mmu_oea.c revision 262691
1285031Sdes/*-
2285031Sdes * Copyright (c) 2001 The NetBSD Foundation, Inc.
3285031Sdes * All rights reserved.
4285031Sdes *
5285031Sdes * This code is derived from software contributed to The NetBSD Foundation
6285031Sdes * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7285031Sdes *
8285031Sdes * Redistribution and use in source and binary forms, with or without
9285031Sdes * modification, are permitted provided that the following conditions
10285031Sdes * are met:
11285031Sdes * 1. Redistributions of source code must retain the above copyright
12285031Sdes *    notice, this list of conditions and the following disclaimer.
13285031Sdes * 2. Redistributions in binary form must reproduce the above copyright
14285031Sdes *    notice, this list of conditions and the following disclaimer in the
15285031Sdes *    documentation and/or other materials provided with the distribution.
16285031Sdes * 3. All advertising materials mentioning features or use of this software
17285031Sdes *    must display the following acknowledgement:
18285031Sdes *        This product includes software developed by the NetBSD
19285031Sdes *        Foundation, Inc. and its contributors.
20285031Sdes * 4. Neither the name of The NetBSD Foundation nor the names of its
21285031Sdes *    contributors may be used to endorse or promote products derived
22285031Sdes *    from this software without specific prior written permission.
23285031Sdes *
24285031Sdes * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25285031Sdes * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26285031Sdes * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27285031Sdes * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28285031Sdes * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29285031Sdes * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30285031Sdes * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31285031Sdes * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32285031Sdes * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33285031Sdes * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34285031Sdes * POSSIBILITY OF SUCH DAMAGE.
35285031Sdes */
36285031Sdes/*-
37285031Sdes * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38285031Sdes * Copyright (C) 1995, 1996 TooLs GmbH.
39285031Sdes * All rights reserved.
40285031Sdes *
41285031Sdes * Redistribution and use in source and binary forms, with or without
42285031Sdes * modification, are permitted provided that the following conditions
43285031Sdes * are met:
44285031Sdes * 1. Redistributions of source code must retain the above copyright
45285031Sdes *    notice, this list of conditions and the following disclaimer.
46285031Sdes * 2. Redistributions in binary form must reproduce the above copyright
47285031Sdes *    notice, this list of conditions and the following disclaimer in the
48285031Sdes *    documentation and/or other materials provided with the distribution.
49285031Sdes * 3. All advertising materials mentioning features or use of this software
50285031Sdes *    must display the following acknowledgement:
51285031Sdes *	This product includes software developed by TooLs GmbH.
52285031Sdes * 4. The name of TooLs GmbH may not be used to endorse or promote products
53285031Sdes *    derived from this software without specific prior written permission.
54285031Sdes *
55285031Sdes * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56285031Sdes * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57285031Sdes * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58285031Sdes * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59285031Sdes * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60285031Sdes * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61285031Sdes * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62285031Sdes * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63285031Sdes * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64285031Sdes * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65285031Sdes *
66285031Sdes * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67285031Sdes */
68285031Sdes/*-
69285031Sdes * Copyright (C) 2001 Benno Rice.
70285031Sdes * All rights reserved.
71285031Sdes *
72285031Sdes * Redistribution and use in source and binary forms, with or without
73285031Sdes * modification, are permitted provided that the following conditions
74285031Sdes * are met:
75285031Sdes * 1. Redistributions of source code must retain the above copyright
76285031Sdes *    notice, this list of conditions and the following disclaimer.
77285031Sdes * 2. Redistributions in binary form must reproduce the above copyright
78285031Sdes *    notice, this list of conditions and the following disclaimer in the
79285031Sdes *    documentation and/or other materials provided with the distribution.
80285031Sdes *
81285031Sdes * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82285031Sdes * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83285031Sdes * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84285031Sdes * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85285031Sdes * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86285031Sdes * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87285031Sdes * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88285031Sdes * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89285031Sdes * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90285031Sdes * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91285031Sdes */
92285031Sdes
93285031Sdes#include <sys/cdefs.h>
94285031Sdes__FBSDID("$FreeBSD: stable/10/sys/powerpc/aim/mmu_oea.c 262691 2014-03-02 15:53:39Z jhibbits $");
95
96/*
97 * Manages physical address maps.
98 *
99 * Since the information managed by this module is also stored by the
100 * logical address mapping module, this module may throw away valid virtual
101 * to physical mappings at almost any time.  However, invalidations of
102 * mappings must be done as requested.
103 *
104 * In order to cope with hardware architectures which make virtual to
105 * physical map invalidates expensive, this module may delay invalidate
106 * reduced protection operations until such time as they are actually
107 * necessary.  This module is given full information as to which processors
108 * are currently using which maps, and to when physical maps must be made
109 * correct.
110 */
111
112#include "opt_kstack_pages.h"
113
114#include <sys/param.h>
115#include <sys/kernel.h>
116#include <sys/queue.h>
117#include <sys/cpuset.h>
118#include <sys/ktr.h>
119#include <sys/lock.h>
120#include <sys/msgbuf.h>
121#include <sys/mutex.h>
122#include <sys/proc.h>
123#include <sys/rwlock.h>
124#include <sys/sched.h>
125#include <sys/sysctl.h>
126#include <sys/systm.h>
127#include <sys/vmmeter.h>
128
129#include <dev/ofw/openfirm.h>
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/uma.h>
140
141#include <machine/cpu.h>
142#include <machine/platform.h>
143#include <machine/bat.h>
144#include <machine/frame.h>
145#include <machine/md_var.h>
146#include <machine/psl.h>
147#include <machine/pte.h>
148#include <machine/smp.h>
149#include <machine/sr.h>
150#include <machine/mmuvar.h>
151#include <machine/trap_aim.h>
152
153#include "mmu_if.h"
154
155#define	MOEA_DEBUG
156
157#define TODO	panic("%s: not implemented", __func__);
158
159#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
160#define	VSID_TO_SR(vsid)	((vsid) & 0xf)
161#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
162
163struct ofw_map {
164	vm_offset_t	om_va;
165	vm_size_t	om_len;
166	vm_offset_t	om_pa;
167	u_int		om_mode;
168};
169
170extern unsigned char _etext[];
171extern unsigned char _end[];
172
173extern int dumpsys_minidump;
174
175/*
176 * Map of physical memory regions.
177 */
178static struct	mem_region *regions;
179static struct	mem_region *pregions;
180static u_int    phys_avail_count;
181static int	regions_sz, pregions_sz;
182static struct	ofw_map *translations;
183
184/*
185 * Lock for the pteg and pvo tables.
186 */
187struct mtx	moea_table_mutex;
188struct mtx	moea_vsid_mutex;
189
190/* tlbie instruction synchronization */
191static struct mtx tlbie_mtx;
192
193/*
194 * PTEG data.
195 */
196static struct	pteg *moea_pteg_table;
197u_int		moea_pteg_count;
198u_int		moea_pteg_mask;
199
200/*
201 * PVO data.
202 */
203struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
204struct	pvo_head moea_pvo_kunmanaged =
205    LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
206
207static struct rwlock_padalign pvh_global_lock;
208
209uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
210uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
211
212#define	BPVO_POOL_SIZE	32768
213static struct	pvo_entry *moea_bpvo_pool;
214static int	moea_bpvo_pool_index = 0;
215
216#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
217static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
218
219static boolean_t moea_initialized = FALSE;
220
221/*
222 * Statistics.
223 */
224u_int	moea_pte_valid = 0;
225u_int	moea_pte_overflow = 0;
226u_int	moea_pte_replacements = 0;
227u_int	moea_pvo_entries = 0;
228u_int	moea_pvo_enter_calls = 0;
229u_int	moea_pvo_remove_calls = 0;
230u_int	moea_pte_spills = 0;
231SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
232    0, "");
233SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
234    &moea_pte_overflow, 0, "");
235SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
236    &moea_pte_replacements, 0, "");
237SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
238    0, "");
239SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
240    &moea_pvo_enter_calls, 0, "");
241SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
242    &moea_pvo_remove_calls, 0, "");
243SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
244    &moea_pte_spills, 0, "");
245
246/*
247 * Allocate physical memory for use in moea_bootstrap.
248 */
249static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
250
251/*
252 * PTE calls.
253 */
254static int		moea_pte_insert(u_int, struct pte *);
255
256/*
257 * PVO calls.
258 */
259static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
260		    vm_offset_t, vm_offset_t, u_int, int);
261static void	moea_pvo_remove(struct pvo_entry *, int);
262static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
263static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
264
265/*
266 * Utility routines.
267 */
268static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
269			    vm_prot_t, boolean_t);
270static void		moea_syncicache(vm_offset_t, vm_size_t);
271static boolean_t	moea_query_bit(vm_page_t, int);
272static u_int		moea_clear_bit(vm_page_t, int);
273static void		moea_kremove(mmu_t, vm_offset_t);
274int		moea_pte_spill(vm_offset_t);
275
276/*
277 * Kernel MMU interface
278 */
279void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
280void moea_clear_modify(mmu_t, vm_page_t);
281void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
282void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
283    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
284void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
285void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
286    vm_prot_t);
287void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
288vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
289vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
290void moea_init(mmu_t);
291boolean_t moea_is_modified(mmu_t, vm_page_t);
292boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
293boolean_t moea_is_referenced(mmu_t, vm_page_t);
294int moea_ts_referenced(mmu_t, vm_page_t);
295vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
296boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
297int moea_page_wired_mappings(mmu_t, vm_page_t);
298void moea_pinit(mmu_t, pmap_t);
299void moea_pinit0(mmu_t, pmap_t);
300void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
301void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
302void moea_qremove(mmu_t, vm_offset_t, int);
303void moea_release(mmu_t, pmap_t);
304void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
305void moea_remove_all(mmu_t, vm_page_t);
306void moea_remove_write(mmu_t, vm_page_t);
307void moea_zero_page(mmu_t, vm_page_t);
308void moea_zero_page_area(mmu_t, vm_page_t, int, int);
309void moea_zero_page_idle(mmu_t, vm_page_t);
310void moea_activate(mmu_t, struct thread *);
311void moea_deactivate(mmu_t, struct thread *);
312void moea_cpu_bootstrap(mmu_t, int);
313void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
314void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
315void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
316void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
317vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
318void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
319void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
320void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
321boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
322static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
323vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
324    vm_size_t *sz);
325struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev);
326
327static mmu_method_t moea_methods[] = {
328	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
329	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
330	MMUMETHOD(mmu_copy_page,	moea_copy_page),
331	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
332	MMUMETHOD(mmu_enter,		moea_enter),
333	MMUMETHOD(mmu_enter_object,	moea_enter_object),
334	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
335	MMUMETHOD(mmu_extract,		moea_extract),
336	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
337	MMUMETHOD(mmu_init,		moea_init),
338	MMUMETHOD(mmu_is_modified,	moea_is_modified),
339	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
340	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
341	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
342	MMUMETHOD(mmu_map,     		moea_map),
343	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
344	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
345	MMUMETHOD(mmu_pinit,		moea_pinit),
346	MMUMETHOD(mmu_pinit0,		moea_pinit0),
347	MMUMETHOD(mmu_protect,		moea_protect),
348	MMUMETHOD(mmu_qenter,		moea_qenter),
349	MMUMETHOD(mmu_qremove,		moea_qremove),
350	MMUMETHOD(mmu_release,		moea_release),
351	MMUMETHOD(mmu_remove,		moea_remove),
352	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
353	MMUMETHOD(mmu_remove_write,	moea_remove_write),
354	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
355	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
356	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
357	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
358	MMUMETHOD(mmu_activate,		moea_activate),
359	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
360	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
361
362	/* Internal interfaces */
363	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
364	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
365	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
366	MMUMETHOD(mmu_mapdev,		moea_mapdev),
367	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
368	MMUMETHOD(mmu_kextract,		moea_kextract),
369	MMUMETHOD(mmu_kenter,		moea_kenter),
370	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
371	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
372	MMUMETHOD(mmu_scan_md,		moea_scan_md),
373	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
374
375	{ 0, 0 }
376};
377
378MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
379
380static __inline uint32_t
381moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
382{
383	uint32_t pte_lo;
384	int i;
385
386	if (ma != VM_MEMATTR_DEFAULT) {
387		switch (ma) {
388		case VM_MEMATTR_UNCACHEABLE:
389			return (PTE_I | PTE_G);
390		case VM_MEMATTR_WRITE_COMBINING:
391		case VM_MEMATTR_WRITE_BACK:
392		case VM_MEMATTR_PREFETCHABLE:
393			return (PTE_I);
394		case VM_MEMATTR_WRITE_THROUGH:
395			return (PTE_W | PTE_M);
396		}
397	}
398
399	/*
400	 * Assume the page is cache inhibited and access is guarded unless
401	 * it's in our available memory array.
402	 */
403	pte_lo = PTE_I | PTE_G;
404	for (i = 0; i < pregions_sz; i++) {
405		if ((pa >= pregions[i].mr_start) &&
406		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
407			pte_lo = PTE_M;
408			break;
409		}
410	}
411
412	return pte_lo;
413}
414
415static void
416tlbie(vm_offset_t va)
417{
418
419	mtx_lock_spin(&tlbie_mtx);
420	__asm __volatile("ptesync");
421	__asm __volatile("tlbie %0" :: "r"(va));
422	__asm __volatile("eieio; tlbsync; ptesync");
423	mtx_unlock_spin(&tlbie_mtx);
424}
425
426static void
427tlbia(void)
428{
429	vm_offset_t va;
430
431	for (va = 0; va < 0x00040000; va += 0x00001000) {
432		__asm __volatile("tlbie %0" :: "r"(va));
433		powerpc_sync();
434	}
435	__asm __volatile("tlbsync");
436	powerpc_sync();
437}
438
439static __inline int
440va_to_sr(u_int *sr, vm_offset_t va)
441{
442	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
443}
444
445static __inline u_int
446va_to_pteg(u_int sr, vm_offset_t addr)
447{
448	u_int hash;
449
450	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
451	    ADDR_PIDX_SHFT);
452	return (hash & moea_pteg_mask);
453}
454
455static __inline struct pvo_head *
456vm_page_to_pvoh(vm_page_t m)
457{
458
459	return (&m->md.mdpg_pvoh);
460}
461
462static __inline void
463moea_attr_clear(vm_page_t m, int ptebit)
464{
465
466	rw_assert(&pvh_global_lock, RA_WLOCKED);
467	m->md.mdpg_attrs &= ~ptebit;
468}
469
470static __inline int
471moea_attr_fetch(vm_page_t m)
472{
473
474	return (m->md.mdpg_attrs);
475}
476
477static __inline void
478moea_attr_save(vm_page_t m, int ptebit)
479{
480
481	rw_assert(&pvh_global_lock, RA_WLOCKED);
482	m->md.mdpg_attrs |= ptebit;
483}
484
485static __inline int
486moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
487{
488	if (pt->pte_hi == pvo_pt->pte_hi)
489		return (1);
490
491	return (0);
492}
493
494static __inline int
495moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
496{
497	return (pt->pte_hi & ~PTE_VALID) ==
498	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
499	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
500}
501
502static __inline void
503moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
504{
505
506	mtx_assert(&moea_table_mutex, MA_OWNED);
507
508	/*
509	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
510	 * set when the real pte is set in memory.
511	 *
512	 * Note: Don't set the valid bit for correct operation of tlb update.
513	 */
514	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
515	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
516	pt->pte_lo = pte_lo;
517}
518
519static __inline void
520moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
521{
522
523	mtx_assert(&moea_table_mutex, MA_OWNED);
524	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
525}
526
527static __inline void
528moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
529{
530
531	mtx_assert(&moea_table_mutex, MA_OWNED);
532
533	/*
534	 * As shown in Section 7.6.3.2.3
535	 */
536	pt->pte_lo &= ~ptebit;
537	tlbie(va);
538}
539
540static __inline void
541moea_pte_set(struct pte *pt, struct pte *pvo_pt)
542{
543
544	mtx_assert(&moea_table_mutex, MA_OWNED);
545	pvo_pt->pte_hi |= PTE_VALID;
546
547	/*
548	 * Update the PTE as defined in section 7.6.3.1.
549	 * Note that the REF/CHG bits are from pvo_pt and thus should have
550	 * been saved so this routine can restore them (if desired).
551	 */
552	pt->pte_lo = pvo_pt->pte_lo;
553	powerpc_sync();
554	pt->pte_hi = pvo_pt->pte_hi;
555	powerpc_sync();
556	moea_pte_valid++;
557}
558
559static __inline void
560moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
561{
562
563	mtx_assert(&moea_table_mutex, MA_OWNED);
564	pvo_pt->pte_hi &= ~PTE_VALID;
565
566	/*
567	 * Force the reg & chg bits back into the PTEs.
568	 */
569	powerpc_sync();
570
571	/*
572	 * Invalidate the pte.
573	 */
574	pt->pte_hi &= ~PTE_VALID;
575
576	tlbie(va);
577
578	/*
579	 * Save the reg & chg bits.
580	 */
581	moea_pte_synch(pt, pvo_pt);
582	moea_pte_valid--;
583}
584
585static __inline void
586moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
587{
588
589	/*
590	 * Invalidate the PTE
591	 */
592	moea_pte_unset(pt, pvo_pt, va);
593	moea_pte_set(pt, pvo_pt);
594}
595
596/*
597 * Quick sort callout for comparing memory regions.
598 */
599static int	om_cmp(const void *a, const void *b);
600
601static int
602om_cmp(const void *a, const void *b)
603{
604	const struct	ofw_map *mapa;
605	const struct	ofw_map *mapb;
606
607	mapa = a;
608	mapb = b;
609	if (mapa->om_pa < mapb->om_pa)
610		return (-1);
611	else if (mapa->om_pa > mapb->om_pa)
612		return (1);
613	else
614		return (0);
615}
616
617void
618moea_cpu_bootstrap(mmu_t mmup, int ap)
619{
620	u_int sdr;
621	int i;
622
623	if (ap) {
624		powerpc_sync();
625		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
626		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
627		isync();
628		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
629		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
630		isync();
631	}
632
633#ifdef WII
634	/*
635	 * Special case for the Wii: don't install the PCI BAT.
636	 */
637	if (strcmp(installed_platform(), "wii") != 0) {
638#endif
639		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
640		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
641#ifdef WII
642	}
643#endif
644	isync();
645
646	__asm __volatile("mtibatu 1,%0" :: "r"(0));
647	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
648	__asm __volatile("mtibatu 2,%0" :: "r"(0));
649	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
650	__asm __volatile("mtibatu 3,%0" :: "r"(0));
651	isync();
652
653	for (i = 0; i < 16; i++)
654		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
655	powerpc_sync();
656
657	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
658	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
659	isync();
660
661	tlbia();
662}
663
664void
665moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
666{
667	ihandle_t	mmui;
668	phandle_t	chosen, mmu;
669	int		sz;
670	int		i, j;
671	vm_size_t	size, physsz, hwphyssz;
672	vm_offset_t	pa, va, off;
673	void		*dpcpu;
674	register_t	msr;
675
676        /*
677         * Set up BAT0 to map the lowest 256 MB area
678         */
679        battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
680        battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
681
682	/*
683	 * Map PCI memory space.
684	 */
685	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
686	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
687
688	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
689	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
690
691	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
692	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
693
694	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
695	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
696
697	/*
698	 * Map obio devices.
699	 */
700	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
701	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
702
703	/*
704	 * Use an IBAT and a DBAT to map the bottom segment of memory
705	 * where we are. Turn off instruction relocation temporarily
706	 * to prevent faults while reprogramming the IBAT.
707	 */
708	msr = mfmsr();
709	mtmsr(msr & ~PSL_IR);
710	__asm (".balign 32; \n"
711	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
712	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
713	    :: "r"(battable[0].batu), "r"(battable[0].batl));
714	mtmsr(msr);
715
716#ifdef WII
717        if (strcmp(installed_platform(), "wii") != 0) {
718#endif
719		/* map pci space */
720		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
721		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
722#ifdef WII
723	}
724#endif
725	isync();
726
727	/* set global direct map flag */
728	hw_direct_map = 1;
729
730	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
731	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
732
733	for (i = 0; i < pregions_sz; i++) {
734		vm_offset_t pa;
735		vm_offset_t end;
736
737		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
738			pregions[i].mr_start,
739			pregions[i].mr_start + pregions[i].mr_size,
740			pregions[i].mr_size);
741		/*
742		 * Install entries into the BAT table to allow all
743		 * of physmem to be convered by on-demand BAT entries.
744		 * The loop will sometimes set the same battable element
745		 * twice, but that's fine since they won't be used for
746		 * a while yet.
747		 */
748		pa = pregions[i].mr_start & 0xf0000000;
749		end = pregions[i].mr_start + pregions[i].mr_size;
750		do {
751                        u_int n = pa >> ADDR_SR_SHFT;
752
753			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
754			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
755			pa += SEGMENT_LENGTH;
756		} while (pa < end);
757	}
758
759	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
760		panic("moea_bootstrap: phys_avail too small");
761
762	phys_avail_count = 0;
763	physsz = 0;
764	hwphyssz = 0;
765	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
766	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
767		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
768		    regions[i].mr_start + regions[i].mr_size,
769		    regions[i].mr_size);
770		if (hwphyssz != 0 &&
771		    (physsz + regions[i].mr_size) >= hwphyssz) {
772			if (physsz < hwphyssz) {
773				phys_avail[j] = regions[i].mr_start;
774				phys_avail[j + 1] = regions[i].mr_start +
775				    hwphyssz - physsz;
776				physsz = hwphyssz;
777				phys_avail_count++;
778			}
779			break;
780		}
781		phys_avail[j] = regions[i].mr_start;
782		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
783		phys_avail_count++;
784		physsz += regions[i].mr_size;
785	}
786
787	/* Check for overlap with the kernel and exception vectors */
788	for (j = 0; j < 2*phys_avail_count; j+=2) {
789		if (phys_avail[j] < EXC_LAST)
790			phys_avail[j] += EXC_LAST;
791
792		if (kernelstart >= phys_avail[j] &&
793		    kernelstart < phys_avail[j+1]) {
794			if (kernelend < phys_avail[j+1]) {
795				phys_avail[2*phys_avail_count] =
796				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
797				phys_avail[2*phys_avail_count + 1] =
798				    phys_avail[j+1];
799				phys_avail_count++;
800			}
801
802			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
803		}
804
805		if (kernelend >= phys_avail[j] &&
806		    kernelend < phys_avail[j+1]) {
807			if (kernelstart > phys_avail[j]) {
808				phys_avail[2*phys_avail_count] = phys_avail[j];
809				phys_avail[2*phys_avail_count + 1] =
810				    kernelstart & ~PAGE_MASK;
811				phys_avail_count++;
812			}
813
814			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
815		}
816	}
817
818	physmem = btoc(physsz);
819
820	/*
821	 * Allocate PTEG table.
822	 */
823#ifdef PTEGCOUNT
824	moea_pteg_count = PTEGCOUNT;
825#else
826	moea_pteg_count = 0x1000;
827
828	while (moea_pteg_count < physmem)
829		moea_pteg_count <<= 1;
830
831	moea_pteg_count >>= 1;
832#endif /* PTEGCOUNT */
833
834	size = moea_pteg_count * sizeof(struct pteg);
835	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
836	    size);
837	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
838	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
839	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
840	moea_pteg_mask = moea_pteg_count - 1;
841
842	/*
843	 * Allocate pv/overflow lists.
844	 */
845	size = sizeof(struct pvo_head) * moea_pteg_count;
846	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
847	    PAGE_SIZE);
848	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
849	for (i = 0; i < moea_pteg_count; i++)
850		LIST_INIT(&moea_pvo_table[i]);
851
852	/*
853	 * Initialize the lock that synchronizes access to the pteg and pvo
854	 * tables.
855	 */
856	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
857	    MTX_RECURSE);
858	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
859
860	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
861
862	/*
863	 * Initialise the unmanaged pvo pool.
864	 */
865	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
866		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
867	moea_bpvo_pool_index = 0;
868
869	/*
870	 * Make sure kernel vsid is allocated as well as VSID 0.
871	 */
872	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
873		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
874	moea_vsid_bitmap[0] |= 1;
875
876	/*
877	 * Initialize the kernel pmap (which is statically allocated).
878	 */
879	PMAP_LOCK_INIT(kernel_pmap);
880	for (i = 0; i < 16; i++)
881		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
882	CPU_FILL(&kernel_pmap->pm_active);
883	RB_INIT(&kernel_pmap->pmap_pvo);
884
885 	/*
886	 * Initialize the global pv list lock.
887	 */
888	rw_init(&pvh_global_lock, "pmap pv global");
889
890	/*
891	 * Set up the Open Firmware mappings
892	 */
893	chosen = OF_finddevice("/chosen");
894	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
895	    (mmu = OF_instance_to_package(mmui)) != -1 &&
896	    (sz = OF_getproplen(mmu, "translations")) != -1) {
897		translations = NULL;
898		for (i = 0; phys_avail[i] != 0; i += 2) {
899			if (phys_avail[i + 1] >= sz) {
900				translations = (struct ofw_map *)phys_avail[i];
901				break;
902			}
903		}
904		if (translations == NULL)
905			panic("moea_bootstrap: no space to copy translations");
906		bzero(translations, sz);
907		if (OF_getprop(mmu, "translations", translations, sz) == -1)
908			panic("moea_bootstrap: can't get ofw translations");
909		CTR0(KTR_PMAP, "moea_bootstrap: translations");
910		sz /= sizeof(*translations);
911		qsort(translations, sz, sizeof (*translations), om_cmp);
912		for (i = 0; i < sz; i++) {
913			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
914			    translations[i].om_pa, translations[i].om_va,
915			    translations[i].om_len);
916
917			/*
918			 * If the mapping is 1:1, let the RAM and device
919			 * on-demand BAT tables take care of the translation.
920			 */
921			if (translations[i].om_va == translations[i].om_pa)
922				continue;
923
924			/* Enter the pages */
925			for (off = 0; off < translations[i].om_len;
926			    off += PAGE_SIZE)
927				moea_kenter(mmup, translations[i].om_va + off,
928					    translations[i].om_pa + off);
929		}
930	}
931
932	/*
933	 * Calculate the last available physical address.
934	 */
935	for (i = 0; phys_avail[i + 2] != 0; i += 2)
936		;
937	Maxmem = powerpc_btop(phys_avail[i + 1]);
938
939	moea_cpu_bootstrap(mmup,0);
940
941	pmap_bootstrapped++;
942
943	/*
944	 * Set the start and end of kva.
945	 */
946	virtual_avail = VM_MIN_KERNEL_ADDRESS;
947	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
948
949	/*
950	 * Allocate a kernel stack with a guard page for thread0 and map it
951	 * into the kernel page map.
952	 */
953	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
954	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
955	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
956	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
957	thread0.td_kstack = va;
958	thread0.td_kstack_pages = KSTACK_PAGES;
959	for (i = 0; i < KSTACK_PAGES; i++) {
960		moea_kenter(mmup, va, pa);
961		pa += PAGE_SIZE;
962		va += PAGE_SIZE;
963	}
964
965	/*
966	 * Allocate virtual address space for the message buffer.
967	 */
968	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
969	msgbufp = (struct msgbuf *)virtual_avail;
970	va = virtual_avail;
971	virtual_avail += round_page(msgbufsize);
972	while (va < virtual_avail) {
973		moea_kenter(mmup, va, pa);
974		pa += PAGE_SIZE;
975		va += PAGE_SIZE;
976	}
977
978	/*
979	 * Allocate virtual address space for the dynamic percpu area.
980	 */
981	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
982	dpcpu = (void *)virtual_avail;
983	va = virtual_avail;
984	virtual_avail += DPCPU_SIZE;
985	while (va < virtual_avail) {
986		moea_kenter(mmup, va, pa);
987		pa += PAGE_SIZE;
988		va += PAGE_SIZE;
989	}
990	dpcpu_init(dpcpu, 0);
991}
992
993/*
994 * Activate a user pmap.  The pmap must be activated before it's address
995 * space can be accessed in any way.
996 */
997void
998moea_activate(mmu_t mmu, struct thread *td)
999{
1000	pmap_t	pm, pmr;
1001
1002	/*
1003	 * Load all the data we need up front to encourage the compiler to
1004	 * not issue any loads while we have interrupts disabled below.
1005	 */
1006	pm = &td->td_proc->p_vmspace->vm_pmap;
1007	pmr = pm->pmap_phys;
1008
1009	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1010	PCPU_SET(curpmap, pmr);
1011}
1012
1013void
1014moea_deactivate(mmu_t mmu, struct thread *td)
1015{
1016	pmap_t	pm;
1017
1018	pm = &td->td_proc->p_vmspace->vm_pmap;
1019	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1020	PCPU_SET(curpmap, NULL);
1021}
1022
1023void
1024moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1025{
1026	struct	pvo_entry *pvo;
1027
1028	PMAP_LOCK(pm);
1029	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1030
1031	if (pvo != NULL) {
1032		if (wired) {
1033			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1034				pm->pm_stats.wired_count++;
1035			pvo->pvo_vaddr |= PVO_WIRED;
1036		} else {
1037			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1038				pm->pm_stats.wired_count--;
1039			pvo->pvo_vaddr &= ~PVO_WIRED;
1040		}
1041	}
1042	PMAP_UNLOCK(pm);
1043}
1044
1045void
1046moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1047{
1048	vm_offset_t	dst;
1049	vm_offset_t	src;
1050
1051	dst = VM_PAGE_TO_PHYS(mdst);
1052	src = VM_PAGE_TO_PHYS(msrc);
1053
1054	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1055}
1056
1057void
1058moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1059    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1060{
1061	void *a_cp, *b_cp;
1062	vm_offset_t a_pg_offset, b_pg_offset;
1063	int cnt;
1064
1065	while (xfersize > 0) {
1066		a_pg_offset = a_offset & PAGE_MASK;
1067		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1068		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1069		    a_pg_offset;
1070		b_pg_offset = b_offset & PAGE_MASK;
1071		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1072		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1073		    b_pg_offset;
1074		bcopy(a_cp, b_cp, cnt);
1075		a_offset += cnt;
1076		b_offset += cnt;
1077		xfersize -= cnt;
1078	}
1079}
1080
1081/*
1082 * Zero a page of physical memory by temporarily mapping it into the tlb.
1083 */
1084void
1085moea_zero_page(mmu_t mmu, vm_page_t m)
1086{
1087	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1088
1089	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1090		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1091}
1092
1093void
1094moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1095{
1096	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1097	void *va = (void *)(pa + off);
1098
1099	bzero(va, size);
1100}
1101
1102void
1103moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1104{
1105
1106	moea_zero_page(mmu, m);
1107}
1108
1109/*
1110 * Map the given physical page at the specified virtual address in the
1111 * target pmap with the protection requested.  If specified the page
1112 * will be wired down.
1113 */
1114void
1115moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1116	   boolean_t wired)
1117{
1118
1119	rw_wlock(&pvh_global_lock);
1120	PMAP_LOCK(pmap);
1121	moea_enter_locked(pmap, va, m, prot, wired);
1122	rw_wunlock(&pvh_global_lock);
1123	PMAP_UNLOCK(pmap);
1124}
1125
1126/*
1127 * Map the given physical page at the specified virtual address in the
1128 * target pmap with the protection requested.  If specified the page
1129 * will be wired down.
1130 *
1131 * The page queues and pmap must be locked.
1132 */
1133static void
1134moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1135    boolean_t wired)
1136{
1137	struct		pvo_head *pvo_head;
1138	uma_zone_t	zone;
1139	vm_page_t	pg;
1140	u_int		pte_lo, pvo_flags;
1141	int		error;
1142
1143	if (!moea_initialized) {
1144		pvo_head = &moea_pvo_kunmanaged;
1145		zone = moea_upvo_zone;
1146		pvo_flags = 0;
1147		pg = NULL;
1148	} else {
1149		pvo_head = vm_page_to_pvoh(m);
1150		pg = m;
1151		zone = moea_mpvo_zone;
1152		pvo_flags = PVO_MANAGED;
1153	}
1154	if (pmap_bootstrapped)
1155		rw_assert(&pvh_global_lock, RA_WLOCKED);
1156	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1157	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1158		VM_OBJECT_ASSERT_LOCKED(m->object);
1159
1160	/* XXX change the pvo head for fake pages */
1161	if ((m->oflags & VPO_UNMANAGED) != 0) {
1162		pvo_flags &= ~PVO_MANAGED;
1163		pvo_head = &moea_pvo_kunmanaged;
1164		zone = moea_upvo_zone;
1165	}
1166
1167	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1168
1169	if (prot & VM_PROT_WRITE) {
1170		pte_lo |= PTE_BW;
1171		if (pmap_bootstrapped &&
1172		    (m->oflags & VPO_UNMANAGED) == 0)
1173			vm_page_aflag_set(m, PGA_WRITEABLE);
1174	} else
1175		pte_lo |= PTE_BR;
1176
1177	if (prot & VM_PROT_EXECUTE)
1178		pvo_flags |= PVO_EXECUTABLE;
1179
1180	if (wired)
1181		pvo_flags |= PVO_WIRED;
1182
1183	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1184	    pte_lo, pvo_flags);
1185
1186	/*
1187	 * Flush the real page from the instruction cache. This has be done
1188	 * for all user mappings to prevent information leakage via the
1189	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1190	 * mapping for a page.
1191	 */
1192	if (pmap != kernel_pmap && error == ENOENT &&
1193	    (pte_lo & (PTE_I | PTE_G)) == 0)
1194		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1195}
1196
1197/*
1198 * Maps a sequence of resident pages belonging to the same object.
1199 * The sequence begins with the given page m_start.  This page is
1200 * mapped at the given virtual address start.  Each subsequent page is
1201 * mapped at a virtual address that is offset from start by the same
1202 * amount as the page is offset from m_start within the object.  The
1203 * last page in the sequence is the page with the largest offset from
1204 * m_start that can be mapped at a virtual address less than the given
1205 * virtual address end.  Not every virtual page between start and end
1206 * is mapped; only those for which a resident page exists with the
1207 * corresponding offset from m_start are mapped.
1208 */
1209void
1210moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1211    vm_page_t m_start, vm_prot_t prot)
1212{
1213	vm_page_t m;
1214	vm_pindex_t diff, psize;
1215
1216	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1217
1218	psize = atop(end - start);
1219	m = m_start;
1220	rw_wlock(&pvh_global_lock);
1221	PMAP_LOCK(pm);
1222	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1223		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1224		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1225		m = TAILQ_NEXT(m, listq);
1226	}
1227	rw_wunlock(&pvh_global_lock);
1228	PMAP_UNLOCK(pm);
1229}
1230
1231void
1232moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1233    vm_prot_t prot)
1234{
1235
1236	rw_wlock(&pvh_global_lock);
1237	PMAP_LOCK(pm);
1238	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1239	    FALSE);
1240	rw_wunlock(&pvh_global_lock);
1241	PMAP_UNLOCK(pm);
1242}
1243
1244vm_paddr_t
1245moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1246{
1247	struct	pvo_entry *pvo;
1248	vm_paddr_t pa;
1249
1250	PMAP_LOCK(pm);
1251	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1252	if (pvo == NULL)
1253		pa = 0;
1254	else
1255		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1256	PMAP_UNLOCK(pm);
1257	return (pa);
1258}
1259
1260/*
1261 * Atomically extract and hold the physical page with the given
1262 * pmap and virtual address pair if that mapping permits the given
1263 * protection.
1264 */
1265vm_page_t
1266moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1267{
1268	struct	pvo_entry *pvo;
1269	vm_page_t m;
1270        vm_paddr_t pa;
1271
1272	m = NULL;
1273	pa = 0;
1274	PMAP_LOCK(pmap);
1275retry:
1276	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1277	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1278	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1279	     (prot & VM_PROT_WRITE) == 0)) {
1280		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1281			goto retry;
1282		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1283		vm_page_hold(m);
1284	}
1285	PA_UNLOCK_COND(pa);
1286	PMAP_UNLOCK(pmap);
1287	return (m);
1288}
1289
1290void
1291moea_init(mmu_t mmu)
1292{
1293
1294	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1295	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1296	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1297	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1298	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1299	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1300	moea_initialized = TRUE;
1301}
1302
1303boolean_t
1304moea_is_referenced(mmu_t mmu, vm_page_t m)
1305{
1306	boolean_t rv;
1307
1308	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1309	    ("moea_is_referenced: page %p is not managed", m));
1310	rw_wlock(&pvh_global_lock);
1311	rv = moea_query_bit(m, PTE_REF);
1312	rw_wunlock(&pvh_global_lock);
1313	return (rv);
1314}
1315
1316boolean_t
1317moea_is_modified(mmu_t mmu, vm_page_t m)
1318{
1319	boolean_t rv;
1320
1321	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1322	    ("moea_is_modified: page %p is not managed", m));
1323
1324	/*
1325	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1326	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1327	 * is clear, no PTEs can have PTE_CHG set.
1328	 */
1329	VM_OBJECT_ASSERT_WLOCKED(m->object);
1330	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1331		return (FALSE);
1332	rw_wlock(&pvh_global_lock);
1333	rv = moea_query_bit(m, PTE_CHG);
1334	rw_wunlock(&pvh_global_lock);
1335	return (rv);
1336}
1337
1338boolean_t
1339moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1340{
1341	struct pvo_entry *pvo;
1342	boolean_t rv;
1343
1344	PMAP_LOCK(pmap);
1345	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1346	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1347	PMAP_UNLOCK(pmap);
1348	return (rv);
1349}
1350
1351void
1352moea_clear_modify(mmu_t mmu, vm_page_t m)
1353{
1354
1355	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1356	    ("moea_clear_modify: page %p is not managed", m));
1357	VM_OBJECT_ASSERT_WLOCKED(m->object);
1358	KASSERT(!vm_page_xbusied(m),
1359	    ("moea_clear_modify: page %p is exclusive busy", m));
1360
1361	/*
1362	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1363	 * set.  If the object containing the page is locked and the page is
1364	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1365	 */
1366	if ((m->aflags & PGA_WRITEABLE) == 0)
1367		return;
1368	rw_wlock(&pvh_global_lock);
1369	moea_clear_bit(m, PTE_CHG);
1370	rw_wunlock(&pvh_global_lock);
1371}
1372
1373/*
1374 * Clear the write and modified bits in each of the given page's mappings.
1375 */
1376void
1377moea_remove_write(mmu_t mmu, vm_page_t m)
1378{
1379	struct	pvo_entry *pvo;
1380	struct	pte *pt;
1381	pmap_t	pmap;
1382	u_int	lo;
1383
1384	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1385	    ("moea_remove_write: page %p is not managed", m));
1386
1387	/*
1388	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1389	 * set by another thread while the object is locked.  Thus,
1390	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1391	 */
1392	VM_OBJECT_ASSERT_WLOCKED(m->object);
1393	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1394		return;
1395	rw_wlock(&pvh_global_lock);
1396	lo = moea_attr_fetch(m);
1397	powerpc_sync();
1398	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1399		pmap = pvo->pvo_pmap;
1400		PMAP_LOCK(pmap);
1401		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1402			pt = moea_pvo_to_pte(pvo, -1);
1403			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1404			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1405			if (pt != NULL) {
1406				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1407				lo |= pvo->pvo_pte.pte.pte_lo;
1408				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1409				moea_pte_change(pt, &pvo->pvo_pte.pte,
1410				    pvo->pvo_vaddr);
1411				mtx_unlock(&moea_table_mutex);
1412			}
1413		}
1414		PMAP_UNLOCK(pmap);
1415	}
1416	if ((lo & PTE_CHG) != 0) {
1417		moea_attr_clear(m, PTE_CHG);
1418		vm_page_dirty(m);
1419	}
1420	vm_page_aflag_clear(m, PGA_WRITEABLE);
1421	rw_wunlock(&pvh_global_lock);
1422}
1423
1424/*
1425 *	moea_ts_referenced:
1426 *
1427 *	Return a count of reference bits for a page, clearing those bits.
1428 *	It is not necessary for every reference bit to be cleared, but it
1429 *	is necessary that 0 only be returned when there are truly no
1430 *	reference bits set.
1431 *
1432 *	XXX: The exact number of bits to check and clear is a matter that
1433 *	should be tested and standardized at some point in the future for
1434 *	optimal aging of shared pages.
1435 */
1436int
1437moea_ts_referenced(mmu_t mmu, vm_page_t m)
1438{
1439	int count;
1440
1441	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1442	    ("moea_ts_referenced: page %p is not managed", m));
1443	rw_wlock(&pvh_global_lock);
1444	count = moea_clear_bit(m, PTE_REF);
1445	rw_wunlock(&pvh_global_lock);
1446	return (count);
1447}
1448
1449/*
1450 * Modify the WIMG settings of all mappings for a page.
1451 */
1452void
1453moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1454{
1455	struct	pvo_entry *pvo;
1456	struct	pvo_head *pvo_head;
1457	struct	pte *pt;
1458	pmap_t	pmap;
1459	u_int	lo;
1460
1461	if ((m->oflags & VPO_UNMANAGED) != 0) {
1462		m->md.mdpg_cache_attrs = ma;
1463		return;
1464	}
1465
1466	rw_wlock(&pvh_global_lock);
1467	pvo_head = vm_page_to_pvoh(m);
1468	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1469
1470	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1471		pmap = pvo->pvo_pmap;
1472		PMAP_LOCK(pmap);
1473		pt = moea_pvo_to_pte(pvo, -1);
1474		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1475		pvo->pvo_pte.pte.pte_lo |= lo;
1476		if (pt != NULL) {
1477			moea_pte_change(pt, &pvo->pvo_pte.pte,
1478			    pvo->pvo_vaddr);
1479			if (pvo->pvo_pmap == kernel_pmap)
1480				isync();
1481		}
1482		mtx_unlock(&moea_table_mutex);
1483		PMAP_UNLOCK(pmap);
1484	}
1485	m->md.mdpg_cache_attrs = ma;
1486	rw_wunlock(&pvh_global_lock);
1487}
1488
1489/*
1490 * Map a wired page into kernel virtual address space.
1491 */
1492void
1493moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1494{
1495
1496	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1497}
1498
1499void
1500moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1501{
1502	u_int		pte_lo;
1503	int		error;
1504
1505#if 0
1506	if (va < VM_MIN_KERNEL_ADDRESS)
1507		panic("moea_kenter: attempt to enter non-kernel address %#x",
1508		    va);
1509#endif
1510
1511	pte_lo = moea_calc_wimg(pa, ma);
1512
1513	PMAP_LOCK(kernel_pmap);
1514	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1515	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1516
1517	if (error != 0 && error != ENOENT)
1518		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1519		    pa, error);
1520
1521	PMAP_UNLOCK(kernel_pmap);
1522}
1523
1524/*
1525 * Extract the physical page address associated with the given kernel virtual
1526 * address.
1527 */
1528vm_paddr_t
1529moea_kextract(mmu_t mmu, vm_offset_t va)
1530{
1531	struct		pvo_entry *pvo;
1532	vm_paddr_t pa;
1533
1534	/*
1535	 * Allow direct mappings on 32-bit OEA
1536	 */
1537	if (va < VM_MIN_KERNEL_ADDRESS) {
1538		return (va);
1539	}
1540
1541	PMAP_LOCK(kernel_pmap);
1542	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1543	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1544	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1545	PMAP_UNLOCK(kernel_pmap);
1546	return (pa);
1547}
1548
1549/*
1550 * Remove a wired page from kernel virtual address space.
1551 */
1552void
1553moea_kremove(mmu_t mmu, vm_offset_t va)
1554{
1555
1556	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1557}
1558
1559/*
1560 * Map a range of physical addresses into kernel virtual address space.
1561 *
1562 * The value passed in *virt is a suggested virtual address for the mapping.
1563 * Architectures which can support a direct-mapped physical to virtual region
1564 * can return the appropriate address within that region, leaving '*virt'
1565 * unchanged.  We cannot and therefore do not; *virt is updated with the
1566 * first usable address after the mapped region.
1567 */
1568vm_offset_t
1569moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1570    vm_paddr_t pa_end, int prot)
1571{
1572	vm_offset_t	sva, va;
1573
1574	sva = *virt;
1575	va = sva;
1576	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1577		moea_kenter(mmu, va, pa_start);
1578	*virt = va;
1579	return (sva);
1580}
1581
1582/*
1583 * Returns true if the pmap's pv is one of the first
1584 * 16 pvs linked to from this page.  This count may
1585 * be changed upwards or downwards in the future; it
1586 * is only necessary that true be returned for a small
1587 * subset of pmaps for proper page aging.
1588 */
1589boolean_t
1590moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1591{
1592        int loops;
1593	struct pvo_entry *pvo;
1594	boolean_t rv;
1595
1596	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1597	    ("moea_page_exists_quick: page %p is not managed", m));
1598	loops = 0;
1599	rv = FALSE;
1600	rw_wlock(&pvh_global_lock);
1601	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1602		if (pvo->pvo_pmap == pmap) {
1603			rv = TRUE;
1604			break;
1605		}
1606		if (++loops >= 16)
1607			break;
1608	}
1609	rw_wunlock(&pvh_global_lock);
1610	return (rv);
1611}
1612
1613/*
1614 * Return the number of managed mappings to the given physical page
1615 * that are wired.
1616 */
1617int
1618moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1619{
1620	struct pvo_entry *pvo;
1621	int count;
1622
1623	count = 0;
1624	if ((m->oflags & VPO_UNMANAGED) != 0)
1625		return (count);
1626	rw_wlock(&pvh_global_lock);
1627	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1628		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1629			count++;
1630	rw_wunlock(&pvh_global_lock);
1631	return (count);
1632}
1633
1634static u_int	moea_vsidcontext;
1635
1636void
1637moea_pinit(mmu_t mmu, pmap_t pmap)
1638{
1639	int	i, mask;
1640	u_int	entropy;
1641
1642	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1643	RB_INIT(&pmap->pmap_pvo);
1644
1645	entropy = 0;
1646	__asm __volatile("mftb %0" : "=r"(entropy));
1647
1648	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1649	    == NULL) {
1650		pmap->pmap_phys = pmap;
1651	}
1652
1653
1654	mtx_lock(&moea_vsid_mutex);
1655	/*
1656	 * Allocate some segment registers for this pmap.
1657	 */
1658	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1659		u_int	hash, n;
1660
1661		/*
1662		 * Create a new value by mutiplying by a prime and adding in
1663		 * entropy from the timebase register.  This is to make the
1664		 * VSID more random so that the PT hash function collides
1665		 * less often.  (Note that the prime casues gcc to do shifts
1666		 * instead of a multiply.)
1667		 */
1668		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1669		hash = moea_vsidcontext & (NPMAPS - 1);
1670		if (hash == 0)		/* 0 is special, avoid it */
1671			continue;
1672		n = hash >> 5;
1673		mask = 1 << (hash & (VSID_NBPW - 1));
1674		hash = (moea_vsidcontext & 0xfffff);
1675		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1676			/* anything free in this bucket? */
1677			if (moea_vsid_bitmap[n] == 0xffffffff) {
1678				entropy = (moea_vsidcontext >> 20);
1679				continue;
1680			}
1681			i = ffs(~moea_vsid_bitmap[n]) - 1;
1682			mask = 1 << i;
1683			hash &= 0xfffff & ~(VSID_NBPW - 1);
1684			hash |= i;
1685		}
1686		KASSERT(!(moea_vsid_bitmap[n] & mask),
1687		    ("Allocating in-use VSID group %#x\n", hash));
1688		moea_vsid_bitmap[n] |= mask;
1689		for (i = 0; i < 16; i++)
1690			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1691		mtx_unlock(&moea_vsid_mutex);
1692		return;
1693	}
1694
1695	mtx_unlock(&moea_vsid_mutex);
1696	panic("moea_pinit: out of segments");
1697}
1698
1699/*
1700 * Initialize the pmap associated with process 0.
1701 */
1702void
1703moea_pinit0(mmu_t mmu, pmap_t pm)
1704{
1705
1706	PMAP_LOCK_INIT(pm);
1707	moea_pinit(mmu, pm);
1708	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1709}
1710
1711/*
1712 * Set the physical protection on the specified range of this map as requested.
1713 */
1714void
1715moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1716    vm_prot_t prot)
1717{
1718	struct	pvo_entry *pvo, *tpvo, key;
1719	struct	pte *pt;
1720
1721	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1722	    ("moea_protect: non current pmap"));
1723
1724	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1725		moea_remove(mmu, pm, sva, eva);
1726		return;
1727	}
1728
1729	rw_wlock(&pvh_global_lock);
1730	PMAP_LOCK(pm);
1731	key.pvo_vaddr = sva;
1732	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1733	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1734		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1735		if ((prot & VM_PROT_EXECUTE) == 0)
1736			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1737
1738		/*
1739		 * Grab the PTE pointer before we diddle with the cached PTE
1740		 * copy.
1741		 */
1742		pt = moea_pvo_to_pte(pvo, -1);
1743		/*
1744		 * Change the protection of the page.
1745		 */
1746		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1747		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1748
1749		/*
1750		 * If the PVO is in the page table, update that pte as well.
1751		 */
1752		if (pt != NULL) {
1753			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1754			mtx_unlock(&moea_table_mutex);
1755		}
1756	}
1757	rw_wunlock(&pvh_global_lock);
1758	PMAP_UNLOCK(pm);
1759}
1760
1761/*
1762 * Map a list of wired pages into kernel virtual address space.  This is
1763 * intended for temporary mappings which do not need page modification or
1764 * references recorded.  Existing mappings in the region are overwritten.
1765 */
1766void
1767moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1768{
1769	vm_offset_t va;
1770
1771	va = sva;
1772	while (count-- > 0) {
1773		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1774		va += PAGE_SIZE;
1775		m++;
1776	}
1777}
1778
1779/*
1780 * Remove page mappings from kernel virtual address space.  Intended for
1781 * temporary mappings entered by moea_qenter.
1782 */
1783void
1784moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1785{
1786	vm_offset_t va;
1787
1788	va = sva;
1789	while (count-- > 0) {
1790		moea_kremove(mmu, va);
1791		va += PAGE_SIZE;
1792	}
1793}
1794
1795void
1796moea_release(mmu_t mmu, pmap_t pmap)
1797{
1798        int idx, mask;
1799
1800	/*
1801	 * Free segment register's VSID
1802	 */
1803        if (pmap->pm_sr[0] == 0)
1804                panic("moea_release");
1805
1806	mtx_lock(&moea_vsid_mutex);
1807        idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1808        mask = 1 << (idx % VSID_NBPW);
1809        idx /= VSID_NBPW;
1810        moea_vsid_bitmap[idx] &= ~mask;
1811	mtx_unlock(&moea_vsid_mutex);
1812}
1813
1814/*
1815 * Remove the given range of addresses from the specified map.
1816 */
1817void
1818moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1819{
1820	struct	pvo_entry *pvo, *tpvo, key;
1821
1822	rw_wlock(&pvh_global_lock);
1823	PMAP_LOCK(pm);
1824	key.pvo_vaddr = sva;
1825	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1826	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1827		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1828		moea_pvo_remove(pvo, -1);
1829	}
1830	PMAP_UNLOCK(pm);
1831	rw_wunlock(&pvh_global_lock);
1832}
1833
1834/*
1835 * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1836 * will reflect changes in pte's back to the vm_page.
1837 */
1838void
1839moea_remove_all(mmu_t mmu, vm_page_t m)
1840{
1841	struct  pvo_head *pvo_head;
1842	struct	pvo_entry *pvo, *next_pvo;
1843	pmap_t	pmap;
1844
1845	rw_wlock(&pvh_global_lock);
1846	pvo_head = vm_page_to_pvoh(m);
1847	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1848		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1849
1850		pmap = pvo->pvo_pmap;
1851		PMAP_LOCK(pmap);
1852		moea_pvo_remove(pvo, -1);
1853		PMAP_UNLOCK(pmap);
1854	}
1855	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1856		moea_attr_clear(m, PTE_CHG);
1857		vm_page_dirty(m);
1858	}
1859	vm_page_aflag_clear(m, PGA_WRITEABLE);
1860	rw_wunlock(&pvh_global_lock);
1861}
1862
1863/*
1864 * Allocate a physical page of memory directly from the phys_avail map.
1865 * Can only be called from moea_bootstrap before avail start and end are
1866 * calculated.
1867 */
1868static vm_offset_t
1869moea_bootstrap_alloc(vm_size_t size, u_int align)
1870{
1871	vm_offset_t	s, e;
1872	int		i, j;
1873
1874	size = round_page(size);
1875	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1876		if (align != 0)
1877			s = (phys_avail[i] + align - 1) & ~(align - 1);
1878		else
1879			s = phys_avail[i];
1880		e = s + size;
1881
1882		if (s < phys_avail[i] || e > phys_avail[i + 1])
1883			continue;
1884
1885		if (s == phys_avail[i]) {
1886			phys_avail[i] += size;
1887		} else if (e == phys_avail[i + 1]) {
1888			phys_avail[i + 1] -= size;
1889		} else {
1890			for (j = phys_avail_count * 2; j > i; j -= 2) {
1891				phys_avail[j] = phys_avail[j - 2];
1892				phys_avail[j + 1] = phys_avail[j - 1];
1893			}
1894
1895			phys_avail[i + 3] = phys_avail[i + 1];
1896			phys_avail[i + 1] = s;
1897			phys_avail[i + 2] = e;
1898			phys_avail_count++;
1899		}
1900
1901		return (s);
1902	}
1903	panic("moea_bootstrap_alloc: could not allocate memory");
1904}
1905
1906static void
1907moea_syncicache(vm_offset_t pa, vm_size_t len)
1908{
1909	__syncicache((void *)pa, len);
1910}
1911
1912static int
1913moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1914    vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1915{
1916	struct	pvo_entry *pvo;
1917	u_int	sr;
1918	int	first;
1919	u_int	ptegidx;
1920	int	i;
1921	int     bootstrap;
1922
1923	moea_pvo_enter_calls++;
1924	first = 0;
1925	bootstrap = 0;
1926
1927	/*
1928	 * Compute the PTE Group index.
1929	 */
1930	va &= ~ADDR_POFF;
1931	sr = va_to_sr(pm->pm_sr, va);
1932	ptegidx = va_to_pteg(sr, va);
1933
1934	/*
1935	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1936	 * there is a mapping.
1937	 */
1938	mtx_lock(&moea_table_mutex);
1939	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1940		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1941			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1942			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1943			    (pte_lo & PTE_PP)) {
1944				mtx_unlock(&moea_table_mutex);
1945				return (0);
1946			}
1947			moea_pvo_remove(pvo, -1);
1948			break;
1949		}
1950	}
1951
1952	/*
1953	 * If we aren't overwriting a mapping, try to allocate.
1954	 */
1955	if (moea_initialized) {
1956		pvo = uma_zalloc(zone, M_NOWAIT);
1957	} else {
1958		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1959			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1960			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1961			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1962		}
1963		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1964		moea_bpvo_pool_index++;
1965		bootstrap = 1;
1966	}
1967
1968	if (pvo == NULL) {
1969		mtx_unlock(&moea_table_mutex);
1970		return (ENOMEM);
1971	}
1972
1973	moea_pvo_entries++;
1974	pvo->pvo_vaddr = va;
1975	pvo->pvo_pmap = pm;
1976	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1977	pvo->pvo_vaddr &= ~ADDR_POFF;
1978	if (flags & VM_PROT_EXECUTE)
1979		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1980	if (flags & PVO_WIRED)
1981		pvo->pvo_vaddr |= PVO_WIRED;
1982	if (pvo_head != &moea_pvo_kunmanaged)
1983		pvo->pvo_vaddr |= PVO_MANAGED;
1984	if (bootstrap)
1985		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1986
1987	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1988
1989	/*
1990	 * Add to pmap list
1991	 */
1992	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1993
1994	/*
1995	 * Remember if the list was empty and therefore will be the first
1996	 * item.
1997	 */
1998	if (LIST_FIRST(pvo_head) == NULL)
1999		first = 1;
2000	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2001
2002	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2003		pm->pm_stats.wired_count++;
2004	pm->pm_stats.resident_count++;
2005
2006	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2007	KASSERT(i < 8, ("Invalid PTE index"));
2008	if (i >= 0) {
2009		PVO_PTEGIDX_SET(pvo, i);
2010	} else {
2011		panic("moea_pvo_enter: overflow");
2012		moea_pte_overflow++;
2013	}
2014	mtx_unlock(&moea_table_mutex);
2015
2016	return (first ? ENOENT : 0);
2017}
2018
2019static void
2020moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2021{
2022	struct	pte *pt;
2023
2024	/*
2025	 * If there is an active pte entry, we need to deactivate it (and
2026	 * save the ref & cfg bits).
2027	 */
2028	pt = moea_pvo_to_pte(pvo, pteidx);
2029	if (pt != NULL) {
2030		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2031		mtx_unlock(&moea_table_mutex);
2032		PVO_PTEGIDX_CLR(pvo);
2033	} else {
2034		moea_pte_overflow--;
2035	}
2036
2037	/*
2038	 * Update our statistics.
2039	 */
2040	pvo->pvo_pmap->pm_stats.resident_count--;
2041	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2042		pvo->pvo_pmap->pm_stats.wired_count--;
2043
2044	/*
2045	 * Save the REF/CHG bits into their cache if the page is managed.
2046	 */
2047	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2048		struct	vm_page *pg;
2049
2050		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2051		if (pg != NULL) {
2052			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2053			    (PTE_REF | PTE_CHG));
2054		}
2055	}
2056
2057	/*
2058	 * Remove this PVO from the PV and pmap lists.
2059	 */
2060	LIST_REMOVE(pvo, pvo_vlink);
2061	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2062
2063	/*
2064	 * Remove this from the overflow list and return it to the pool
2065	 * if we aren't going to reuse it.
2066	 */
2067	LIST_REMOVE(pvo, pvo_olink);
2068	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2069		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2070		    moea_upvo_zone, pvo);
2071	moea_pvo_entries--;
2072	moea_pvo_remove_calls++;
2073}
2074
2075static __inline int
2076moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2077{
2078	int	pteidx;
2079
2080	/*
2081	 * We can find the actual pte entry without searching by grabbing
2082	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2083	 * noticing the HID bit.
2084	 */
2085	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2086	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2087		pteidx ^= moea_pteg_mask * 8;
2088
2089	return (pteidx);
2090}
2091
2092static struct pvo_entry *
2093moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2094{
2095	struct	pvo_entry *pvo;
2096	int	ptegidx;
2097	u_int	sr;
2098
2099	va &= ~ADDR_POFF;
2100	sr = va_to_sr(pm->pm_sr, va);
2101	ptegidx = va_to_pteg(sr, va);
2102
2103	mtx_lock(&moea_table_mutex);
2104	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2105		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2106			if (pteidx_p)
2107				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2108			break;
2109		}
2110	}
2111	mtx_unlock(&moea_table_mutex);
2112
2113	return (pvo);
2114}
2115
2116static struct pte *
2117moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2118{
2119	struct	pte *pt;
2120
2121	/*
2122	 * If we haven't been supplied the ptegidx, calculate it.
2123	 */
2124	if (pteidx == -1) {
2125		int	ptegidx;
2126		u_int	sr;
2127
2128		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2129		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2130		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2131	}
2132
2133	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2134	mtx_lock(&moea_table_mutex);
2135
2136	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2137		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2138		    "valid pte index", pvo);
2139	}
2140
2141	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2142		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2143		    "pvo but no valid pte", pvo);
2144	}
2145
2146	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2147		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2148			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2149			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2150		}
2151
2152		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2153		    != 0) {
2154			panic("moea_pvo_to_pte: pvo %p pte does not match "
2155			    "pte %p in moea_pteg_table", pvo, pt);
2156		}
2157
2158		mtx_assert(&moea_table_mutex, MA_OWNED);
2159		return (pt);
2160	}
2161
2162	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2163		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2164		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2165	}
2166
2167	mtx_unlock(&moea_table_mutex);
2168	return (NULL);
2169}
2170
2171/*
2172 * XXX: THIS STUFF SHOULD BE IN pte.c?
2173 */
2174int
2175moea_pte_spill(vm_offset_t addr)
2176{
2177	struct	pvo_entry *source_pvo, *victim_pvo;
2178	struct	pvo_entry *pvo;
2179	int	ptegidx, i, j;
2180	u_int	sr;
2181	struct	pteg *pteg;
2182	struct	pte *pt;
2183
2184	moea_pte_spills++;
2185
2186	sr = mfsrin(addr);
2187	ptegidx = va_to_pteg(sr, addr);
2188
2189	/*
2190	 * Have to substitute some entry.  Use the primary hash for this.
2191	 * Use low bits of timebase as random generator.
2192	 */
2193	pteg = &moea_pteg_table[ptegidx];
2194	mtx_lock(&moea_table_mutex);
2195	__asm __volatile("mftb %0" : "=r"(i));
2196	i &= 7;
2197	pt = &pteg->pt[i];
2198
2199	source_pvo = NULL;
2200	victim_pvo = NULL;
2201	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2202		/*
2203		 * We need to find a pvo entry for this address.
2204		 */
2205		if (source_pvo == NULL &&
2206		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2207		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2208			/*
2209			 * Now found an entry to be spilled into the pteg.
2210			 * The PTE is now valid, so we know it's active.
2211			 */
2212			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2213
2214			if (j >= 0) {
2215				PVO_PTEGIDX_SET(pvo, j);
2216				moea_pte_overflow--;
2217				mtx_unlock(&moea_table_mutex);
2218				return (1);
2219			}
2220
2221			source_pvo = pvo;
2222
2223			if (victim_pvo != NULL)
2224				break;
2225		}
2226
2227		/*
2228		 * We also need the pvo entry of the victim we are replacing
2229		 * so save the R & C bits of the PTE.
2230		 */
2231		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2232		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2233			victim_pvo = pvo;
2234			if (source_pvo != NULL)
2235				break;
2236		}
2237	}
2238
2239	if (source_pvo == NULL) {
2240		mtx_unlock(&moea_table_mutex);
2241		return (0);
2242	}
2243
2244	if (victim_pvo == NULL) {
2245		if ((pt->pte_hi & PTE_HID) == 0)
2246			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2247			    "entry", pt);
2248
2249		/*
2250		 * If this is a secondary PTE, we need to search it's primary
2251		 * pvo bucket for the matching PVO.
2252		 */
2253		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2254		    pvo_olink) {
2255			/*
2256			 * We also need the pvo entry of the victim we are
2257			 * replacing so save the R & C bits of the PTE.
2258			 */
2259			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2260				victim_pvo = pvo;
2261				break;
2262			}
2263		}
2264
2265		if (victim_pvo == NULL)
2266			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2267			    "entry", pt);
2268	}
2269
2270	/*
2271	 * We are invalidating the TLB entry for the EA we are replacing even
2272	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2273	 * contained in the TLB entry.
2274	 */
2275	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2276
2277	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2278	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2279
2280	PVO_PTEGIDX_CLR(victim_pvo);
2281	PVO_PTEGIDX_SET(source_pvo, i);
2282	moea_pte_replacements++;
2283
2284	mtx_unlock(&moea_table_mutex);
2285	return (1);
2286}
2287
2288static __inline struct pvo_entry *
2289moea_pte_spillable_ident(u_int ptegidx)
2290{
2291	struct	pte *pt;
2292	struct	pvo_entry *pvo_walk, *pvo = NULL;
2293
2294	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2295		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2296			continue;
2297
2298		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2299			continue;
2300
2301		pt = moea_pvo_to_pte(pvo_walk, -1);
2302
2303		if (pt == NULL)
2304			continue;
2305
2306		pvo = pvo_walk;
2307
2308		mtx_unlock(&moea_table_mutex);
2309		if (!(pt->pte_lo & PTE_REF))
2310			return (pvo_walk);
2311	}
2312
2313	return (pvo);
2314}
2315
2316static int
2317moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2318{
2319	struct	pte *pt;
2320	struct	pvo_entry *victim_pvo;
2321	int	i;
2322	int	victim_idx;
2323	u_int	pteg_bkpidx = ptegidx;
2324
2325	mtx_assert(&moea_table_mutex, MA_OWNED);
2326
2327	/*
2328	 * First try primary hash.
2329	 */
2330	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2331		if ((pt->pte_hi & PTE_VALID) == 0) {
2332			pvo_pt->pte_hi &= ~PTE_HID;
2333			moea_pte_set(pt, pvo_pt);
2334			return (i);
2335		}
2336	}
2337
2338	/*
2339	 * Now try secondary hash.
2340	 */
2341	ptegidx ^= moea_pteg_mask;
2342
2343	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2344		if ((pt->pte_hi & PTE_VALID) == 0) {
2345			pvo_pt->pte_hi |= PTE_HID;
2346			moea_pte_set(pt, pvo_pt);
2347			return (i);
2348		}
2349	}
2350
2351	/* Try again, but this time try to force a PTE out. */
2352	ptegidx = pteg_bkpidx;
2353
2354	victim_pvo = moea_pte_spillable_ident(ptegidx);
2355	if (victim_pvo == NULL) {
2356		ptegidx ^= moea_pteg_mask;
2357		victim_pvo = moea_pte_spillable_ident(ptegidx);
2358	}
2359
2360	if (victim_pvo == NULL) {
2361		panic("moea_pte_insert: overflow");
2362		return (-1);
2363	}
2364
2365	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2366
2367	if (pteg_bkpidx == ptegidx)
2368		pvo_pt->pte_hi &= ~PTE_HID;
2369	else
2370		pvo_pt->pte_hi |= PTE_HID;
2371
2372	/*
2373	 * Synchronize the sacrifice PTE with its PVO, then mark both
2374	 * invalid. The PVO will be reused when/if the VM system comes
2375	 * here after a fault.
2376	 */
2377	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2378
2379	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2380	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2381
2382	/*
2383	 * Set the new PTE.
2384	 */
2385	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2386	PVO_PTEGIDX_CLR(victim_pvo);
2387	moea_pte_overflow++;
2388	moea_pte_set(pt, pvo_pt);
2389
2390	return (victim_idx & 7);
2391}
2392
2393static boolean_t
2394moea_query_bit(vm_page_t m, int ptebit)
2395{
2396	struct	pvo_entry *pvo;
2397	struct	pte *pt;
2398
2399	rw_assert(&pvh_global_lock, RA_WLOCKED);
2400	if (moea_attr_fetch(m) & ptebit)
2401		return (TRUE);
2402
2403	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2404
2405		/*
2406		 * See if we saved the bit off.  If so, cache it and return
2407		 * success.
2408		 */
2409		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2410			moea_attr_save(m, ptebit);
2411			return (TRUE);
2412		}
2413	}
2414
2415	/*
2416	 * No luck, now go through the hard part of looking at the PTEs
2417	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2418	 * the PTEs.
2419	 */
2420	powerpc_sync();
2421	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2422
2423		/*
2424		 * See if this pvo has a valid PTE.  if so, fetch the
2425		 * REF/CHG bits from the valid PTE.  If the appropriate
2426		 * ptebit is set, cache it and return success.
2427		 */
2428		pt = moea_pvo_to_pte(pvo, -1);
2429		if (pt != NULL) {
2430			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2431			mtx_unlock(&moea_table_mutex);
2432			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2433				moea_attr_save(m, ptebit);
2434				return (TRUE);
2435			}
2436		}
2437	}
2438
2439	return (FALSE);
2440}
2441
2442static u_int
2443moea_clear_bit(vm_page_t m, int ptebit)
2444{
2445	u_int	count;
2446	struct	pvo_entry *pvo;
2447	struct	pte *pt;
2448
2449	rw_assert(&pvh_global_lock, RA_WLOCKED);
2450
2451	/*
2452	 * Clear the cached value.
2453	 */
2454	moea_attr_clear(m, ptebit);
2455
2456	/*
2457	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2458	 * we can reset the right ones).  note that since the pvo entries and
2459	 * list heads are accessed via BAT0 and are never placed in the page
2460	 * table, we don't have to worry about further accesses setting the
2461	 * REF/CHG bits.
2462	 */
2463	powerpc_sync();
2464
2465	/*
2466	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2467	 * valid pte clear the ptebit from the valid pte.
2468	 */
2469	count = 0;
2470	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2471		pt = moea_pvo_to_pte(pvo, -1);
2472		if (pt != NULL) {
2473			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2474			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2475				count++;
2476				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2477			}
2478			mtx_unlock(&moea_table_mutex);
2479		}
2480		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2481	}
2482
2483	return (count);
2484}
2485
2486/*
2487 * Return true if the physical range is encompassed by the battable[idx]
2488 */
2489static int
2490moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2491{
2492	u_int prot;
2493	u_int32_t start;
2494	u_int32_t end;
2495	u_int32_t bat_ble;
2496
2497	/*
2498	 * Return immediately if not a valid mapping
2499	 */
2500	if (!(battable[idx].batu & BAT_Vs))
2501		return (EINVAL);
2502
2503	/*
2504	 * The BAT entry must be cache-inhibited, guarded, and r/w
2505	 * so it can function as an i/o page
2506	 */
2507	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2508	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2509		return (EPERM);
2510
2511	/*
2512	 * The address should be within the BAT range. Assume that the
2513	 * start address in the BAT has the correct alignment (thus
2514	 * not requiring masking)
2515	 */
2516	start = battable[idx].batl & BAT_PBS;
2517	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2518	end = start | (bat_ble << 15) | 0x7fff;
2519
2520	if ((pa < start) || ((pa + size) > end))
2521		return (ERANGE);
2522
2523	return (0);
2524}
2525
2526boolean_t
2527moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2528{
2529	int i;
2530
2531	/*
2532	 * This currently does not work for entries that
2533	 * overlap 256M BAT segments.
2534	 */
2535
2536	for(i = 0; i < 16; i++)
2537		if (moea_bat_mapped(i, pa, size) == 0)
2538			return (0);
2539
2540	return (EFAULT);
2541}
2542
2543/*
2544 * Map a set of physical memory pages into the kernel virtual
2545 * address space. Return a pointer to where it is mapped. This
2546 * routine is intended to be used for mapping device memory,
2547 * NOT real memory.
2548 */
2549void *
2550moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2551{
2552
2553	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2554}
2555
2556void *
2557moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2558{
2559	vm_offset_t va, tmpva, ppa, offset;
2560	int i;
2561
2562	ppa = trunc_page(pa);
2563	offset = pa & PAGE_MASK;
2564	size = roundup(offset + size, PAGE_SIZE);
2565
2566	/*
2567	 * If the physical address lies within a valid BAT table entry,
2568	 * return the 1:1 mapping. This currently doesn't work
2569	 * for regions that overlap 256M BAT segments.
2570	 */
2571	for (i = 0; i < 16; i++) {
2572		if (moea_bat_mapped(i, pa, size) == 0)
2573			return ((void *) pa);
2574	}
2575
2576	va = kva_alloc(size);
2577	if (!va)
2578		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2579
2580	for (tmpva = va; size > 0;) {
2581		moea_kenter_attr(mmu, tmpva, ppa, ma);
2582		tlbie(tmpva);
2583		size -= PAGE_SIZE;
2584		tmpva += PAGE_SIZE;
2585		ppa += PAGE_SIZE;
2586	}
2587
2588	return ((void *)(va + offset));
2589}
2590
2591void
2592moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2593{
2594	vm_offset_t base, offset;
2595
2596	/*
2597	 * If this is outside kernel virtual space, then it's a
2598	 * battable entry and doesn't require unmapping
2599	 */
2600	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2601		base = trunc_page(va);
2602		offset = va & PAGE_MASK;
2603		size = roundup(offset + size, PAGE_SIZE);
2604		kva_free(base, size);
2605	}
2606}
2607
2608static void
2609moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2610{
2611	struct pvo_entry *pvo;
2612	vm_offset_t lim;
2613	vm_paddr_t pa;
2614	vm_size_t len;
2615
2616	PMAP_LOCK(pm);
2617	while (sz > 0) {
2618		lim = round_page(va);
2619		len = MIN(lim - va, sz);
2620		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2621		if (pvo != NULL) {
2622			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2623			    (va & ADDR_POFF);
2624			moea_syncicache(pa, len);
2625		}
2626		va += len;
2627		sz -= len;
2628	}
2629	PMAP_UNLOCK(pm);
2630}
2631
2632vm_offset_t
2633moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2634    vm_size_t *sz)
2635{
2636	if (md->md_vaddr == ~0UL)
2637	    return (md->md_paddr + ofs);
2638	else
2639	    return (md->md_vaddr + ofs);
2640}
2641
2642struct pmap_md *
2643moea_scan_md(mmu_t mmu, struct pmap_md *prev)
2644{
2645	static struct pmap_md md;
2646	struct pvo_entry *pvo;
2647	vm_offset_t va;
2648
2649	if (dumpsys_minidump) {
2650		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2651		if (prev == NULL) {
2652			/* 1st: kernel .data and .bss. */
2653			md.md_index = 1;
2654			md.md_vaddr = trunc_page((uintptr_t)_etext);
2655			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2656			return (&md);
2657		}
2658		switch (prev->md_index) {
2659		case 1:
2660			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2661			md.md_index = 2;
2662			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2663			md.md_size = round_page(msgbufp->msg_size);
2664			break;
2665		case 2:
2666			/* 3rd: kernel VM. */
2667			va = prev->md_vaddr + prev->md_size;
2668			/* Find start of next chunk (from va). */
2669			while (va < virtual_end) {
2670				/* Don't dump the buffer cache. */
2671				if (va >= kmi.buffer_sva &&
2672				    va < kmi.buffer_eva) {
2673					va = kmi.buffer_eva;
2674					continue;
2675				}
2676				pvo = moea_pvo_find_va(kernel_pmap,
2677				    va & ~ADDR_POFF, NULL);
2678				if (pvo != NULL &&
2679				    (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2680					break;
2681				va += PAGE_SIZE;
2682			}
2683			if (va < virtual_end) {
2684				md.md_vaddr = va;
2685				va += PAGE_SIZE;
2686				/* Find last page in chunk. */
2687				while (va < virtual_end) {
2688					/* Don't run into the buffer cache. */
2689					if (va == kmi.buffer_sva)
2690						break;
2691					pvo = moea_pvo_find_va(kernel_pmap,
2692					    va & ~ADDR_POFF, NULL);
2693					if (pvo == NULL ||
2694					    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2695						break;
2696					va += PAGE_SIZE;
2697				}
2698				md.md_size = va - md.md_vaddr;
2699				break;
2700			}
2701			md.md_index = 3;
2702			/* FALLTHROUGH */
2703		default:
2704			return (NULL);
2705		}
2706	} else { /* minidumps */
2707		mem_regions(&pregions, &pregions_sz,
2708		    &regions, &regions_sz);
2709
2710		if (prev == NULL) {
2711			/* first physical chunk. */
2712			md.md_paddr = pregions[0].mr_start;
2713			md.md_size = pregions[0].mr_size;
2714			md.md_vaddr = ~0UL;
2715			md.md_index = 1;
2716		} else if (md.md_index < pregions_sz) {
2717			md.md_paddr = pregions[md.md_index].mr_start;
2718			md.md_size = pregions[md.md_index].mr_size;
2719			md.md_vaddr = ~0UL;
2720			md.md_index++;
2721		} else {
2722			/* There's no next physical chunk. */
2723			return (NULL);
2724		}
2725	}
2726
2727	return (&md);
2728}
2729