pf_norm.c revision 284569
1/*-
2 * Copyright 2001 Niels Provos <provos@citi.umich.edu>
3 * Copyright 2011 Alexander Bluhm <bluhm@openbsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 *
26 *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD: stable/10/sys/netpfil/pf/pf_norm.c 284569 2015-06-18 20:28:52Z kp $");
31
32#include "opt_inet.h"
33#include "opt_inet6.h"
34#include "opt_pf.h"
35
36#include <sys/param.h>
37#include <sys/lock.h>
38#include <sys/mbuf.h>
39#include <sys/mutex.h>
40#include <sys/refcount.h>
41#include <sys/rwlock.h>
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/vnet.h>
46#include <net/pfvar.h>
47#include <net/if_pflog.h>
48
49#include <netinet/in.h>
50#include <netinet/ip.h>
51#include <netinet/ip_var.h>
52#include <netinet6/ip6_var.h>
53#include <netinet/tcp.h>
54#include <netinet/tcp_fsm.h>
55#include <netinet/tcp_seq.h>
56
57#ifdef INET6
58#include <netinet/ip6.h>
59#endif /* INET6 */
60
61struct pf_frent {
62	TAILQ_ENTRY(pf_frent)	fr_next;
63	struct mbuf	*fe_m;
64	uint16_t	fe_hdrlen;	/* ipv4 header lenght with ip options
65					   ipv6, extension, fragment header */
66	uint16_t	fe_extoff;	/* last extension header offset or 0 */
67	uint16_t	fe_len;		/* fragment length */
68	uint16_t	fe_off;		/* fragment offset */
69	uint16_t	fe_mff;		/* more fragment flag */
70};
71
72struct pf_fragment_cmp {
73	struct pf_addr	frc_src;
74	struct pf_addr	frc_dst;
75	uint32_t	frc_id;
76	sa_family_t	frc_af;
77	uint8_t		frc_proto;
78	uint8_t		frc_direction;
79};
80
81struct pf_fragment {
82	struct pf_fragment_cmp	fr_key;
83#define fr_src	fr_key.frc_src
84#define fr_dst	fr_key.frc_dst
85#define fr_id	fr_key.frc_id
86#define fr_af	fr_key.frc_af
87#define fr_proto	fr_key.frc_proto
88#define fr_direction	fr_key.frc_direction
89
90	RB_ENTRY(pf_fragment) fr_entry;
91	TAILQ_ENTRY(pf_fragment) frag_next;
92	uint8_t		fr_flags;	/* status flags */
93#define PFFRAG_SEENLAST		0x0001	/* Seen the last fragment for this */
94#define PFFRAG_NOBUFFER		0x0002	/* Non-buffering fragment cache */
95#define PFFRAG_DROP		0x0004	/* Drop all fragments */
96#define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
97	uint16_t	fr_max;		/* fragment data max */
98	uint32_t	fr_timeout;
99	uint16_t	fr_maxlen;	/* maximum length of single fragment */
100	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
101};
102
103struct pf_fragment_tag {
104	uint16_t	ft_hdrlen;	/* header length of reassembled pkt */
105	uint16_t	ft_extoff;	/* last extension header offset or 0 */
106	uint16_t	ft_maxlen;	/* maximum fragment payload length */
107};
108
109static struct mtx pf_frag_mtx;
110#define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
111#define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
112#define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
113
114VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
115
116static VNET_DEFINE(uma_zone_t, pf_frent_z);
117#define	V_pf_frent_z	VNET(pf_frent_z)
118static VNET_DEFINE(uma_zone_t, pf_frag_z);
119#define	V_pf_frag_z	VNET(pf_frag_z)
120
121TAILQ_HEAD(pf_fragqueue, pf_fragment);
122TAILQ_HEAD(pf_cachequeue, pf_fragment);
123static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
124#define	V_pf_fragqueue			VNET(pf_fragqueue)
125static VNET_DEFINE(struct pf_cachequeue,	pf_cachequeue);
126#define	V_pf_cachequeue			VNET(pf_cachequeue)
127RB_HEAD(pf_frag_tree, pf_fragment);
128static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
129#define	V_pf_frag_tree			VNET(pf_frag_tree)
130static VNET_DEFINE(struct pf_frag_tree,	pf_cache_tree);
131#define	V_pf_cache_tree			VNET(pf_cache_tree)
132static int		 pf_frag_compare(struct pf_fragment *,
133			    struct pf_fragment *);
134static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
135static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
136
137/* Private prototypes */
138static void		 pf_free_fragment(struct pf_fragment *);
139static void		 pf_remove_fragment(struct pf_fragment *);
140static int		 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
141			    struct tcphdr *, int, sa_family_t);
142#ifdef INET
143static void		 pf_scrub_ip(struct mbuf **, u_int32_t, u_int8_t,
144			    u_int8_t);
145static void		 pf_flush_fragments(void);
146static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
147			struct pf_frag_tree *tree);
148struct pf_frent		*pf_create_fragment(u_short *);
149static int		pf_reassemble(struct mbuf **, struct ip *, int,
150			    u_short *);
151int			pf_reassemble6(struct mbuf **, struct ip6_hdr *,
152			    struct ip6_frag *, uint16_t, uint16_t, int,
153			    u_short *);
154static struct mbuf	*pf_fragcache(struct mbuf **, struct ip*,
155			    struct pf_fragment **, int, int, int *);
156static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
157			    struct pf_frent *, u_short *);
158int			pf_isfull_fragment(struct pf_fragment *);
159struct mbuf		*pf_join_fragment(struct pf_fragment *);
160
161
162#endif /* INET */
163#ifdef INET6
164static void		 pf_scrub_ip6(struct mbuf **, u_int8_t);
165#endif
166#define	DPFPRINTF(x) do {				\
167	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
168		printf("%s: ", __func__);		\
169		printf x ;				\
170	}						\
171} while(0)
172
173static void
174pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key)
175{
176
177	key->frc_src.v4 = ip->ip_src;
178	key->frc_dst.v4 = ip->ip_dst;
179	key->frc_af = AF_INET;
180	key->frc_proto = ip->ip_p;
181	key->frc_id = ip->ip_id;
182	key->frc_direction = dir;
183}
184
185void
186pf_normalize_init(void)
187{
188
189	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
190	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
191	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
192	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
193	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
194	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
195	    UMA_ALIGN_PTR, 0);
196
197	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
198	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
199	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
200	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
201
202	mtx_init(&pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
203
204	TAILQ_INIT(&V_pf_fragqueue);
205	TAILQ_INIT(&V_pf_cachequeue);
206}
207
208void
209pf_normalize_cleanup(void)
210{
211
212	uma_zdestroy(V_pf_state_scrub_z);
213	uma_zdestroy(V_pf_frent_z);
214	uma_zdestroy(V_pf_frag_z);
215
216	mtx_destroy(&pf_frag_mtx);
217}
218
219static int
220pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
221{
222	int	diff;
223
224	if ((diff = a->fr_id - b->fr_id) != 0)
225		return (diff);
226	if ((diff = a->fr_proto - b->fr_proto) != 0)
227		return (diff);
228	if ((diff = a->fr_af - b->fr_af) != 0)
229		return (diff);
230	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
231		return (diff);
232	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
233		return (diff);
234	return (0);
235}
236
237void
238pf_purge_expired_fragments(void)
239{
240	struct pf_fragment	*frag;
241	u_int32_t		 expire = time_uptime -
242				    V_pf_default_rule.timeout[PFTM_FRAG];
243
244	PF_FRAG_LOCK();
245	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
246		KASSERT((BUFFER_FRAGMENTS(frag)),
247		    ("BUFFER_FRAGMENTS(frag) == 0: %s", __FUNCTION__));
248		if (frag->fr_timeout > expire)
249			break;
250
251		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
252		pf_free_fragment(frag);
253	}
254
255	while ((frag = TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue)) != NULL) {
256		KASSERT((!BUFFER_FRAGMENTS(frag)),
257		    ("BUFFER_FRAGMENTS(frag) != 0: %s", __FUNCTION__));
258		if (frag->fr_timeout > expire)
259			break;
260
261		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
262		pf_free_fragment(frag);
263		KASSERT((TAILQ_EMPTY(&V_pf_cachequeue) ||
264		    TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue) != frag),
265		    ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
266		    __FUNCTION__));
267	}
268	PF_FRAG_UNLOCK();
269}
270
271#ifdef INET
272/*
273 * Try to flush old fragments to make space for new ones
274 */
275static void
276pf_flush_fragments(void)
277{
278	struct pf_fragment	*frag, *cache;
279	int			 goal;
280
281	PF_FRAG_ASSERT();
282
283	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
284	DPFPRINTF(("trying to free %d frag entriess\n", goal));
285	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
286		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
287		if (frag)
288			pf_free_fragment(frag);
289		cache = TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue);
290		if (cache)
291			pf_free_fragment(cache);
292		if (frag == NULL && cache == NULL)
293			break;
294	}
295}
296#endif /* INET */
297
298/* Frees the fragments and all associated entries */
299static void
300pf_free_fragment(struct pf_fragment *frag)
301{
302	struct pf_frent		*frent;
303
304	PF_FRAG_ASSERT();
305
306	/* Free all fragments */
307	if (BUFFER_FRAGMENTS(frag)) {
308		for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
309		    frent = TAILQ_FIRST(&frag->fr_queue)) {
310			TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
311
312			m_freem(frent->fe_m);
313			uma_zfree(V_pf_frent_z, frent);
314		}
315	} else {
316		for (frent = TAILQ_FIRST(&frag->fr_queue); frent;
317		    frent = TAILQ_FIRST(&frag->fr_queue)) {
318			TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
319
320			KASSERT((TAILQ_EMPTY(&frag->fr_queue) ||
321			    TAILQ_FIRST(&frag->fr_queue)->fe_off >
322			    frent->fe_len),
323			    ("! (TAILQ_EMPTY() || TAILQ_FIRST()->fe_off >"
324			    " frent->fe_len): %s", __func__));
325
326			uma_zfree(V_pf_frent_z, frent);
327		}
328	}
329
330	pf_remove_fragment(frag);
331}
332
333#ifdef INET
334static struct pf_fragment *
335pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
336{
337	struct pf_fragment	*frag;
338
339	PF_FRAG_ASSERT();
340
341	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
342	if (frag != NULL) {
343		/* XXX Are we sure we want to update the timeout? */
344		frag->fr_timeout = time_uptime;
345		if (BUFFER_FRAGMENTS(frag)) {
346			TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
347			TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
348		} else {
349			TAILQ_REMOVE(&V_pf_cachequeue, frag, frag_next);
350			TAILQ_INSERT_HEAD(&V_pf_cachequeue, frag, frag_next);
351		}
352	}
353
354	return (frag);
355}
356#endif /* INET */
357
358/* Removes a fragment from the fragment queue and frees the fragment */
359
360static void
361pf_remove_fragment(struct pf_fragment *frag)
362{
363
364	PF_FRAG_ASSERT();
365
366	if (BUFFER_FRAGMENTS(frag)) {
367		RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
368		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
369		uma_zfree(V_pf_frag_z, frag);
370	} else {
371		RB_REMOVE(pf_frag_tree, &V_pf_cache_tree, frag);
372		TAILQ_REMOVE(&V_pf_cachequeue, frag, frag_next);
373		uma_zfree(V_pf_frag_z, frag);
374	}
375}
376
377#ifdef INET
378struct pf_frent *
379pf_create_fragment(u_short *reason)
380{
381	struct pf_frent *frent;
382
383	PF_FRAG_ASSERT();
384
385	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
386	if (frent == NULL) {
387		pf_flush_fragments();
388		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
389		if (frent == NULL) {
390			REASON_SET(reason, PFRES_MEMORY);
391			return (NULL);
392		}
393	}
394
395	return (frent);
396}
397
398struct pf_fragment *
399pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
400		u_short *reason)
401{
402	struct pf_frent		*after, *next, *prev;
403	struct pf_fragment	*frag;
404	uint16_t		total;
405
406	PF_FRAG_ASSERT();
407
408	/* No empty fragments. */
409	if (frent->fe_len == 0) {
410		DPFPRINTF(("bad fragment: len 0"));
411		goto bad_fragment;
412	}
413
414	/* All fragments are 8 byte aligned. */
415	if (frent->fe_mff && (frent->fe_len & 0x7)) {
416		DPFPRINTF(("bad fragment: mff and len %d", frent->fe_len));
417		goto bad_fragment;
418	}
419
420	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
421	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
422		DPFPRINTF(("bad fragment: max packet %d",
423		    frent->fe_off + frent->fe_len));
424		goto bad_fragment;
425	}
426
427	DPFPRINTF((key->frc_af == AF_INET ?
428	    "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d",
429	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
430
431	/* Fully buffer all of the fragments in this fragment queue. */
432	frag = pf_find_fragment(key, &V_pf_frag_tree);
433
434	/* Create a new reassembly queue for this packet. */
435	if (frag == NULL) {
436		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
437		if (frag == NULL) {
438			pf_flush_fragments();
439			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
440			if (frag == NULL) {
441				REASON_SET(reason, PFRES_MEMORY);
442				goto drop_fragment;
443			}
444		}
445
446		*(struct pf_fragment_cmp *)frag = *key;
447		frag->fr_timeout = time_second;
448		frag->fr_maxlen = frent->fe_len;
449		TAILQ_INIT(&frag->fr_queue);
450
451		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
452		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
453
454		/* We do not have a previous fragment. */
455		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
456
457		return (frag);
458	}
459
460	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
461
462	/* Remember maximum fragment len for refragmentation. */
463	if (frent->fe_len > frag->fr_maxlen)
464		frag->fr_maxlen = frent->fe_len;
465
466	/* Maximum data we have seen already. */
467	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
468		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
469
470	/* Non terminal fragments must have more fragments flag. */
471	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
472		goto bad_fragment;
473
474	/* Check if we saw the last fragment already. */
475	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
476		if (frent->fe_off + frent->fe_len > total ||
477		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
478			goto bad_fragment;
479	} else {
480		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
481			goto bad_fragment;
482	}
483
484	/* Find a fragment after the current one. */
485	prev = NULL;
486	TAILQ_FOREACH(after, &frag->fr_queue, fr_next) {
487		if (after->fe_off > frent->fe_off)
488			break;
489		prev = after;
490	}
491
492	KASSERT(prev != NULL || after != NULL,
493	    ("prev != NULL || after != NULL"));
494
495	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
496		uint16_t precut;
497
498		precut = prev->fe_off + prev->fe_len - frent->fe_off;
499		if (precut >= frent->fe_len)
500			goto bad_fragment;
501		DPFPRINTF(("overlap -%d", precut));
502		m_adj(frent->fe_m, precut);
503		frent->fe_off += precut;
504		frent->fe_len -= precut;
505	}
506
507	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
508	    after = next) {
509		uint16_t aftercut;
510
511		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
512		DPFPRINTF(("adjust overlap %d", aftercut));
513		if (aftercut < after->fe_len) {
514			m_adj(after->fe_m, aftercut);
515			after->fe_off += aftercut;
516			after->fe_len -= aftercut;
517			break;
518		}
519
520		/* This fragment is completely overlapped, lose it. */
521		next = TAILQ_NEXT(after, fr_next);
522		m_freem(after->fe_m);
523		TAILQ_REMOVE(&frag->fr_queue, after, fr_next);
524		uma_zfree(V_pf_frent_z, after);
525	}
526
527	if (prev == NULL)
528		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
529	else
530		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
531
532	return (frag);
533
534bad_fragment:
535	REASON_SET(reason, PFRES_FRAG);
536drop_fragment:
537	uma_zfree(V_pf_frent_z, frent);
538	return (NULL);
539}
540
541int
542pf_isfull_fragment(struct pf_fragment *frag)
543{
544	struct pf_frent	*frent, *next;
545	uint16_t off, total;
546
547	/* Check if we are completely reassembled */
548	if (TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff)
549		return (0);
550
551	/* Maximum data we have seen already */
552	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
553		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
554
555	/* Check if we have all the data */
556	off = 0;
557	for (frent = TAILQ_FIRST(&frag->fr_queue); frent; frent = next) {
558		next = TAILQ_NEXT(frent, fr_next);
559
560		off += frent->fe_len;
561		if (off < total && (next == NULL || next->fe_off != off)) {
562			DPFPRINTF(("missing fragment at %d, next %d, total %d",
563			    off, next == NULL ? -1 : next->fe_off, total));
564			return (0);
565		}
566	}
567	DPFPRINTF(("%d < %d?", off, total));
568	if (off < total)
569		return (0);
570	KASSERT(off == total, ("off == total"));
571
572	return (1);
573}
574
575struct mbuf *
576pf_join_fragment(struct pf_fragment *frag)
577{
578	struct mbuf *m, *m2;
579	struct pf_frent	*frent, *next;
580
581	frent = TAILQ_FIRST(&frag->fr_queue);
582	next = TAILQ_NEXT(frent, fr_next);
583
584	/* Magic from ip_input. */
585	m = frent->fe_m;
586	m2 = m->m_next;
587	m->m_next = NULL;
588	m_cat(m, m2);
589	uma_zfree(V_pf_frent_z, frent);
590	for (frent = next; frent != NULL; frent = next) {
591		next = TAILQ_NEXT(frent, fr_next);
592
593		m2 = frent->fe_m;
594		/* Strip off ip header. */
595		m_adj(m2, frent->fe_hdrlen);
596		uma_zfree(V_pf_frent_z, frent);
597		m_cat(m, m2);
598	}
599
600	/* Remove from fragment queue. */
601	pf_remove_fragment(frag);
602
603	return (m);
604}
605
606#define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
607static int
608pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason)
609{
610	struct mbuf		*m = *m0;
611	struct pf_frent		*frent;
612	struct pf_fragment	*frag;
613	struct pf_fragment_cmp	key;
614	uint16_t		total, hdrlen;
615
616	/* Get an entry for the fragment queue */
617	if ((frent = pf_create_fragment(reason)) == NULL)
618		return (PF_DROP);
619
620	frent->fe_m = m;
621	frent->fe_hdrlen = ip->ip_hl << 2;
622	frent->fe_extoff = 0;
623	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
624	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
625	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
626
627	pf_ip2key(ip, dir, &key);
628
629	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
630		return (PF_DROP);
631
632	/* The mbuf is part of the fragment entry, no direct free or access */
633	m = *m0 = NULL;
634
635	if (!pf_isfull_fragment(frag))
636		return (PF_PASS);  /* drop because *m0 is NULL, no error */
637
638	/* We have all the data */
639	frent = TAILQ_FIRST(&frag->fr_queue);
640	KASSERT(frent != NULL, ("frent != NULL"));
641	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
642		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
643	hdrlen = frent->fe_hdrlen;
644
645	m = *m0 = pf_join_fragment(frag);
646	frag = NULL;
647
648	if (m->m_flags & M_PKTHDR) {
649		int plen = 0;
650		for (m = *m0; m; m = m->m_next)
651			plen += m->m_len;
652		m = *m0;
653		m->m_pkthdr.len = plen;
654	}
655
656	ip = mtod(m, struct ip *);
657	ip->ip_len = htons(hdrlen + total);
658	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
659
660	if (hdrlen + total > IP_MAXPACKET) {
661		DPFPRINTF(("drop: too big: %d", total));
662		ip->ip_len = 0;
663		REASON_SET(reason, PFRES_SHORT);
664		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
665		return (PF_DROP);
666	}
667
668	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
669	return (PF_PASS);
670}
671
672#ifdef INET6
673int
674pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr,
675		uint16_t hdrlen, uint16_t extoff, int dir, u_short *reason)
676{
677	struct mbuf		*m = *m0;
678	struct pf_frent		*frent;
679	struct pf_fragment	*frag;
680	struct pf_fragment_cmp	 key;
681	int			 off;
682	uint16_t		 total, maxlen;
683	uint8_t			 proto;
684
685	PF_FRAG_LOCK();
686
687	/* Get an entry for the fragment queue. */
688	if ((frent = pf_create_fragment(reason)) == NULL) {
689		PF_FRAG_UNLOCK();
690		return (PF_DROP);
691	}
692
693	frent->fe_m = m;
694	frent->fe_hdrlen = hdrlen;
695	frent->fe_extoff = extoff;
696	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
697	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
698	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
699
700	key.frc_src.v6 = ip6->ip6_src;
701	key.frc_dst.v6 = ip6->ip6_dst;
702	key.frc_af = AF_INET6;
703	/* Only the first fragment's protocol is relevant. */
704	key.frc_proto = 0;
705	key.frc_id = fraghdr->ip6f_ident;
706	key.frc_direction = dir;
707
708	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
709		PF_FRAG_UNLOCK();
710		return (PF_DROP);
711	}
712
713	/* The mbuf is part of the fragment entry, no direct free or access. */
714	m = *m0 = NULL;
715
716	if (!pf_isfull_fragment(frag)) {
717		PF_FRAG_UNLOCK();
718		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
719	}
720
721	/* We have all the data. */
722	extoff = frent->fe_extoff;
723	maxlen = frag->fr_maxlen;
724	frent = TAILQ_FIRST(&frag->fr_queue);
725	KASSERT(frent != NULL, ("frent != NULL"));
726	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
727		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
728	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
729
730	m = *m0 = pf_join_fragment(frag);
731	frag = NULL;
732
733	PF_FRAG_UNLOCK();
734
735	/* Take protocol from first fragment header. */
736	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
737	KASSERT(m, ("%s: short mbuf chain", __func__));
738	proto = *(mtod(m, caddr_t) + off);
739	m = *m0;
740
741	/* Delete frag6 header */
742	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
743		goto fail;
744
745	if (m->m_flags & M_PKTHDR) {
746		int plen = 0;
747		for (m = *m0; m; m = m->m_next)
748			plen += m->m_len;
749		m = *m0;
750		m->m_pkthdr.len = plen;
751	}
752
753	ip6 = mtod(m, struct ip6_hdr *);
754	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
755	if (extoff) {
756		/* Write protocol into next field of last extension header. */
757		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
758		    &off);
759		KASSERT(m, ("%s: short mbuf chain", __func__));
760		*(mtod(m, char *) + off) = proto;
761		m = *m0;
762	} else
763		ip6->ip6_nxt = proto;
764
765	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
766		DPFPRINTF(("drop: too big: %d", total));
767		ip6->ip6_plen = 0;
768		REASON_SET(reason, PFRES_SHORT);
769		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
770		return (PF_DROP);
771	}
772
773	DPFPRINTF(("complete: %p(%d)", m, ntohs(ip6->ip6_plen)));
774	return (PF_PASS);
775
776fail:
777	REASON_SET(reason, PFRES_MEMORY);
778	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
779	return (PF_DROP);
780}
781
782#endif
783
784static struct mbuf *
785pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
786    int drop, int *nomem)
787{
788	struct mbuf		*m = *m0;
789	struct pf_frent		*frp, *fra, *cur = NULL;
790	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
791	u_int16_t		 off = ntohs(h->ip_off) << 3;
792	u_int16_t		 max = ip_len + off;
793	int			 hosed = 0;
794
795	PF_FRAG_ASSERT();
796	KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
797	    ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __FUNCTION__));
798
799	/* Create a new range queue for this packet */
800	if (*frag == NULL) {
801		*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
802		if (*frag == NULL) {
803			pf_flush_fragments();
804			*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
805			if (*frag == NULL)
806				goto no_mem;
807		}
808
809		/* Get an entry for the queue */
810		cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
811		if (cur == NULL) {
812			uma_zfree(V_pf_frag_z, *frag);
813			*frag = NULL;
814			goto no_mem;
815		}
816
817		(*frag)->fr_flags = PFFRAG_NOBUFFER;
818		(*frag)->fr_max = 0;
819		(*frag)->fr_src.v4 = h->ip_src;
820		(*frag)->fr_dst.v4 = h->ip_dst;
821		(*frag)->fr_id = h->ip_id;
822		(*frag)->fr_timeout = time_uptime;
823
824		cur->fe_off = off;
825		cur->fe_len = max; /* TODO: fe_len = max - off ? */
826		TAILQ_INIT(&(*frag)->fr_queue);
827		TAILQ_INSERT_HEAD(&(*frag)->fr_queue, cur, fr_next);
828
829		RB_INSERT(pf_frag_tree, &V_pf_cache_tree, *frag);
830		TAILQ_INSERT_HEAD(&V_pf_cachequeue, *frag, frag_next);
831
832		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
833
834		goto pass;
835	}
836
837	/*
838	 * Find a fragment after the current one:
839	 *  - off contains the real shifted offset.
840	 */
841	frp = NULL;
842	TAILQ_FOREACH(fra, &(*frag)->fr_queue, fr_next) {
843		if (fra->fe_off > off)
844			break;
845		frp = fra;
846	}
847
848	KASSERT((frp != NULL || fra != NULL),
849	    ("!(frp != NULL || fra != NULL): %s", __FUNCTION__));
850
851	if (frp != NULL) {
852		int	precut;
853
854		precut = frp->fe_len - off;
855		if (precut >= ip_len) {
856			/* Fragment is entirely a duplicate */
857			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
858			    h->ip_id, frp->fe_off, frp->fe_len, off, max));
859			goto drop_fragment;
860		}
861		if (precut == 0) {
862			/* They are adjacent.  Fixup cache entry */
863			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
864			    h->ip_id, frp->fe_off, frp->fe_len, off, max));
865			frp->fe_len = max;
866		} else if (precut > 0) {
867			/* The first part of this payload overlaps with a
868			 * fragment that has already been passed.
869			 * Need to trim off the first part of the payload.
870			 * But to do so easily, we need to create another
871			 * mbuf to throw the original header into.
872			 */
873
874			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
875			    h->ip_id, precut, frp->fe_off, frp->fe_len, off,
876			    max));
877
878			off += precut;
879			max -= precut;
880			/* Update the previous frag to encompass this one */
881			frp->fe_len = max;
882
883			if (!drop) {
884				/* XXX Optimization opportunity
885				 * This is a very heavy way to trim the payload.
886				 * we could do it much faster by diddling mbuf
887				 * internals but that would be even less legible
888				 * than this mbuf magic.  For my next trick,
889				 * I'll pull a rabbit out of my laptop.
890				 */
891				*m0 = m_dup(m, M_NOWAIT);
892				if (*m0 == NULL)
893					goto no_mem;
894				/* From KAME Project : We have missed this! */
895				m_adj(*m0, (h->ip_hl << 2) -
896				    (*m0)->m_pkthdr.len);
897
898				KASSERT(((*m0)->m_next == NULL),
899				    ("(*m0)->m_next != NULL: %s",
900				    __FUNCTION__));
901				m_adj(m, precut + (h->ip_hl << 2));
902				m_cat(*m0, m);
903				m = *m0;
904				if (m->m_flags & M_PKTHDR) {
905					int plen = 0;
906					struct mbuf *t;
907					for (t = m; t; t = t->m_next)
908						plen += t->m_len;
909					m->m_pkthdr.len = plen;
910				}
911
912
913				h = mtod(m, struct ip *);
914
915				KASSERT(((int)m->m_len ==
916				    ntohs(h->ip_len) - precut),
917				    ("m->m_len != ntohs(h->ip_len) - precut: %s",
918				    __FUNCTION__));
919				h->ip_off = htons(ntohs(h->ip_off) +
920				    (precut >> 3));
921				h->ip_len = htons(ntohs(h->ip_len) - precut);
922			} else {
923				hosed++;
924			}
925		} else {
926			/* There is a gap between fragments */
927
928			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
929			    h->ip_id, -precut, frp->fe_off, frp->fe_len, off,
930			    max));
931
932			cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
933			if (cur == NULL)
934				goto no_mem;
935
936			cur->fe_off = off;
937			cur->fe_len = max;
938			TAILQ_INSERT_AFTER(&(*frag)->fr_queue, frp, cur, fr_next);
939		}
940	}
941
942	if (fra != NULL) {
943		int	aftercut;
944		int	merge = 0;
945
946		aftercut = max - fra->fe_off;
947		if (aftercut == 0) {
948			/* Adjacent fragments */
949			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
950			    h->ip_id, off, max, fra->fe_off, fra->fe_len));
951			fra->fe_off = off;
952			merge = 1;
953		} else if (aftercut > 0) {
954			/* Need to chop off the tail of this fragment */
955			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
956			    h->ip_id, aftercut, off, max, fra->fe_off,
957			    fra->fe_len));
958			fra->fe_off = off;
959			max -= aftercut;
960
961			merge = 1;
962
963			if (!drop) {
964				m_adj(m, -aftercut);
965				if (m->m_flags & M_PKTHDR) {
966					int plen = 0;
967					struct mbuf *t;
968					for (t = m; t; t = t->m_next)
969						plen += t->m_len;
970					m->m_pkthdr.len = plen;
971				}
972				h = mtod(m, struct ip *);
973				KASSERT(((int)m->m_len == ntohs(h->ip_len) - aftercut),
974				    ("m->m_len != ntohs(h->ip_len) - aftercut: %s",
975				    __FUNCTION__));
976				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
977			} else {
978				hosed++;
979			}
980		} else if (frp == NULL) {
981			/* There is a gap between fragments */
982			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
983			    h->ip_id, -aftercut, off, max, fra->fe_off,
984			    fra->fe_len));
985
986			cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
987			if (cur == NULL)
988				goto no_mem;
989
990			cur->fe_off = off;
991			cur->fe_len = max;
992			TAILQ_INSERT_HEAD(&(*frag)->fr_queue, cur, fr_next);
993		}
994
995
996		/* Need to glue together two separate fragment descriptors */
997		if (merge) {
998			if (cur && fra->fe_off <= cur->fe_len) {
999				/* Need to merge in a previous 'cur' */
1000				DPFPRINTF(("fragcache[%d]: adjacent(merge "
1001				    "%d-%d) %d-%d (%d-%d)\n",
1002				    h->ip_id, cur->fe_off, cur->fe_len, off,
1003				    max, fra->fe_off, fra->fe_len));
1004				fra->fe_off = cur->fe_off;
1005				TAILQ_REMOVE(&(*frag)->fr_queue, cur, fr_next);
1006				uma_zfree(V_pf_frent_z, cur);
1007				cur = NULL;
1008
1009			} else if (frp && fra->fe_off <= frp->fe_len) {
1010				/* Need to merge in a modified 'frp' */
1011				KASSERT((cur == NULL), ("cur != NULL: %s",
1012				    __FUNCTION__));
1013				DPFPRINTF(("fragcache[%d]: adjacent(merge "
1014				    "%d-%d) %d-%d (%d-%d)\n",
1015				    h->ip_id, frp->fe_off, frp->fe_len, off,
1016				    max, fra->fe_off, fra->fe_len));
1017				fra->fe_off = frp->fe_off;
1018				TAILQ_REMOVE(&(*frag)->fr_queue, frp, fr_next);
1019				uma_zfree(V_pf_frent_z, frp);
1020				frp = NULL;
1021
1022			}
1023		}
1024	}
1025
1026	if (hosed) {
1027		/*
1028		 * We must keep tracking the overall fragment even when
1029		 * we're going to drop it anyway so that we know when to
1030		 * free the overall descriptor.  Thus we drop the frag late.
1031		 */
1032		goto drop_fragment;
1033	}
1034
1035
1036 pass:
1037	/* Update maximum data size */
1038	if ((*frag)->fr_max < max)
1039		(*frag)->fr_max = max;
1040
1041	/* This is the last segment */
1042	if (!mff)
1043		(*frag)->fr_flags |= PFFRAG_SEENLAST;
1044
1045	/* Check if we are completely reassembled */
1046	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
1047	    TAILQ_FIRST(&(*frag)->fr_queue)->fe_off == 0 &&
1048	    TAILQ_FIRST(&(*frag)->fr_queue)->fe_len == (*frag)->fr_max) {
1049		/* Remove from fragment queue */
1050		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
1051		    (*frag)->fr_max));
1052		pf_free_fragment(*frag);
1053		*frag = NULL;
1054	}
1055
1056	return (m);
1057
1058 no_mem:
1059	*nomem = 1;
1060
1061	/* Still need to pay attention to !IP_MF */
1062	if (!mff && *frag != NULL)
1063		(*frag)->fr_flags |= PFFRAG_SEENLAST;
1064
1065	m_freem(m);
1066	return (NULL);
1067
1068 drop_fragment:
1069
1070	/* Still need to pay attention to !IP_MF */
1071	if (!mff && *frag != NULL)
1072		(*frag)->fr_flags |= PFFRAG_SEENLAST;
1073
1074	if (drop) {
1075		/* This fragment has been deemed bad.  Don't reass */
1076		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
1077			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
1078			    h->ip_id));
1079		(*frag)->fr_flags |= PFFRAG_DROP;
1080	}
1081
1082	m_freem(m);
1083	return (NULL);
1084}
1085
1086int
1087pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
1088    struct pf_pdesc *pd)
1089{
1090	struct mbuf		*m = *m0;
1091	struct pf_rule		*r;
1092	struct pf_fragment	*frag = NULL;
1093	struct pf_fragment_cmp	key;
1094	struct ip		*h = mtod(m, struct ip *);
1095	int			 mff = (ntohs(h->ip_off) & IP_MF);
1096	int			 hlen = h->ip_hl << 2;
1097	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1098	u_int16_t		 max;
1099	int			 ip_len;
1100	int			 ip_off;
1101	int			 tag = -1;
1102	int			 verdict;
1103
1104	PF_RULES_RASSERT();
1105
1106	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1107	while (r != NULL) {
1108		r->evaluations++;
1109		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1110			r = r->skip[PF_SKIP_IFP].ptr;
1111		else if (r->direction && r->direction != dir)
1112			r = r->skip[PF_SKIP_DIR].ptr;
1113		else if (r->af && r->af != AF_INET)
1114			r = r->skip[PF_SKIP_AF].ptr;
1115		else if (r->proto && r->proto != h->ip_p)
1116			r = r->skip[PF_SKIP_PROTO].ptr;
1117		else if (PF_MISMATCHAW(&r->src.addr,
1118		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1119		    r->src.neg, kif, M_GETFIB(m)))
1120			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1121		else if (PF_MISMATCHAW(&r->dst.addr,
1122		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1123		    r->dst.neg, NULL, M_GETFIB(m)))
1124			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1125		else if (r->match_tag && !pf_match_tag(m, r, &tag,
1126		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1127			r = TAILQ_NEXT(r, entries);
1128		else
1129			break;
1130	}
1131
1132	if (r == NULL || r->action == PF_NOSCRUB)
1133		return (PF_PASS);
1134	else {
1135		r->packets[dir == PF_OUT]++;
1136		r->bytes[dir == PF_OUT] += pd->tot_len;
1137	}
1138
1139	/* Check for illegal packets */
1140	if (hlen < (int)sizeof(struct ip))
1141		goto drop;
1142
1143	if (hlen > ntohs(h->ip_len))
1144		goto drop;
1145
1146	/* Clear IP_DF if the rule uses the no-df option */
1147	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1148		u_int16_t ip_off = h->ip_off;
1149
1150		h->ip_off &= htons(~IP_DF);
1151		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1152	}
1153
1154	/* We will need other tests here */
1155	if (!fragoff && !mff)
1156		goto no_fragment;
1157
1158	/* We're dealing with a fragment now. Don't allow fragments
1159	 * with IP_DF to enter the cache. If the flag was cleared by
1160	 * no-df above, fine. Otherwise drop it.
1161	 */
1162	if (h->ip_off & htons(IP_DF)) {
1163		DPFPRINTF(("IP_DF\n"));
1164		goto bad;
1165	}
1166
1167	ip_len = ntohs(h->ip_len) - hlen;
1168	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1169
1170	/* All fragments are 8 byte aligned */
1171	if (mff && (ip_len & 0x7)) {
1172		DPFPRINTF(("mff and %d\n", ip_len));
1173		goto bad;
1174	}
1175
1176	/* Respect maximum length */
1177	if (fragoff + ip_len > IP_MAXPACKET) {
1178		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1179		goto bad;
1180	}
1181	max = fragoff + ip_len;
1182
1183	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
1184
1185		/* Fully buffer all of the fragments */
1186		PF_FRAG_LOCK();
1187
1188		pf_ip2key(h, dir, &key);
1189		frag = pf_find_fragment(&key, &V_pf_frag_tree);
1190
1191		/* Check if we saw the last fragment already */
1192		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
1193		    max > frag->fr_max)
1194			goto bad;
1195
1196		/* Might return a completely reassembled mbuf, or NULL */
1197		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1198		verdict = pf_reassemble(m0, h, dir, reason);
1199		PF_FRAG_UNLOCK();
1200
1201		if (verdict != PF_PASS)
1202			return (PF_DROP);
1203
1204		m = *m0;
1205		if (m == NULL)
1206			return (PF_DROP);
1207
1208		/* use mtag from concatenated mbuf chain */
1209		pd->pf_mtag = pf_find_mtag(m);
1210#ifdef DIAGNOSTIC
1211		if (pd->pf_mtag == NULL) {
1212			printf("%s: pf_find_mtag returned NULL(1)\n", __func__);
1213			if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
1214				m_freem(m);
1215				*m0 = NULL;
1216				goto no_mem;
1217			}
1218		}
1219#endif
1220		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1221			goto drop;
1222
1223		h = mtod(m, struct ip *);
1224	} else {
1225		/* non-buffering fragment cache (drops or masks overlaps) */
1226		int	nomem = 0;
1227
1228		if (dir == PF_OUT && pd->pf_mtag->flags & PF_TAG_FRAGCACHE) {
1229			/*
1230			 * Already passed the fragment cache in the
1231			 * input direction.  If we continued, it would
1232			 * appear to be a dup and would be dropped.
1233			 */
1234			goto fragment_pass;
1235		}
1236
1237		PF_FRAG_LOCK();
1238		pf_ip2key(h, dir, &key);
1239		frag = pf_find_fragment(&key, &V_pf_cache_tree);
1240
1241		/* Check if we saw the last fragment already */
1242		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
1243		    max > frag->fr_max) {
1244			if (r->rule_flag & PFRULE_FRAGDROP)
1245				frag->fr_flags |= PFFRAG_DROP;
1246			goto bad;
1247		}
1248
1249		*m0 = m = pf_fragcache(m0, h, &frag, mff,
1250		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
1251		PF_FRAG_UNLOCK();
1252		if (m == NULL) {
1253			if (nomem)
1254				goto no_mem;
1255			goto drop;
1256		}
1257
1258		/* use mtag from copied and trimmed mbuf chain */
1259		pd->pf_mtag = pf_find_mtag(m);
1260#ifdef DIAGNOSTIC
1261		if (pd->pf_mtag == NULL) {
1262			printf("%s: pf_find_mtag returned NULL(2)\n", __func__);
1263			if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
1264				m_freem(m);
1265				*m0 = NULL;
1266				goto no_mem;
1267			}
1268		}
1269#endif
1270		if (dir == PF_IN)
1271			pd->pf_mtag->flags |= PF_TAG_FRAGCACHE;
1272
1273		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1274			goto drop;
1275		goto fragment_pass;
1276	}
1277
1278 no_fragment:
1279	/* At this point, only IP_DF is allowed in ip_off */
1280	if (h->ip_off & ~htons(IP_DF)) {
1281		u_int16_t ip_off = h->ip_off;
1282
1283		h->ip_off &= htons(IP_DF);
1284		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1285	}
1286
1287	/* not missing a return here */
1288
1289 fragment_pass:
1290	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
1291
1292	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1293		pd->flags |= PFDESC_IP_REAS;
1294	return (PF_PASS);
1295
1296 no_mem:
1297	REASON_SET(reason, PFRES_MEMORY);
1298	if (r != NULL && r->log)
1299		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1300		    1);
1301	return (PF_DROP);
1302
1303 drop:
1304	REASON_SET(reason, PFRES_NORM);
1305	if (r != NULL && r->log)
1306		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1307		    1);
1308	return (PF_DROP);
1309
1310 bad:
1311	DPFPRINTF(("dropping bad fragment\n"));
1312
1313	/* Free associated fragments */
1314	if (frag != NULL) {
1315		pf_free_fragment(frag);
1316		PF_FRAG_UNLOCK();
1317	}
1318
1319	REASON_SET(reason, PFRES_FRAG);
1320	if (r != NULL && r->log)
1321		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1322		    1);
1323
1324	return (PF_DROP);
1325}
1326#endif
1327
1328#ifdef INET6
1329int
1330pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1331    u_short *reason, struct pf_pdesc *pd)
1332{
1333	struct mbuf		*m = *m0;
1334	struct pf_rule		*r;
1335	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1336	int			 extoff;
1337	int			 off;
1338	struct ip6_ext		 ext;
1339	struct ip6_opt		 opt;
1340	struct ip6_opt_jumbo	 jumbo;
1341	struct ip6_frag		 frag;
1342	u_int32_t		 jumbolen = 0, plen;
1343	int			 optend;
1344	int			 ooff;
1345	u_int8_t		 proto;
1346	int			 terminal;
1347
1348	PF_RULES_RASSERT();
1349
1350	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1351	while (r != NULL) {
1352		r->evaluations++;
1353		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1354			r = r->skip[PF_SKIP_IFP].ptr;
1355		else if (r->direction && r->direction != dir)
1356			r = r->skip[PF_SKIP_DIR].ptr;
1357		else if (r->af && r->af != AF_INET6)
1358			r = r->skip[PF_SKIP_AF].ptr;
1359#if 0 /* header chain! */
1360		else if (r->proto && r->proto != h->ip6_nxt)
1361			r = r->skip[PF_SKIP_PROTO].ptr;
1362#endif
1363		else if (PF_MISMATCHAW(&r->src.addr,
1364		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1365		    r->src.neg, kif, M_GETFIB(m)))
1366			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1367		else if (PF_MISMATCHAW(&r->dst.addr,
1368		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1369		    r->dst.neg, NULL, M_GETFIB(m)))
1370			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1371		else
1372			break;
1373	}
1374
1375	if (r == NULL || r->action == PF_NOSCRUB)
1376		return (PF_PASS);
1377	else {
1378		r->packets[dir == PF_OUT]++;
1379		r->bytes[dir == PF_OUT] += pd->tot_len;
1380	}
1381
1382	/* Check for illegal packets */
1383	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1384		goto drop;
1385
1386	extoff = 0;
1387	off = sizeof(struct ip6_hdr);
1388	proto = h->ip6_nxt;
1389	terminal = 0;
1390	do {
1391		switch (proto) {
1392		case IPPROTO_FRAGMENT:
1393			goto fragment;
1394			break;
1395		case IPPROTO_AH:
1396		case IPPROTO_ROUTING:
1397		case IPPROTO_DSTOPTS:
1398			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1399			    NULL, AF_INET6))
1400				goto shortpkt;
1401			extoff = off;
1402			if (proto == IPPROTO_AH)
1403				off += (ext.ip6e_len + 2) * 4;
1404			else
1405				off += (ext.ip6e_len + 1) * 8;
1406			proto = ext.ip6e_nxt;
1407			break;
1408		case IPPROTO_HOPOPTS:
1409			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1410			    NULL, AF_INET6))
1411				goto shortpkt;
1412			extoff = off;
1413			optend = off + (ext.ip6e_len + 1) * 8;
1414			ooff = off + sizeof(ext);
1415			do {
1416				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1417				    sizeof(opt.ip6o_type), NULL, NULL,
1418				    AF_INET6))
1419					goto shortpkt;
1420				if (opt.ip6o_type == IP6OPT_PAD1) {
1421					ooff++;
1422					continue;
1423				}
1424				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1425				    NULL, NULL, AF_INET6))
1426					goto shortpkt;
1427				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1428					goto drop;
1429				switch (opt.ip6o_type) {
1430				case IP6OPT_JUMBO:
1431					if (h->ip6_plen != 0)
1432						goto drop;
1433					if (!pf_pull_hdr(m, ooff, &jumbo,
1434					    sizeof(jumbo), NULL, NULL,
1435					    AF_INET6))
1436						goto shortpkt;
1437					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1438					    sizeof(jumbolen));
1439					jumbolen = ntohl(jumbolen);
1440					if (jumbolen <= IPV6_MAXPACKET)
1441						goto drop;
1442					if (sizeof(struct ip6_hdr) + jumbolen !=
1443					    m->m_pkthdr.len)
1444						goto drop;
1445					break;
1446				default:
1447					break;
1448				}
1449				ooff += sizeof(opt) + opt.ip6o_len;
1450			} while (ooff < optend);
1451
1452			off = optend;
1453			proto = ext.ip6e_nxt;
1454			break;
1455		default:
1456			terminal = 1;
1457			break;
1458		}
1459	} while (!terminal);
1460
1461	/* jumbo payload option must be present, or plen > 0 */
1462	if (ntohs(h->ip6_plen) == 0)
1463		plen = jumbolen;
1464	else
1465		plen = ntohs(h->ip6_plen);
1466	if (plen == 0)
1467		goto drop;
1468	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1469		goto shortpkt;
1470
1471	pf_scrub_ip6(&m, r->min_ttl);
1472
1473	return (PF_PASS);
1474
1475 fragment:
1476	/* Jumbo payload packets cannot be fragmented. */
1477	plen = ntohs(h->ip6_plen);
1478	if (plen == 0 || jumbolen)
1479		goto drop;
1480	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1481		goto shortpkt;
1482
1483	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1484		goto shortpkt;
1485
1486	/* Offset now points to data portion. */
1487	off += sizeof(frag);
1488
1489	/* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */
1490	if (pf_reassemble6(m0, h, &frag, off, extoff, dir, reason) != PF_PASS)
1491		return (PF_DROP);
1492	m = *m0;
1493	if (m == NULL)
1494		return (PF_DROP);
1495
1496	pd->flags |= PFDESC_IP_REAS;
1497	return (PF_PASS);
1498
1499 shortpkt:
1500	REASON_SET(reason, PFRES_SHORT);
1501	if (r != NULL && r->log)
1502		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1503		    1);
1504	return (PF_DROP);
1505
1506 drop:
1507	REASON_SET(reason, PFRES_NORM);
1508	if (r != NULL && r->log)
1509		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1510		    1);
1511	return (PF_DROP);
1512}
1513#endif /* INET6 */
1514
1515int
1516pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1517    int off, void *h, struct pf_pdesc *pd)
1518{
1519	struct pf_rule	*r, *rm = NULL;
1520	struct tcphdr	*th = pd->hdr.tcp;
1521	int		 rewrite = 0;
1522	u_short		 reason;
1523	u_int8_t	 flags;
1524	sa_family_t	 af = pd->af;
1525
1526	PF_RULES_RASSERT();
1527
1528	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1529	while (r != NULL) {
1530		r->evaluations++;
1531		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1532			r = r->skip[PF_SKIP_IFP].ptr;
1533		else if (r->direction && r->direction != dir)
1534			r = r->skip[PF_SKIP_DIR].ptr;
1535		else if (r->af && r->af != af)
1536			r = r->skip[PF_SKIP_AF].ptr;
1537		else if (r->proto && r->proto != pd->proto)
1538			r = r->skip[PF_SKIP_PROTO].ptr;
1539		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1540		    r->src.neg, kif, M_GETFIB(m)))
1541			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1542		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1543			    r->src.port[0], r->src.port[1], th->th_sport))
1544			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1545		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1546		    r->dst.neg, NULL, M_GETFIB(m)))
1547			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1548		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1549			    r->dst.port[0], r->dst.port[1], th->th_dport))
1550			r = r->skip[PF_SKIP_DST_PORT].ptr;
1551		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1552			    pf_osfp_fingerprint(pd, m, off, th),
1553			    r->os_fingerprint))
1554			r = TAILQ_NEXT(r, entries);
1555		else {
1556			rm = r;
1557			break;
1558		}
1559	}
1560
1561	if (rm == NULL || rm->action == PF_NOSCRUB)
1562		return (PF_PASS);
1563	else {
1564		r->packets[dir == PF_OUT]++;
1565		r->bytes[dir == PF_OUT] += pd->tot_len;
1566	}
1567
1568	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1569		pd->flags |= PFDESC_TCP_NORM;
1570
1571	flags = th->th_flags;
1572	if (flags & TH_SYN) {
1573		/* Illegal packet */
1574		if (flags & TH_RST)
1575			goto tcp_drop;
1576
1577		if (flags & TH_FIN)
1578			goto tcp_drop;
1579	} else {
1580		/* Illegal packet */
1581		if (!(flags & (TH_ACK|TH_RST)))
1582			goto tcp_drop;
1583	}
1584
1585	if (!(flags & TH_ACK)) {
1586		/* These flags are only valid if ACK is set */
1587		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1588			goto tcp_drop;
1589	}
1590
1591	/* Check for illegal header length */
1592	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1593		goto tcp_drop;
1594
1595	/* If flags changed, or reserved data set, then adjust */
1596	if (flags != th->th_flags || th->th_x2 != 0) {
1597		u_int16_t	ov, nv;
1598
1599		ov = *(u_int16_t *)(&th->th_ack + 1);
1600		th->th_flags = flags;
1601		th->th_x2 = 0;
1602		nv = *(u_int16_t *)(&th->th_ack + 1);
1603
1604		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1605		rewrite = 1;
1606	}
1607
1608	/* Remove urgent pointer, if TH_URG is not set */
1609	if (!(flags & TH_URG) && th->th_urp) {
1610		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1611		th->th_urp = 0;
1612		rewrite = 1;
1613	}
1614
1615	/* Process options */
1616	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1617		rewrite = 1;
1618
1619	/* copy back packet headers if we sanitized */
1620	if (rewrite)
1621		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1622
1623	return (PF_PASS);
1624
1625 tcp_drop:
1626	REASON_SET(&reason, PFRES_NORM);
1627	if (rm != NULL && r->log)
1628		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1629		    1);
1630	return (PF_DROP);
1631}
1632
1633int
1634pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1635    struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1636{
1637	u_int32_t tsval, tsecr;
1638	u_int8_t hdr[60];
1639	u_int8_t *opt;
1640
1641	KASSERT((src->scrub == NULL),
1642	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1643
1644	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1645	if (src->scrub == NULL)
1646		return (1);
1647
1648	switch (pd->af) {
1649#ifdef INET
1650	case AF_INET: {
1651		struct ip *h = mtod(m, struct ip *);
1652		src->scrub->pfss_ttl = h->ip_ttl;
1653		break;
1654	}
1655#endif /* INET */
1656#ifdef INET6
1657	case AF_INET6: {
1658		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1659		src->scrub->pfss_ttl = h->ip6_hlim;
1660		break;
1661	}
1662#endif /* INET6 */
1663	}
1664
1665
1666	/*
1667	 * All normalizations below are only begun if we see the start of
1668	 * the connections.  They must all set an enabled bit in pfss_flags
1669	 */
1670	if ((th->th_flags & TH_SYN) == 0)
1671		return (0);
1672
1673
1674	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1675	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1676		/* Diddle with TCP options */
1677		int hlen;
1678		opt = hdr + sizeof(struct tcphdr);
1679		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1680		while (hlen >= TCPOLEN_TIMESTAMP) {
1681			switch (*opt) {
1682			case TCPOPT_EOL:	/* FALLTHROUGH */
1683			case TCPOPT_NOP:
1684				opt++;
1685				hlen--;
1686				break;
1687			case TCPOPT_TIMESTAMP:
1688				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1689					src->scrub->pfss_flags |=
1690					    PFSS_TIMESTAMP;
1691					src->scrub->pfss_ts_mod =
1692					    htonl(arc4random());
1693
1694					/* note PFSS_PAWS not set yet */
1695					memcpy(&tsval, &opt[2],
1696					    sizeof(u_int32_t));
1697					memcpy(&tsecr, &opt[6],
1698					    sizeof(u_int32_t));
1699					src->scrub->pfss_tsval0 = ntohl(tsval);
1700					src->scrub->pfss_tsval = ntohl(tsval);
1701					src->scrub->pfss_tsecr = ntohl(tsecr);
1702					getmicrouptime(&src->scrub->pfss_last);
1703				}
1704				/* FALLTHROUGH */
1705			default:
1706				hlen -= MAX(opt[1], 2);
1707				opt += MAX(opt[1], 2);
1708				break;
1709			}
1710		}
1711	}
1712
1713	return (0);
1714}
1715
1716void
1717pf_normalize_tcp_cleanup(struct pf_state *state)
1718{
1719	if (state->src.scrub)
1720		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1721	if (state->dst.scrub)
1722		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1723
1724	/* Someday... flush the TCP segment reassembly descriptors. */
1725}
1726
1727int
1728pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1729    u_short *reason, struct tcphdr *th, struct pf_state *state,
1730    struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1731{
1732	struct timeval uptime;
1733	u_int32_t tsval, tsecr;
1734	u_int tsval_from_last;
1735	u_int8_t hdr[60];
1736	u_int8_t *opt;
1737	int copyback = 0;
1738	int got_ts = 0;
1739
1740	KASSERT((src->scrub || dst->scrub),
1741	    ("%s: src->scrub && dst->scrub!", __func__));
1742
1743	/*
1744	 * Enforce the minimum TTL seen for this connection.  Negate a common
1745	 * technique to evade an intrusion detection system and confuse
1746	 * firewall state code.
1747	 */
1748	switch (pd->af) {
1749#ifdef INET
1750	case AF_INET: {
1751		if (src->scrub) {
1752			struct ip *h = mtod(m, struct ip *);
1753			if (h->ip_ttl > src->scrub->pfss_ttl)
1754				src->scrub->pfss_ttl = h->ip_ttl;
1755			h->ip_ttl = src->scrub->pfss_ttl;
1756		}
1757		break;
1758	}
1759#endif /* INET */
1760#ifdef INET6
1761	case AF_INET6: {
1762		if (src->scrub) {
1763			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1764			if (h->ip6_hlim > src->scrub->pfss_ttl)
1765				src->scrub->pfss_ttl = h->ip6_hlim;
1766			h->ip6_hlim = src->scrub->pfss_ttl;
1767		}
1768		break;
1769	}
1770#endif /* INET6 */
1771	}
1772
1773	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1774	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1775	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1776	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1777		/* Diddle with TCP options */
1778		int hlen;
1779		opt = hdr + sizeof(struct tcphdr);
1780		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1781		while (hlen >= TCPOLEN_TIMESTAMP) {
1782			switch (*opt) {
1783			case TCPOPT_EOL:	/* FALLTHROUGH */
1784			case TCPOPT_NOP:
1785				opt++;
1786				hlen--;
1787				break;
1788			case TCPOPT_TIMESTAMP:
1789				/* Modulate the timestamps.  Can be used for
1790				 * NAT detection, OS uptime determination or
1791				 * reboot detection.
1792				 */
1793
1794				if (got_ts) {
1795					/* Huh?  Multiple timestamps!? */
1796					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1797						DPFPRINTF(("multiple TS??"));
1798						pf_print_state(state);
1799						printf("\n");
1800					}
1801					REASON_SET(reason, PFRES_TS);
1802					return (PF_DROP);
1803				}
1804				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1805					memcpy(&tsval, &opt[2],
1806					    sizeof(u_int32_t));
1807					if (tsval && src->scrub &&
1808					    (src->scrub->pfss_flags &
1809					    PFSS_TIMESTAMP)) {
1810						tsval = ntohl(tsval);
1811						pf_change_a(&opt[2],
1812						    &th->th_sum,
1813						    htonl(tsval +
1814						    src->scrub->pfss_ts_mod),
1815						    0);
1816						copyback = 1;
1817					}
1818
1819					/* Modulate TS reply iff valid (!0) */
1820					memcpy(&tsecr, &opt[6],
1821					    sizeof(u_int32_t));
1822					if (tsecr && dst->scrub &&
1823					    (dst->scrub->pfss_flags &
1824					    PFSS_TIMESTAMP)) {
1825						tsecr = ntohl(tsecr)
1826						    - dst->scrub->pfss_ts_mod;
1827						pf_change_a(&opt[6],
1828						    &th->th_sum, htonl(tsecr),
1829						    0);
1830						copyback = 1;
1831					}
1832					got_ts = 1;
1833				}
1834				/* FALLTHROUGH */
1835			default:
1836				hlen -= MAX(opt[1], 2);
1837				opt += MAX(opt[1], 2);
1838				break;
1839			}
1840		}
1841		if (copyback) {
1842			/* Copyback the options, caller copys back header */
1843			*writeback = 1;
1844			m_copyback(m, off + sizeof(struct tcphdr),
1845			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1846			    sizeof(struct tcphdr));
1847		}
1848	}
1849
1850
1851	/*
1852	 * Must invalidate PAWS checks on connections idle for too long.
1853	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1854	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1855	 * TS echo check only works for the first 12 days of a connection
1856	 * when the TS has exhausted half its 32bit space
1857	 */
1858#define TS_MAX_IDLE	(24*24*60*60)
1859#define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1860
1861	getmicrouptime(&uptime);
1862	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1863	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1864	    time_uptime - state->creation > TS_MAX_CONN))  {
1865		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1866			DPFPRINTF(("src idled out of PAWS\n"));
1867			pf_print_state(state);
1868			printf("\n");
1869		}
1870		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1871		    | PFSS_PAWS_IDLED;
1872	}
1873	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1874	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1875		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1876			DPFPRINTF(("dst idled out of PAWS\n"));
1877			pf_print_state(state);
1878			printf("\n");
1879		}
1880		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1881		    | PFSS_PAWS_IDLED;
1882	}
1883
1884	if (got_ts && src->scrub && dst->scrub &&
1885	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1886	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1887		/* Validate that the timestamps are "in-window".
1888		 * RFC1323 describes TCP Timestamp options that allow
1889		 * measurement of RTT (round trip time) and PAWS
1890		 * (protection against wrapped sequence numbers).  PAWS
1891		 * gives us a set of rules for rejecting packets on
1892		 * long fat pipes (packets that were somehow delayed
1893		 * in transit longer than the time it took to send the
1894		 * full TCP sequence space of 4Gb).  We can use these
1895		 * rules and infer a few others that will let us treat
1896		 * the 32bit timestamp and the 32bit echoed timestamp
1897		 * as sequence numbers to prevent a blind attacker from
1898		 * inserting packets into a connection.
1899		 *
1900		 * RFC1323 tells us:
1901		 *  - The timestamp on this packet must be greater than
1902		 *    or equal to the last value echoed by the other
1903		 *    endpoint.  The RFC says those will be discarded
1904		 *    since it is a dup that has already been acked.
1905		 *    This gives us a lowerbound on the timestamp.
1906		 *        timestamp >= other last echoed timestamp
1907		 *  - The timestamp will be less than or equal to
1908		 *    the last timestamp plus the time between the
1909		 *    last packet and now.  The RFC defines the max
1910		 *    clock rate as 1ms.  We will allow clocks to be
1911		 *    up to 10% fast and will allow a total difference
1912		 *    or 30 seconds due to a route change.  And this
1913		 *    gives us an upperbound on the timestamp.
1914		 *        timestamp <= last timestamp + max ticks
1915		 *    We have to be careful here.  Windows will send an
1916		 *    initial timestamp of zero and then initialize it
1917		 *    to a random value after the 3whs; presumably to
1918		 *    avoid a DoS by having to call an expensive RNG
1919		 *    during a SYN flood.  Proof MS has at least one
1920		 *    good security geek.
1921		 *
1922		 *  - The TCP timestamp option must also echo the other
1923		 *    endpoints timestamp.  The timestamp echoed is the
1924		 *    one carried on the earliest unacknowledged segment
1925		 *    on the left edge of the sequence window.  The RFC
1926		 *    states that the host will reject any echoed
1927		 *    timestamps that were larger than any ever sent.
1928		 *    This gives us an upperbound on the TS echo.
1929		 *        tescr <= largest_tsval
1930		 *  - The lowerbound on the TS echo is a little more
1931		 *    tricky to determine.  The other endpoint's echoed
1932		 *    values will not decrease.  But there may be
1933		 *    network conditions that re-order packets and
1934		 *    cause our view of them to decrease.  For now the
1935		 *    only lowerbound we can safely determine is that
1936		 *    the TS echo will never be less than the original
1937		 *    TS.  XXX There is probably a better lowerbound.
1938		 *    Remove TS_MAX_CONN with better lowerbound check.
1939		 *        tescr >= other original TS
1940		 *
1941		 * It is also important to note that the fastest
1942		 * timestamp clock of 1ms will wrap its 32bit space in
1943		 * 24 days.  So we just disable TS checking after 24
1944		 * days of idle time.  We actually must use a 12d
1945		 * connection limit until we can come up with a better
1946		 * lowerbound to the TS echo check.
1947		 */
1948		struct timeval delta_ts;
1949		int ts_fudge;
1950
1951
1952		/*
1953		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1954		 * a host's timestamp.  This can happen if the previous
1955		 * packet got delayed in transit for much longer than
1956		 * this packet.
1957		 */
1958		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1959			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1960
1961		/* Calculate max ticks since the last timestamp */
1962#define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1963#define TS_MICROSECS	1000000		/* microseconds per second */
1964		delta_ts = uptime;
1965		timevalsub(&delta_ts, &src->scrub->pfss_last);
1966		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1967		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1968
1969		if ((src->state >= TCPS_ESTABLISHED &&
1970		    dst->state >= TCPS_ESTABLISHED) &&
1971		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1972		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1973		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1974		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1975			/* Bad RFC1323 implementation or an insertion attack.
1976			 *
1977			 * - Solaris 2.6 and 2.7 are known to send another ACK
1978			 *   after the FIN,FIN|ACK,ACK closing that carries
1979			 *   an old timestamp.
1980			 */
1981
1982			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1983			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1984			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1985			    tsval_from_last) ? '1' : ' ',
1986			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1987			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1988			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1989			    "idle: %jus %lums\n",
1990			    tsval, tsecr, tsval_from_last,
1991			    (uintmax_t)delta_ts.tv_sec,
1992			    delta_ts.tv_usec / 1000));
1993			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1994			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1995			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1996			    "\n", dst->scrub->pfss_tsval,
1997			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1998			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1999				pf_print_state(state);
2000				pf_print_flags(th->th_flags);
2001				printf("\n");
2002			}
2003			REASON_SET(reason, PFRES_TS);
2004			return (PF_DROP);
2005		}
2006
2007		/* XXX I'd really like to require tsecr but it's optional */
2008
2009	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
2010	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
2011	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
2012	    src->scrub && dst->scrub &&
2013	    (src->scrub->pfss_flags & PFSS_PAWS) &&
2014	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
2015		/* Didn't send a timestamp.  Timestamps aren't really useful
2016		 * when:
2017		 *  - connection opening or closing (often not even sent).
2018		 *    but we must not let an attacker to put a FIN on a
2019		 *    data packet to sneak it through our ESTABLISHED check.
2020		 *  - on a TCP reset.  RFC suggests not even looking at TS.
2021		 *  - on an empty ACK.  The TS will not be echoed so it will
2022		 *    probably not help keep the RTT calculation in sync and
2023		 *    there isn't as much danger when the sequence numbers
2024		 *    got wrapped.  So some stacks don't include TS on empty
2025		 *    ACKs :-(
2026		 *
2027		 * To minimize the disruption to mostly RFC1323 conformant
2028		 * stacks, we will only require timestamps on data packets.
2029		 *
2030		 * And what do ya know, we cannot require timestamps on data
2031		 * packets.  There appear to be devices that do legitimate
2032		 * TCP connection hijacking.  There are HTTP devices that allow
2033		 * a 3whs (with timestamps) and then buffer the HTTP request.
2034		 * If the intermediate device has the HTTP response cache, it
2035		 * will spoof the response but not bother timestamping its
2036		 * packets.  So we can look for the presence of a timestamp in
2037		 * the first data packet and if there, require it in all future
2038		 * packets.
2039		 */
2040
2041		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
2042			/*
2043			 * Hey!  Someone tried to sneak a packet in.  Or the
2044			 * stack changed its RFC1323 behavior?!?!
2045			 */
2046			if (V_pf_status.debug >= PF_DEBUG_MISC) {
2047				DPFPRINTF(("Did not receive expected RFC1323 "
2048				    "timestamp\n"));
2049				pf_print_state(state);
2050				pf_print_flags(th->th_flags);
2051				printf("\n");
2052			}
2053			REASON_SET(reason, PFRES_TS);
2054			return (PF_DROP);
2055		}
2056	}
2057
2058
2059	/*
2060	 * We will note if a host sends his data packets with or without
2061	 * timestamps.  And require all data packets to contain a timestamp
2062	 * if the first does.  PAWS implicitly requires that all data packets be
2063	 * timestamped.  But I think there are middle-man devices that hijack
2064	 * TCP streams immediately after the 3whs and don't timestamp their
2065	 * packets (seen in a WWW accelerator or cache).
2066	 */
2067	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
2068	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
2069		if (got_ts)
2070			src->scrub->pfss_flags |= PFSS_DATA_TS;
2071		else {
2072			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
2073			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
2074			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
2075				/* Don't warn if other host rejected RFC1323 */
2076				DPFPRINTF(("Broken RFC1323 stack did not "
2077				    "timestamp data packet. Disabled PAWS "
2078				    "security.\n"));
2079				pf_print_state(state);
2080				pf_print_flags(th->th_flags);
2081				printf("\n");
2082			}
2083		}
2084	}
2085
2086
2087	/*
2088	 * Update PAWS values
2089	 */
2090	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
2091	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
2092		getmicrouptime(&src->scrub->pfss_last);
2093		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
2094		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
2095			src->scrub->pfss_tsval = tsval;
2096
2097		if (tsecr) {
2098			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
2099			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
2100				src->scrub->pfss_tsecr = tsecr;
2101
2102			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
2103			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
2104			    src->scrub->pfss_tsval0 == 0)) {
2105				/* tsval0 MUST be the lowest timestamp */
2106				src->scrub->pfss_tsval0 = tsval;
2107			}
2108
2109			/* Only fully initialized after a TS gets echoed */
2110			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
2111				src->scrub->pfss_flags |= PFSS_PAWS;
2112		}
2113	}
2114
2115	/* I have a dream....  TCP segment reassembly.... */
2116	return (0);
2117}
2118
2119static int
2120pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
2121    int off, sa_family_t af)
2122{
2123	u_int16_t	*mss;
2124	int		 thoff;
2125	int		 opt, cnt, optlen = 0;
2126	int		 rewrite = 0;
2127	u_char		 opts[TCP_MAXOLEN];
2128	u_char		*optp = opts;
2129
2130	thoff = th->th_off << 2;
2131	cnt = thoff - sizeof(struct tcphdr);
2132
2133	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
2134	    NULL, NULL, af))
2135		return (rewrite);
2136
2137	for (; cnt > 0; cnt -= optlen, optp += optlen) {
2138		opt = optp[0];
2139		if (opt == TCPOPT_EOL)
2140			break;
2141		if (opt == TCPOPT_NOP)
2142			optlen = 1;
2143		else {
2144			if (cnt < 2)
2145				break;
2146			optlen = optp[1];
2147			if (optlen < 2 || optlen > cnt)
2148				break;
2149		}
2150		switch (opt) {
2151		case TCPOPT_MAXSEG:
2152			mss = (u_int16_t *)(optp + 2);
2153			if ((ntohs(*mss)) > r->max_mss) {
2154				th->th_sum = pf_cksum_fixup(th->th_sum,
2155				    *mss, htons(r->max_mss), 0);
2156				*mss = htons(r->max_mss);
2157				rewrite = 1;
2158			}
2159			break;
2160		default:
2161			break;
2162		}
2163	}
2164
2165	if (rewrite)
2166		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
2167
2168	return (rewrite);
2169}
2170
2171#ifdef INET
2172static void
2173pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
2174{
2175	struct mbuf		*m = *m0;
2176	struct ip		*h = mtod(m, struct ip *);
2177
2178	/* Clear IP_DF if no-df was requested */
2179	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
2180		u_int16_t ip_off = h->ip_off;
2181
2182		h->ip_off &= htons(~IP_DF);
2183		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2184	}
2185
2186	/* Enforce a minimum ttl, may cause endless packet loops */
2187	if (min_ttl && h->ip_ttl < min_ttl) {
2188		u_int16_t ip_ttl = h->ip_ttl;
2189
2190		h->ip_ttl = min_ttl;
2191		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2192	}
2193
2194	/* Enforce tos */
2195	if (flags & PFRULE_SET_TOS) {
2196		u_int16_t	ov, nv;
2197
2198		ov = *(u_int16_t *)h;
2199		h->ip_tos = tos;
2200		nv = *(u_int16_t *)h;
2201
2202		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2203	}
2204
2205	/* random-id, but not for fragments */
2206	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2207		u_int16_t ip_id = h->ip_id;
2208
2209		h->ip_id = ip_randomid();
2210		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2211	}
2212}
2213#endif /* INET */
2214
2215#ifdef INET6
2216static void
2217pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
2218{
2219	struct mbuf		*m = *m0;
2220	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
2221
2222	/* Enforce a minimum ttl, may cause endless packet loops */
2223	if (min_ttl && h->ip6_hlim < min_ttl)
2224		h->ip6_hlim = min_ttl;
2225}
2226#endif
2227