mmu_oea.c revision 265974
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: stable/10/sys/powerpc/aim/mmu_oea.c 265974 2014-05-13 19:12:53Z ian $");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_kstack_pages.h"
106
107#include <sys/param.h>
108#include <sys/kernel.h>
109#include <sys/queue.h>
110#include <sys/cpuset.h>
111#include <sys/ktr.h>
112#include <sys/lock.h>
113#include <sys/msgbuf.h>
114#include <sys/mutex.h>
115#include <sys/proc.h>
116#include <sys/rwlock.h>
117#include <sys/sched.h>
118#include <sys/sysctl.h>
119#include <sys/systm.h>
120#include <sys/vmmeter.h>
121
122#include <dev/ofw/openfirm.h>
123
124#include <vm/vm.h>
125#include <vm/vm_param.h>
126#include <vm/vm_kern.h>
127#include <vm/vm_page.h>
128#include <vm/vm_map.h>
129#include <vm/vm_object.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_pageout.h>
132#include <vm/uma.h>
133
134#include <machine/cpu.h>
135#include <machine/platform.h>
136#include <machine/bat.h>
137#include <machine/frame.h>
138#include <machine/md_var.h>
139#include <machine/psl.h>
140#include <machine/pte.h>
141#include <machine/smp.h>
142#include <machine/sr.h>
143#include <machine/mmuvar.h>
144#include <machine/trap.h>
145
146#include "mmu_if.h"
147
148#define	MOEA_DEBUG
149
150#define TODO	panic("%s: not implemented", __func__);
151
152#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
153#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
154#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
155
156struct ofw_map {
157	vm_offset_t	om_va;
158	vm_size_t	om_len;
159	vm_offset_t	om_pa;
160	u_int		om_mode;
161};
162
163extern unsigned char _etext[];
164extern unsigned char _end[];
165
166extern int dumpsys_minidump;
167
168/*
169 * Map of physical memory regions.
170 */
171static struct	mem_region *regions;
172static struct	mem_region *pregions;
173static u_int    phys_avail_count;
174static int	regions_sz, pregions_sz;
175static struct	ofw_map *translations;
176
177/*
178 * Lock for the pteg and pvo tables.
179 */
180struct mtx	moea_table_mutex;
181struct mtx	moea_vsid_mutex;
182
183/* tlbie instruction synchronization */
184static struct mtx tlbie_mtx;
185
186/*
187 * PTEG data.
188 */
189static struct	pteg *moea_pteg_table;
190u_int		moea_pteg_count;
191u_int		moea_pteg_mask;
192
193/*
194 * PVO data.
195 */
196struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
197struct	pvo_head moea_pvo_kunmanaged =
198    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
199
200static struct rwlock_padalign pvh_global_lock;
201
202uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
203uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
204
205#define	BPVO_POOL_SIZE	32768
206static struct	pvo_entry *moea_bpvo_pool;
207static int	moea_bpvo_pool_index = 0;
208
209#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
210static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
211
212static boolean_t moea_initialized = FALSE;
213
214/*
215 * Statistics.
216 */
217u_int	moea_pte_valid = 0;
218u_int	moea_pte_overflow = 0;
219u_int	moea_pte_replacements = 0;
220u_int	moea_pvo_entries = 0;
221u_int	moea_pvo_enter_calls = 0;
222u_int	moea_pvo_remove_calls = 0;
223u_int	moea_pte_spills = 0;
224SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
225    0, "");
226SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
227    &moea_pte_overflow, 0, "");
228SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
229    &moea_pte_replacements, 0, "");
230SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
231    0, "");
232SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
233    &moea_pvo_enter_calls, 0, "");
234SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
235    &moea_pvo_remove_calls, 0, "");
236SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
237    &moea_pte_spills, 0, "");
238
239/*
240 * Allocate physical memory for use in moea_bootstrap.
241 */
242static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
243
244/*
245 * PTE calls.
246 */
247static int		moea_pte_insert(u_int, struct pte *);
248
249/*
250 * PVO calls.
251 */
252static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
253		    vm_offset_t, vm_offset_t, u_int, int);
254static void	moea_pvo_remove(struct pvo_entry *, int);
255static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
256static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
257
258/*
259 * Utility routines.
260 */
261static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
262			    vm_prot_t, boolean_t);
263static void		moea_syncicache(vm_offset_t, vm_size_t);
264static boolean_t	moea_query_bit(vm_page_t, int);
265static u_int		moea_clear_bit(vm_page_t, int);
266static void		moea_kremove(mmu_t, vm_offset_t);
267int		moea_pte_spill(vm_offset_t);
268
269/*
270 * Kernel MMU interface
271 */
272void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
273void moea_clear_modify(mmu_t, vm_page_t);
274void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
275void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
276    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
277void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
278void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
279    vm_prot_t);
280void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
281vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
282vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
283void moea_init(mmu_t);
284boolean_t moea_is_modified(mmu_t, vm_page_t);
285boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
286boolean_t moea_is_referenced(mmu_t, vm_page_t);
287int moea_ts_referenced(mmu_t, vm_page_t);
288vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
289boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
290int moea_page_wired_mappings(mmu_t, vm_page_t);
291void moea_pinit(mmu_t, pmap_t);
292void moea_pinit0(mmu_t, pmap_t);
293void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
294void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
295void moea_qremove(mmu_t, vm_offset_t, int);
296void moea_release(mmu_t, pmap_t);
297void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
298void moea_remove_all(mmu_t, vm_page_t);
299void moea_remove_write(mmu_t, vm_page_t);
300void moea_zero_page(mmu_t, vm_page_t);
301void moea_zero_page_area(mmu_t, vm_page_t, int, int);
302void moea_zero_page_idle(mmu_t, vm_page_t);
303void moea_activate(mmu_t, struct thread *);
304void moea_deactivate(mmu_t, struct thread *);
305void moea_cpu_bootstrap(mmu_t, int);
306void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
307void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
308void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
309void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
310vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
311void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
312void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
313void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
314boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
315static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
316vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
317    vm_size_t *sz);
318struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev);
319
320static mmu_method_t moea_methods[] = {
321	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
322	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
323	MMUMETHOD(mmu_copy_page,	moea_copy_page),
324	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
325	MMUMETHOD(mmu_enter,		moea_enter),
326	MMUMETHOD(mmu_enter_object,	moea_enter_object),
327	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
328	MMUMETHOD(mmu_extract,		moea_extract),
329	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
330	MMUMETHOD(mmu_init,		moea_init),
331	MMUMETHOD(mmu_is_modified,	moea_is_modified),
332	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
333	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
334	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
335	MMUMETHOD(mmu_map,     		moea_map),
336	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
337	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
338	MMUMETHOD(mmu_pinit,		moea_pinit),
339	MMUMETHOD(mmu_pinit0,		moea_pinit0),
340	MMUMETHOD(mmu_protect,		moea_protect),
341	MMUMETHOD(mmu_qenter,		moea_qenter),
342	MMUMETHOD(mmu_qremove,		moea_qremove),
343	MMUMETHOD(mmu_release,		moea_release),
344	MMUMETHOD(mmu_remove,		moea_remove),
345	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
346	MMUMETHOD(mmu_remove_write,	moea_remove_write),
347	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
348	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
349	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
350	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
351	MMUMETHOD(mmu_activate,		moea_activate),
352	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
353	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
354
355	/* Internal interfaces */
356	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
357	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
358	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
359	MMUMETHOD(mmu_mapdev,		moea_mapdev),
360	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
361	MMUMETHOD(mmu_kextract,		moea_kextract),
362	MMUMETHOD(mmu_kenter,		moea_kenter),
363	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
364	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
365	MMUMETHOD(mmu_scan_md,		moea_scan_md),
366	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
367
368	{ 0, 0 }
369};
370
371MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
372
373static __inline uint32_t
374moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
375{
376	uint32_t pte_lo;
377	int i;
378
379	if (ma != VM_MEMATTR_DEFAULT) {
380		switch (ma) {
381		case VM_MEMATTR_UNCACHEABLE:
382			return (PTE_I | PTE_G);
383		case VM_MEMATTR_WRITE_COMBINING:
384		case VM_MEMATTR_WRITE_BACK:
385		case VM_MEMATTR_PREFETCHABLE:
386			return (PTE_I);
387		case VM_MEMATTR_WRITE_THROUGH:
388			return (PTE_W | PTE_M);
389		}
390	}
391
392	/*
393	 * Assume the page is cache inhibited and access is guarded unless
394	 * it's in our available memory array.
395	 */
396	pte_lo = PTE_I | PTE_G;
397	for (i = 0; i < pregions_sz; i++) {
398		if ((pa >= pregions[i].mr_start) &&
399		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
400			pte_lo = PTE_M;
401			break;
402		}
403	}
404
405	return pte_lo;
406}
407
408static void
409tlbie(vm_offset_t va)
410{
411
412	mtx_lock_spin(&tlbie_mtx);
413	__asm __volatile("ptesync");
414	__asm __volatile("tlbie %0" :: "r"(va));
415	__asm __volatile("eieio; tlbsync; ptesync");
416	mtx_unlock_spin(&tlbie_mtx);
417}
418
419static void
420tlbia(void)
421{
422	vm_offset_t va;
423
424	for (va = 0; va < 0x00040000; va += 0x00001000) {
425		__asm __volatile("tlbie %0" :: "r"(va));
426		powerpc_sync();
427	}
428	__asm __volatile("tlbsync");
429	powerpc_sync();
430}
431
432static __inline int
433va_to_sr(u_int *sr, vm_offset_t va)
434{
435	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
436}
437
438static __inline u_int
439va_to_pteg(u_int sr, vm_offset_t addr)
440{
441	u_int hash;
442
443	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
444	    ADDR_PIDX_SHFT);
445	return (hash & moea_pteg_mask);
446}
447
448static __inline struct pvo_head *
449vm_page_to_pvoh(vm_page_t m)
450{
451
452	return (&m->md.mdpg_pvoh);
453}
454
455static __inline void
456moea_attr_clear(vm_page_t m, int ptebit)
457{
458
459	rw_assert(&pvh_global_lock, RA_WLOCKED);
460	m->md.mdpg_attrs &= ~ptebit;
461}
462
463static __inline int
464moea_attr_fetch(vm_page_t m)
465{
466
467	return (m->md.mdpg_attrs);
468}
469
470static __inline void
471moea_attr_save(vm_page_t m, int ptebit)
472{
473
474	rw_assert(&pvh_global_lock, RA_WLOCKED);
475	m->md.mdpg_attrs |= ptebit;
476}
477
478static __inline int
479moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
480{
481	if (pt->pte_hi == pvo_pt->pte_hi)
482		return (1);
483
484	return (0);
485}
486
487static __inline int
488moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
489{
490	return (pt->pte_hi & ~PTE_VALID) ==
491	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
492	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
493}
494
495static __inline void
496moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
497{
498
499	mtx_assert(&moea_table_mutex, MA_OWNED);
500
501	/*
502	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
503	 * set when the real pte is set in memory.
504	 *
505	 * Note: Don't set the valid bit for correct operation of tlb update.
506	 */
507	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
508	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
509	pt->pte_lo = pte_lo;
510}
511
512static __inline void
513moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
514{
515
516	mtx_assert(&moea_table_mutex, MA_OWNED);
517	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
518}
519
520static __inline void
521moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
522{
523
524	mtx_assert(&moea_table_mutex, MA_OWNED);
525
526	/*
527	 * As shown in Section 7.6.3.2.3
528	 */
529	pt->pte_lo &= ~ptebit;
530	tlbie(va);
531}
532
533static __inline void
534moea_pte_set(struct pte *pt, struct pte *pvo_pt)
535{
536
537	mtx_assert(&moea_table_mutex, MA_OWNED);
538	pvo_pt->pte_hi |= PTE_VALID;
539
540	/*
541	 * Update the PTE as defined in section 7.6.3.1.
542	 * Note that the REF/CHG bits are from pvo_pt and thus should have
543	 * been saved so this routine can restore them (if desired).
544	 */
545	pt->pte_lo = pvo_pt->pte_lo;
546	powerpc_sync();
547	pt->pte_hi = pvo_pt->pte_hi;
548	powerpc_sync();
549	moea_pte_valid++;
550}
551
552static __inline void
553moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
554{
555
556	mtx_assert(&moea_table_mutex, MA_OWNED);
557	pvo_pt->pte_hi &= ~PTE_VALID;
558
559	/*
560	 * Force the reg & chg bits back into the PTEs.
561	 */
562	powerpc_sync();
563
564	/*
565	 * Invalidate the pte.
566	 */
567	pt->pte_hi &= ~PTE_VALID;
568
569	tlbie(va);
570
571	/*
572	 * Save the reg & chg bits.
573	 */
574	moea_pte_synch(pt, pvo_pt);
575	moea_pte_valid--;
576}
577
578static __inline void
579moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
580{
581
582	/*
583	 * Invalidate the PTE
584	 */
585	moea_pte_unset(pt, pvo_pt, va);
586	moea_pte_set(pt, pvo_pt);
587}
588
589/*
590 * Quick sort callout for comparing memory regions.
591 */
592static int	om_cmp(const void *a, const void *b);
593
594static int
595om_cmp(const void *a, const void *b)
596{
597	const struct	ofw_map *mapa;
598	const struct	ofw_map *mapb;
599
600	mapa = a;
601	mapb = b;
602	if (mapa->om_pa < mapb->om_pa)
603		return (-1);
604	else if (mapa->om_pa > mapb->om_pa)
605		return (1);
606	else
607		return (0);
608}
609
610void
611moea_cpu_bootstrap(mmu_t mmup, int ap)
612{
613	u_int sdr;
614	int i;
615
616	if (ap) {
617		powerpc_sync();
618		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
619		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
620		isync();
621		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
622		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
623		isync();
624	}
625
626#ifdef WII
627	/*
628	 * Special case for the Wii: don't install the PCI BAT.
629	 */
630	if (strcmp(installed_platform(), "wii") != 0) {
631#endif
632		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
633		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
634#ifdef WII
635	}
636#endif
637	isync();
638
639	__asm __volatile("mtibatu 1,%0" :: "r"(0));
640	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
641	__asm __volatile("mtibatu 2,%0" :: "r"(0));
642	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
643	__asm __volatile("mtibatu 3,%0" :: "r"(0));
644	isync();
645
646	for (i = 0; i < 16; i++)
647		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
648	powerpc_sync();
649
650	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
651	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
652	isync();
653
654	tlbia();
655}
656
657void
658moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
659{
660	ihandle_t	mmui;
661	phandle_t	chosen, mmu;
662	int		sz;
663	int		i, j;
664	vm_size_t	size, physsz, hwphyssz;
665	vm_offset_t	pa, va, off;
666	void		*dpcpu;
667	register_t	msr;
668
669        /*
670         * Set up BAT0 to map the lowest 256 MB area
671         */
672        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
673        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
674
675	/*
676	 * Map PCI memory space.
677	 */
678	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
679	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
680
681	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
682	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
683
684	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
685	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
686
687	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
688	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
689
690	/*
691	 * Map obio devices.
692	 */
693	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
694	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
695
696	/*
697	 * Use an IBAT and a DBAT to map the bottom segment of memory
698	 * where we are. Turn off instruction relocation temporarily
699	 * to prevent faults while reprogramming the IBAT.
700	 */
701	msr = mfmsr();
702	mtmsr(msr & ~PSL_IR);
703	__asm (".balign 32; \n"
704	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
705	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
706	    :: "r"(battable[0].batu), "r"(battable[0].batl));
707	mtmsr(msr);
708
709#ifdef WII
710        if (strcmp(installed_platform(), "wii") != 0) {
711#endif
712		/* map pci space */
713		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
714		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
715#ifdef WII
716	}
717#endif
718	isync();
719
720	/* set global direct map flag */
721	hw_direct_map = 1;
722
723	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
724	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
725
726	for (i = 0; i < pregions_sz; i++) {
727		vm_offset_t pa;
728		vm_offset_t end;
729
730		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
731			pregions[i].mr_start,
732			pregions[i].mr_start + pregions[i].mr_size,
733			pregions[i].mr_size);
734		/*
735		 * Install entries into the BAT table to allow all
736		 * of physmem to be convered by on-demand BAT entries.
737		 * The loop will sometimes set the same battable element
738		 * twice, but that's fine since they won't be used for
739		 * a while yet.
740		 */
741		pa = pregions[i].mr_start & 0xf0000000;
742		end = pregions[i].mr_start + pregions[i].mr_size;
743		do {
744                        u_int n = pa >> ADDR_SR_SHFT;
745
746			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
747			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
748			pa += SEGMENT_LENGTH;
749		} while (pa < end);
750	}
751
752	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
753		panic("moea_bootstrap: phys_avail too small");
754
755	phys_avail_count = 0;
756	physsz = 0;
757	hwphyssz = 0;
758	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
759	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
760		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
761		    regions[i].mr_start + regions[i].mr_size,
762		    regions[i].mr_size);
763		if (hwphyssz != 0 &&
764		    (physsz + regions[i].mr_size) >= hwphyssz) {
765			if (physsz < hwphyssz) {
766				phys_avail[j] = regions[i].mr_start;
767				phys_avail[j + 1] = regions[i].mr_start +
768				    hwphyssz - physsz;
769				physsz = hwphyssz;
770				phys_avail_count++;
771			}
772			break;
773		}
774		phys_avail[j] = regions[i].mr_start;
775		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
776		phys_avail_count++;
777		physsz += regions[i].mr_size;
778	}
779
780	/* Check for overlap with the kernel and exception vectors */
781	for (j = 0; j < 2*phys_avail_count; j+=2) {
782		if (phys_avail[j] < EXC_LAST)
783			phys_avail[j] += EXC_LAST;
784
785		if (kernelstart >= phys_avail[j] &&
786		    kernelstart < phys_avail[j+1]) {
787			if (kernelend < phys_avail[j+1]) {
788				phys_avail[2*phys_avail_count] =
789				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
790				phys_avail[2*phys_avail_count + 1] =
791				    phys_avail[j+1];
792				phys_avail_count++;
793			}
794
795			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
796		}
797
798		if (kernelend >= phys_avail[j] &&
799		    kernelend < phys_avail[j+1]) {
800			if (kernelstart > phys_avail[j]) {
801				phys_avail[2*phys_avail_count] = phys_avail[j];
802				phys_avail[2*phys_avail_count + 1] =
803				    kernelstart & ~PAGE_MASK;
804				phys_avail_count++;
805			}
806
807			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
808		}
809	}
810
811	physmem = btoc(physsz);
812
813	/*
814	 * Allocate PTEG table.
815	 */
816#ifdef PTEGCOUNT
817	moea_pteg_count = PTEGCOUNT;
818#else
819	moea_pteg_count = 0x1000;
820
821	while (moea_pteg_count < physmem)
822		moea_pteg_count <<= 1;
823
824	moea_pteg_count >>= 1;
825#endif /* PTEGCOUNT */
826
827	size = moea_pteg_count * sizeof(struct pteg);
828	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
829	    size);
830	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
831	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
832	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
833	moea_pteg_mask = moea_pteg_count - 1;
834
835	/*
836	 * Allocate pv/overflow lists.
837	 */
838	size = sizeof(struct pvo_head) * moea_pteg_count;
839	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
840	    PAGE_SIZE);
841	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
842	for (i = 0; i < moea_pteg_count; i++)
843		LIST_INIT(&moea_pvo_table[i]);
844
845	/*
846	 * Initialize the lock that synchronizes access to the pteg and pvo
847	 * tables.
848	 */
849	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
850	    MTX_RECURSE);
851	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
852
853	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
854
855	/*
856	 * Initialise the unmanaged pvo pool.
857	 */
858	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
859		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
860	moea_bpvo_pool_index = 0;
861
862	/*
863	 * Make sure kernel vsid is allocated as well as VSID 0.
864	 */
865	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
866		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
867	moea_vsid_bitmap[0] |= 1;
868
869	/*
870	 * Initialize the kernel pmap (which is statically allocated).
871	 */
872	PMAP_LOCK_INIT(kernel_pmap);
873	for (i = 0; i < 16; i++)
874		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
875	CPU_FILL(&kernel_pmap->pm_active);
876	RB_INIT(&kernel_pmap->pmap_pvo);
877
878 	/*
879	 * Initialize the global pv list lock.
880	 */
881	rw_init(&pvh_global_lock, "pmap pv global");
882
883	/*
884	 * Set up the Open Firmware mappings
885	 */
886	chosen = OF_finddevice("/chosen");
887	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
888	    (mmu = OF_instance_to_package(mmui)) != -1 &&
889	    (sz = OF_getproplen(mmu, "translations")) != -1) {
890		translations = NULL;
891		for (i = 0; phys_avail[i] != 0; i += 2) {
892			if (phys_avail[i + 1] >= sz) {
893				translations = (struct ofw_map *)phys_avail[i];
894				break;
895			}
896		}
897		if (translations == NULL)
898			panic("moea_bootstrap: no space to copy translations");
899		bzero(translations, sz);
900		if (OF_getprop(mmu, "translations", translations, sz) == -1)
901			panic("moea_bootstrap: can't get ofw translations");
902		CTR0(KTR_PMAP, "moea_bootstrap: translations");
903		sz /= sizeof(*translations);
904		qsort(translations, sz, sizeof (*translations), om_cmp);
905		for (i = 0; i < sz; i++) {
906			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
907			    translations[i].om_pa, translations[i].om_va,
908			    translations[i].om_len);
909
910			/*
911			 * If the mapping is 1:1, let the RAM and device
912			 * on-demand BAT tables take care of the translation.
913			 */
914			if (translations[i].om_va == translations[i].om_pa)
915				continue;
916
917			/* Enter the pages */
918			for (off = 0; off < translations[i].om_len;
919			    off += PAGE_SIZE)
920				moea_kenter(mmup, translations[i].om_va + off,
921					    translations[i].om_pa + off);
922		}
923	}
924
925	/*
926	 * Calculate the last available physical address.
927	 */
928	for (i = 0; phys_avail[i + 2] != 0; i += 2)
929		;
930	Maxmem = powerpc_btop(phys_avail[i + 1]);
931
932	moea_cpu_bootstrap(mmup,0);
933
934	pmap_bootstrapped++;
935
936	/*
937	 * Set the start and end of kva.
938	 */
939	virtual_avail = VM_MIN_KERNEL_ADDRESS;
940	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
941
942	/*
943	 * Allocate a kernel stack with a guard page for thread0 and map it
944	 * into the kernel page map.
945	 */
946	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
947	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
948	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
949	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
950	thread0.td_kstack = va;
951	thread0.td_kstack_pages = KSTACK_PAGES;
952	for (i = 0; i < KSTACK_PAGES; i++) {
953		moea_kenter(mmup, va, pa);
954		pa += PAGE_SIZE;
955		va += PAGE_SIZE;
956	}
957
958	/*
959	 * Allocate virtual address space for the message buffer.
960	 */
961	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
962	msgbufp = (struct msgbuf *)virtual_avail;
963	va = virtual_avail;
964	virtual_avail += round_page(msgbufsize);
965	while (va < virtual_avail) {
966		moea_kenter(mmup, va, pa);
967		pa += PAGE_SIZE;
968		va += PAGE_SIZE;
969	}
970
971	/*
972	 * Allocate virtual address space for the dynamic percpu area.
973	 */
974	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
975	dpcpu = (void *)virtual_avail;
976	va = virtual_avail;
977	virtual_avail += DPCPU_SIZE;
978	while (va < virtual_avail) {
979		moea_kenter(mmup, va, pa);
980		pa += PAGE_SIZE;
981		va += PAGE_SIZE;
982	}
983	dpcpu_init(dpcpu, 0);
984}
985
986/*
987 * Activate a user pmap.  The pmap must be activated before it's address
988 * space can be accessed in any way.
989 */
990void
991moea_activate(mmu_t mmu, struct thread *td)
992{
993	pmap_t	pm, pmr;
994
995	/*
996	 * Load all the data we need up front to encourage the compiler to
997	 * not issue any loads while we have interrupts disabled below.
998	 */
999	pm = &td->td_proc->p_vmspace->vm_pmap;
1000	pmr = pm->pmap_phys;
1001
1002	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1003	PCPU_SET(curpmap, pmr);
1004}
1005
1006void
1007moea_deactivate(mmu_t mmu, struct thread *td)
1008{
1009	pmap_t	pm;
1010
1011	pm = &td->td_proc->p_vmspace->vm_pmap;
1012	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1013	PCPU_SET(curpmap, NULL);
1014}
1015
1016void
1017moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1018{
1019	struct	pvo_entry *pvo;
1020
1021	PMAP_LOCK(pm);
1022	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1023
1024	if (pvo != NULL) {
1025		if (wired) {
1026			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1027				pm->pm_stats.wired_count++;
1028			pvo->pvo_vaddr |= PVO_WIRED;
1029		} else {
1030			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1031				pm->pm_stats.wired_count--;
1032			pvo->pvo_vaddr &= ~PVO_WIRED;
1033		}
1034	}
1035	PMAP_UNLOCK(pm);
1036}
1037
1038void
1039moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1040{
1041	vm_offset_t	dst;
1042	vm_offset_t	src;
1043
1044	dst = VM_PAGE_TO_PHYS(mdst);
1045	src = VM_PAGE_TO_PHYS(msrc);
1046
1047	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1048}
1049
1050void
1051moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1052    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1053{
1054	void *a_cp, *b_cp;
1055	vm_offset_t a_pg_offset, b_pg_offset;
1056	int cnt;
1057
1058	while (xfersize > 0) {
1059		a_pg_offset = a_offset & PAGE_MASK;
1060		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1061		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1062		    a_pg_offset;
1063		b_pg_offset = b_offset & PAGE_MASK;
1064		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1065		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1066		    b_pg_offset;
1067		bcopy(a_cp, b_cp, cnt);
1068		a_offset += cnt;
1069		b_offset += cnt;
1070		xfersize -= cnt;
1071	}
1072}
1073
1074/*
1075 * Zero a page of physical memory by temporarily mapping it into the tlb.
1076 */
1077void
1078moea_zero_page(mmu_t mmu, vm_page_t m)
1079{
1080	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1081
1082	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1083		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1084}
1085
1086void
1087moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1088{
1089	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1090	void *va = (void *)(pa + off);
1091
1092	bzero(va, size);
1093}
1094
1095void
1096moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1097{
1098
1099	moea_zero_page(mmu, m);
1100}
1101
1102/*
1103 * Map the given physical page at the specified virtual address in the
1104 * target pmap with the protection requested.  If specified the page
1105 * will be wired down.
1106 */
1107void
1108moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1109	   boolean_t wired)
1110{
1111
1112	rw_wlock(&pvh_global_lock);
1113	PMAP_LOCK(pmap);
1114	moea_enter_locked(pmap, va, m, prot, wired);
1115	rw_wunlock(&pvh_global_lock);
1116	PMAP_UNLOCK(pmap);
1117}
1118
1119/*
1120 * Map the given physical page at the specified virtual address in the
1121 * target pmap with the protection requested.  If specified the page
1122 * will be wired down.
1123 *
1124 * The page queues and pmap must be locked.
1125 */
1126static void
1127moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1128    boolean_t wired)
1129{
1130	struct		pvo_head *pvo_head;
1131	uma_zone_t	zone;
1132	vm_page_t	pg;
1133	u_int		pte_lo, pvo_flags;
1134	int		error;
1135
1136	if (!moea_initialized) {
1137		pvo_head = &moea_pvo_kunmanaged;
1138		zone = moea_upvo_zone;
1139		pvo_flags = 0;
1140		pg = NULL;
1141	} else {
1142		pvo_head = vm_page_to_pvoh(m);
1143		pg = m;
1144		zone = moea_mpvo_zone;
1145		pvo_flags = PVO_MANAGED;
1146	}
1147	if (pmap_bootstrapped)
1148		rw_assert(&pvh_global_lock, RA_WLOCKED);
1149	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1150	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1151		VM_OBJECT_ASSERT_LOCKED(m->object);
1152
1153	/* XXX change the pvo head for fake pages */
1154	if ((m->oflags & VPO_UNMANAGED) != 0) {
1155		pvo_flags &= ~PVO_MANAGED;
1156		pvo_head = &moea_pvo_kunmanaged;
1157		zone = moea_upvo_zone;
1158	}
1159
1160	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1161
1162	if (prot & VM_PROT_WRITE) {
1163		pte_lo |= PTE_BW;
1164		if (pmap_bootstrapped &&
1165		    (m->oflags & VPO_UNMANAGED) == 0)
1166			vm_page_aflag_set(m, PGA_WRITEABLE);
1167	} else
1168		pte_lo |= PTE_BR;
1169
1170	if (prot & VM_PROT_EXECUTE)
1171		pvo_flags |= PVO_EXECUTABLE;
1172
1173	if (wired)
1174		pvo_flags |= PVO_WIRED;
1175
1176	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1177	    pte_lo, pvo_flags);
1178
1179	/*
1180	 * Flush the real page from the instruction cache. This has be done
1181	 * for all user mappings to prevent information leakage via the
1182	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1183	 * mapping for a page.
1184	 */
1185	if (pmap != kernel_pmap && error == ENOENT &&
1186	    (pte_lo & (PTE_I | PTE_G)) == 0)
1187		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1188}
1189
1190/*
1191 * Maps a sequence of resident pages belonging to the same object.
1192 * The sequence begins with the given page m_start.  This page is
1193 * mapped at the given virtual address start.  Each subsequent page is
1194 * mapped at a virtual address that is offset from start by the same
1195 * amount as the page is offset from m_start within the object.  The
1196 * last page in the sequence is the page with the largest offset from
1197 * m_start that can be mapped at a virtual address less than the given
1198 * virtual address end.  Not every virtual page between start and end
1199 * is mapped; only those for which a resident page exists with the
1200 * corresponding offset from m_start are mapped.
1201 */
1202void
1203moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1204    vm_page_t m_start, vm_prot_t prot)
1205{
1206	vm_page_t m;
1207	vm_pindex_t diff, psize;
1208
1209	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1210
1211	psize = atop(end - start);
1212	m = m_start;
1213	rw_wlock(&pvh_global_lock);
1214	PMAP_LOCK(pm);
1215	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1216		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1217		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1218		m = TAILQ_NEXT(m, listq);
1219	}
1220	rw_wunlock(&pvh_global_lock);
1221	PMAP_UNLOCK(pm);
1222}
1223
1224void
1225moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1226    vm_prot_t prot)
1227{
1228
1229	rw_wlock(&pvh_global_lock);
1230	PMAP_LOCK(pm);
1231	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1232	    FALSE);
1233	rw_wunlock(&pvh_global_lock);
1234	PMAP_UNLOCK(pm);
1235}
1236
1237vm_paddr_t
1238moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1239{
1240	struct	pvo_entry *pvo;
1241	vm_paddr_t pa;
1242
1243	PMAP_LOCK(pm);
1244	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1245	if (pvo == NULL)
1246		pa = 0;
1247	else
1248		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1249	PMAP_UNLOCK(pm);
1250	return (pa);
1251}
1252
1253/*
1254 * Atomically extract and hold the physical page with the given
1255 * pmap and virtual address pair if that mapping permits the given
1256 * protection.
1257 */
1258vm_page_t
1259moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1260{
1261	struct	pvo_entry *pvo;
1262	vm_page_t m;
1263        vm_paddr_t pa;
1264
1265	m = NULL;
1266	pa = 0;
1267	PMAP_LOCK(pmap);
1268retry:
1269	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1270	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1271	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1272	     (prot & VM_PROT_WRITE) == 0)) {
1273		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1274			goto retry;
1275		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1276		vm_page_hold(m);
1277	}
1278	PA_UNLOCK_COND(pa);
1279	PMAP_UNLOCK(pmap);
1280	return (m);
1281}
1282
1283void
1284moea_init(mmu_t mmu)
1285{
1286
1287	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1288	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1289	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1290	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1291	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1292	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1293	moea_initialized = TRUE;
1294}
1295
1296boolean_t
1297moea_is_referenced(mmu_t mmu, vm_page_t m)
1298{
1299	boolean_t rv;
1300
1301	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1302	    ("moea_is_referenced: page %p is not managed", m));
1303	rw_wlock(&pvh_global_lock);
1304	rv = moea_query_bit(m, PTE_REF);
1305	rw_wunlock(&pvh_global_lock);
1306	return (rv);
1307}
1308
1309boolean_t
1310moea_is_modified(mmu_t mmu, vm_page_t m)
1311{
1312	boolean_t rv;
1313
1314	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1315	    ("moea_is_modified: page %p is not managed", m));
1316
1317	/*
1318	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1319	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1320	 * is clear, no PTEs can have PTE_CHG set.
1321	 */
1322	VM_OBJECT_ASSERT_WLOCKED(m->object);
1323	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1324		return (FALSE);
1325	rw_wlock(&pvh_global_lock);
1326	rv = moea_query_bit(m, PTE_CHG);
1327	rw_wunlock(&pvh_global_lock);
1328	return (rv);
1329}
1330
1331boolean_t
1332moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1333{
1334	struct pvo_entry *pvo;
1335	boolean_t rv;
1336
1337	PMAP_LOCK(pmap);
1338	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1339	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1340	PMAP_UNLOCK(pmap);
1341	return (rv);
1342}
1343
1344void
1345moea_clear_modify(mmu_t mmu, vm_page_t m)
1346{
1347
1348	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1349	    ("moea_clear_modify: page %p is not managed", m));
1350	VM_OBJECT_ASSERT_WLOCKED(m->object);
1351	KASSERT(!vm_page_xbusied(m),
1352	    ("moea_clear_modify: page %p is exclusive busy", m));
1353
1354	/*
1355	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1356	 * set.  If the object containing the page is locked and the page is
1357	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1358	 */
1359	if ((m->aflags & PGA_WRITEABLE) == 0)
1360		return;
1361	rw_wlock(&pvh_global_lock);
1362	moea_clear_bit(m, PTE_CHG);
1363	rw_wunlock(&pvh_global_lock);
1364}
1365
1366/*
1367 * Clear the write and modified bits in each of the given page's mappings.
1368 */
1369void
1370moea_remove_write(mmu_t mmu, vm_page_t m)
1371{
1372	struct	pvo_entry *pvo;
1373	struct	pte *pt;
1374	pmap_t	pmap;
1375	u_int	lo;
1376
1377	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1378	    ("moea_remove_write: page %p is not managed", m));
1379
1380	/*
1381	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1382	 * set by another thread while the object is locked.  Thus,
1383	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1384	 */
1385	VM_OBJECT_ASSERT_WLOCKED(m->object);
1386	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1387		return;
1388	rw_wlock(&pvh_global_lock);
1389	lo = moea_attr_fetch(m);
1390	powerpc_sync();
1391	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1392		pmap = pvo->pvo_pmap;
1393		PMAP_LOCK(pmap);
1394		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1395			pt = moea_pvo_to_pte(pvo, -1);
1396			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1397			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1398			if (pt != NULL) {
1399				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1400				lo |= pvo->pvo_pte.pte.pte_lo;
1401				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1402				moea_pte_change(pt, &pvo->pvo_pte.pte,
1403				    pvo->pvo_vaddr);
1404				mtx_unlock(&moea_table_mutex);
1405			}
1406		}
1407		PMAP_UNLOCK(pmap);
1408	}
1409	if ((lo & PTE_CHG) != 0) {
1410		moea_attr_clear(m, PTE_CHG);
1411		vm_page_dirty(m);
1412	}
1413	vm_page_aflag_clear(m, PGA_WRITEABLE);
1414	rw_wunlock(&pvh_global_lock);
1415}
1416
1417/*
1418 *	moea_ts_referenced:
1419 *
1420 *	Return a count of reference bits for a page, clearing those bits.
1421 *	It is not necessary for every reference bit to be cleared, but it
1422 *	is necessary that 0 only be returned when there are truly no
1423 *	reference bits set.
1424 *
1425 *	XXX: The exact number of bits to check and clear is a matter that
1426 *	should be tested and standardized at some point in the future for
1427 *	optimal aging of shared pages.
1428 */
1429int
1430moea_ts_referenced(mmu_t mmu, vm_page_t m)
1431{
1432	int count;
1433
1434	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1435	    ("moea_ts_referenced: page %p is not managed", m));
1436	rw_wlock(&pvh_global_lock);
1437	count = moea_clear_bit(m, PTE_REF);
1438	rw_wunlock(&pvh_global_lock);
1439	return (count);
1440}
1441
1442/*
1443 * Modify the WIMG settings of all mappings for a page.
1444 */
1445void
1446moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1447{
1448	struct	pvo_entry *pvo;
1449	struct	pvo_head *pvo_head;
1450	struct	pte *pt;
1451	pmap_t	pmap;
1452	u_int	lo;
1453
1454	if ((m->oflags & VPO_UNMANAGED) != 0) {
1455		m->md.mdpg_cache_attrs = ma;
1456		return;
1457	}
1458
1459	rw_wlock(&pvh_global_lock);
1460	pvo_head = vm_page_to_pvoh(m);
1461	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1462
1463	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1464		pmap = pvo->pvo_pmap;
1465		PMAP_LOCK(pmap);
1466		pt = moea_pvo_to_pte(pvo, -1);
1467		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1468		pvo->pvo_pte.pte.pte_lo |= lo;
1469		if (pt != NULL) {
1470			moea_pte_change(pt, &pvo->pvo_pte.pte,
1471			    pvo->pvo_vaddr);
1472			if (pvo->pvo_pmap == kernel_pmap)
1473				isync();
1474		}
1475		mtx_unlock(&moea_table_mutex);
1476		PMAP_UNLOCK(pmap);
1477	}
1478	m->md.mdpg_cache_attrs = ma;
1479	rw_wunlock(&pvh_global_lock);
1480}
1481
1482/*
1483 * Map a wired page into kernel virtual address space.
1484 */
1485void
1486moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1487{
1488
1489	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1490}
1491
1492void
1493moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1494{
1495	u_int		pte_lo;
1496	int		error;
1497
1498#if 0
1499	if (va < VM_MIN_KERNEL_ADDRESS)
1500		panic("moea_kenter: attempt to enter non-kernel address %#x",
1501		    va);
1502#endif
1503
1504	pte_lo = moea_calc_wimg(pa, ma);
1505
1506	PMAP_LOCK(kernel_pmap);
1507	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1508	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1509
1510	if (error != 0 && error != ENOENT)
1511		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1512		    pa, error);
1513
1514	PMAP_UNLOCK(kernel_pmap);
1515}
1516
1517/*
1518 * Extract the physical page address associated with the given kernel virtual
1519 * address.
1520 */
1521vm_paddr_t
1522moea_kextract(mmu_t mmu, vm_offset_t va)
1523{
1524	struct		pvo_entry *pvo;
1525	vm_paddr_t pa;
1526
1527	/*
1528	 * Allow direct mappings on 32-bit OEA
1529	 */
1530	if (va < VM_MIN_KERNEL_ADDRESS) {
1531		return (va);
1532	}
1533
1534	PMAP_LOCK(kernel_pmap);
1535	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1536	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1537	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1538	PMAP_UNLOCK(kernel_pmap);
1539	return (pa);
1540}
1541
1542/*
1543 * Remove a wired page from kernel virtual address space.
1544 */
1545void
1546moea_kremove(mmu_t mmu, vm_offset_t va)
1547{
1548
1549	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1550}
1551
1552/*
1553 * Map a range of physical addresses into kernel virtual address space.
1554 *
1555 * The value passed in *virt is a suggested virtual address for the mapping.
1556 * Architectures which can support a direct-mapped physical to virtual region
1557 * can return the appropriate address within that region, leaving '*virt'
1558 * unchanged.  We cannot and therefore do not; *virt is updated with the
1559 * first usable address after the mapped region.
1560 */
1561vm_offset_t
1562moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1563    vm_paddr_t pa_end, int prot)
1564{
1565	vm_offset_t	sva, va;
1566
1567	sva = *virt;
1568	va = sva;
1569	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1570		moea_kenter(mmu, va, pa_start);
1571	*virt = va;
1572	return (sva);
1573}
1574
1575/*
1576 * Returns true if the pmap's pv is one of the first
1577 * 16 pvs linked to from this page.  This count may
1578 * be changed upwards or downwards in the future; it
1579 * is only necessary that true be returned for a small
1580 * subset of pmaps for proper page aging.
1581 */
1582boolean_t
1583moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1584{
1585        int loops;
1586	struct pvo_entry *pvo;
1587	boolean_t rv;
1588
1589	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1590	    ("moea_page_exists_quick: page %p is not managed", m));
1591	loops = 0;
1592	rv = FALSE;
1593	rw_wlock(&pvh_global_lock);
1594	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1595		if (pvo->pvo_pmap == pmap) {
1596			rv = TRUE;
1597			break;
1598		}
1599		if (++loops >= 16)
1600			break;
1601	}
1602	rw_wunlock(&pvh_global_lock);
1603	return (rv);
1604}
1605
1606/*
1607 * Return the number of managed mappings to the given physical page
1608 * that are wired.
1609 */
1610int
1611moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1612{
1613	struct pvo_entry *pvo;
1614	int count;
1615
1616	count = 0;
1617	if ((m->oflags & VPO_UNMANAGED) != 0)
1618		return (count);
1619	rw_wlock(&pvh_global_lock);
1620	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1621		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1622			count++;
1623	rw_wunlock(&pvh_global_lock);
1624	return (count);
1625}
1626
1627static u_int	moea_vsidcontext;
1628
1629void
1630moea_pinit(mmu_t mmu, pmap_t pmap)
1631{
1632	int	i, mask;
1633	u_int	entropy;
1634
1635	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1636	RB_INIT(&pmap->pmap_pvo);
1637
1638	entropy = 0;
1639	__asm __volatile("mftb %0" : "=r"(entropy));
1640
1641	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1642	    == NULL) {
1643		pmap->pmap_phys = pmap;
1644	}
1645
1646
1647	mtx_lock(&moea_vsid_mutex);
1648	/*
1649	 * Allocate some segment registers for this pmap.
1650	 */
1651	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1652		u_int	hash, n;
1653
1654		/*
1655		 * Create a new value by mutiplying by a prime and adding in
1656		 * entropy from the timebase register.  This is to make the
1657		 * VSID more random so that the PT hash function collides
1658		 * less often.  (Note that the prime casues gcc to do shifts
1659		 * instead of a multiply.)
1660		 */
1661		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1662		hash = moea_vsidcontext & (NPMAPS - 1);
1663		if (hash == 0)		/* 0 is special, avoid it */
1664			continue;
1665		n = hash >> 5;
1666		mask = 1 << (hash & (VSID_NBPW - 1));
1667		hash = (moea_vsidcontext & 0xfffff);
1668		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1669			/* anything free in this bucket? */
1670			if (moea_vsid_bitmap[n] == 0xffffffff) {
1671				entropy = (moea_vsidcontext >> 20);
1672				continue;
1673			}
1674			i = ffs(~moea_vsid_bitmap[n]) - 1;
1675			mask = 1 << i;
1676			hash &= 0xfffff & ~(VSID_NBPW - 1);
1677			hash |= i;
1678		}
1679		KASSERT(!(moea_vsid_bitmap[n] & mask),
1680		    ("Allocating in-use VSID group %#x\n", hash));
1681		moea_vsid_bitmap[n] |= mask;
1682		for (i = 0; i < 16; i++)
1683			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1684		mtx_unlock(&moea_vsid_mutex);
1685		return;
1686	}
1687
1688	mtx_unlock(&moea_vsid_mutex);
1689	panic("moea_pinit: out of segments");
1690}
1691
1692/*
1693 * Initialize the pmap associated with process 0.
1694 */
1695void
1696moea_pinit0(mmu_t mmu, pmap_t pm)
1697{
1698
1699	PMAP_LOCK_INIT(pm);
1700	moea_pinit(mmu, pm);
1701	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1702}
1703
1704/*
1705 * Set the physical protection on the specified range of this map as requested.
1706 */
1707void
1708moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1709    vm_prot_t prot)
1710{
1711	struct	pvo_entry *pvo, *tpvo, key;
1712	struct	pte *pt;
1713
1714	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1715	    ("moea_protect: non current pmap"));
1716
1717	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1718		moea_remove(mmu, pm, sva, eva);
1719		return;
1720	}
1721
1722	rw_wlock(&pvh_global_lock);
1723	PMAP_LOCK(pm);
1724	key.pvo_vaddr = sva;
1725	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1726	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1727		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1728		if ((prot & VM_PROT_EXECUTE) == 0)
1729			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1730
1731		/*
1732		 * Grab the PTE pointer before we diddle with the cached PTE
1733		 * copy.
1734		 */
1735		pt = moea_pvo_to_pte(pvo, -1);
1736		/*
1737		 * Change the protection of the page.
1738		 */
1739		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1740		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1741
1742		/*
1743		 * If the PVO is in the page table, update that pte as well.
1744		 */
1745		if (pt != NULL) {
1746			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1747			mtx_unlock(&moea_table_mutex);
1748		}
1749	}
1750	rw_wunlock(&pvh_global_lock);
1751	PMAP_UNLOCK(pm);
1752}
1753
1754/*
1755 * Map a list of wired pages into kernel virtual address space.  This is
1756 * intended for temporary mappings which do not need page modification or
1757 * references recorded.  Existing mappings in the region are overwritten.
1758 */
1759void
1760moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1761{
1762	vm_offset_t va;
1763
1764	va = sva;
1765	while (count-- > 0) {
1766		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1767		va += PAGE_SIZE;
1768		m++;
1769	}
1770}
1771
1772/*
1773 * Remove page mappings from kernel virtual address space.  Intended for
1774 * temporary mappings entered by moea_qenter.
1775 */
1776void
1777moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1778{
1779	vm_offset_t va;
1780
1781	va = sva;
1782	while (count-- > 0) {
1783		moea_kremove(mmu, va);
1784		va += PAGE_SIZE;
1785	}
1786}
1787
1788void
1789moea_release(mmu_t mmu, pmap_t pmap)
1790{
1791        int idx, mask;
1792
1793	/*
1794	 * Free segment register's VSID
1795	 */
1796        if (pmap->pm_sr[0] == 0)
1797                panic("moea_release");
1798
1799	mtx_lock(&moea_vsid_mutex);
1800        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1801        mask = 1 << (idx % VSID_NBPW);
1802        idx /= VSID_NBPW;
1803        moea_vsid_bitmap[idx] &= ~mask;
1804	mtx_unlock(&moea_vsid_mutex);
1805}
1806
1807/*
1808 * Remove the given range of addresses from the specified map.
1809 */
1810void
1811moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1812{
1813	struct	pvo_entry *pvo, *tpvo, key;
1814
1815	rw_wlock(&pvh_global_lock);
1816	PMAP_LOCK(pm);
1817	key.pvo_vaddr = sva;
1818	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1819	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1820		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1821		moea_pvo_remove(pvo, -1);
1822	}
1823	PMAP_UNLOCK(pm);
1824	rw_wunlock(&pvh_global_lock);
1825}
1826
1827/*
1828 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1829 * will reflect changes in pte's back to the vm_page.
1830 */
1831void
1832moea_remove_all(mmu_t mmu, vm_page_t m)
1833{
1834	struct  pvo_head *pvo_head;
1835	struct	pvo_entry *pvo, *next_pvo;
1836	pmap_t	pmap;
1837
1838	rw_wlock(&pvh_global_lock);
1839	pvo_head = vm_page_to_pvoh(m);
1840	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1841		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1842
1843		pmap = pvo->pvo_pmap;
1844		PMAP_LOCK(pmap);
1845		moea_pvo_remove(pvo, -1);
1846		PMAP_UNLOCK(pmap);
1847	}
1848	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1849		moea_attr_clear(m, PTE_CHG);
1850		vm_page_dirty(m);
1851	}
1852	vm_page_aflag_clear(m, PGA_WRITEABLE);
1853	rw_wunlock(&pvh_global_lock);
1854}
1855
1856/*
1857 * Allocate a physical page of memory directly from the phys_avail map.
1858 * Can only be called from moea_bootstrap before avail start and end are
1859 * calculated.
1860 */
1861static vm_offset_t
1862moea_bootstrap_alloc(vm_size_t size, u_int align)
1863{
1864	vm_offset_t	s, e;
1865	int		i, j;
1866
1867	size = round_page(size);
1868	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1869		if (align != 0)
1870			s = (phys_avail[i] + align - 1) & ~(align - 1);
1871		else
1872			s = phys_avail[i];
1873		e = s + size;
1874
1875		if (s < phys_avail[i] || e > phys_avail[i + 1])
1876			continue;
1877
1878		if (s == phys_avail[i]) {
1879			phys_avail[i] += size;
1880		} else if (e == phys_avail[i + 1]) {
1881			phys_avail[i + 1] -= size;
1882		} else {
1883			for (j = phys_avail_count * 2; j > i; j -= 2) {
1884				phys_avail[j] = phys_avail[j - 2];
1885				phys_avail[j + 1] = phys_avail[j - 1];
1886			}
1887
1888			phys_avail[i + 3] = phys_avail[i + 1];
1889			phys_avail[i + 1] = s;
1890			phys_avail[i + 2] = e;
1891			phys_avail_count++;
1892		}
1893
1894		return (s);
1895	}
1896	panic("moea_bootstrap_alloc: could not allocate memory");
1897}
1898
1899static void
1900moea_syncicache(vm_offset_t pa, vm_size_t len)
1901{
1902	__syncicache((void *)pa, len);
1903}
1904
1905static int
1906moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1907    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1908{
1909	struct	pvo_entry *pvo;
1910	u_int	sr;
1911	int	first;
1912	u_int	ptegidx;
1913	int	i;
1914	int     bootstrap;
1915
1916	moea_pvo_enter_calls++;
1917	first = 0;
1918	bootstrap = 0;
1919
1920	/*
1921	 * Compute the PTE Group index.
1922	 */
1923	va &= ~ADDR_POFF;
1924	sr = va_to_sr(pm->pm_sr, va);
1925	ptegidx = va_to_pteg(sr, va);
1926
1927	/*
1928	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1929	 * there is a mapping.
1930	 */
1931	mtx_lock(&moea_table_mutex);
1932	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1933		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1934			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1935			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1936			    (pte_lo & PTE_PP)) {
1937				mtx_unlock(&moea_table_mutex);
1938				return (0);
1939			}
1940			moea_pvo_remove(pvo, -1);
1941			break;
1942		}
1943	}
1944
1945	/*
1946	 * If we aren't overwriting a mapping, try to allocate.
1947	 */
1948	if (moea_initialized) {
1949		pvo = uma_zalloc(zone, M_NOWAIT);
1950	} else {
1951		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1952			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1953			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1954			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1955		}
1956		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1957		moea_bpvo_pool_index++;
1958		bootstrap = 1;
1959	}
1960
1961	if (pvo == NULL) {
1962		mtx_unlock(&moea_table_mutex);
1963		return (ENOMEM);
1964	}
1965
1966	moea_pvo_entries++;
1967	pvo->pvo_vaddr = va;
1968	pvo->pvo_pmap = pm;
1969	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1970	pvo->pvo_vaddr &= ~ADDR_POFF;
1971	if (flags & VM_PROT_EXECUTE)
1972		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1973	if (flags & PVO_WIRED)
1974		pvo->pvo_vaddr |= PVO_WIRED;
1975	if (pvo_head != &moea_pvo_kunmanaged)
1976		pvo->pvo_vaddr |= PVO_MANAGED;
1977	if (bootstrap)
1978		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1979
1980	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1981
1982	/*
1983	 * Add to pmap list
1984	 */
1985	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1986
1987	/*
1988	 * Remember if the list was empty and therefore will be the first
1989	 * item.
1990	 */
1991	if (LIST_FIRST(pvo_head) == NULL)
1992		first = 1;
1993	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1994
1995	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1996		pm->pm_stats.wired_count++;
1997	pm->pm_stats.resident_count++;
1998
1999	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2000	KASSERT(i < 8, ("Invalid PTE index"));
2001	if (i >= 0) {
2002		PVO_PTEGIDX_SET(pvo, i);
2003	} else {
2004		panic("moea_pvo_enter: overflow");
2005		moea_pte_overflow++;
2006	}
2007	mtx_unlock(&moea_table_mutex);
2008
2009	return (first ? ENOENT : 0);
2010}
2011
2012static void
2013moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2014{
2015	struct	pte *pt;
2016
2017	/*
2018	 * If there is an active pte entry, we need to deactivate it (and
2019	 * save the ref & cfg bits).
2020	 */
2021	pt = moea_pvo_to_pte(pvo, pteidx);
2022	if (pt != NULL) {
2023		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2024		mtx_unlock(&moea_table_mutex);
2025		PVO_PTEGIDX_CLR(pvo);
2026	} else {
2027		moea_pte_overflow--;
2028	}
2029
2030	/*
2031	 * Update our statistics.
2032	 */
2033	pvo->pvo_pmap->pm_stats.resident_count--;
2034	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2035		pvo->pvo_pmap->pm_stats.wired_count--;
2036
2037	/*
2038	 * Save the REF/CHG bits into their cache if the page is managed.
2039	 */
2040	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2041		struct	vm_page *pg;
2042
2043		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2044		if (pg != NULL) {
2045			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2046			    (PTE_REF | PTE_CHG));
2047		}
2048	}
2049
2050	/*
2051	 * Remove this PVO from the PV and pmap lists.
2052	 */
2053	LIST_REMOVE(pvo, pvo_vlink);
2054	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2055
2056	/*
2057	 * Remove this from the overflow list and return it to the pool
2058	 * if we aren't going to reuse it.
2059	 */
2060	LIST_REMOVE(pvo, pvo_olink);
2061	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2062		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2063		    moea_upvo_zone, pvo);
2064	moea_pvo_entries--;
2065	moea_pvo_remove_calls++;
2066}
2067
2068static __inline int
2069moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2070{
2071	int	pteidx;
2072
2073	/*
2074	 * We can find the actual pte entry without searching by grabbing
2075	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2076	 * noticing the HID bit.
2077	 */
2078	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2079	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2080		pteidx ^= moea_pteg_mask * 8;
2081
2082	return (pteidx);
2083}
2084
2085static struct pvo_entry *
2086moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2087{
2088	struct	pvo_entry *pvo;
2089	int	ptegidx;
2090	u_int	sr;
2091
2092	va &= ~ADDR_POFF;
2093	sr = va_to_sr(pm->pm_sr, va);
2094	ptegidx = va_to_pteg(sr, va);
2095
2096	mtx_lock(&moea_table_mutex);
2097	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2098		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2099			if (pteidx_p)
2100				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2101			break;
2102		}
2103	}
2104	mtx_unlock(&moea_table_mutex);
2105
2106	return (pvo);
2107}
2108
2109static struct pte *
2110moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2111{
2112	struct	pte *pt;
2113
2114	/*
2115	 * If we haven't been supplied the ptegidx, calculate it.
2116	 */
2117	if (pteidx == -1) {
2118		int	ptegidx;
2119		u_int	sr;
2120
2121		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2122		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2123		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2124	}
2125
2126	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2127	mtx_lock(&moea_table_mutex);
2128
2129	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2130		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2131		    "valid pte index", pvo);
2132	}
2133
2134	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2135		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2136		    "pvo but no valid pte", pvo);
2137	}
2138
2139	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2140		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2141			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2142			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2143		}
2144
2145		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2146		    != 0) {
2147			panic("moea_pvo_to_pte: pvo %p pte does not match "
2148			    "pte %p in moea_pteg_table", pvo, pt);
2149		}
2150
2151		mtx_assert(&moea_table_mutex, MA_OWNED);
2152		return (pt);
2153	}
2154
2155	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2156		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2157		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2158	}
2159
2160	mtx_unlock(&moea_table_mutex);
2161	return (NULL);
2162}
2163
2164/*
2165 * XXX: THIS STUFF SHOULD BE IN pte.c?
2166 */
2167int
2168moea_pte_spill(vm_offset_t addr)
2169{
2170	struct	pvo_entry *source_pvo, *victim_pvo;
2171	struct	pvo_entry *pvo;
2172	int	ptegidx, i, j;
2173	u_int	sr;
2174	struct	pteg *pteg;
2175	struct	pte *pt;
2176
2177	moea_pte_spills++;
2178
2179	sr = mfsrin(addr);
2180	ptegidx = va_to_pteg(sr, addr);
2181
2182	/*
2183	 * Have to substitute some entry.  Use the primary hash for this.
2184	 * Use low bits of timebase as random generator.
2185	 */
2186	pteg = &moea_pteg_table[ptegidx];
2187	mtx_lock(&moea_table_mutex);
2188	__asm __volatile("mftb %0" : "=r"(i));
2189	i &= 7;
2190	pt = &pteg->pt[i];
2191
2192	source_pvo = NULL;
2193	victim_pvo = NULL;
2194	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2195		/*
2196		 * We need to find a pvo entry for this address.
2197		 */
2198		if (source_pvo == NULL &&
2199		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2200		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2201			/*
2202			 * Now found an entry to be spilled into the pteg.
2203			 * The PTE is now valid, so we know it's active.
2204			 */
2205			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2206
2207			if (j >= 0) {
2208				PVO_PTEGIDX_SET(pvo, j);
2209				moea_pte_overflow--;
2210				mtx_unlock(&moea_table_mutex);
2211				return (1);
2212			}
2213
2214			source_pvo = pvo;
2215
2216			if (victim_pvo != NULL)
2217				break;
2218		}
2219
2220		/*
2221		 * We also need the pvo entry of the victim we are replacing
2222		 * so save the R & C bits of the PTE.
2223		 */
2224		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2225		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2226			victim_pvo = pvo;
2227			if (source_pvo != NULL)
2228				break;
2229		}
2230	}
2231
2232	if (source_pvo == NULL) {
2233		mtx_unlock(&moea_table_mutex);
2234		return (0);
2235	}
2236
2237	if (victim_pvo == NULL) {
2238		if ((pt->pte_hi & PTE_HID) == 0)
2239			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2240			    "entry", pt);
2241
2242		/*
2243		 * If this is a secondary PTE, we need to search it's primary
2244		 * pvo bucket for the matching PVO.
2245		 */
2246		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2247		    pvo_olink) {
2248			/*
2249			 * We also need the pvo entry of the victim we are
2250			 * replacing so save the R & C bits of the PTE.
2251			 */
2252			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2253				victim_pvo = pvo;
2254				break;
2255			}
2256		}
2257
2258		if (victim_pvo == NULL)
2259			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2260			    "entry", pt);
2261	}
2262
2263	/*
2264	 * We are invalidating the TLB entry for the EA we are replacing even
2265	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2266	 * contained in the TLB entry.
2267	 */
2268	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2269
2270	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2271	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2272
2273	PVO_PTEGIDX_CLR(victim_pvo);
2274	PVO_PTEGIDX_SET(source_pvo, i);
2275	moea_pte_replacements++;
2276
2277	mtx_unlock(&moea_table_mutex);
2278	return (1);
2279}
2280
2281static __inline struct pvo_entry *
2282moea_pte_spillable_ident(u_int ptegidx)
2283{
2284	struct	pte *pt;
2285	struct	pvo_entry *pvo_walk, *pvo = NULL;
2286
2287	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2288		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2289			continue;
2290
2291		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2292			continue;
2293
2294		pt = moea_pvo_to_pte(pvo_walk, -1);
2295
2296		if (pt == NULL)
2297			continue;
2298
2299		pvo = pvo_walk;
2300
2301		mtx_unlock(&moea_table_mutex);
2302		if (!(pt->pte_lo & PTE_REF))
2303			return (pvo_walk);
2304	}
2305
2306	return (pvo);
2307}
2308
2309static int
2310moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2311{
2312	struct	pte *pt;
2313	struct	pvo_entry *victim_pvo;
2314	int	i;
2315	int	victim_idx;
2316	u_int	pteg_bkpidx = ptegidx;
2317
2318	mtx_assert(&moea_table_mutex, MA_OWNED);
2319
2320	/*
2321	 * First try primary hash.
2322	 */
2323	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2324		if ((pt->pte_hi & PTE_VALID) == 0) {
2325			pvo_pt->pte_hi &= ~PTE_HID;
2326			moea_pte_set(pt, pvo_pt);
2327			return (i);
2328		}
2329	}
2330
2331	/*
2332	 * Now try secondary hash.
2333	 */
2334	ptegidx ^= moea_pteg_mask;
2335
2336	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2337		if ((pt->pte_hi & PTE_VALID) == 0) {
2338			pvo_pt->pte_hi |= PTE_HID;
2339			moea_pte_set(pt, pvo_pt);
2340			return (i);
2341		}
2342	}
2343
2344	/* Try again, but this time try to force a PTE out. */
2345	ptegidx = pteg_bkpidx;
2346
2347	victim_pvo = moea_pte_spillable_ident(ptegidx);
2348	if (victim_pvo == NULL) {
2349		ptegidx ^= moea_pteg_mask;
2350		victim_pvo = moea_pte_spillable_ident(ptegidx);
2351	}
2352
2353	if (victim_pvo == NULL) {
2354		panic("moea_pte_insert: overflow");
2355		return (-1);
2356	}
2357
2358	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2359
2360	if (pteg_bkpidx == ptegidx)
2361		pvo_pt->pte_hi &= ~PTE_HID;
2362	else
2363		pvo_pt->pte_hi |= PTE_HID;
2364
2365	/*
2366	 * Synchronize the sacrifice PTE with its PVO, then mark both
2367	 * invalid. The PVO will be reused when/if the VM system comes
2368	 * here after a fault.
2369	 */
2370	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2371
2372	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2373	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2374
2375	/*
2376	 * Set the new PTE.
2377	 */
2378	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2379	PVO_PTEGIDX_CLR(victim_pvo);
2380	moea_pte_overflow++;
2381	moea_pte_set(pt, pvo_pt);
2382
2383	return (victim_idx & 7);
2384}
2385
2386static boolean_t
2387moea_query_bit(vm_page_t m, int ptebit)
2388{
2389	struct	pvo_entry *pvo;
2390	struct	pte *pt;
2391
2392	rw_assert(&pvh_global_lock, RA_WLOCKED);
2393	if (moea_attr_fetch(m) & ptebit)
2394		return (TRUE);
2395
2396	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2397
2398		/*
2399		 * See if we saved the bit off.  If so, cache it and return
2400		 * success.
2401		 */
2402		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2403			moea_attr_save(m, ptebit);
2404			return (TRUE);
2405		}
2406	}
2407
2408	/*
2409	 * No luck, now go through the hard part of looking at the PTEs
2410	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2411	 * the PTEs.
2412	 */
2413	powerpc_sync();
2414	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2415
2416		/*
2417		 * See if this pvo has a valid PTE.  if so, fetch the
2418		 * REF/CHG bits from the valid PTE.  If the appropriate
2419		 * ptebit is set, cache it and return success.
2420		 */
2421		pt = moea_pvo_to_pte(pvo, -1);
2422		if (pt != NULL) {
2423			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2424			mtx_unlock(&moea_table_mutex);
2425			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2426				moea_attr_save(m, ptebit);
2427				return (TRUE);
2428			}
2429		}
2430	}
2431
2432	return (FALSE);
2433}
2434
2435static u_int
2436moea_clear_bit(vm_page_t m, int ptebit)
2437{
2438	u_int	count;
2439	struct	pvo_entry *pvo;
2440	struct	pte *pt;
2441
2442	rw_assert(&pvh_global_lock, RA_WLOCKED);
2443
2444	/*
2445	 * Clear the cached value.
2446	 */
2447	moea_attr_clear(m, ptebit);
2448
2449	/*
2450	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2451	 * we can reset the right ones).  note that since the pvo entries and
2452	 * list heads are accessed via BAT0 and are never placed in the page
2453	 * table, we don't have to worry about further accesses setting the
2454	 * REF/CHG bits.
2455	 */
2456	powerpc_sync();
2457
2458	/*
2459	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2460	 * valid pte clear the ptebit from the valid pte.
2461	 */
2462	count = 0;
2463	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2464		pt = moea_pvo_to_pte(pvo, -1);
2465		if (pt != NULL) {
2466			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2467			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2468				count++;
2469				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2470			}
2471			mtx_unlock(&moea_table_mutex);
2472		}
2473		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2474	}
2475
2476	return (count);
2477}
2478
2479/*
2480 * Return true if the physical range is encompassed by the battable[idx]
2481 */
2482static int
2483moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2484{
2485	u_int prot;
2486	u_int32_t start;
2487	u_int32_t end;
2488	u_int32_t bat_ble;
2489
2490	/*
2491	 * Return immediately if not a valid mapping
2492	 */
2493	if (!(battable[idx].batu & BAT_Vs))
2494		return (EINVAL);
2495
2496	/*
2497	 * The BAT entry must be cache-inhibited, guarded, and r/w
2498	 * so it can function as an i/o page
2499	 */
2500	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2501	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2502		return (EPERM);
2503
2504	/*
2505	 * The address should be within the BAT range. Assume that the
2506	 * start address in the BAT has the correct alignment (thus
2507	 * not requiring masking)
2508	 */
2509	start = battable[idx].batl & BAT_PBS;
2510	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2511	end = start | (bat_ble << 15) | 0x7fff;
2512
2513	if ((pa < start) || ((pa + size) > end))
2514		return (ERANGE);
2515
2516	return (0);
2517}
2518
2519boolean_t
2520moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2521{
2522	int i;
2523
2524	/*
2525	 * This currently does not work for entries that
2526	 * overlap 256M BAT segments.
2527	 */
2528
2529	for(i = 0; i < 16; i++)
2530		if (moea_bat_mapped(i, pa, size) == 0)
2531			return (0);
2532
2533	return (EFAULT);
2534}
2535
2536/*
2537 * Map a set of physical memory pages into the kernel virtual
2538 * address space. Return a pointer to where it is mapped. This
2539 * routine is intended to be used for mapping device memory,
2540 * NOT real memory.
2541 */
2542void *
2543moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2544{
2545
2546	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2547}
2548
2549void *
2550moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2551{
2552	vm_offset_t va, tmpva, ppa, offset;
2553	int i;
2554
2555	ppa = trunc_page(pa);
2556	offset = pa & PAGE_MASK;
2557	size = roundup(offset + size, PAGE_SIZE);
2558
2559	/*
2560	 * If the physical address lies within a valid BAT table entry,
2561	 * return the 1:1 mapping. This currently doesn't work
2562	 * for regions that overlap 256M BAT segments.
2563	 */
2564	for (i = 0; i < 16; i++) {
2565		if (moea_bat_mapped(i, pa, size) == 0)
2566			return ((void *) pa);
2567	}
2568
2569	va = kva_alloc(size);
2570	if (!va)
2571		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2572
2573	for (tmpva = va; size > 0;) {
2574		moea_kenter_attr(mmu, tmpva, ppa, ma);
2575		tlbie(tmpva);
2576		size -= PAGE_SIZE;
2577		tmpva += PAGE_SIZE;
2578		ppa += PAGE_SIZE;
2579	}
2580
2581	return ((void *)(va + offset));
2582}
2583
2584void
2585moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2586{
2587	vm_offset_t base, offset;
2588
2589	/*
2590	 * If this is outside kernel virtual space, then it's a
2591	 * battable entry and doesn't require unmapping
2592	 */
2593	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2594		base = trunc_page(va);
2595		offset = va & PAGE_MASK;
2596		size = roundup(offset + size, PAGE_SIZE);
2597		kva_free(base, size);
2598	}
2599}
2600
2601static void
2602moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2603{
2604	struct pvo_entry *pvo;
2605	vm_offset_t lim;
2606	vm_paddr_t pa;
2607	vm_size_t len;
2608
2609	PMAP_LOCK(pm);
2610	while (sz > 0) {
2611		lim = round_page(va);
2612		len = MIN(lim - va, sz);
2613		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2614		if (pvo != NULL) {
2615			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2616			    (va & ADDR_POFF);
2617			moea_syncicache(pa, len);
2618		}
2619		va += len;
2620		sz -= len;
2621	}
2622	PMAP_UNLOCK(pm);
2623}
2624
2625vm_offset_t
2626moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2627    vm_size_t *sz)
2628{
2629	if (md->md_vaddr == ~0UL)
2630	    return (md->md_paddr + ofs);
2631	else
2632	    return (md->md_vaddr + ofs);
2633}
2634
2635struct pmap_md *
2636moea_scan_md(mmu_t mmu, struct pmap_md *prev)
2637{
2638	static struct pmap_md md;
2639	struct pvo_entry *pvo;
2640	vm_offset_t va;
2641
2642	if (dumpsys_minidump) {
2643		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2644		if (prev == NULL) {
2645			/* 1st: kernel .data and .bss. */
2646			md.md_index = 1;
2647			md.md_vaddr = trunc_page((uintptr_t)_etext);
2648			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2649			return (&md);
2650		}
2651		switch (prev->md_index) {
2652		case 1:
2653			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2654			md.md_index = 2;
2655			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2656			md.md_size = round_page(msgbufp->msg_size);
2657			break;
2658		case 2:
2659			/* 3rd: kernel VM. */
2660			va = prev->md_vaddr + prev->md_size;
2661			/* Find start of next chunk (from va). */
2662			while (va < virtual_end) {
2663				/* Don't dump the buffer cache. */
2664				if (va >= kmi.buffer_sva &&
2665				    va < kmi.buffer_eva) {
2666					va = kmi.buffer_eva;
2667					continue;
2668				}
2669				pvo = moea_pvo_find_va(kernel_pmap,
2670				    va & ~ADDR_POFF, NULL);
2671				if (pvo != NULL &&
2672				    (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2673					break;
2674				va += PAGE_SIZE;
2675			}
2676			if (va < virtual_end) {
2677				md.md_vaddr = va;
2678				va += PAGE_SIZE;
2679				/* Find last page in chunk. */
2680				while (va < virtual_end) {
2681					/* Don't run into the buffer cache. */
2682					if (va == kmi.buffer_sva)
2683						break;
2684					pvo = moea_pvo_find_va(kernel_pmap,
2685					    va & ~ADDR_POFF, NULL);
2686					if (pvo == NULL ||
2687					    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2688						break;
2689					va += PAGE_SIZE;
2690				}
2691				md.md_size = va - md.md_vaddr;
2692				break;
2693			}
2694			md.md_index = 3;
2695			/* FALLTHROUGH */
2696		default:
2697			return (NULL);
2698		}
2699	} else { /* minidumps */
2700		mem_regions(&pregions, &pregions_sz,
2701		    &regions, &regions_sz);
2702
2703		if (prev == NULL) {
2704			/* first physical chunk. */
2705			md.md_paddr = pregions[0].mr_start;
2706			md.md_size = pregions[0].mr_size;
2707			md.md_vaddr = ~0UL;
2708			md.md_index = 1;
2709		} else if (md.md_index < pregions_sz) {
2710			md.md_paddr = pregions[md.md_index].mr_start;
2711			md.md_size = pregions[md.md_index].mr_size;
2712			md.md_vaddr = ~0UL;
2713			md.md_index++;
2714		} else {
2715			/* There's no next physical chunk. */
2716			return (NULL);
2717		}
2718	}
2719
2720	return (&md);
2721}
2722