en_tx.c revision 324685
1/*
2 * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33
34#define	LINUXKPI_PARAM_PREFIX mlx4_
35
36#include <linux/page.h>
37#include <linux/mlx4/cq.h>
38#include <linux/slab.h>
39#include <linux/mlx4/qp.h>
40#include <linux/if_vlan.h>
41#include <linux/vmalloc.h>
42#include <linux/moduleparam.h>
43
44#include <netinet/in_systm.h>
45#include <netinet/in.h>
46#include <netinet/if_ether.h>
47#include <netinet/ip.h>
48#include <netinet/ip6.h>
49#include <netinet/tcp.h>
50#include <netinet/tcp_lro.h>
51#include <netinet/udp.h>
52
53#include "mlx4_en.h"
54#include "utils.h"
55
56enum {
57	MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */
58	MAX_BF = 256,
59	MIN_PKT_LEN = 17,
60};
61
62static int inline_thold __read_mostly = MAX_INLINE;
63
64module_param_named(inline_thold, inline_thold, uint, 0444);
65MODULE_PARM_DESC(inline_thold, "threshold for using inline data");
66
67int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
68			   struct mlx4_en_tx_ring **pring, u32 size,
69			   u16 stride, int node, int queue_idx)
70{
71	struct mlx4_en_dev *mdev = priv->mdev;
72	struct mlx4_en_tx_ring *ring;
73	uint32_t x;
74	int tmp;
75	int err;
76
77	ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node);
78	if (!ring) {
79		ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL);
80		if (!ring) {
81			en_err(priv, "Failed allocating TX ring\n");
82			return -ENOMEM;
83		}
84	}
85
86	/* Create DMA descriptor TAG */
87	if ((err = -bus_dma_tag_create(
88	    bus_get_dma_tag(mdev->pdev->dev.bsddev),
89	    1,					/* any alignment */
90	    0,					/* no boundary */
91	    BUS_SPACE_MAXADDR,			/* lowaddr */
92	    BUS_SPACE_MAXADDR,			/* highaddr */
93	    NULL, NULL,				/* filter, filterarg */
94	    MLX4_EN_TX_MAX_PAYLOAD_SIZE,	/* maxsize */
95	    MLX4_EN_TX_MAX_MBUF_FRAGS,		/* nsegments */
96	    MLX4_EN_TX_MAX_MBUF_SIZE,		/* maxsegsize */
97	    0,					/* flags */
98	    NULL, NULL,				/* lockfunc, lockfuncarg */
99	    &ring->dma_tag)))
100		goto done;
101
102	ring->size = size;
103	ring->size_mask = size - 1;
104	ring->stride = stride;
105	ring->inline_thold = MAX(MIN_PKT_LEN, MIN(inline_thold, MAX_INLINE));
106	mtx_init(&ring->tx_lock.m, "mlx4 tx", NULL, MTX_DEF);
107	mtx_init(&ring->comp_lock.m, "mlx4 comp", NULL, MTX_DEF);
108
109	/* Allocate the buf ring */
110	ring->br = buf_ring_alloc(MLX4_EN_DEF_TX_QUEUE_SIZE, M_DEVBUF,
111		M_WAITOK, &ring->tx_lock.m);
112	if (ring->br == NULL) {
113		en_err(priv, "Failed allocating tx_info ring\n");
114		err = -ENOMEM;
115		goto err_free_dma_tag;
116	}
117
118	tmp = size * sizeof(struct mlx4_en_tx_info);
119	ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node);
120	if (!ring->tx_info) {
121		ring->tx_info = kzalloc(tmp, GFP_KERNEL);
122		if (!ring->tx_info) {
123			err = -ENOMEM;
124			goto err_ring;
125		}
126	}
127
128	/* Create DMA descriptor MAPs */
129	for (x = 0; x != size; x++) {
130		err = -bus_dmamap_create(ring->dma_tag, 0,
131		    &ring->tx_info[x].dma_map);
132		if (err != 0) {
133			while (x--) {
134				bus_dmamap_destroy(ring->dma_tag,
135				    ring->tx_info[x].dma_map);
136			}
137			goto err_info;
138		}
139	}
140
141	en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
142		 ring->tx_info, tmp);
143
144	ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE);
145
146	/* Allocate HW buffers on provided NUMA node */
147	err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size,
148				 2 * PAGE_SIZE);
149	if (err) {
150		en_err(priv, "Failed allocating hwq resources\n");
151		goto err_dma_map;
152	}
153
154	err = mlx4_en_map_buffer(&ring->wqres.buf);
155	if (err) {
156		en_err(priv, "Failed to map TX buffer\n");
157		goto err_hwq_res;
158	}
159
160	ring->buf = ring->wqres.buf.direct.buf;
161
162	en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d "
163	       "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size,
164	       ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map);
165
166	err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
167				    MLX4_RESERVE_BF_QP);
168	if (err) {
169		en_err(priv, "failed reserving qp for TX ring\n");
170		goto err_map;
171	}
172
173	err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp);
174	if (err) {
175		en_err(priv, "Failed allocating qp %d\n", ring->qpn);
176		goto err_reserve;
177	}
178	ring->qp.event = mlx4_en_sqp_event;
179
180	err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
181	if (err) {
182		en_dbg(DRV, priv, "working without blueflame (%d)", err);
183		ring->bf.uar = &mdev->priv_uar;
184		ring->bf.uar->map = mdev->uar_map;
185		ring->bf_enabled = false;
186	} else
187		ring->bf_enabled = true;
188	ring->queue_index = queue_idx;
189	if (queue_idx < priv->num_tx_rings_p_up )
190		CPU_SET(queue_idx, &ring->affinity_mask);
191
192	*pring = ring;
193	return 0;
194
195err_reserve:
196	mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
197err_map:
198	mlx4_en_unmap_buffer(&ring->wqres.buf);
199err_hwq_res:
200	mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
201err_dma_map:
202	for (x = 0; x != size; x++)
203		bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
204err_info:
205	vfree(ring->tx_info);
206err_ring:
207	buf_ring_free(ring->br, M_DEVBUF);
208err_free_dma_tag:
209	bus_dma_tag_destroy(ring->dma_tag);
210done:
211	kfree(ring);
212	return err;
213}
214
215void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
216			     struct mlx4_en_tx_ring **pring)
217{
218	struct mlx4_en_dev *mdev = priv->mdev;
219	struct mlx4_en_tx_ring *ring = *pring;
220	uint32_t x;
221	en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
222
223	buf_ring_free(ring->br, M_DEVBUF);
224	if (ring->bf_enabled)
225		mlx4_bf_free(mdev->dev, &ring->bf);
226	mlx4_qp_remove(mdev->dev, &ring->qp);
227	mlx4_qp_free(mdev->dev, &ring->qp);
228	mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
229	mlx4_en_unmap_buffer(&ring->wqres.buf);
230	mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
231	for (x = 0; x != ring->size; x++)
232		bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map);
233	vfree(ring->tx_info);
234	mtx_destroy(&ring->tx_lock.m);
235	mtx_destroy(&ring->comp_lock.m);
236	bus_dma_tag_destroy(ring->dma_tag);
237	kfree(ring);
238	*pring = NULL;
239}
240
241int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
242			     struct mlx4_en_tx_ring *ring,
243			     int cq, int user_prio)
244{
245	struct mlx4_en_dev *mdev = priv->mdev;
246	int err;
247
248	ring->cqn = cq;
249	ring->prod = 0;
250	ring->cons = 0xffffffff;
251	ring->last_nr_txbb = 1;
252	ring->poll_cnt = 0;
253	ring->blocked = 0;
254	memset(ring->buf, 0, ring->buf_size);
255
256	ring->qp_state = MLX4_QP_STATE_RST;
257	ring->doorbell_qpn = ring->qp.qpn << 8;
258
259	mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn,
260				ring->cqn, user_prio, &ring->context);
261	if (ring->bf_enabled)
262		ring->context.usr_page = cpu_to_be32(ring->bf.uar->index);
263
264	err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context,
265			       &ring->qp, &ring->qp_state);
266	return err;
267}
268
269void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
270				struct mlx4_en_tx_ring *ring)
271{
272	struct mlx4_en_dev *mdev = priv->mdev;
273
274	mlx4_qp_modify(mdev->dev, NULL, ring->qp_state,
275		       MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp);
276}
277
278static volatile struct mlx4_wqe_data_seg *
279mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg,
280    struct mbuf *mb, int len, __be32 owner_bit)
281{
282	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
283
284	/* copy data into place */
285	m_copydata(mb, 0, len, inl + 4);
286	dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
287	return (dseg);
288}
289
290static void
291mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg,
292    int len, __be32 owner_bit)
293{
294}
295
296static void
297mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
298    struct mlx4_en_tx_ring *ring, u32 index, u8 owner)
299{
300	struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
301	struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *)
302	    (ring->buf + (index * TXBB_SIZE));
303	volatile __be32 *ptr = (__be32 *)tx_desc;
304	const __be32 stamp = cpu_to_be32(STAMP_VAL |
305	    ((u32)owner << STAMP_SHIFT));
306	u32 i;
307
308	/* Stamp the freed descriptor */
309	for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) {
310		*ptr = stamp;
311		ptr += STAMP_DWORDS;
312	}
313}
314
315static u32
316mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
317    struct mlx4_en_tx_ring *ring, u32 index)
318{
319	struct mlx4_en_tx_info *tx_info;
320	struct mbuf *mb;
321
322	tx_info = &ring->tx_info[index];
323	mb = tx_info->mb;
324
325	if (mb == NULL)
326		goto done;
327
328	bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
329	    BUS_DMASYNC_POSTWRITE);
330	bus_dmamap_unload(ring->dma_tag, tx_info->dma_map);
331
332        m_freem(mb);
333done:
334	return (tx_info->nr_txbb);
335}
336
337int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
338{
339	struct mlx4_en_priv *priv = netdev_priv(dev);
340	int cnt = 0;
341
342	/* Skip last polled descriptor */
343	ring->cons += ring->last_nr_txbb;
344	en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
345		 ring->cons, ring->prod);
346
347	if ((u32) (ring->prod - ring->cons) > ring->size) {
348                en_warn(priv, "Tx consumer passed producer!\n");
349		return 0;
350	}
351
352	while (ring->cons != ring->prod) {
353		ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring,
354		    ring->cons & ring->size_mask);
355		ring->cons += ring->last_nr_txbb;
356		cnt++;
357	}
358
359	if (cnt)
360		en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
361
362	return cnt;
363}
364
365static bool
366mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring)
367{
368	int wqs;
369	wqs = ring->size - (ring->prod - ring->cons);
370	return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS)));
371}
372
373static int mlx4_en_process_tx_cq(struct net_device *dev,
374				 struct mlx4_en_cq *cq)
375{
376	struct mlx4_en_priv *priv = netdev_priv(dev);
377	struct mlx4_cq *mcq = &cq->mcq;
378	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
379	struct mlx4_cqe *cqe;
380	u16 index;
381	u16 new_index, ring_index, stamp_index;
382	u32 txbbs_skipped = 0;
383	u32 txbbs_stamp = 0;
384	u32 cons_index = mcq->cons_index;
385	int size = cq->size;
386	u32 size_mask = ring->size_mask;
387	struct mlx4_cqe *buf = cq->buf;
388	int factor = priv->cqe_factor;
389
390	if (!priv->port_up)
391		return 0;
392
393	index = cons_index & size_mask;
394	cqe = &buf[(index << factor) + factor];
395	ring_index = ring->cons & size_mask;
396	stamp_index = ring_index;
397
398	/* Process all completed CQEs */
399	while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
400			cons_index & size)) {
401		/*
402		 * make sure we read the CQE after we read the
403		 * ownership bit
404		 */
405		rmb();
406
407		if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
408			     MLX4_CQE_OPCODE_ERROR)) {
409			en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n",
410			       ((struct mlx4_err_cqe *)cqe)->
411				       vendor_err_syndrome,
412			       ((struct mlx4_err_cqe *)cqe)->syndrome);
413		}
414
415		/* Skip over last polled CQE */
416		new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
417
418		do {
419			txbbs_skipped += ring->last_nr_txbb;
420			ring_index = (ring_index + ring->last_nr_txbb) & size_mask;
421			/* free next descriptor */
422			ring->last_nr_txbb = mlx4_en_free_tx_desc(
423			    priv, ring, ring_index);
424			mlx4_en_stamp_wqe(priv, ring, stamp_index,
425					  !!((ring->cons + txbbs_stamp) &
426						ring->size));
427			stamp_index = ring_index;
428			txbbs_stamp = txbbs_skipped;
429		} while (ring_index != new_index);
430
431		++cons_index;
432		index = cons_index & size_mask;
433		cqe = &buf[(index << factor) + factor];
434	}
435
436
437	/*
438	 * To prevent CQ overflow we first update CQ consumer and only then
439	 * the ring consumer.
440	 */
441	mcq->cons_index = cons_index;
442	mlx4_cq_set_ci(mcq);
443	wmb();
444	ring->cons += txbbs_skipped;
445
446	/* Wakeup Tx queue if it was stopped and ring is not full */
447	if (unlikely(ring->blocked) && !mlx4_en_tx_ring_is_full(ring)) {
448		ring->blocked = 0;
449		if (atomic_fetchadd_int(&priv->blocked, -1) == 1)
450			atomic_clear_int(&dev->if_drv_flags ,IFF_DRV_OACTIVE);
451		ring->wake_queue++;
452		priv->port_stats.wake_queue++;
453	}
454	return (0);
455}
456
457void mlx4_en_tx_irq(struct mlx4_cq *mcq)
458{
459	struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
460	struct mlx4_en_priv *priv = netdev_priv(cq->dev);
461	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
462
463	if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock))
464		return;
465	mlx4_en_process_tx_cq(cq->dev, cq);
466	mod_timer(&cq->timer, jiffies + 1);
467	spin_unlock(&ring->comp_lock);
468}
469
470void mlx4_en_poll_tx_cq(unsigned long data)
471{
472	struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data;
473	struct mlx4_en_priv *priv = netdev_priv(cq->dev);
474	struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring];
475	u32 inflight;
476
477	INC_PERF_COUNTER(priv->pstats.tx_poll);
478
479	if (priv->port_up == 0)
480		return;
481	if (!spin_trylock(&ring->comp_lock)) {
482		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
483		return;
484	}
485	mlx4_en_process_tx_cq(cq->dev, cq);
486	inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb);
487
488	/* If there are still packets in flight and the timer has not already
489	 * been scheduled by the Tx routine then schedule it here to guarantee
490	 * completion processing of these packets */
491	if (inflight && priv->port_up)
492		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
493
494	spin_unlock(&ring->comp_lock);
495}
496
497static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind)
498{
499	struct mlx4_en_cq *cq = priv->tx_cq[tx_ind];
500	struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
501
502	if (priv->port_up == 0)
503		return;
504
505	/* If we don't have a pending timer, set one up to catch our recent
506	   post in case the interface becomes idle */
507	if (!timer_pending(&cq->timer))
508		mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT);
509
510	/* Poll the CQ every mlx4_en_TX_MODER_POLL packets */
511	if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0)
512		if (spin_trylock(&ring->comp_lock)) {
513			mlx4_en_process_tx_cq(priv->dev, cq);
514			spin_unlock(&ring->comp_lock);
515		}
516}
517
518static u16
519mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb)
520{
521	u16 retval;
522
523	/* only copy from first fragment, if possible */
524	retval = MIN(ring->inline_thold, mb->m_len);
525
526	/* check for too little data */
527	if (unlikely(retval < MIN_PKT_LEN))
528		retval = MIN(ring->inline_thold, mb->m_pkthdr.len);
529	return (retval);
530}
531
532static int
533mlx4_en_get_header_size(struct mbuf *mb)
534{
535	struct ether_vlan_header *eh;
536        struct tcphdr *th;
537        struct ip *ip;
538        int ip_hlen, tcp_hlen;
539	struct ip6_hdr *ip6;
540	uint16_t eth_type;
541	int eth_hdr_len;
542
543	eh = mtod(mb, struct ether_vlan_header *);
544	if (mb->m_len < ETHER_HDR_LEN)
545		return (0);
546	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
547		eth_type = ntohs(eh->evl_proto);
548		eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
549	} else {
550		eth_type = ntohs(eh->evl_encap_proto);
551		eth_hdr_len = ETHER_HDR_LEN;
552	}
553	if (mb->m_len < eth_hdr_len)
554		return (0);
555	switch (eth_type) {
556	case ETHERTYPE_IP:
557		ip = (struct ip *)(mb->m_data + eth_hdr_len);
558		if (mb->m_len < eth_hdr_len + sizeof(*ip))
559			return (0);
560		if (ip->ip_p != IPPROTO_TCP)
561			return (0);
562		ip_hlen = ip->ip_hl << 2;
563		eth_hdr_len += ip_hlen;
564		break;
565	case ETHERTYPE_IPV6:
566		ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len);
567		if (mb->m_len < eth_hdr_len + sizeof(*ip6))
568			return (0);
569		if (ip6->ip6_nxt != IPPROTO_TCP)
570			return (0);
571		eth_hdr_len += sizeof(*ip6);
572		break;
573	default:
574		return (0);
575	}
576	if (mb->m_len < eth_hdr_len + sizeof(*th))
577		return (0);
578	th = (struct tcphdr *)(mb->m_data + eth_hdr_len);
579	tcp_hlen = th->th_off << 2;
580	eth_hdr_len += tcp_hlen;
581	if (mb->m_len < eth_hdr_len)
582		return (0);
583	return (eth_hdr_len);
584}
585
586static volatile struct mlx4_wqe_data_seg *
587mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg,
588    struct mbuf *mb, int len, __be32 owner_bit)
589{
590	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
591	const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
592
593	if (unlikely(len < MIN_PKT_LEN)) {
594		m_copydata(mb, 0, len, inl + 4);
595		memset(inl + 4 + len, 0, MIN_PKT_LEN - len);
596		dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT);
597	} else if (len <= spc) {
598		m_copydata(mb, 0, len, inl + 4);
599		dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT);
600	} else {
601		m_copydata(mb, 0, spc, inl + 4);
602		m_copydata(mb, spc, len - spc, inl + 8 + spc);
603		dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT);
604	}
605	return (dseg);
606}
607
608static void
609mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg,
610    int len, __be32 owner_bit)
611{
612	uint8_t *inl = __DEVOLATILE(uint8_t *, dseg);
613	const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4;
614
615	if (unlikely(len < MIN_PKT_LEN)) {
616		*(volatile uint32_t *)inl =
617		    SET_BYTE_COUNT((1 << 31) | MIN_PKT_LEN);
618	} else if (len <= spc) {
619		*(volatile uint32_t *)inl =
620		    SET_BYTE_COUNT((1 << 31) | len);
621	} else {
622		*(volatile uint32_t *)(inl + 4 + spc) =
623		    SET_BYTE_COUNT((1 << 31) | (len - spc));
624		wmb();
625		*(volatile uint32_t *)inl =
626		    SET_BYTE_COUNT((1 << 31) | spc);
627	}
628}
629
630static unsigned long hashrandom;
631static void hashrandom_init(void *arg)
632{
633	hashrandom = random();
634}
635SYSINIT(hashrandom_init, SI_SUB_KLD, SI_ORDER_SECOND, &hashrandom_init, NULL);
636
637u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb)
638{
639	struct mlx4_en_priv *priv = netdev_priv(dev);
640	u32 rings_p_up = priv->num_tx_rings_p_up;
641	u32 up = 0;
642	u32 queue_index;
643
644#if (MLX4_EN_NUM_UP > 1)
645	/* Obtain VLAN information if present */
646	if (mb->m_flags & M_VLANTAG) {
647		u32 vlan_tag = mb->m_pkthdr.ether_vtag;
648	        up = (vlan_tag >> 13) % MLX4_EN_NUM_UP;
649	}
650#endif
651	queue_index = mlx4_en_hashmbuf(MLX4_F_HASHL3 | MLX4_F_HASHL4, mb, hashrandom);
652
653	return ((queue_index % rings_p_up) + (up * rings_p_up));
654}
655
656static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt)
657{
658	__iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8);
659}
660
661static int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp)
662{
663	enum {
664		DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT,
665		CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE |
666		    MLX4_WQE_CTRL_SOLICITED),
667	};
668	bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS];
669	volatile struct mlx4_wqe_data_seg *dseg;
670	volatile struct mlx4_wqe_data_seg *dseg_inline;
671	volatile struct mlx4_en_tx_desc *tx_desc;
672	struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind];
673	struct ifnet *ifp = priv->dev;
674	struct mlx4_en_tx_info *tx_info;
675	struct mbuf *mb = *mbp;
676	struct mbuf *m;
677	__be32 owner_bit;
678	int nr_segs;
679	int pad;
680	int err;
681	u32 bf_size;
682	u32 bf_prod;
683	u32 opcode;
684	u16 index;
685	u16 ds_cnt;
686	u16 ihs;
687
688	if (unlikely(!priv->port_up)) {
689		err = EINVAL;
690		goto tx_drop;
691	}
692
693	/* check if TX ring is full */
694	if (unlikely(mlx4_en_tx_ring_is_full(ring))) {
695		/* every full native Tx ring stops queue */
696		if (ring->blocked == 0)
697			atomic_add_int(&priv->blocked, 1);
698		/* Set HW-queue-is-full flag */
699		atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
700		priv->port_stats.queue_stopped++;
701		ring->blocked = 1;
702		ring->queue_stopped++;
703
704		/* Use interrupts to find out when queue opened */
705		mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]);
706		return (ENOBUFS);
707	}
708
709	/* sanity check we are not wrapping around */
710	KASSERT(((~ring->prod) & ring->size_mask) >=
711	    (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring"));
712
713	/* Track current inflight packets for performance analysis */
714	AVG_PERF_COUNTER(priv->pstats.inflight_avg,
715			 (u32) (ring->prod - ring->cons - 1));
716
717	/* Track current mbuf packet header length */
718	AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len);
719
720	/* Grab an index and try to transmit packet */
721	owner_bit = (ring->prod & ring->size) ?
722		cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0;
723	index = ring->prod & ring->size_mask;
724	tx_desc = (volatile struct mlx4_en_tx_desc *)
725	    (ring->buf + index * TXBB_SIZE);
726	tx_info = &ring->tx_info[index];
727	dseg = &tx_desc->data;
728
729	/* send a copy of the frame to the BPF listener, if any */
730	if (ifp != NULL && ifp->if_bpf != NULL)
731		ETHER_BPF_MTAP(ifp, mb);
732
733	/* get default flags */
734	tx_desc->ctrl.srcrb_flags = CTRL_FLAGS;
735
736	if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
737		tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
738
739	if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP |
740	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
741		tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM);
742
743	/* do statistics */
744	if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) {
745		priv->port_stats.tx_chksum_offload++;
746		ring->tx_csum++;
747	}
748
749	/* check for VLAN tag */
750	if (mb->m_flags & M_VLANTAG) {
751		tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag);
752		tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN;
753	} else {
754		tx_desc->ctrl.vlan_tag = 0;
755		tx_desc->ctrl.ins_vlan = 0;
756	}
757
758	if (unlikely(mlx4_is_mfunc(priv->mdev->dev) || priv->validate_loopback)) {
759		/*
760		 * Copy destination MAC address to WQE. This allows
761		 * loopback in eSwitch, so that VFs and PF can
762		 * communicate with each other:
763		 */
764		m_copydata(mb, 0, 2, __DEVOLATILE(void *, &tx_desc->ctrl.srcrb_flags16[0]));
765		m_copydata(mb, 2, 4, __DEVOLATILE(void *, &tx_desc->ctrl.imm));
766	} else {
767		/* clear immediate field */
768		tx_desc->ctrl.imm = 0;
769	}
770
771	/* Handle LSO (TSO) packets */
772	if (mb->m_pkthdr.csum_flags & CSUM_TSO) {
773		u32 payload_len;
774		u32 mss = mb->m_pkthdr.tso_segsz;
775		u32 num_pkts;
776
777		opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) |
778		    owner_bit;
779		ihs = mlx4_en_get_header_size(mb);
780		if (unlikely(ihs > MAX_INLINE)) {
781			ring->oversized_packets++;
782			err = EINVAL;
783			goto tx_drop;
784		}
785		tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs);
786		payload_len = mb->m_pkthdr.len - ihs;
787		if (unlikely(payload_len == 0))
788			num_pkts = 1;
789		else
790			num_pkts = DIV_ROUND_UP(payload_len, mss);
791		ring->bytes += payload_len + (num_pkts * ihs);
792		ring->packets += num_pkts;
793		ring->tso_packets++;
794		/* store pointer to inline header */
795		dseg_inline = dseg;
796		/* copy data inline */
797		dseg = mlx4_en_store_inline_lso_data(dseg,
798		    mb, ihs, owner_bit);
799	} else {
800		opcode = cpu_to_be32(MLX4_OPCODE_SEND) |
801		    owner_bit;
802		ihs = mlx4_en_get_inline_hdr_size(ring, mb);
803		ring->bytes += max_t (unsigned int,
804		    mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
805		ring->packets++;
806		/* store pointer to inline header */
807		dseg_inline = dseg;
808		/* copy data inline */
809		dseg = mlx4_en_store_inline_data(dseg,
810		    mb, ihs, owner_bit);
811	}
812	m_adj(mb, ihs);
813
814	err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
815	    mb, segs, &nr_segs, BUS_DMA_NOWAIT);
816	if (unlikely(err == EFBIG)) {
817		/* Too many mbuf fragments */
818		ring->defrag_attempts++;
819		m = m_defrag(mb, M_NOWAIT);
820		if (m == NULL) {
821			ring->oversized_packets++;
822			goto tx_drop;
823		}
824		mb = m;
825		/* Try again */
826		err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map,
827		    mb, segs, &nr_segs, BUS_DMA_NOWAIT);
828	}
829	/* catch errors */
830	if (unlikely(err != 0)) {
831		ring->oversized_packets++;
832		goto tx_drop;
833	}
834	/* If there were no errors and we didn't load anything, don't sync. */
835	if (nr_segs != 0) {
836		/* make sure all mbuf data is written to RAM */
837		bus_dmamap_sync(ring->dma_tag, tx_info->dma_map,
838		    BUS_DMASYNC_PREWRITE);
839	} else {
840		/* All data was inlined, free the mbuf. */
841		bus_dmamap_unload(ring->dma_tag, tx_info->dma_map);
842		m_freem(mb);
843		mb = NULL;
844	}
845
846	/* compute number of DS needed */
847	ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs;
848
849	/*
850	 * Check if the next request can wrap around and fill the end
851	 * of the current request with zero immediate data:
852	 */
853	pad = DIV_ROUND_UP(ds_cnt, DS_FACT);
854	pad = (~(ring->prod + pad)) & ring->size_mask;
855
856	if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) {
857		/*
858		 * Compute the least number of DS blocks we need to
859		 * pad in order to achieve a TX ring wraparound:
860		 */
861		pad = (DS_FACT * (pad + 1));
862	} else {
863		/*
864		 * The hardware will automatically jump to the next
865		 * TXBB. No need for padding.
866		 */
867		pad = 0;
868	}
869
870	/* compute total number of DS blocks */
871	ds_cnt += pad;
872	/*
873	 * When modifying this code, please ensure that the following
874	 * computation is always less than or equal to 0x3F:
875	 *
876	 * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) +
877	 * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT)
878	 *
879	 * Else the "ds_cnt" variable can become too big.
880	 */
881	tx_desc->ctrl.fence_size = (ds_cnt & 0x3f);
882
883	/* store pointer to mbuf */
884	tx_info->mb = mb;
885	tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT);
886	bf_size = ds_cnt * DS_SIZE_ALIGNMENT;
887	bf_prod = ring->prod;
888
889	/* compute end of "dseg" array */
890	dseg += nr_segs + pad;
891
892	/* pad using zero immediate dseg */
893	while (pad--) {
894		dseg--;
895		dseg->addr = 0;
896		dseg->lkey = 0;
897		wmb();
898		dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
899	}
900
901	/* fill segment list */
902	while (nr_segs--) {
903		if (unlikely(segs[nr_segs].ds_len == 0)) {
904			dseg--;
905			dseg->addr = 0;
906			dseg->lkey = 0;
907			wmb();
908			dseg->byte_count = SET_BYTE_COUNT((1 << 31)|0);
909		} else {
910			dseg--;
911			dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr);
912			dseg->lkey = cpu_to_be32(priv->mdev->mr.key);
913			wmb();
914			dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len);
915		}
916	}
917
918	wmb();
919
920	/* write owner bits in reverse order */
921	if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO))
922		mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit);
923	else
924		mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit);
925
926	/* update producer counter */
927	ring->prod += tx_info->nr_txbb;
928
929	if (ring->bf_enabled && bf_size <= MAX_BF &&
930	    (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_VLAN)) {
931
932		/* store doorbell number */
933		*(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn);
934
935		/* or in producer number for this WQE */
936		opcode |= cpu_to_be32((bf_prod & 0xffff) << 8);
937
938		/*
939		 * Ensure the new descriptor hits memory before
940		 * setting ownership of this descriptor to HW:
941		 */
942		wmb();
943		tx_desc->ctrl.owner_opcode = opcode;
944		wmb();
945		mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset,
946		     (volatile unsigned long *) &tx_desc->ctrl, bf_size);
947		wmb();
948		ring->bf.offset ^= ring->bf.buf_size;
949	} else {
950		/*
951		 * Ensure the new descriptor hits memory before
952		 * setting ownership of this descriptor to HW:
953		 */
954		wmb();
955		tx_desc->ctrl.owner_opcode = opcode;
956		wmb();
957		writel(cpu_to_be32(ring->doorbell_qpn),
958		    ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL);
959	}
960
961	return (0);
962tx_drop:
963	*mbp = NULL;
964	m_freem(mb);
965	return (err);
966}
967
968static int
969mlx4_en_transmit_locked(struct ifnet *dev, int tx_ind, struct mbuf *m)
970{
971	struct mlx4_en_priv *priv = netdev_priv(dev);
972	struct mlx4_en_tx_ring *ring;
973	struct mbuf *next;
974	int enqueued, err = 0;
975
976	ring = priv->tx_ring[tx_ind];
977	if ((dev->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
978	    IFF_DRV_RUNNING || priv->port_up == 0) {
979		if (m != NULL)
980			err = drbr_enqueue(dev, ring->br, m);
981		return (err);
982	}
983
984	enqueued = 0;
985	if (m != NULL)
986		/*
987		 * If we can't insert mbuf into drbr, try to xmit anyway.
988		 * We keep the error we got so we could return that after xmit.
989		 */
990		err = drbr_enqueue(dev, ring->br, m);
991
992	/* Process the queue */
993	while ((next = drbr_peek(dev, ring->br)) != NULL) {
994		if (mlx4_en_xmit(priv, tx_ind, &next) != 0) {
995			if (next == NULL) {
996				drbr_advance(dev, ring->br);
997			} else {
998				drbr_putback(dev, ring->br, next);
999			}
1000			break;
1001		}
1002		drbr_advance(dev, ring->br);
1003		enqueued++;
1004		if ((dev->if_drv_flags & IFF_DRV_RUNNING) == 0)
1005			break;
1006	}
1007
1008	if (enqueued > 0)
1009		ring->watchdog_time = ticks;
1010
1011	return (err);
1012}
1013
1014void
1015mlx4_en_tx_que(void *context, int pending)
1016{
1017	struct mlx4_en_tx_ring *ring;
1018	struct mlx4_en_priv *priv;
1019	struct net_device *dev;
1020	struct mlx4_en_cq *cq;
1021	int tx_ind;
1022	cq = context;
1023	dev = cq->dev;
1024	priv = dev->if_softc;
1025	tx_ind = cq->ring;
1026	ring = priv->tx_ring[tx_ind];
1027
1028	if (priv->port_up != 0 &&
1029	    (dev->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1030		mlx4_en_xmit_poll(priv, tx_ind);
1031		spin_lock(&ring->tx_lock);
1032                if (!drbr_empty(dev, ring->br))
1033			mlx4_en_transmit_locked(dev, tx_ind, NULL);
1034		spin_unlock(&ring->tx_lock);
1035	}
1036}
1037
1038int
1039mlx4_en_transmit(struct ifnet *dev, struct mbuf *m)
1040{
1041	struct mlx4_en_priv *priv = netdev_priv(dev);
1042	struct mlx4_en_tx_ring *ring;
1043	struct mlx4_en_cq *cq;
1044	int i, err = 0;
1045
1046	if (priv->port_up == 0) {
1047		m_freem(m);
1048		return (ENETDOWN);
1049	}
1050
1051	/* Compute which queue to use */
1052	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
1053		i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num;
1054	}
1055	else {
1056		i = mlx4_en_select_queue(dev, m);
1057	}
1058
1059	ring = priv->tx_ring[i];
1060	if (spin_trylock(&ring->tx_lock)) {
1061		err = mlx4_en_transmit_locked(dev, i, m);
1062		spin_unlock(&ring->tx_lock);
1063		/* Poll CQ here */
1064		mlx4_en_xmit_poll(priv, i);
1065	} else {
1066		err = drbr_enqueue(dev, ring->br, m);
1067		cq = priv->tx_cq[i];
1068		taskqueue_enqueue(cq->tq, &cq->cq_task);
1069	}
1070
1071	return (err);
1072}
1073
1074/*
1075 * Flush ring buffers.
1076 */
1077void
1078mlx4_en_qflush(struct ifnet *dev)
1079{
1080	struct mlx4_en_priv *priv = netdev_priv(dev);
1081	struct mlx4_en_tx_ring *ring;
1082	struct mbuf *m;
1083
1084	if (priv->port_up == 0)
1085		return;
1086
1087	for (int i = 0; i < priv->tx_ring_num; i++) {
1088		ring = priv->tx_ring[i];
1089		spin_lock(&ring->tx_lock);
1090		while ((m = buf_ring_dequeue_sc(ring->br)) != NULL)
1091			m_freem(m);
1092		spin_unlock(&ring->tx_lock);
1093	}
1094	if_qflush(dev);
1095}
1096