pf_norm.c revision 284574
1/*-
2 * Copyright 2001 Niels Provos <provos@citi.umich.edu>
3 * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/netpfil/pf/pf_norm.c 284574 2015-06-18 20:43:16Z kp $");
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34#include "opt_pf.h"
35
36#include <sys/param.h>
37#include <sys/lock.h>
38#include <sys/mbuf.h>
39#include <sys/mutex.h>
40#include <sys/refcount.h>
41#include <sys/rwlock.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/vnet.h>
46#include <net/pfvar.h>
47#include <net/if_pflog.h>
48
49#include <netinet/in.h>
50#include <netinet/ip.h>
51#include <netinet/ip_var.h>
52#include <netinet6/ip6_var.h>
53#include <netinet/tcp.h>
54#include <netinet/tcp_fsm.h>
55#include <netinet/tcp_seq.h>
56
57#ifdef INET6
58#include <netinet/ip6.h>
59#endif /* INET6 */
60
61struct pf_frent {
62	TAILQ_ENTRY(pf_frent)	fr_next;
63	struct mbuf	*fe_m;
64	uint16_t	fe_hdrlen;	/* ipv4 header lenght with ip options
65					   ipv6, extension, fragment header */
66	uint16_t	fe_extoff;	/* last extension header offset or 0 */
67	uint16_t	fe_len;		/* fragment length */
68	uint16_t	fe_off;		/* fragment offset */
69	uint16_t	fe_mff;		/* more fragment flag */
70};
71
72struct pf_fragment_cmp {
73	struct pf_addr	frc_src;
74	struct pf_addr	frc_dst;
75	uint32_t	frc_id;
76	sa_family_t	frc_af;
77	uint8_t		frc_proto;
78	uint8_t		frc_direction;
79};
80
81struct pf_fragment {
82	struct pf_fragment_cmp	fr_key;
83#define fr_src	fr_key.frc_src
84#define fr_dst	fr_key.frc_dst
85#define fr_id	fr_key.frc_id
86#define fr_af	fr_key.frc_af
87#define fr_proto	fr_key.frc_proto
88#define fr_direction	fr_key.frc_direction
89
90	RB_ENTRY(pf_fragment) fr_entry;
91	TAILQ_ENTRY(pf_fragment) frag_next;
92	uint8_t		fr_flags;	/* status flags */
93#define PFFRAG_SEENLAST		0x0001	/* Seen the last fragment for this */
94#define PFFRAG_NOBUFFER		0x0002	/* Non-buffering fragment cache */
95#define PFFRAG_DROP		0x0004	/* Drop all fragments */
96#define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
97	uint16_t	fr_max;		/* fragment data max */
98	uint32_t	fr_timeout;
99	uint16_t	fr_maxlen;	/* maximum length of single fragment */
100	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
101};
102
103struct pf_fragment_tag {
104	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
105	uint16_t	ft_extoff;	/* last extension header offset or 0 */
106	uint16_t	ft_maxlen;	/* maximum fragment payload length */
107	uint32_t	ft_id;		/* fragment id */
108};
109
110static struct mtx pf_frag_mtx;
111#define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
112#define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
113#define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
114
115VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
116
117static VNET_DEFINE(uma_zone_t, pf_frent_z);
118#define	V_pf_frent_z	VNET(pf_frent_z)
119static VNET_DEFINE(uma_zone_t, pf_frag_z);
120#define	V_pf_frag_z	VNET(pf_frag_z)
121
122TAILQ_HEAD(pf_fragqueue, pf_fragment);
123TAILQ_HEAD(pf_cachequeue, pf_fragment);
124static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
125#define	V_pf_fragqueue			VNET(pf_fragqueue)
126static VNET_DEFINE(struct pf_cachequeue,	pf_cachequeue);
127#define	V_pf_cachequeue			VNET(pf_cachequeue)
128RB_HEAD(pf_frag_tree, pf_fragment);
129static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
130#define	V_pf_frag_tree			VNET(pf_frag_tree)
131static VNET_DEFINE(struct pf_frag_tree,	pf_cache_tree);
132#define	V_pf_cache_tree			VNET(pf_cache_tree)
133static int		 pf_frag_compare(struct pf_fragment *,
134			    struct pf_fragment *);
135static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
136static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
137
138/* Private prototypes */
139static void		 pf_free_fragment(struct pf_fragment *);
140static void		 pf_remove_fragment(struct pf_fragment *);
141static int		 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
142			    struct tcphdr *, int, sa_family_t);
143#ifdef INET
144static void		 pf_scrub_ip(struct mbuf **, u_int32_t, u_int8_t,
145			    u_int8_t);
146static void		 pf_flush_fragments(void);
147static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
148			struct pf_frag_tree *tree);
149struct pf_frent		*pf_create_fragment(u_short *);
150static int		pf_reassemble(struct mbuf **, struct ip *, int,
151			    u_short *);
152int			pf_reassemble6(struct mbuf **, struct ip6_hdr *,
153			    struct ip6_frag *, uint16_t, uint16_t, int,
154			    u_short *);
155static struct mbuf	*pf_fragcache(struct mbuf **, struct ip*,
156			    struct pf_fragment **, int, int, int *);
157static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
158			    struct pf_frent *, u_short *);
159int			pf_isfull_fragment(struct pf_fragment *);
160struct mbuf		*pf_join_fragment(struct pf_fragment *);
161
162
163#endif /* INET */
164#ifdef INET6
165static void		 pf_scrub_ip6(struct mbuf **, u_int8_t);
166#endif
167#define	DPFPRINTF(x) do {				\
168	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
169		printf("%s: ", __func__);		\
170		printf x ;				\
171	}						\
172} while(0)
173
174static void
175pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
176{
177
178	key->frc_src.v4 = ip->ip_src;
179	key->frc_dst.v4 = ip->ip_dst;
180	key->frc_af = AF_INET;
181	key->frc_proto = ip->ip_p;
182	key->frc_id = ip->ip_id;
183	key->frc_direction = dir;
184}
185
186void
187pf_normalize_init(void)
188{
189
190	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
191	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
193	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
194	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
195	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
196	    UMA_ALIGN_PTR, 0);
197
198	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
199	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
200	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
201	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
202
203	mtx_init(&pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
204
205	TAILQ_INIT(&V_pf_fragqueue);
206	TAILQ_INIT(&V_pf_cachequeue);
207}
208
209void
210pf_normalize_cleanup(void)
211{
212
213	uma_zdestroy(V_pf_state_scrub_z);
214	uma_zdestroy(V_pf_frent_z);
215	uma_zdestroy(V_pf_frag_z);
216
217	mtx_destroy(&pf_frag_mtx);
218}
219
220static int
221pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
222{
223	int	diff;
224
225	if ((diff = a->fr_id - b->fr_id) != 0)
226		return (diff);
227	if ((diff = a->fr_proto - b->fr_proto) != 0)
228		return (diff);
229	if ((diff = a->fr_af - b->fr_af) != 0)
230		return (diff);
231	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
232		return (diff);
233	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
234		return (diff);
235	return (0);
236}
237
238void
239pf_purge_expired_fragments(void)
240{
241	struct pf_fragment	*frag;
242	u_int32_t		 expire = time_uptime -
243				    V_pf_default_rule.timeout[PFTM_FRAG];
244
245	PF_FRAG_LOCK();
246	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
247		KASSERT((BUFFER_FRAGMENTS(frag)),
248		    ("BUFFER_FRAGMENTS(frag) == 0: %s", __FUNCTION__));
249		if (frag->fr_timeout > expire)
250			break;
251
252		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
253		pf_free_fragment(frag);
254	}
255
256	while ((frag = TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue)) != NULL) {
257		KASSERT((!BUFFER_FRAGMENTS(frag)),
258		    ("BUFFER_FRAGMENTS(frag) != 0: %s", __FUNCTION__));
259		if (frag->fr_timeout > expire)
260			break;
261
262		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
263		pf_free_fragment(frag);
264		KASSERT((TAILQ_EMPTY(&V_pf_cachequeue) ||
265		    TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue) != frag),
266		    ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
267		    __FUNCTION__));
268	}
269	PF_FRAG_UNLOCK();
270}
271
272#ifdef INET
273/*
274 * Try to flush old fragments to make space for new ones
275 */
276static void
277pf_flush_fragments(void)
278{
279	struct pf_fragment	*frag, *cache;
280	int			 goal;
281
282	PF_FRAG_ASSERT();
283
284	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
285	DPFPRINTF(("trying to free %d frag entriess\n", goal));
286	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
287		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
288		if (frag)
289			pf_free_fragment(frag);
290		cache = TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue);
291		if (cache)
292			pf_free_fragment(cache);
293		if (frag == NULL && cache == NULL)
294			break;
295	}
296}
297#endif /* INET */
298
299/* Frees the fragments and all associated entries */
300static void
301pf_free_fragment(struct pf_fragment *frag)
302{
303	struct pf_frent		*frent;
304
305	PF_FRAG_ASSERT();
306
307	/* Free all fragments */
308	if (BUFFER_FRAGMENTS(frag)) {
309		for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
310		    frent = TAILQ_FIRST(&frag->fr_queue)) {
311			TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
312
313			m_freem(frent->fe_m);
314			uma_zfree(V_pf_frent_z, frent);
315		}
316	} else {
317		for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
318		    frent = TAILQ_FIRST(&frag->fr_queue)) {
319			TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
320
321			KASSERT((TAILQ_EMPTY(&frag->fr_queue) ||
322			    TAILQ_FIRST(&frag->fr_queue)->fe_off >
323			    frent->fe_len),
324			    ("! (TAILQ_EMPTY() || TAILQ_FIRST()->fe_off >"
325			    " frent->fe_len): %s", __func__));
326
327			uma_zfree(V_pf_frent_z, frent);
328		}
329	}
330
331	pf_remove_fragment(frag);
332}
333
334#ifdef INET
335static struct pf_fragment *
336pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
337{
338	struct pf_fragment	*frag;
339
340	PF_FRAG_ASSERT();
341
342	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
343	if (frag != NULL) {
344		/* XXX Are we sure we want to update the timeout? */
345		frag->fr_timeout = time_uptime;
346		if (BUFFER_FRAGMENTS(frag)) {
347			TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
348			TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
349		} else {
350			TAILQ_REMOVE(&V_pf_cachequeue, frag, frag_next);
351			TAILQ_INSERT_HEAD(&V_pf_cachequeue, frag, frag_next);
352		}
353	}
354
355	return (frag);
356}
357#endif /* INET */
358
359/* Removes a fragment from the fragment queue and frees the fragment */
360
361static void
362pf_remove_fragment(struct pf_fragment *frag)
363{
364
365	PF_FRAG_ASSERT();
366
367	if (BUFFER_FRAGMENTS(frag)) {
368		RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
369		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
370		uma_zfree(V_pf_frag_z, frag);
371	} else {
372		RB_REMOVE(pf_frag_tree, &V_pf_cache_tree, frag);
373		TAILQ_REMOVE(&V_pf_cachequeue, frag, frag_next);
374		uma_zfree(V_pf_frag_z, frag);
375	}
376}
377
378#ifdef INET
379struct pf_frent *
380pf_create_fragment(u_short *reason)
381{
382	struct pf_frent *frent;
383
384	PF_FRAG_ASSERT();
385
386	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
387	if (frent == NULL) {
388		pf_flush_fragments();
389		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
390		if (frent == NULL) {
391			REASON_SET(reason, PFRES_MEMORY);
392			return (NULL);
393		}
394	}
395
396	return (frent);
397}
398
399struct pf_fragment *
400pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
401		u_short *reason)
402{
403	struct pf_frent		*after, *next, *prev;
404	struct pf_fragment	*frag;
405	uint16_t		total;
406
407	PF_FRAG_ASSERT();
408
409	/* No empty fragments. */
410	if (frent->fe_len == 0) {
411		DPFPRINTF(("bad fragment: len 0"));
412		goto bad_fragment;
413	}
414
415	/* All fragments are 8 byte aligned. */
416	if (frent->fe_mff && (frent->fe_len & 0x7)) {
417		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
418		goto bad_fragment;
419	}
420
421	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
422	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
423		DPFPRINTF(("bad fragment: max packet %d",
424		    frent->fe_off + frent->fe_len));
425		goto bad_fragment;
426	}
427
428	DPFPRINTF((key->frc_af == AF_INET ?
429	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
430	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
431
432	/* Fully buffer all of the fragments in this fragment queue. */
433	frag = pf_find_fragment(key, &V_pf_frag_tree);
434
435	/* Create a new reassembly queue for this packet. */
436	if (frag == NULL) {
437		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
438		if (frag == NULL) {
439			pf_flush_fragments();
440			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
441			if (frag == NULL) {
442				REASON_SET(reason, PFRES_MEMORY);
443				goto drop_fragment;
444			}
445		}
446
447		*(struct pf_fragment_cmp *)frag = *key;
448		frag->fr_timeout = time_second;
449		frag->fr_maxlen = frent->fe_len;
450		TAILQ_INIT(&frag->fr_queue);
451
452		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
453		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
454
455		/* We do not have a previous fragment. */
456		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
457
458		return (frag);
459	}
460
461	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
462
463	/* Remember maximum fragment len for refragmentation. */
464	if (frent->fe_len > frag->fr_maxlen)
465		frag->fr_maxlen = frent->fe_len;
466
467	/* Maximum data we have seen already. */
468	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
469		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
470
471	/* Non terminal fragments must have more fragments flag. */
472	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
473		goto bad_fragment;
474
475	/* Check if we saw the last fragment already. */
476	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
477		if (frent->fe_off + frent->fe_len > total ||
478		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
479			goto bad_fragment;
480	} else {
481		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
482			goto bad_fragment;
483	}
484
485	/* Find a fragment after the current one. */
486	prev = NULL;
487	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
488		if (after->fe_off > frent->fe_off)
489			break;
490		prev = after;
491	}
492
493	KASSERT(prev != NULL || after != NULL,
494	    ("prev != NULL || after != NULL"));
495
496	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
497		uint16_t precut;
498
499		precut = prev->fe_off + prev->fe_len - frent->fe_off;
500		if (precut >= frent->fe_len)
501			goto bad_fragment;
502		DPFPRINTF(("overlap -%d", precut));
503		m_adj(frent->fe_m, precut);
504		frent->fe_off += precut;
505		frent->fe_len -= precut;
506	}
507
508	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
509	    after = next) {
510		uint16_t aftercut;
511
512		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
513		DPFPRINTF(("adjust overlap %d", aftercut));
514		if (aftercut < after->fe_len) {
515			m_adj(after->fe_m, aftercut);
516			after->fe_off += aftercut;
517			after->fe_len -= aftercut;
518			break;
519		}
520
521		/* This fragment is completely overlapped, lose it. */
522		next = TAILQ_NEXT(after, fr_next);
523		m_freem(after->fe_m);
524		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
525		uma_zfree(V_pf_frent_z, after);
526	}
527
528	if (prev == NULL)
529		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
530	else
531		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
532
533	return (frag);
534
535bad_fragment:
536	REASON_SET(reason, PFRES_FRAG);
537drop_fragment:
538	uma_zfree(V_pf_frent_z, frent);
539	return (NULL);
540}
541
542int
543pf_isfull_fragment(struct pf_fragment *frag)
544{
545	struct pf_frent	*frent, *next;
546	uint16_t off, total;
547
548	/* Check if we are completely reassembled */
549	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
550		return (0);
551
552	/* Maximum data we have seen already */
553	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
554		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
555
556	/* Check if we have all the data */
557	off = 0;
558	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
559		next = TAILQ_NEXT(frent, fr_next);
560
561		off += frent->fe_len;
562		if (off < total && (next == NULL || next->fe_off != off)) {
563			DPFPRINTF(("missing fragment at %d, next %d, total %d",
564			    off, next == NULL ? -1 : next->fe_off, total));
565			return (0);
566		}
567	}
568	DPFPRINTF(("%d < %d?", off, total));
569	if (off < total)
570		return (0);
571	KASSERT(off == total, ("off == total"));
572
573	return (1);
574}
575
576struct mbuf *
577pf_join_fragment(struct pf_fragment *frag)
578{
579	struct mbuf *m, *m2;
580	struct pf_frent	*frent, *next;
581
582	frent = TAILQ_FIRST(&frag->fr_queue);
583	next = TAILQ_NEXT(frent, fr_next);
584
585	m = frent->fe_m;
586	m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
587	uma_zfree(V_pf_frent_z, frent);
588	for (frent = next; frent != NULL; frent = next) {
589		next = TAILQ_NEXT(frent, fr_next);
590
591		m2 = frent->fe_m;
592		/* Strip off ip header. */
593		m_adj(m2, frent->fe_hdrlen);
594		/* Strip off any trailing bytes. */
595		m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
596
597		uma_zfree(V_pf_frent_z, frent);
598		m_cat(m, m2);
599	}
600
601	/* Remove from fragment queue. */
602	pf_remove_fragment(frag);
603
604	return (m);
605}
606
607#define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
608static int
609pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
610{
611	struct mbuf		*m = *m0;
612	struct pf_frent		*frent;
613	struct pf_fragment	*frag;
614	struct pf_fragment_cmp	key;
615	uint16_t		total, hdrlen;
616
617	/* Get an entry for the fragment queue */
618	if ((frent = pf_create_fragment(reason)) == NULL)
619		return (PF_DROP);
620
621	frent->fe_m = m;
622	frent->fe_hdrlen = ip->ip_hl << 2;
623	frent->fe_extoff = 0;
624	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
625	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
626	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
627
628	pf_ip2key(ip, dir, &key);
629
630	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
631		return (PF_DROP);
632
633	/* The mbuf is part of the fragment entry, no direct free or access */
634	m = *m0 = NULL;
635
636	if (!pf_isfull_fragment(frag))
637		return (PF_PASS);  /* drop because *m0 is NULL, no error */
638
639	/* We have all the data */
640	frent = TAILQ_FIRST(&frag->fr_queue);
641	KASSERT(frent != NULL, ("frent != NULL"));
642	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
643		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
644	hdrlen = frent->fe_hdrlen;
645
646	m = *m0 = pf_join_fragment(frag);
647	frag = NULL;
648
649	if (m->m_flags & M_PKTHDR) {
650		int plen = 0;
651		for (m = *m0; m; m = m->m_next)
652			plen += m->m_len;
653		m = *m0;
654		m->m_pkthdr.len = plen;
655	}
656
657	ip = mtod(m, struct ip *);
658	ip->ip_len = htons(hdrlen + total);
659	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
660
661	if (hdrlen + total > IP_MAXPACKET) {
662		DPFPRINTF(("drop: too big: %d", total));
663		ip->ip_len = 0;
664		REASON_SET(reason, PFRES_SHORT);
665		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
666		return (PF_DROP);
667	}
668
669	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
670	return (PF_PASS);
671}
672
673#ifdef INET6
674int
675pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
676		uint16_t hdrlen, uint16_t extoff, int dir, u_short *reason)
677{
678	struct mbuf		*m = *m0;
679	struct pf_frent		*frent;
680	struct pf_fragment	*frag;
681	struct pf_fragment_cmp	 key;
682	struct m_tag		*mtag;
683	struct pf_fragment_tag	*ftag;
684	int			 off;
685	uint32_t		 frag_id;
686	uint16_t		 total, maxlen;
687	uint8_t			 proto;
688
689	PF_FRAG_LOCK();
690
691	/* Get an entry for the fragment queue. */
692	if ((frent = pf_create_fragment(reason)) == NULL) {
693		PF_FRAG_UNLOCK();
694		return (PF_DROP);
695	}
696
697	frent->fe_m = m;
698	frent->fe_hdrlen = hdrlen;
699	frent->fe_extoff = extoff;
700	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
701	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
702	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
703
704	key.frc_src.v6 = ip6->ip6_src;
705	key.frc_dst.v6 = ip6->ip6_dst;
706	key.frc_af = AF_INET6;
707	/* Only the first fragment's protocol is relevant. */
708	key.frc_proto = 0;
709	key.frc_id = fraghdr->ip6f_ident;
710	key.frc_direction = dir;
711
712	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
713		PF_FRAG_UNLOCK();
714		return (PF_DROP);
715	}
716
717	/* The mbuf is part of the fragment entry, no direct free or access. */
718	m = *m0 = NULL;
719
720	if (!pf_isfull_fragment(frag)) {
721		PF_FRAG_UNLOCK();
722		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
723	}
724
725	/* We have all the data. */
726	extoff = frent->fe_extoff;
727	maxlen = frag->fr_maxlen;
728	frag_id = frag->fr_id;
729	frent = TAILQ_FIRST(&frag->fr_queue);
730	KASSERT(frent != NULL, ("frent != NULL"));
731	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
732		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
733	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
734
735	m = *m0 = pf_join_fragment(frag);
736	frag = NULL;
737
738	PF_FRAG_UNLOCK();
739
740	/* Take protocol from first fragment header. */
741	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
742	KASSERT(m, ("%s: short mbuf chain", __func__));
743	proto = *(mtod(m, caddr_t) + off);
744	m = *m0;
745
746	/* Delete frag6 header */
747	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
748		goto fail;
749
750	if (m->m_flags & M_PKTHDR) {
751		int plen = 0;
752		for (m = *m0; m; m = m->m_next)
753			plen += m->m_len;
754		m = *m0;
755		m->m_pkthdr.len = plen;
756	}
757
758	if ((mtag = m_tag_get(PF_REASSEMBLED, sizeof(struct pf_fragment_tag),
759	    M_NOWAIT)) == NULL)
760		goto fail;
761	ftag = (struct pf_fragment_tag *)(mtag + 1);
762	ftag->ft_hdrlen = hdrlen;
763	ftag->ft_extoff = extoff;
764	ftag->ft_maxlen = maxlen;
765	ftag->ft_id = frag_id;
766	m_tag_prepend(m, mtag);
767
768	ip6 = mtod(m, struct ip6_hdr *);
769	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
770	if (extoff) {
771		/* Write protocol into next field of last extension header. */
772		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
773		    &off);
774		KASSERT(m, ("%s: short mbuf chain", __func__));
775		*(mtod(m, char *) + off) = proto;
776		m = *m0;
777	} else
778		ip6->ip6_nxt = proto;
779
780	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
781		DPFPRINTF(("drop: too big: %d", total));
782		ip6->ip6_plen = 0;
783		REASON_SET(reason, PFRES_SHORT);
784		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
785		return (PF_DROP);
786	}
787
788	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
789	return (PF_PASS);
790
791fail:
792	REASON_SET(reason, PFRES_MEMORY);
793	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
794	return (PF_DROP);
795}
796
797#endif
798
799static struct mbuf *
800pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
801    int drop, int *nomem)
802{
803	struct mbuf		*m = *m0;
804	struct pf_frent		*frp, *fra, *cur = NULL;
805	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
806	u_int16_t		 off = ntohs(h->ip_off) << 3;
807	u_int16_t		 max = ip_len + off;
808	int			 hosed = 0;
809
810	PF_FRAG_ASSERT();
811	KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
812	    ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __FUNCTION__));
813
814	/* Create a new range queue for this packet */
815	if (*frag == NULL) {
816		*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
817		if (*frag == NULL) {
818			pf_flush_fragments();
819			*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
820			if (*frag == NULL)
821				goto no_mem;
822		}
823
824		/* Get an entry for the queue */
825		cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
826		if (cur == NULL) {
827			uma_zfree(V_pf_frag_z, *frag);
828			*frag = NULL;
829			goto no_mem;
830		}
831
832		(*frag)->fr_flags = PFFRAG_NOBUFFER;
833		(*frag)->fr_max = 0;
834		(*frag)->fr_src.v4 = h->ip_src;
835		(*frag)->fr_dst.v4 = h->ip_dst;
836		(*frag)->fr_id = h->ip_id;
837		(*frag)->fr_timeout = time_uptime;
838
839		cur->fe_off = off;
840		cur->fe_len = max; /* TODO: fe_len = max - off ? */
841		TAILQ_INIT(&(*frag)->fr_queue);
842		TAILQ_INSERT_HEAD(&(*frag)->fr_queue, cur, fr_next);
843
844		RB_INSERT(pf_frag_tree, &V_pf_cache_tree, *frag);
845		TAILQ_INSERT_HEAD(&V_pf_cachequeue, *frag, frag_next);
846
847		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
848
849		goto pass;
850	}
851
852	/*
853	 * Find a fragment after the current one:
854	 *  - off contains the real shifted offset.
855	 */
856	frp = NULL;
857	TAILQ_FOREACH(fra, &(*frag)->fr_queue, fr_next) {
858		if (fra->fe_off > off)
859			break;
860		frp = fra;
861	}
862
863	KASSERT((frp != NULL || fra != NULL),
864	    ("!(frp != NULL || fra != NULL): %s", __FUNCTION__));
865
866	if (frp != NULL) {
867		int	precut;
868
869		precut = frp->fe_len - off;
870		if (precut >= ip_len) {
871			/* Fragment is entirely a duplicate */
872			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
873			    h->ip_id, frp->fe_off, frp->fe_len, off, max));
874			goto drop_fragment;
875		}
876		if (precut == 0) {
877			/* They are adjacent.  Fixup cache entry */
878			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
879			    h->ip_id, frp->fe_off, frp->fe_len, off, max));
880			frp->fe_len = max;
881		} else if (precut > 0) {
882			/* The first part of this payload overlaps with a
883			 * fragment that has already been passed.
884			 * Need to trim off the first part of the payload.
885			 * But to do so easily, we need to create another
886			 * mbuf to throw the original header into.
887			 */
888
889			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
890			    h->ip_id, precut, frp->fe_off, frp->fe_len, off,
891			    max));
892
893			off += precut;
894			max -= precut;
895			/* Update the previous frag to encompass this one */
896			frp->fe_len = max;
897
898			if (!drop) {
899				/* XXX Optimization opportunity
900				 * This is a very heavy way to trim the payload.
901				 * we could do it much faster by diddling mbuf
902				 * internals but that would be even less legible
903				 * than this mbuf magic.  For my next trick,
904				 * I'll pull a rabbit out of my laptop.
905				 */
906				*m0 = m_dup(m, M_NOWAIT);
907				if (*m0 == NULL)
908					goto no_mem;
909				/* From KAME Project : We have missed this! */
910				m_adj(*m0, (h->ip_hl << 2) -
911				    (*m0)->m_pkthdr.len);
912
913				KASSERT(((*m0)->m_next == NULL),
914				    ("(*m0)->m_next != NULL: %s",
915				    __FUNCTION__));
916				m_adj(m, precut + (h->ip_hl << 2));
917				m_cat(*m0, m);
918				m = *m0;
919				if (m->m_flags & M_PKTHDR) {
920					int plen = 0;
921					struct mbuf *t;
922					for (t = m; t; t = t->m_next)
923						plen += t->m_len;
924					m->m_pkthdr.len = plen;
925				}
926
927
928				h = mtod(m, struct ip *);
929
930				KASSERT(((int)m->m_len ==
931				    ntohs(h->ip_len) - precut),
932				    ("m->m_len != ntohs(h->ip_len) - precut: %s",
933				    __FUNCTION__));
934				h->ip_off = htons(ntohs(h->ip_off) +
935				    (precut >> 3));
936				h->ip_len = htons(ntohs(h->ip_len) - precut);
937			} else {
938				hosed++;
939			}
940		} else {
941			/* There is a gap between fragments */
942
943			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
944			    h->ip_id, -precut, frp->fe_off, frp->fe_len, off,
945			    max));
946
947			cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
948			if (cur == NULL)
949				goto no_mem;
950
951			cur->fe_off = off;
952			cur->fe_len = max;
953			TAILQ_INSERT_AFTER(&(*frag)->fr_queue, frp, cur, fr_next);
954		}
955	}
956
957	if (fra != NULL) {
958		int	aftercut;
959		int	merge = 0;
960
961		aftercut = max - fra->fe_off;
962		if (aftercut == 0) {
963			/* Adjacent fragments */
964			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
965			    h->ip_id, off, max, fra->fe_off, fra->fe_len));
966			fra->fe_off = off;
967			merge = 1;
968		} else if (aftercut > 0) {
969			/* Need to chop off the tail of this fragment */
970			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
971			    h->ip_id, aftercut, off, max, fra->fe_off,
972			    fra->fe_len));
973			fra->fe_off = off;
974			max -= aftercut;
975
976			merge = 1;
977
978			if (!drop) {
979				m_adj(m, -aftercut);
980				if (m->m_flags & M_PKTHDR) {
981					int plen = 0;
982					struct mbuf *t;
983					for (t = m; t; t = t->m_next)
984						plen += t->m_len;
985					m->m_pkthdr.len = plen;
986				}
987				h = mtod(m, struct ip *);
988				KASSERT(((int)m->m_len == ntohs(h->ip_len) - aftercut),
989				    ("m->m_len != ntohs(h->ip_len) - aftercut: %s",
990				    __FUNCTION__));
991				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
992			} else {
993				hosed++;
994			}
995		} else if (frp == NULL) {
996			/* There is a gap between fragments */
997			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
998			    h->ip_id, -aftercut, off, max, fra->fe_off,
999			    fra->fe_len));
1000
1001			cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
1002			if (cur == NULL)
1003				goto no_mem;
1004
1005			cur->fe_off = off;
1006			cur->fe_len = max;
1007			TAILQ_INSERT_HEAD(&(*frag)->fr_queue, cur, fr_next);
1008		}
1009
1010
1011		/* Need to glue together two separate fragment descriptors */
1012		if (merge) {
1013			if (cur && fra->fe_off <= cur->fe_len) {
1014				/* Need to merge in a previous 'cur' */
1015				DPFPRINTF(("fragcache[%d]: adjacent(merge "
1016				    "%d-%d) %d-%d (%d-%d)\n",
1017				    h->ip_id, cur->fe_off, cur->fe_len, off,
1018				    max, fra->fe_off, fra->fe_len));
1019				fra->fe_off = cur->fe_off;
1020				TAILQ_REMOVE(&(*frag)->fr_queue, cur, fr_next);
1021				uma_zfree(V_pf_frent_z, cur);
1022				cur = NULL;
1023
1024			} else if (frp && fra->fe_off <= frp->fe_len) {
1025				/* Need to merge in a modified 'frp' */
1026				KASSERT((cur == NULL), ("cur != NULL: %s",
1027				    __FUNCTION__));
1028				DPFPRINTF(("fragcache[%d]: adjacent(merge "
1029				    "%d-%d) %d-%d (%d-%d)\n",
1030				    h->ip_id, frp->fe_off, frp->fe_len, off,
1031				    max, fra->fe_off, fra->fe_len));
1032				fra->fe_off = frp->fe_off;
1033				TAILQ_REMOVE(&(*frag)->fr_queue, frp, fr_next);
1034				uma_zfree(V_pf_frent_z, frp);
1035				frp = NULL;
1036
1037			}
1038		}
1039	}
1040
1041	if (hosed) {
1042		/*
1043		 * We must keep tracking the overall fragment even when
1044		 * we're going to drop it anyway so that we know when to
1045		 * free the overall descriptor.  Thus we drop the frag late.
1046		 */
1047		goto drop_fragment;
1048	}
1049
1050
1051 pass:
1052	/* Update maximum data size */
1053	if ((*frag)->fr_max < max)
1054		(*frag)->fr_max = max;
1055
1056	/* This is the last segment */
1057	if (!mff)
1058		(*frag)->fr_flags |= PFFRAG_SEENLAST;
1059
1060	/* Check if we are completely reassembled */
1061	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
1062	    TAILQ_FIRST(&(*frag)->fr_queue)->fe_off == 0 &&
1063	    TAILQ_FIRST(&(*frag)->fr_queue)->fe_len == (*frag)->fr_max) {
1064		/* Remove from fragment queue */
1065		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
1066		    (*frag)->fr_max));
1067		pf_free_fragment(*frag);
1068		*frag = NULL;
1069	}
1070
1071	return (m);
1072
1073 no_mem:
1074	*nomem = 1;
1075
1076	/* Still need to pay attention to !IP_MF */
1077	if (!mff && *frag != NULL)
1078		(*frag)->fr_flags |= PFFRAG_SEENLAST;
1079
1080	m_freem(m);
1081	return (NULL);
1082
1083 drop_fragment:
1084
1085	/* Still need to pay attention to !IP_MF */
1086	if (!mff && *frag != NULL)
1087		(*frag)->fr_flags |= PFFRAG_SEENLAST;
1088
1089	if (drop) {
1090		/* This fragment has been deemed bad.  Don't reass */
1091		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
1092			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
1093			    h->ip_id));
1094		(*frag)->fr_flags |= PFFRAG_DROP;
1095	}
1096
1097	m_freem(m);
1098	return (NULL);
1099}
1100
1101int
1102pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag)
1103{
1104	struct mbuf		*m = *m0, *t;
1105	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
1106	struct pf_pdesc		 pd;
1107	uint32_t		 frag_id;
1108	uint16_t		 hdrlen, extoff, maxlen;
1109	uint8_t			 proto;
1110	int			 error, action;
1111
1112	hdrlen = ftag->ft_hdrlen;
1113	extoff = ftag->ft_extoff;
1114	maxlen = ftag->ft_maxlen;
1115	frag_id = ftag->ft_id;
1116	m_tag_delete(m, mtag);
1117	mtag = NULL;
1118	ftag = NULL;
1119
1120	if (extoff) {
1121		int off;
1122
1123		/* Use protocol from next field of last extension header */
1124		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
1125		    &off);
1126		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
1127		proto = *(mtod(m, caddr_t) + off);
1128		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
1129		m = *m0;
1130	} else {
1131		struct ip6_hdr *hdr;
1132
1133		hdr = mtod(m, struct ip6_hdr *);
1134		proto = hdr->ip6_nxt;
1135		hdr->ip6_nxt = IPPROTO_FRAGMENT;
1136	}
1137
1138	/*
1139	 * Maxlen may be less than 8 if there was only a single
1140	 * fragment.  As it was fragmented before, add a fragment
1141	 * header also for a single fragment.  If total or maxlen
1142	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1143	 * we drop the packet.
1144	 */
1145	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1146	m = (*m0)->m_nextpkt;
1147	(*m0)->m_nextpkt = NULL;
1148	if (error == 0) {
1149		/* The first mbuf contains the unfragmented packet. */
1150		m_freem(*m0);
1151		*m0 = NULL;
1152		action = PF_PASS;
1153	} else {
1154		/* Drop expects an mbuf to free. */
1155		DPFPRINTF(("refragment error %d", error));
1156		action = PF_DROP;
1157	}
1158	for (t = m; m; m = t) {
1159		t = m->m_nextpkt;
1160		m->m_nextpkt = NULL;
1161		m->m_flags |= M_SKIP_FIREWALL;
1162		memset(&pd, 0, sizeof(pd));
1163		pd.pf_mtag = pf_find_mtag(m);
1164		if (error == 0)
1165			ip6_forward(m, 0);
1166		else
1167			m_freem(m);
1168	}
1169
1170	return (action);
1171}
1172
1173int
1174pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
1175    struct pf_pdesc *pd)
1176{
1177	struct mbuf		*m = *m0;
1178	struct pf_rule		*r;
1179	struct pf_fragment	*frag = NULL;
1180	struct pf_fragment_cmp	key;
1181	struct ip		*h = mtod(m, struct ip *);
1182	int			 mff = (ntohs(h->ip_off) & IP_MF);
1183	int			 hlen = h->ip_hl << 2;
1184	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1185	u_int16_t		 max;
1186	int			 ip_len;
1187	int			 ip_off;
1188	int			 tag = -1;
1189	int			 verdict;
1190
1191	PF_RULES_RASSERT();
1192
1193	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1194	while (r != NULL) {
1195		r->evaluations++;
1196		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1197			r = r->skip[PF_SKIP_IFP].ptr;
1198		else if (r->direction && r->direction != dir)
1199			r = r->skip[PF_SKIP_DIR].ptr;
1200		else if (r->af && r->af != AF_INET)
1201			r = r->skip[PF_SKIP_AF].ptr;
1202		else if (r->proto && r->proto != h->ip_p)
1203			r = r->skip[PF_SKIP_PROTO].ptr;
1204		else if (PF_MISMATCHAW(&r->src.addr,
1205		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1206		    r->src.neg, kif, M_GETFIB(m)))
1207			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1208		else if (PF_MISMATCHAW(&r->dst.addr,
1209		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1210		    r->dst.neg, NULL, M_GETFIB(m)))
1211			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1212		else if (r->match_tag && !pf_match_tag(m, r, &tag,
1213		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1214			r = TAILQ_NEXT(r, entries);
1215		else
1216			break;
1217	}
1218
1219	if (r == NULL || r->action == PF_NOSCRUB)
1220		return (PF_PASS);
1221	else {
1222		r->packets[dir == PF_OUT]++;
1223		r->bytes[dir == PF_OUT] += pd->tot_len;
1224	}
1225
1226	/* Check for illegal packets */
1227	if (hlen < (int)sizeof(struct ip))
1228		goto drop;
1229
1230	if (hlen > ntohs(h->ip_len))
1231		goto drop;
1232
1233	/* Clear IP_DF if the rule uses the no-df option */
1234	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1235		u_int16_t ip_off = h->ip_off;
1236
1237		h->ip_off &= htons(~IP_DF);
1238		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1239	}
1240
1241	/* We will need other tests here */
1242	if (!fragoff && !mff)
1243		goto no_fragment;
1244
1245	/* We're dealing with a fragment now. Don't allow fragments
1246	 * with IP_DF to enter the cache. If the flag was cleared by
1247	 * no-df above, fine. Otherwise drop it.
1248	 */
1249	if (h->ip_off & htons(IP_DF)) {
1250		DPFPRINTF(("IP_DF\n"));
1251		goto bad;
1252	}
1253
1254	ip_len = ntohs(h->ip_len) - hlen;
1255	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1256
1257	/* All fragments are 8 byte aligned */
1258	if (mff && (ip_len & 0x7)) {
1259		DPFPRINTF(("mff and %d\n", ip_len));
1260		goto bad;
1261	}
1262
1263	/* Respect maximum length */
1264	if (fragoff + ip_len > IP_MAXPACKET) {
1265		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1266		goto bad;
1267	}
1268	max = fragoff + ip_len;
1269
1270	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
1271
1272		/* Fully buffer all of the fragments */
1273		PF_FRAG_LOCK();
1274
1275		pf_ip2key(h, dir, &key);
1276		frag = pf_find_fragment(&key, &V_pf_frag_tree);
1277
1278		/* Check if we saw the last fragment already */
1279		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
1280		    max > frag->fr_max)
1281			goto bad;
1282
1283		/* Might return a completely reassembled mbuf, or NULL */
1284		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1285		verdict = pf_reassemble(m0, h, dir, reason);
1286		PF_FRAG_UNLOCK();
1287
1288		if (verdict != PF_PASS)
1289			return (PF_DROP);
1290
1291		m = *m0;
1292		if (m == NULL)
1293			return (PF_DROP);
1294
1295		/* use mtag from concatenated mbuf chain */
1296		pd->pf_mtag = pf_find_mtag(m);
1297#ifdef DIAGNOSTIC
1298		if (pd->pf_mtag == NULL) {
1299			printf("%s: pf_find_mtag returned NULL(1)\n", __func__);
1300			if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
1301				m_freem(m);
1302				*m0 = NULL;
1303				goto no_mem;
1304			}
1305		}
1306#endif
1307		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1308			goto drop;
1309
1310		h = mtod(m, struct ip *);
1311	} else {
1312		/* non-buffering fragment cache (drops or masks overlaps) */
1313		int	nomem = 0;
1314
1315		if (dir == PF_OUT && pd->pf_mtag->flags & PF_TAG_FRAGCACHE) {
1316			/*
1317			 * Already passed the fragment cache in the
1318			 * input direction.  If we continued, it would
1319			 * appear to be a dup and would be dropped.
1320			 */
1321			goto fragment_pass;
1322		}
1323
1324		PF_FRAG_LOCK();
1325		pf_ip2key(h, dir, &key);
1326		frag = pf_find_fragment(&key, &V_pf_cache_tree);
1327
1328		/* Check if we saw the last fragment already */
1329		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
1330		    max > frag->fr_max) {
1331			if (r->rule_flag & PFRULE_FRAGDROP)
1332				frag->fr_flags |= PFFRAG_DROP;
1333			goto bad;
1334		}
1335
1336		*m0 = m = pf_fragcache(m0, h, &frag, mff,
1337		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
1338		PF_FRAG_UNLOCK();
1339		if (m == NULL) {
1340			if (nomem)
1341				goto no_mem;
1342			goto drop;
1343		}
1344
1345		/* use mtag from copied and trimmed mbuf chain */
1346		pd->pf_mtag = pf_find_mtag(m);
1347#ifdef DIAGNOSTIC
1348		if (pd->pf_mtag == NULL) {
1349			printf("%s: pf_find_mtag returned NULL(2)\n", __func__);
1350			if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
1351				m_freem(m);
1352				*m0 = NULL;
1353				goto no_mem;
1354			}
1355		}
1356#endif
1357		if (dir == PF_IN)
1358			pd->pf_mtag->flags |= PF_TAG_FRAGCACHE;
1359
1360		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1361			goto drop;
1362		goto fragment_pass;
1363	}
1364
1365 no_fragment:
1366	/* At this point, only IP_DF is allowed in ip_off */
1367	if (h->ip_off & ~htons(IP_DF)) {
1368		u_int16_t ip_off = h->ip_off;
1369
1370		h->ip_off &= htons(IP_DF);
1371		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1372	}
1373
1374	/* not missing a return here */
1375
1376 fragment_pass:
1377	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
1378
1379	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1380		pd->flags |= PFDESC_IP_REAS;
1381	return (PF_PASS);
1382
1383 no_mem:
1384	REASON_SET(reason, PFRES_MEMORY);
1385	if (r != NULL && r->log)
1386		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1387		    1);
1388	return (PF_DROP);
1389
1390 drop:
1391	REASON_SET(reason, PFRES_NORM);
1392	if (r != NULL && r->log)
1393		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1394		    1);
1395	return (PF_DROP);
1396
1397 bad:
1398	DPFPRINTF(("dropping bad fragment\n"));
1399
1400	/* Free associated fragments */
1401	if (frag != NULL) {
1402		pf_free_fragment(frag);
1403		PF_FRAG_UNLOCK();
1404	}
1405
1406	REASON_SET(reason, PFRES_FRAG);
1407	if (r != NULL && r->log)
1408		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1409		    1);
1410
1411	return (PF_DROP);
1412}
1413#endif
1414
1415#ifdef INET6
1416int
1417pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1418    u_short *reason, struct pf_pdesc *pd)
1419{
1420	struct mbuf		*m = *m0;
1421	struct pf_rule		*r;
1422	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1423	int			 extoff;
1424	int			 off;
1425	struct ip6_ext		 ext;
1426	struct ip6_opt		 opt;
1427	struct ip6_opt_jumbo	 jumbo;
1428	struct ip6_frag		 frag;
1429	u_int32_t		 jumbolen = 0, plen;
1430	int			 optend;
1431	int			 ooff;
1432	u_int8_t		 proto;
1433	int			 terminal;
1434
1435	PF_RULES_RASSERT();
1436
1437	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1438	while (r != NULL) {
1439		r->evaluations++;
1440		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1441			r = r->skip[PF_SKIP_IFP].ptr;
1442		else if (r->direction && r->direction != dir)
1443			r = r->skip[PF_SKIP_DIR].ptr;
1444		else if (r->af && r->af != AF_INET6)
1445			r = r->skip[PF_SKIP_AF].ptr;
1446#if 0 /* header chain! */
1447		else if (r->proto && r->proto != h->ip6_nxt)
1448			r = r->skip[PF_SKIP_PROTO].ptr;
1449#endif
1450		else if (PF_MISMATCHAW(&r->src.addr,
1451		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1452		    r->src.neg, kif, M_GETFIB(m)))
1453			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1454		else if (PF_MISMATCHAW(&r->dst.addr,
1455		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1456		    r->dst.neg, NULL, M_GETFIB(m)))
1457			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1458		else
1459			break;
1460	}
1461
1462	if (r == NULL || r->action == PF_NOSCRUB)
1463		return (PF_PASS);
1464	else {
1465		r->packets[dir == PF_OUT]++;
1466		r->bytes[dir == PF_OUT] += pd->tot_len;
1467	}
1468
1469	/* Check for illegal packets */
1470	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1471		goto drop;
1472
1473	extoff = 0;
1474	off = sizeof(struct ip6_hdr);
1475	proto = h->ip6_nxt;
1476	terminal = 0;
1477	do {
1478		switch (proto) {
1479		case IPPROTO_FRAGMENT:
1480			goto fragment;
1481			break;
1482		case IPPROTO_AH:
1483		case IPPROTO_ROUTING:
1484		case IPPROTO_DSTOPTS:
1485			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1486			    NULL, AF_INET6))
1487				goto shortpkt;
1488			extoff = off;
1489			if (proto == IPPROTO_AH)
1490				off += (ext.ip6e_len + 2) * 4;
1491			else
1492				off += (ext.ip6e_len + 1) * 8;
1493			proto = ext.ip6e_nxt;
1494			break;
1495		case IPPROTO_HOPOPTS:
1496			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1497			    NULL, AF_INET6))
1498				goto shortpkt;
1499			extoff = off;
1500			optend = off + (ext.ip6e_len + 1) * 8;
1501			ooff = off + sizeof(ext);
1502			do {
1503				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1504				    sizeof(opt.ip6o_type), NULL, NULL,
1505				    AF_INET6))
1506					goto shortpkt;
1507				if (opt.ip6o_type == IP6OPT_PAD1) {
1508					ooff++;
1509					continue;
1510				}
1511				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1512				    NULL, NULL, AF_INET6))
1513					goto shortpkt;
1514				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1515					goto drop;
1516				switch (opt.ip6o_type) {
1517				case IP6OPT_JUMBO:
1518					if (h->ip6_plen != 0)
1519						goto drop;
1520					if (!pf_pull_hdr(m, ooff, &jumbo,
1521					    sizeof(jumbo), NULL, NULL,
1522					    AF_INET6))
1523						goto shortpkt;
1524					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1525					    sizeof(jumbolen));
1526					jumbolen = ntohl(jumbolen);
1527					if (jumbolen <= IPV6_MAXPACKET)
1528						goto drop;
1529					if (sizeof(struct ip6_hdr) + jumbolen !=
1530					    m->m_pkthdr.len)
1531						goto drop;
1532					break;
1533				default:
1534					break;
1535				}
1536				ooff += sizeof(opt) + opt.ip6o_len;
1537			} while (ooff < optend);
1538
1539			off = optend;
1540			proto = ext.ip6e_nxt;
1541			break;
1542		default:
1543			terminal = 1;
1544			break;
1545		}
1546	} while (!terminal);
1547
1548	/* jumbo payload option must be present, or plen > 0 */
1549	if (ntohs(h->ip6_plen) == 0)
1550		plen = jumbolen;
1551	else
1552		plen = ntohs(h->ip6_plen);
1553	if (plen == 0)
1554		goto drop;
1555	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1556		goto shortpkt;
1557
1558	pf_scrub_ip6(&m, r->min_ttl);
1559
1560	return (PF_PASS);
1561
1562 fragment:
1563	/* Jumbo payload packets cannot be fragmented. */
1564	plen = ntohs(h->ip6_plen);
1565	if (plen == 0 || jumbolen)
1566		goto drop;
1567	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1568		goto shortpkt;
1569
1570	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1571		goto shortpkt;
1572
1573	/* Offset now points to data portion. */
1574	off += sizeof(frag);
1575
1576	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1577	if (pf_reassemble6(m0, h, &frag, off, extoff, dir, reason) != PF_PASS)
1578		return (PF_DROP);
1579	m = *m0;
1580	if (m == NULL)
1581		return (PF_DROP);
1582
1583	pd->flags |= PFDESC_IP_REAS;
1584	return (PF_PASS);
1585
1586 shortpkt:
1587	REASON_SET(reason, PFRES_SHORT);
1588	if (r != NULL && r->log)
1589		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1590		    1);
1591	return (PF_DROP);
1592
1593 drop:
1594	REASON_SET(reason, PFRES_NORM);
1595	if (r != NULL && r->log)
1596		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1597		    1);
1598	return (PF_DROP);
1599}
1600#endif /* INET6 */
1601
1602int
1603pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1604    int off, void *h, struct pf_pdesc *pd)
1605{
1606	struct pf_rule	*r, *rm = NULL;
1607	struct tcphdr	*th = pd->hdr.tcp;
1608	int		 rewrite = 0;
1609	u_short		 reason;
1610	u_int8_t	 flags;
1611	sa_family_t	 af = pd->af;
1612
1613	PF_RULES_RASSERT();
1614
1615	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1616	while (r != NULL) {
1617		r->evaluations++;
1618		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1619			r = r->skip[PF_SKIP_IFP].ptr;
1620		else if (r->direction && r->direction != dir)
1621			r = r->skip[PF_SKIP_DIR].ptr;
1622		else if (r->af && r->af != af)
1623			r = r->skip[PF_SKIP_AF].ptr;
1624		else if (r->proto && r->proto != pd->proto)
1625			r = r->skip[PF_SKIP_PROTO].ptr;
1626		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1627		    r->src.neg, kif, M_GETFIB(m)))
1628			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1629		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1630			    r->src.port[0], r->src.port[1], th->th_sport))
1631			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1632		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1633		    r->dst.neg, NULL, M_GETFIB(m)))
1634			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1635		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1636			    r->dst.port[0], r->dst.port[1], th->th_dport))
1637			r = r->skip[PF_SKIP_DST_PORT].ptr;
1638		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1639			    pf_osfp_fingerprint(pd, m, off, th),
1640			    r->os_fingerprint))
1641			r = TAILQ_NEXT(r, entries);
1642		else {
1643			rm = r;
1644			break;
1645		}
1646	}
1647
1648	if (rm == NULL || rm->action == PF_NOSCRUB)
1649		return (PF_PASS);
1650	else {
1651		r->packets[dir == PF_OUT]++;
1652		r->bytes[dir == PF_OUT] += pd->tot_len;
1653	}
1654
1655	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1656		pd->flags |= PFDESC_TCP_NORM;
1657
1658	flags = th->th_flags;
1659	if (flags & TH_SYN) {
1660		/* Illegal packet */
1661		if (flags & TH_RST)
1662			goto tcp_drop;
1663
1664		if (flags & TH_FIN)
1665			goto tcp_drop;
1666	} else {
1667		/* Illegal packet */
1668		if (!(flags & (TH_ACK|TH_RST)))
1669			goto tcp_drop;
1670	}
1671
1672	if (!(flags & TH_ACK)) {
1673		/* These flags are only valid if ACK is set */
1674		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1675			goto tcp_drop;
1676	}
1677
1678	/* Check for illegal header length */
1679	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1680		goto tcp_drop;
1681
1682	/* If flags changed, or reserved data set, then adjust */
1683	if (flags != th->th_flags || th->th_x2 != 0) {
1684		u_int16_t	ov, nv;
1685
1686		ov = *(u_int16_t *)(&th->th_ack + 1);
1687		th->th_flags = flags;
1688		th->th_x2 = 0;
1689		nv = *(u_int16_t *)(&th->th_ack + 1);
1690
1691		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1692		rewrite = 1;
1693	}
1694
1695	/* Remove urgent pointer, if TH_URG is not set */
1696	if (!(flags & TH_URG) && th->th_urp) {
1697		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1698		th->th_urp = 0;
1699		rewrite = 1;
1700	}
1701
1702	/* Process options */
1703	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1704		rewrite = 1;
1705
1706	/* copy back packet headers if we sanitized */
1707	if (rewrite)
1708		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1709
1710	return (PF_PASS);
1711
1712 tcp_drop:
1713	REASON_SET(&reason, PFRES_NORM);
1714	if (rm != NULL && r->log)
1715		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1716		    1);
1717	return (PF_DROP);
1718}
1719
1720int
1721pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1722    struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1723{
1724	u_int32_t tsval, tsecr;
1725	u_int8_t hdr[60];
1726	u_int8_t *opt;
1727
1728	KASSERT((src->scrub == NULL),
1729	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1730
1731	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1732	if (src->scrub == NULL)
1733		return (1);
1734
1735	switch (pd->af) {
1736#ifdef INET
1737	case AF_INET: {
1738		struct ip *h = mtod(m, struct ip *);
1739		src->scrub->pfss_ttl = h->ip_ttl;
1740		break;
1741	}
1742#endif /* INET */
1743#ifdef INET6
1744	case AF_INET6: {
1745		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1746		src->scrub->pfss_ttl = h->ip6_hlim;
1747		break;
1748	}
1749#endif /* INET6 */
1750	}
1751
1752
1753	/*
1754	 * All normalizations below are only begun if we see the start of
1755	 * the connections.  They must all set an enabled bit in pfss_flags
1756	 */
1757	if ((th->th_flags & TH_SYN) == 0)
1758		return (0);
1759
1760
1761	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1762	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1763		/* Diddle with TCP options */
1764		int hlen;
1765		opt = hdr + sizeof(struct tcphdr);
1766		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1767		while (hlen >= TCPOLEN_TIMESTAMP) {
1768			switch (*opt) {
1769			case TCPOPT_EOL:	/* FALLTHROUGH */
1770			case TCPOPT_NOP:
1771				opt++;
1772				hlen--;
1773				break;
1774			case TCPOPT_TIMESTAMP:
1775				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1776					src->scrub->pfss_flags |=
1777					    PFSS_TIMESTAMP;
1778					src->scrub->pfss_ts_mod =
1779					    htonl(arc4random());
1780
1781					/* note PFSS_PAWS not set yet */
1782					memcpy(&tsval, &opt[2],
1783					    sizeof(u_int32_t));
1784					memcpy(&tsecr, &opt[6],
1785					    sizeof(u_int32_t));
1786					src->scrub->pfss_tsval0 = ntohl(tsval);
1787					src->scrub->pfss_tsval = ntohl(tsval);
1788					src->scrub->pfss_tsecr = ntohl(tsecr);
1789					getmicrouptime(&src->scrub->pfss_last);
1790				}
1791				/* FALLTHROUGH */
1792			default:
1793				hlen -= MAX(opt[1], 2);
1794				opt += MAX(opt[1], 2);
1795				break;
1796			}
1797		}
1798	}
1799
1800	return (0);
1801}
1802
1803void
1804pf_normalize_tcp_cleanup(struct pf_state *state)
1805{
1806	if (state->src.scrub)
1807		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1808	if (state->dst.scrub)
1809		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1810
1811	/* Someday... flush the TCP segment reassembly descriptors. */
1812}
1813
1814int
1815pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1816    u_short *reason, struct tcphdr *th, struct pf_state *state,
1817    struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1818{
1819	struct timeval uptime;
1820	u_int32_t tsval, tsecr;
1821	u_int tsval_from_last;
1822	u_int8_t hdr[60];
1823	u_int8_t *opt;
1824	int copyback = 0;
1825	int got_ts = 0;
1826
1827	KASSERT((src->scrub || dst->scrub),
1828	    ("%s: src->scrub && dst->scrub!", __func__));
1829
1830	/*
1831	 * Enforce the minimum TTL seen for this connection.  Negate a common
1832	 * technique to evade an intrusion detection system and confuse
1833	 * firewall state code.
1834	 */
1835	switch (pd->af) {
1836#ifdef INET
1837	case AF_INET: {
1838		if (src->scrub) {
1839			struct ip *h = mtod(m, struct ip *);
1840			if (h->ip_ttl > src->scrub->pfss_ttl)
1841				src->scrub->pfss_ttl = h->ip_ttl;
1842			h->ip_ttl = src->scrub->pfss_ttl;
1843		}
1844		break;
1845	}
1846#endif /* INET */
1847#ifdef INET6
1848	case AF_INET6: {
1849		if (src->scrub) {
1850			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1851			if (h->ip6_hlim > src->scrub->pfss_ttl)
1852				src->scrub->pfss_ttl = h->ip6_hlim;
1853			h->ip6_hlim = src->scrub->pfss_ttl;
1854		}
1855		break;
1856	}
1857#endif /* INET6 */
1858	}
1859
1860	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1861	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1862	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1863	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1864		/* Diddle with TCP options */
1865		int hlen;
1866		opt = hdr + sizeof(struct tcphdr);
1867		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1868		while (hlen >= TCPOLEN_TIMESTAMP) {
1869			switch (*opt) {
1870			case TCPOPT_EOL:	/* FALLTHROUGH */
1871			case TCPOPT_NOP:
1872				opt++;
1873				hlen--;
1874				break;
1875			case TCPOPT_TIMESTAMP:
1876				/* Modulate the timestamps.  Can be used for
1877				 * NAT detection, OS uptime determination or
1878				 * reboot detection.
1879				 */
1880
1881				if (got_ts) {
1882					/* Huh?  Multiple timestamps!? */
1883					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1884						DPFPRINTF(("multiple TS??"));
1885						pf_print_state(state);
1886						printf("\n");
1887					}
1888					REASON_SET(reason, PFRES_TS);
1889					return (PF_DROP);
1890				}
1891				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1892					memcpy(&tsval, &opt[2],
1893					    sizeof(u_int32_t));
1894					if (tsval && src->scrub &&
1895					    (src->scrub->pfss_flags &
1896					    PFSS_TIMESTAMP)) {
1897						tsval = ntohl(tsval);
1898						pf_change_a(&opt[2],
1899						    &th->th_sum,
1900						    htonl(tsval +
1901						    src->scrub->pfss_ts_mod),
1902						    0);
1903						copyback = 1;
1904					}
1905
1906					/* Modulate TS reply iff valid (!0) */
1907					memcpy(&tsecr, &opt[6],
1908					    sizeof(u_int32_t));
1909					if (tsecr && dst->scrub &&
1910					    (dst->scrub->pfss_flags &
1911					    PFSS_TIMESTAMP)) {
1912						tsecr = ntohl(tsecr)
1913						    - dst->scrub->pfss_ts_mod;
1914						pf_change_a(&opt[6],
1915						    &th->th_sum, htonl(tsecr),
1916						    0);
1917						copyback = 1;
1918					}
1919					got_ts = 1;
1920				}
1921				/* FALLTHROUGH */
1922			default:
1923				hlen -= MAX(opt[1], 2);
1924				opt += MAX(opt[1], 2);
1925				break;
1926			}
1927		}
1928		if (copyback) {
1929			/* Copyback the options, caller copys back header */
1930			*writeback = 1;
1931			m_copyback(m, off + sizeof(struct tcphdr),
1932			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1933			    sizeof(struct tcphdr));
1934		}
1935	}
1936
1937
1938	/*
1939	 * Must invalidate PAWS checks on connections idle for too long.
1940	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1941	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1942	 * TS echo check only works for the first 12 days of a connection
1943	 * when the TS has exhausted half its 32bit space
1944	 */
1945#define TS_MAX_IDLE	(24*24*60*60)
1946#define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1947
1948	getmicrouptime(&uptime);
1949	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1950	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1951	    time_uptime - state->creation > TS_MAX_CONN))  {
1952		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1953			DPFPRINTF(("src idled out of PAWS\n"));
1954			pf_print_state(state);
1955			printf("\n");
1956		}
1957		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1958		    | PFSS_PAWS_IDLED;
1959	}
1960	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1961	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1962		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1963			DPFPRINTF(("dst idled out of PAWS\n"));
1964			pf_print_state(state);
1965			printf("\n");
1966		}
1967		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1968		    | PFSS_PAWS_IDLED;
1969	}
1970
1971	if (got_ts && src->scrub && dst->scrub &&
1972	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1973	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1974		/* Validate that the timestamps are "in-window".
1975		 * RFC1323 describes TCP Timestamp options that allow
1976		 * measurement of RTT (round trip time) and PAWS
1977		 * (protection against wrapped sequence numbers).  PAWS
1978		 * gives us a set of rules for rejecting packets on
1979		 * long fat pipes (packets that were somehow delayed
1980		 * in transit longer than the time it took to send the
1981		 * full TCP sequence space of 4Gb).  We can use these
1982		 * rules and infer a few others that will let us treat
1983		 * the 32bit timestamp and the 32bit echoed timestamp
1984		 * as sequence numbers to prevent a blind attacker from
1985		 * inserting packets into a connection.
1986		 *
1987		 * RFC1323 tells us:
1988		 *  - The timestamp on this packet must be greater than
1989		 *    or equal to the last value echoed by the other
1990		 *    endpoint.  The RFC says those will be discarded
1991		 *    since it is a dup that has already been acked.
1992		 *    This gives us a lowerbound on the timestamp.
1993		 *        timestamp >= other last echoed timestamp
1994		 *  - The timestamp will be less than or equal to
1995		 *    the last timestamp plus the time between the
1996		 *    last packet and now.  The RFC defines the max
1997		 *    clock rate as 1ms.  We will allow clocks to be
1998		 *    up to 10% fast and will allow a total difference
1999		 *    or 30 seconds due to a route change.  And this
2000		 *    gives us an upperbound on the timestamp.
2001		 *        timestamp <= last timestamp + max ticks
2002		 *    We have to be careful here.  Windows will send an
2003		 *    initial timestamp of zero and then initialize it
2004		 *    to a random value after the 3whs; presumably to
2005		 *    avoid a DoS by having to call an expensive RNG
2006		 *    during a SYN flood.  Proof MS has at least one
2007		 *    good security geek.
2008		 *
2009		 *  - The TCP timestamp option must also echo the other
2010		 *    endpoints timestamp.  The timestamp echoed is the
2011		 *    one carried on the earliest unacknowledged segment
2012		 *    on the left edge of the sequence window.  The RFC
2013		 *    states that the host will reject any echoed
2014		 *    timestamps that were larger than any ever sent.
2015		 *    This gives us an upperbound on the TS echo.
2016		 *        tescr <= largest_tsval
2017		 *  - The lowerbound on the TS echo is a little more
2018		 *    tricky to determine.  The other endpoint's echoed
2019		 *    values will not decrease.  But there may be
2020		 *    network conditions that re-order packets and
2021		 *    cause our view of them to decrease.  For now the
2022		 *    only lowerbound we can safely determine is that
2023		 *    the TS echo will never be less than the original
2024		 *    TS.  XXX There is probably a better lowerbound.
2025		 *    Remove TS_MAX_CONN with better lowerbound check.
2026		 *        tescr >= other original TS
2027		 *
2028		 * It is also important to note that the fastest
2029		 * timestamp clock of 1ms will wrap its 32bit space in
2030		 * 24 days.  So we just disable TS checking after 24
2031		 * days of idle time.  We actually must use a 12d
2032		 * connection limit until we can come up with a better
2033		 * lowerbound to the TS echo check.
2034		 */
2035		struct timeval delta_ts;
2036		int ts_fudge;
2037
2038
2039		/*
2040		 * PFTM_TS_DIFF is how many seconds of leeway to allow
2041		 * a host's timestamp.  This can happen if the previous
2042		 * packet got delayed in transit for much longer than
2043		 * this packet.
2044		 */
2045		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
2046			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
2047
2048		/* Calculate max ticks since the last timestamp */
2049#define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
2050#define TS_MICROSECS	1000000		/* microseconds per second */
2051		delta_ts = uptime;
2052		timevalsub(&delta_ts, &src->scrub->pfss_last);
2053		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
2054		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
2055
2056		if ((src->state >= TCPS_ESTABLISHED &&
2057		    dst->state >= TCPS_ESTABLISHED) &&
2058		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
2059		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
2060		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
2061		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
2062			/* Bad RFC1323 implementation or an insertion attack.
2063			 *
2064			 * - Solaris 2.6 and 2.7 are known to send another ACK
2065			 *   after the FIN,FIN|ACK,ACK closing that carries
2066			 *   an old timestamp.
2067			 */
2068
2069			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
2070			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
2071			    SEQ_GT(tsval, src->scrub->pfss_tsval +
2072			    tsval_from_last) ? '1' : ' ',
2073			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
2074			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
2075			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
2076			    "idle: %jus %lums\n",
2077			    tsval, tsecr, tsval_from_last,
2078			    (uintmax_t)delta_ts.tv_sec,
2079			    delta_ts.tv_usec / 1000));
2080			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
2081			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
2082			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
2083			    "\n", dst->scrub->pfss_tsval,
2084			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
2085			if (V_pf_status.debug >= PF_DEBUG_MISC) {
2086				pf_print_state(state);
2087				pf_print_flags(th->th_flags);
2088				printf("\n");
2089			}
2090			REASON_SET(reason, PFRES_TS);
2091			return (PF_DROP);
2092		}
2093
2094		/* XXX I'd really like to require tsecr but it's optional */
2095
2096	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
2097	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
2098	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
2099	    src->scrub && dst->scrub &&
2100	    (src->scrub->pfss_flags & PFSS_PAWS) &&
2101	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
2102		/* Didn't send a timestamp.  Timestamps aren't really useful
2103		 * when:
2104		 *  - connection opening or closing (often not even sent).
2105		 *    but we must not let an attacker to put a FIN on a
2106		 *    data packet to sneak it through our ESTABLISHED check.
2107		 *  - on a TCP reset.  RFC suggests not even looking at TS.
2108		 *  - on an empty ACK.  The TS will not be echoed so it will
2109		 *    probably not help keep the RTT calculation in sync and
2110		 *    there isn't as much danger when the sequence numbers
2111		 *    got wrapped.  So some stacks don't include TS on empty
2112		 *    ACKs :-(
2113		 *
2114		 * To minimize the disruption to mostly RFC1323 conformant
2115		 * stacks, we will only require timestamps on data packets.
2116		 *
2117		 * And what do ya know, we cannot require timestamps on data
2118		 * packets.  There appear to be devices that do legitimate
2119		 * TCP connection hijacking.  There are HTTP devices that allow
2120		 * a 3whs (with timestamps) and then buffer the HTTP request.
2121		 * If the intermediate device has the HTTP response cache, it
2122		 * will spoof the response but not bother timestamping its
2123		 * packets.  So we can look for the presence of a timestamp in
2124		 * the first data packet and if there, require it in all future
2125		 * packets.
2126		 */
2127
2128		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
2129			/*
2130			 * Hey!  Someone tried to sneak a packet in.  Or the
2131			 * stack changed its RFC1323 behavior?!?!
2132			 */
2133			if (V_pf_status.debug >= PF_DEBUG_MISC) {
2134				DPFPRINTF(("Did not receive expected RFC1323 "
2135				    "timestamp\n"));
2136				pf_print_state(state);
2137				pf_print_flags(th->th_flags);
2138				printf("\n");
2139			}
2140			REASON_SET(reason, PFRES_TS);
2141			return (PF_DROP);
2142		}
2143	}
2144
2145
2146	/*
2147	 * We will note if a host sends his data packets with or without
2148	 * timestamps.  And require all data packets to contain a timestamp
2149	 * if the first does.  PAWS implicitly requires that all data packets be
2150	 * timestamped.  But I think there are middle-man devices that hijack
2151	 * TCP streams immediately after the 3whs and don't timestamp their
2152	 * packets (seen in a WWW accelerator or cache).
2153	 */
2154	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
2155	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
2156		if (got_ts)
2157			src->scrub->pfss_flags |= PFSS_DATA_TS;
2158		else {
2159			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
2160			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
2161			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
2162				/* Don't warn if other host rejected RFC1323 */
2163				DPFPRINTF(("Broken RFC1323 stack did not "
2164				    "timestamp data packet. Disabled PAWS "
2165				    "security.\n"));
2166				pf_print_state(state);
2167				pf_print_flags(th->th_flags);
2168				printf("\n");
2169			}
2170		}
2171	}
2172
2173
2174	/*
2175	 * Update PAWS values
2176	 */
2177	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
2178	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
2179		getmicrouptime(&src->scrub->pfss_last);
2180		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
2181		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
2182			src->scrub->pfss_tsval = tsval;
2183
2184		if (tsecr) {
2185			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
2186			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
2187				src->scrub->pfss_tsecr = tsecr;
2188
2189			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
2190			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
2191			    src->scrub->pfss_tsval0 == 0)) {
2192				/* tsval0 MUST be the lowest timestamp */
2193				src->scrub->pfss_tsval0 = tsval;
2194			}
2195
2196			/* Only fully initialized after a TS gets echoed */
2197			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
2198				src->scrub->pfss_flags |= PFSS_PAWS;
2199		}
2200	}
2201
2202	/* I have a dream....  TCP segment reassembly.... */
2203	return (0);
2204}
2205
2206static int
2207pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
2208    int off, sa_family_t af)
2209{
2210	u_int16_t	*mss;
2211	int		 thoff;
2212	int		 opt, cnt, optlen = 0;
2213	int		 rewrite = 0;
2214	u_char		 opts[TCP_MAXOLEN];
2215	u_char		*optp = opts;
2216
2217	thoff = th->th_off << 2;
2218	cnt = thoff - sizeof(struct tcphdr);
2219
2220	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
2221	    NULL, NULL, af))
2222		return (rewrite);
2223
2224	for (; cnt > 0; cnt -= optlen, optp += optlen) {
2225		opt = optp[0];
2226		if (opt == TCPOPT_EOL)
2227			break;
2228		if (opt == TCPOPT_NOP)
2229			optlen = 1;
2230		else {
2231			if (cnt < 2)
2232				break;
2233			optlen = optp[1];
2234			if (optlen < 2 || optlen > cnt)
2235				break;
2236		}
2237		switch (opt) {
2238		case TCPOPT_MAXSEG:
2239			mss = (u_int16_t *)(optp + 2);
2240			if ((ntohs(*mss)) > r->max_mss) {
2241				th->th_sum = pf_cksum_fixup(th->th_sum,
2242				    *mss, htons(r->max_mss), 0);
2243				*mss = htons(r->max_mss);
2244				rewrite = 1;
2245			}
2246			break;
2247		default:
2248			break;
2249		}
2250	}
2251
2252	if (rewrite)
2253		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
2254
2255	return (rewrite);
2256}
2257
2258#ifdef INET
2259static void
2260pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
2261{
2262	struct mbuf		*m = *m0;
2263	struct ip		*h = mtod(m, struct ip *);
2264
2265	/* Clear IP_DF if no-df was requested */
2266	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
2267		u_int16_t ip_off = h->ip_off;
2268
2269		h->ip_off &= htons(~IP_DF);
2270		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2271	}
2272
2273	/* Enforce a minimum ttl, may cause endless packet loops */
2274	if (min_ttl && h->ip_ttl < min_ttl) {
2275		u_int16_t ip_ttl = h->ip_ttl;
2276
2277		h->ip_ttl = min_ttl;
2278		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2279	}
2280
2281	/* Enforce tos */
2282	if (flags & PFRULE_SET_TOS) {
2283		u_int16_t	ov, nv;
2284
2285		ov = *(u_int16_t *)h;
2286		h->ip_tos = tos;
2287		nv = *(u_int16_t *)h;
2288
2289		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2290	}
2291
2292	/* random-id, but not for fragments */
2293	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2294		u_int16_t ip_id = h->ip_id;
2295
2296		h->ip_id = ip_randomid();
2297		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2298	}
2299}
2300#endif /* INET */
2301
2302#ifdef INET6
2303static void
2304pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
2305{
2306	struct mbuf		*m = *m0;
2307	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
2308
2309	/* Enforce a minimum ttl, may cause endless packet loops */
2310	if (min_ttl && h->ip6_hlim < min_ttl)
2311		h->ip6_hlim = min_ttl;
2312}
2313#endif
2314