894	 * Allocate some segment registers for this pmap.
1895	 */
1896	hash = moea64_get_unique_vsid();
1897
1898	for (i = 0; i < 16; i++)
1899		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1900
1901	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1902}
1903#endif
1904
1905/*
1906 * Initialize the pmap associated with process 0.
1907 */
1908void
1909moea64_pinit0(mmu_t mmu, pmap_t pm)
1910{
1911
1912	PMAP_LOCK_INIT(pm);
1913	moea64_pinit(mmu, pm);
1914	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1915}
1916
1917/*
1918 * Set the physical protection on the specified range of this map as requested.
1919 */
1920static void
1921moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1922{
1923	uintptr_t pt;
1924	struct	vm_page *pg;
1925	uint64_t oldlo;
1926
1927	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1928
1929	/*
1930	 * Grab the PTE pointer before we diddle with the cached PTE
1931	 * copy.
1932	 */
1933	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1934
1935	/*
1936	 * Change the protection of the page.
1937	 */
1938	oldlo = pvo->pvo_pte.lpte.pte_lo;
1939	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1940	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1941	if ((prot & VM_PROT_EXECUTE) == 0)
1942		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1943	if (prot & VM_PROT_WRITE)
1944		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1945	else
1946		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1947
1948	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1949
1950	/*
1951	 * If the PVO is in the page table, update that pte as well.
1952	 */
1953	if (pt != -1)
1954		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1955		    pvo->pvo_vpn);
1956	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1957	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1958		if ((pg->oflags & VPO_UNMANAGED) == 0)
1959			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1960		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1961		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1962	}
1963
1964	/*
1965	 * Update vm about the REF/CHG bits if the page is managed and we have
1966	 * removed write access.
1967	 */
1968	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1969	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1970		if (pg != NULL) {
1971			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1972				vm_page_dirty(pg);
1973			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1974				vm_page_aflag_set(pg, PGA_REFERENCED);
1975		}
1976	}
1977}
1978
1979void
1980moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1981    vm_prot_t prot)
1982{
1983	struct	pvo_entry *pvo, *tpvo, key;
1984
1985	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1986	    sva, eva, prot);
1987
1988	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1989	    ("moea64_protect: non current pmap"));
1990
1991	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1992		moea64_remove(mmu, pm, sva, eva);
1993		return;
1994	}
1995
1996	LOCK_TABLE_RD();
1997	PMAP_LOCK(pm);
1998	key.pvo_vaddr = sva;
1999	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2000	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2001		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2002		moea64_pvo_protect(mmu, pm, pvo, prot);
2003	}
2004	UNLOCK_TABLE_RD();
2005	PMAP_UNLOCK(pm);
2006}
2007
2008/*
2009 * Map a list of wired pages into kernel virtual address space.  This is
2010 * intended for temporary mappings which do not need page modification or
2011 * references recorded.  Existing mappings in the region are overwritten.
2012 */
2013void
2014moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2015{
2016	while (count-- > 0) {
2017		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2018		va += PAGE_SIZE;
2019		m++;
2020	}
2021}
2022
2023/*
2024 * Remove page mappings from kernel virtual address space.  Intended for
2025 * temporary mappings entered by moea64_qenter.
2026 */
2027void
2028moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2029{
2030	while (count-- > 0) {
2031		moea64_kremove(mmu, va);
2032		va += PAGE_SIZE;
2033	}
2034}
2035
2036void
2037moea64_release_vsid(uint64_t vsid)
2038{
2039	int idx, mask;
2040
2041	mtx_lock(&moea64_slb_mutex);
2042	idx = vsid & (NVSIDS-1);
2043	mask = 1 << (idx % VSID_NBPW);
2044	idx /= VSID_NBPW;
2045	KASSERT(moea64_vsid_bitmap[idx] & mask,
2046	    ("Freeing unallocated VSID %#jx", vsid));
2047	moea64_vsid_bitmap[idx] &= ~mask;
2048	mtx_unlock(&moea64_slb_mutex);
2049}
2050
2051
2052void
2053moea64_release(mmu_t mmu, pmap_t pmap)
2054{
2055
2056	/*
2057	 * Free segment registers' VSIDs
2058	 */
2059    #ifdef __powerpc64__
2060	slb_free_tree(pmap);
2061	slb_free_user_cache(pmap->pm_slb);
2062    #else
2063	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2064
2065	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2066    #endif
2067}
2068
2069/*
2070 * Remove all pages mapped by the specified pmap
2071 */
2072void
2073moea64_remove_pages(mmu_t mmu, pmap_t pm)
2074{
2075	struct	pvo_entry *pvo, *tpvo;
2076
2077	LOCK_TABLE_WR();
2078	PMAP_LOCK(pm);
2079	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2080		if (!(pvo->pvo_vaddr & PVO_WIRED))
2081			moea64_pvo_remove(mmu, pvo);
2082	}
2083	UNLOCK_TABLE_WR();
2084	PMAP_UNLOCK(pm);
2085}
2086
2087/*
2088 * Remove the given range of addresses from the specified map.
2089 */
2090void
2091moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2092{
2093	struct	pvo_entry *pvo, *tpvo, key;
2094
2095	/*
2096	 * Perform an unsynchronized read.  This is, however, safe.
2097	 */
2098	if (pm->pm_stats.resident_count == 0)
2099		return;
2100
2101	LOCK_TABLE_WR();
2102	PMAP_LOCK(pm);
2103	key.pvo_vaddr = sva;
2104	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2105	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2106		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2107		moea64_pvo_remove(mmu, pvo);
2108	}
2109	UNLOCK_TABLE_WR();
2110	PMAP_UNLOCK(pm);
2111}
2112
2113/*
2114 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2115 * will reflect changes in pte's back to the vm_page.
2116 */
2117void
2118moea64_remove_all(mmu_t mmu, vm_page_t m)
2119{
2120	struct	pvo_entry *pvo, *next_pvo;
2121	pmap_t	pmap;
2122
2123	LOCK_TABLE_WR();
2124	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2125		pmap = pvo->pvo_pmap;
2126		PMAP_LOCK(pmap);
2127		moea64_pvo_remove(mmu, pvo);
2128		PMAP_UNLOCK(pmap);
2129	}
2130	UNLOCK_TABLE_WR();
2131	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2132		vm_page_dirty(m);
2133	vm_page_aflag_clear(m, PGA_WRITEABLE);
2134	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2135}
2136
2137/*
2138 * Allocate a physical page of memory directly from the phys_avail map.
2139 * Can only be called from moea64_bootstrap before avail start and end are
2140 * calculated.
2141 */
2142vm_offset_t
2143moea64_bootstrap_alloc(vm_size_t size, u_int align)
2144{
2145	vm_offset_t	s, e;
2146	int		i, j;
2147
2148	size = round_page(size);
2149	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2150		if (align != 0)
2151			s = (phys_avail[i] + align - 1) & ~(align - 1);
2152		else
2153			s = phys_avail[i];
2154		e = s + size;
2155
2156		if (s < phys_avail[i] || e > phys_avail[i + 1])
2157			continue;
2158
2159		if (s + size > platform_real_maxaddr())
2160			continue;
2161
2162		if (s == phys_avail[i]) {
2163			phys_avail[i] += size;
2164		} else if (e == phys_avail[i + 1]) {
2165			phys_avail[i + 1] -= size;
2166		} else {
2167			for (j = phys_avail_count * 2; j > i; j -= 2) {
2168				phys_avail[j] = phys_avail[j - 2];
2169				phys_avail[j + 1] = phys_avail[j - 1];
2170			}
2171
2172			phys_avail[i + 3] = phys_avail[i + 1];
2173			phys_avail[i + 1] = s;
2174			phys_avail[i + 2] = e;
2175			phys_avail_count++;
2176		}
2177
2178		return (s);
2179	}
2180	panic("moea64_bootstrap_alloc: could not allocate memory");
2181}
2182
2183static int
2184moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2185    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2186    uint64_t pte_lo, int flags)
2187{
2188	struct	 pvo_entry *pvo;
2189	uint64_t vsid;
2190	int	 first;
2191	u_int	 ptegidx;
2192	int	 i;
2193	int      bootstrap;
2194
2195	/*
2196	 * One nasty thing that can happen here is that the UMA calls to
2197	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2198	 * which calls UMA...
2199	 *
2200	 * We break the loop by detecting recursion and allocating out of
2201	 * the bootstrap pool.
2202	 */
2203
2204	first = 0;
2205	bootstrap = (flags & PVO_BOOTSTRAP);
2206
2207	if (!moea64_initialized)
2208		bootstrap = 1;
2209
2210	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2211	rw_assert(&moea64_table_lock, RA_WLOCKED);
2212
2213	/*
2214	 * Compute the PTE Group index.
2215	 */
2216	va &= ~ADDR_POFF;
2217	vsid = va_to_vsid(pm, va);
2218	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2219
2220	/*
2221	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2222	 * there is a mapping.
2223	 */
2224	moea64_pvo_enter_calls++;
2225
2226	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2227		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2228			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2229			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2230			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2231			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2232					/* Re-insert if spilled */
2233					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2234					    &pvo->pvo_pte.lpte);
2235					if (i >= 0)
2236						PVO_PTEGIDX_SET(pvo, i);
2237					moea64_pte_overflow--;
2238				}
2239				return (0);
2240			}
2241			moea64_pvo_remove(mmu, pvo);
2242			break;
2243		}
2244	}
2245
2246	/*
2247	 * If we aren't overwriting a mapping, try to allocate.
2248	 */
2249	if (bootstrap) {
2250		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2251			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2252			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2253			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2254		}
2255		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2256		moea64_bpvo_pool_index++;
2257		bootstrap = 1;
2258	} else {
2259		pvo = uma_zalloc(zone, M_NOWAIT);
2260	}
2261
2262	if (pvo == NULL)
2263		return (ENOMEM);
2264
2265	moea64_pvo_entries++;
2266	pvo->pvo_vaddr = va;
2267	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2268	    | (vsid << 16);
2269	pvo->pvo_pmap = pm;
2270	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2271	pvo->pvo_vaddr &= ~ADDR_POFF;
2272
2273	if (flags & PVO_WIRED)
2274		pvo->pvo_vaddr |= PVO_WIRED;
2275	if (pvo_head != NULL)
2276		pvo->pvo_vaddr |= PVO_MANAGED;
2277	if (bootstrap)
2278		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2279	if (flags & PVO_LARGE)
2280		pvo->pvo_vaddr |= PVO_LARGE;
2281
2282	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2283	    (uint64_t)(pa) | pte_lo, flags);
2284
2285	/*
2286	 * Add to pmap list
2287	 */
2288	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2289
2290	/*
2291	 * Remember if the list was empty and therefore will be the first
2292	 * item.
2293	 */
2294	if (pvo_head != NULL) {
2295		if (LIST_FIRST(pvo_head) == NULL)
2296			first = 1;
2297		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2298	}
2299
2300	if (pvo->pvo_vaddr & PVO_WIRED) {
2301		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2302		pm->pm_stats.wired_count++;
2303	}
2304	pm->pm_stats.resident_count++;
2305
2306	/*
2307	 * We hope this succeeds but it isn't required.
2308	 */
2309	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2310	if (i >= 0) {
2311		PVO_PTEGIDX_SET(pvo, i);
2312	} else {
2313		panic("moea64_pvo_enter: overflow");
2314		moea64_pte_overflow++;
2315	}
2316
2317	if (pm == kernel_pmap)
2318		isync();
2319
2320#ifdef __powerpc64__
2321	/*
2322	 * Make sure all our bootstrap mappings are in the SLB as soon
2323	 * as virtual memory is switched on.
2324	 */
2325	if (!pmap_bootstrapped)
2326		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2327#endif
2328
2329	return (first ? ENOENT : 0);
2330}
2331
2332static void
2333moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2334{
2335	struct	vm_page *pg;
2336	uintptr_t pt;
2337
2338	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2339	rw_assert(&moea64_table_lock, RA_WLOCKED);
2340
2341	/*
2342	 * If there is an active pte entry, we need to deactivate it (and
2343	 * save the ref & cfg bits).
2344	 */
2345	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2346	if (pt != -1) {
2347		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2348		PVO_PTEGIDX_CLR(pvo);
2349	} else {
2350		moea64_pte_overflow--;
2351	}
2352
2353	/*
2354	 * Update our statistics.
2355	 */
2356	pvo->pvo_pmap->pm_stats.resident_count--;
2357	if (pvo->pvo_vaddr & PVO_WIRED)
2358		pvo->pvo_pmap->pm_stats.wired_count--;
2359
2360	/*
2361	 * Remove this PVO from the pmap list.
2362	 */
2363	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2364
2365	/*
2366	 * Remove this from the overflow list and return it to the pool
2367	 * if we aren't going to reuse it.
2368	 */
2369	LIST_REMOVE(pvo, pvo_olink);
2370
2371	/*
2372	 * Update vm about the REF/CHG bits if the page is managed.
2373	 */
2374	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2375
2376	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2377		LIST_REMOVE(pvo, pvo_vlink);
2378		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2379			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2380				vm_page_dirty(pg);
2381			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2382				vm_page_aflag_set(pg, PGA_REFERENCED);
2383			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2384				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2385		}
2386		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2387			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2388	}
2389
2390	moea64_pvo_entries--;
2391	moea64_pvo_remove_calls++;
2392
2393	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2394		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2395		    moea64_upvo_zone, pvo);
2396}
2397
2398static struct pvo_entry *
2399moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2400{
2401	struct pvo_entry key;
2402
2403	key.pvo_vaddr = va & ~ADDR_POFF;
2404	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2405}
2406
2407static boolean_t
2408moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2409{
2410	struct	pvo_entry *pvo;
2411	uintptr_t pt;
2412
2413	LOCK_TABLE_RD();
2414	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2415		/*
2416		 * See if we saved the bit off.  If so, return success.
2417		 */
2418		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2419			UNLOCK_TABLE_RD();
2420			return (TRUE);
2421		}
2422	}
2423
2424	/*
2425	 * No luck, now go through the hard part of looking at the PTEs
2426	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2427	 * the PTEs.
2428	 */
2429	powerpc_sync();
2430	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2431
2432		/*
2433		 * See if this pvo has a valid PTE.  if so, fetch the
2434		 * REF/CHG bits from the valid PTE.  If the appropriate
2435		 * ptebit is set, return success.
2436		 */
2437		PMAP_LOCK(pvo->pvo_pmap);
2438		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2439		if (pt != -1) {
2440			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2441			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2442				PMAP_UNLOCK(pvo->pvo_pmap);
2443				UNLOCK_TABLE_RD();
2444				return (TRUE);
2445			}
2446		}
2447		PMAP_UNLOCK(pvo->pvo_pmap);
2448	}
2449
2450	UNLOCK_TABLE_RD();
2451	return (FALSE);
2452}
2453
2454static u_int
2455moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2456{
2457	u_int	count;
2458	struct	pvo_entry *pvo;
2459	uintptr_t pt;
2460
2461	/*
2462	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2463	 * we can reset the right ones).  note that since the pvo entries and
2464	 * list heads are accessed via BAT0 and are never placed in the page
2465	 * table, we don't have to worry about further accesses setting the
2466	 * REF/CHG bits.
2467	 */
2468	powerpc_sync();
2469
2470	/*
2471	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2472	 * valid pte clear the ptebit from the valid pte.
2473	 */
2474	count = 0;
2475	LOCK_TABLE_RD();
2476	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2477		PMAP_LOCK(pvo->pvo_pmap);
2478		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2479		if (pt != -1) {
2480			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2481			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2482				count++;
2483				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2484				    pvo->pvo_vpn, ptebit);
2485			}
2486		}
2487		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2488		PMAP_UNLOCK(pvo->pvo_pmap);
2489	}
2490
2491	UNLOCK_TABLE_RD();
2492	return (count);
2493}
2494
2495boolean_t
2496moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2497{
2498	struct pvo_entry *pvo, key;
2499	vm_offset_t ppa;
2500	int error = 0;
2501
2502	PMAP_LOCK(kernel_pmap);
2503	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2504	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2505	    ppa < pa + size; ppa += PAGE_SIZE,
2506	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2507		if (pvo == NULL ||
2508		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2509			error = EFAULT;
2510			break;
2511		}
2512	}
2513	PMAP_UNLOCK(kernel_pmap);
2514
2515	return (error);
2516}
2517
2518/*
2519 * Map a set of physical memory pages into the kernel virtual
2520 * address space. Return a pointer to where it is mapped. This
2521 * routine is intended to be used for mapping device memory,
2522 * NOT real memory.
2523 */
2524void *
2525moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2526{
2527	vm_offset_t va, tmpva, ppa, offset;
2528
2529	ppa = trunc_page(pa);
2530	offset = pa & PAGE_MASK;
2531	size = roundup2(offset + size, PAGE_SIZE);
2532
2533	va = kva_alloc(size);
2534
2535	if (!va)
2536		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2537
2538	for (tmpva = va; size > 0;) {
2539		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2540		size -= PAGE_SIZE;
2541		tmpva += PAGE_SIZE;
2542		ppa += PAGE_SIZE;
2543	}
2544
2545	return ((void *)(va + offset));
2546}
2547
2548void *
2549moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2550{
2551
2552	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2553}
2554
2555void
2556moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2557{
2558	vm_offset_t base, offset;
2559
2560	base = trunc_page(va);
2561	offset = va & PAGE_MASK;
2562	size = roundup2(offset + size, PAGE_SIZE);
2563
2564	kva_free(base, size);
2565}
2566
2567void
2568moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2569{
2570	struct pvo_entry *pvo;
2571	vm_offset_t lim;
2572	vm_paddr_t pa;
2573	vm_size_t len;
2574
2575	PMAP_LOCK(pm);
2576	while (sz > 0) {
2577		lim = round_page(va);
2578		len = MIN(lim - va, sz);
2579		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2580		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2581			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2582			    (va & ADDR_POFF);
2583			moea64_syncicache(mmu, pm, va, pa, len);
2584		}
2585		va += len;
2586		sz -= len;
2587	}
2588	PMAP_UNLOCK(pm);
2589}
2590
2591vm_offset_t
2592moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2593    vm_size_t *sz)
2594{
2595	if (md->md_vaddr == ~0UL)
2596	    return (md->md_paddr + ofs);
2597	else
2598	    return (md->md_vaddr + ofs);
2599}
2600
2601struct pmap_md *
2602moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2603{
2604	static struct pmap_md md;
2605	struct pvo_entry *pvo;
2606	vm_offset_t va;
2607
2608	if (dumpsys_minidump) {
2609		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2610		if (prev == NULL) {
2611			/* 1st: kernel .data and .bss. */
2612			md.md_index = 1;
2613			md.md_vaddr = trunc_page((uintptr_t)_etext);
2614			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2615			return (&md);
2616		}
2617		switch (prev->md_index) {
2618		case 1:
2619			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2620			md.md_index = 2;
2621			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2622			md.md_size = round_page(msgbufp->msg_size);
2623			break;
2624		case 2:
2625			/* 3rd: kernel VM. */
2626			va = prev->md_vaddr + prev->md_size;
2627			/* Find start of next chunk (from va). */
2628			while (va < virtual_end) {
2629				/* Don't dump the buffer cache. */
2630				if (va >= kmi.buffer_sva &&
2631				    va < kmi.buffer_eva) {
2632					va = kmi.buffer_eva;
2633					continue;
2634				}
2635				pvo = moea64_pvo_find_va(kernel_pmap,
2636				    va & ~ADDR_POFF);
2637				if (pvo != NULL &&
2638				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2639					break;
2640				va += PAGE_SIZE;
2641			}
2642			if (va < virtual_end) {
2643				md.md_vaddr = va;
2644				va += PAGE_SIZE;
2645				/* Find last page in chunk. */
2646				while (va < virtual_end) {
2647					/* Don't run into the buffer cache. */
2648					if (va == kmi.buffer_sva)
2649						break;
2650					pvo = moea64_pvo_find_va(kernel_pmap,
2651					    va & ~ADDR_POFF);
2652					if (pvo == NULL ||
2653					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2654						break;
2655					va += PAGE_SIZE;
2656				}
2657				md.md_size = va - md.md_vaddr;
2658				break;
2659			}
2660			md.md_index = 3;
2661			/* FALLTHROUGH */
2662		default:
2663			return (NULL);
2664		}
2665	} else { /* minidumps */
2666		if (prev == NULL) {
2667			/* first physical chunk. */
2668			md.md_paddr = pregions[0].mr_start;
2669			md.md_size = pregions[0].mr_size;
2670			md.md_vaddr = ~0UL;
2671			md.md_index = 1;
2672		} else if (md.md_index < pregions_sz) {
2673			md.md_paddr = pregions[md.md_index].mr_start;
2674			md.md_size = pregions[md.md_index].mr_size;
2675			md.md_vaddr = ~0UL;
2676			md.md_index++;
2677		} else {
2678			/* There's no next physical chunk. */
2679			return (NULL);
2680		}
2681	}
2682
2683	return (&md);
2684}
2685