pf_norm.c revision 263086
1/*-
2 * Copyright 2001 Niels Provos <provos@citi.umich.edu>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/netpfil/pf/pf_norm.c 263086 2014-03-12 10:45:58Z glebius $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33#include "opt_pf.h"
34
35#include <sys/param.h>
36#include <sys/lock.h>
37#include <sys/mbuf.h>
38#include <sys/mutex.h>
39#include <sys/refcount.h>
40#include <sys/rwlock.h>
41#include <sys/socket.h>
42
43#include <net/if.h>
44#include <net/vnet.h>
45#include <net/pfvar.h>
46#include <net/if_pflog.h>
47
48#include <netinet/in.h>
49#include <netinet/ip.h>
50#include <netinet/ip_var.h>
51#include <netinet/tcp.h>
52#include <netinet/tcp_fsm.h>
53#include <netinet/tcp_seq.h>
54
55#ifdef INET6
56#include <netinet/ip6.h>
57#endif /* INET6 */
58
59struct pf_frent {
60	LIST_ENTRY(pf_frent) fr_next;
61	union {
62		struct {
63			struct ip *_fr_ip;
64			struct mbuf *_fr_m;
65		} _frag;
66		struct {
67			uint16_t _fr_off;
68			uint16_t _fr_end;
69		} _cache;
70	} _u;
71};
72#define	fr_ip	_u._frag._fr_ip
73#define	fr_m	_u._frag._fr_m
74#define	fr_off	_u._cache._fr_off
75#define	fr_end	_u._cache._fr_end
76
77struct pf_fragment {
78	RB_ENTRY(pf_fragment) fr_entry;
79	TAILQ_ENTRY(pf_fragment) frag_next;
80	struct in_addr	fr_src;
81	struct in_addr	fr_dst;
82	u_int8_t	fr_p;		/* protocol of this fragment */
83	u_int8_t	fr_flags;	/* status flags */
84#define PFFRAG_SEENLAST	0x0001		/* Seen the last fragment for this */
85#define PFFRAG_NOBUFFER	0x0002		/* Non-buffering fragment cache */
86#define PFFRAG_DROP	0x0004		/* Drop all fragments */
87#define BUFFER_FRAGMENTS(fr)	(!((fr)->fr_flags & PFFRAG_NOBUFFER))
88	u_int16_t	fr_id;		/* fragment id for reassemble */
89	u_int16_t	fr_max;		/* fragment data max */
90	u_int32_t	fr_timeout;
91	LIST_HEAD(, pf_frent) fr_queue;
92};
93
94static struct mtx pf_frag_mtx;
95#define PF_FRAG_LOCK()		mtx_lock(&pf_frag_mtx)
96#define PF_FRAG_UNLOCK()	mtx_unlock(&pf_frag_mtx)
97#define PF_FRAG_ASSERT()	mtx_assert(&pf_frag_mtx, MA_OWNED)
98
99VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
100
101static VNET_DEFINE(uma_zone_t, pf_frent_z);
102#define	V_pf_frent_z	VNET(pf_frent_z)
103static VNET_DEFINE(uma_zone_t, pf_frag_z);
104#define	V_pf_frag_z	VNET(pf_frag_z)
105
106TAILQ_HEAD(pf_fragqueue, pf_fragment);
107TAILQ_HEAD(pf_cachequeue, pf_fragment);
108static VNET_DEFINE(struct pf_fragqueue,	pf_fragqueue);
109#define	V_pf_fragqueue			VNET(pf_fragqueue)
110static VNET_DEFINE(struct pf_cachequeue,	pf_cachequeue);
111#define	V_pf_cachequeue			VNET(pf_cachequeue)
112RB_HEAD(pf_frag_tree, pf_fragment);
113static VNET_DEFINE(struct pf_frag_tree,	pf_frag_tree);
114#define	V_pf_frag_tree			VNET(pf_frag_tree)
115static VNET_DEFINE(struct pf_frag_tree,	pf_cache_tree);
116#define	V_pf_cache_tree			VNET(pf_cache_tree)
117static int		 pf_frag_compare(struct pf_fragment *,
118			    struct pf_fragment *);
119static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
120static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
121
122/* Private prototypes */
123static void		 pf_free_fragment(struct pf_fragment *);
124static void		 pf_remove_fragment(struct pf_fragment *);
125static int		 pf_normalize_tcpopt(struct pf_rule *, struct mbuf *,
126			    struct tcphdr *, int, sa_family_t);
127#ifdef INET
128static void		 pf_ip2key(struct pf_fragment *, struct ip *);
129static void		 pf_scrub_ip(struct mbuf **, u_int32_t, u_int8_t,
130			    u_int8_t);
131static void		 pf_flush_fragments(void);
132static struct pf_fragment *pf_find_fragment(struct ip *, struct pf_frag_tree *);
133static struct mbuf	*pf_reassemble(struct mbuf **, struct pf_fragment **,
134			    struct pf_frent *, int);
135static struct mbuf	*pf_fragcache(struct mbuf **, struct ip*,
136			    struct pf_fragment **, int, int, int *);
137#endif /* INET */
138#ifdef INET6
139static void		 pf_scrub_ip6(struct mbuf **, u_int8_t);
140#endif
141#define	DPFPRINTF(x) do {				\
142	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
143		printf("%s: ", __func__);		\
144		printf x ;				\
145	}						\
146} while(0)
147
148void
149pf_normalize_init(void)
150{
151
152	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
153	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
154	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
155	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
156	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
157	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
158	    UMA_ALIGN_PTR, 0);
159
160	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
161	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
162	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
163	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
164
165	mtx_init(&pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
166
167	TAILQ_INIT(&V_pf_fragqueue);
168	TAILQ_INIT(&V_pf_cachequeue);
169}
170
171void
172pf_normalize_cleanup(void)
173{
174
175	uma_zdestroy(V_pf_state_scrub_z);
176	uma_zdestroy(V_pf_frent_z);
177	uma_zdestroy(V_pf_frag_z);
178
179	mtx_destroy(&pf_frag_mtx);
180}
181
182static int
183pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
184{
185	int	diff;
186
187	if ((diff = a->fr_id - b->fr_id))
188		return (diff);
189	else if ((diff = a->fr_p - b->fr_p))
190		return (diff);
191	else if (a->fr_src.s_addr < b->fr_src.s_addr)
192		return (-1);
193	else if (a->fr_src.s_addr > b->fr_src.s_addr)
194		return (1);
195	else if (a->fr_dst.s_addr < b->fr_dst.s_addr)
196		return (-1);
197	else if (a->fr_dst.s_addr > b->fr_dst.s_addr)
198		return (1);
199	return (0);
200}
201
202void
203pf_purge_expired_fragments(void)
204{
205	struct pf_fragment	*frag;
206	u_int32_t		 expire = time_uptime -
207				    V_pf_default_rule.timeout[PFTM_FRAG];
208
209	PF_FRAG_LOCK();
210	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
211		KASSERT((BUFFER_FRAGMENTS(frag)),
212		    ("BUFFER_FRAGMENTS(frag) == 0: %s", __FUNCTION__));
213		if (frag->fr_timeout > expire)
214			break;
215
216		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
217		pf_free_fragment(frag);
218	}
219
220	while ((frag = TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue)) != NULL) {
221		KASSERT((!BUFFER_FRAGMENTS(frag)),
222		    ("BUFFER_FRAGMENTS(frag) != 0: %s", __FUNCTION__));
223		if (frag->fr_timeout > expire)
224			break;
225
226		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
227		pf_free_fragment(frag);
228		KASSERT((TAILQ_EMPTY(&V_pf_cachequeue) ||
229		    TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue) != frag),
230		    ("!(TAILQ_EMPTY() || TAILQ_LAST() == farg): %s",
231		    __FUNCTION__));
232	}
233	PF_FRAG_UNLOCK();
234}
235
236#ifdef INET
237/*
238 * Try to flush old fragments to make space for new ones
239 */
240static void
241pf_flush_fragments(void)
242{
243	struct pf_fragment	*frag, *cache;
244	int			 goal;
245
246	PF_FRAG_ASSERT();
247
248	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
249	DPFPRINTF(("trying to free %d frag entriess\n", goal));
250	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
251		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
252		if (frag)
253			pf_free_fragment(frag);
254		cache = TAILQ_LAST(&V_pf_cachequeue, pf_cachequeue);
255		if (cache)
256			pf_free_fragment(cache);
257		if (frag == NULL && cache == NULL)
258			break;
259	}
260}
261#endif /* INET */
262
263/* Frees the fragments and all associated entries */
264static void
265pf_free_fragment(struct pf_fragment *frag)
266{
267	struct pf_frent		*frent;
268
269	PF_FRAG_ASSERT();
270
271	/* Free all fragments */
272	if (BUFFER_FRAGMENTS(frag)) {
273		for (frent = LIST_FIRST(&frag->fr_queue); frent;
274		    frent = LIST_FIRST(&frag->fr_queue)) {
275			LIST_REMOVE(frent, fr_next);
276
277			m_freem(frent->fr_m);
278			uma_zfree(V_pf_frent_z, frent);
279		}
280	} else {
281		for (frent = LIST_FIRST(&frag->fr_queue); frent;
282		    frent = LIST_FIRST(&frag->fr_queue)) {
283			LIST_REMOVE(frent, fr_next);
284
285			KASSERT((LIST_EMPTY(&frag->fr_queue) ||
286			    LIST_FIRST(&frag->fr_queue)->fr_off >
287			    frent->fr_end),
288			    ("! (LIST_EMPTY() || LIST_FIRST()->fr_off >"
289			    " frent->fr_end): %s", __func__));
290
291			uma_zfree(V_pf_frent_z, frent);
292		}
293	}
294
295	pf_remove_fragment(frag);
296}
297
298#ifdef INET
299static void
300pf_ip2key(struct pf_fragment *key, struct ip *ip)
301{
302	key->fr_p = ip->ip_p;
303	key->fr_id = ip->ip_id;
304	key->fr_src.s_addr = ip->ip_src.s_addr;
305	key->fr_dst.s_addr = ip->ip_dst.s_addr;
306}
307
308static struct pf_fragment *
309pf_find_fragment(struct ip *ip, struct pf_frag_tree *tree)
310{
311	struct pf_fragment	 key;
312	struct pf_fragment	*frag;
313
314	PF_FRAG_ASSERT();
315
316	pf_ip2key(&key, ip);
317
318	frag = RB_FIND(pf_frag_tree, tree, &key);
319	if (frag != NULL) {
320		/* XXX Are we sure we want to update the timeout? */
321		frag->fr_timeout = time_uptime;
322		if (BUFFER_FRAGMENTS(frag)) {
323			TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
324			TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
325		} else {
326			TAILQ_REMOVE(&V_pf_cachequeue, frag, frag_next);
327			TAILQ_INSERT_HEAD(&V_pf_cachequeue, frag, frag_next);
328		}
329	}
330
331	return (frag);
332}
333#endif /* INET */
334
335/* Removes a fragment from the fragment queue and frees the fragment */
336
337static void
338pf_remove_fragment(struct pf_fragment *frag)
339{
340
341	PF_FRAG_ASSERT();
342
343	if (BUFFER_FRAGMENTS(frag)) {
344		RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
345		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
346		uma_zfree(V_pf_frag_z, frag);
347	} else {
348		RB_REMOVE(pf_frag_tree, &V_pf_cache_tree, frag);
349		TAILQ_REMOVE(&V_pf_cachequeue, frag, frag_next);
350		uma_zfree(V_pf_frag_z, frag);
351	}
352}
353
354#ifdef INET
355#define FR_IP_OFF(fr)	((ntohs((fr)->fr_ip->ip_off) & IP_OFFMASK) << 3)
356static struct mbuf *
357pf_reassemble(struct mbuf **m0, struct pf_fragment **frag,
358    struct pf_frent *frent, int mff)
359{
360	struct mbuf	*m = *m0, *m2;
361	struct pf_frent	*frea, *next;
362	struct pf_frent	*frep = NULL;
363	struct ip	*ip = frent->fr_ip;
364	int		 hlen = ip->ip_hl << 2;
365	u_int16_t	 off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
366	u_int16_t	 ip_len = ntohs(ip->ip_len) - ip->ip_hl * 4;
367	u_int16_t	 max = ip_len + off;
368
369	PF_FRAG_ASSERT();
370	KASSERT((*frag == NULL || BUFFER_FRAGMENTS(*frag)),
371	    ("! (*frag == NULL || BUFFER_FRAGMENTS(*frag)): %s", __FUNCTION__));
372
373	/* Strip off ip header */
374	m->m_data += hlen;
375	m->m_len -= hlen;
376
377	/* Create a new reassembly queue for this packet */
378	if (*frag == NULL) {
379		*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
380		if (*frag == NULL) {
381			pf_flush_fragments();
382			*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
383			if (*frag == NULL)
384				goto drop_fragment;
385		}
386
387		(*frag)->fr_flags = 0;
388		(*frag)->fr_max = 0;
389		(*frag)->fr_src = frent->fr_ip->ip_src;
390		(*frag)->fr_dst = frent->fr_ip->ip_dst;
391		(*frag)->fr_p = frent->fr_ip->ip_p;
392		(*frag)->fr_id = frent->fr_ip->ip_id;
393		(*frag)->fr_timeout = time_uptime;
394		LIST_INIT(&(*frag)->fr_queue);
395
396		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, *frag);
397		TAILQ_INSERT_HEAD(&V_pf_fragqueue, *frag, frag_next);
398
399		/* We do not have a previous fragment */
400		frep = NULL;
401		goto insert;
402	}
403
404	/*
405	 * Find a fragment after the current one:
406	 *  - off contains the real shifted offset.
407	 */
408	LIST_FOREACH(frea, &(*frag)->fr_queue, fr_next) {
409		if (FR_IP_OFF(frea) > off)
410			break;
411		frep = frea;
412	}
413
414	KASSERT((frep != NULL || frea != NULL),
415	    ("!(frep != NULL || frea != NULL): %s", __FUNCTION__));;
416
417	if (frep != NULL &&
418	    FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl *
419	    4 > off)
420	{
421		u_int16_t	precut;
422
423		precut = FR_IP_OFF(frep) + ntohs(frep->fr_ip->ip_len) -
424		    frep->fr_ip->ip_hl * 4 - off;
425		if (precut >= ip_len)
426			goto drop_fragment;
427		m_adj(frent->fr_m, precut);
428		DPFPRINTF(("overlap -%d\n", precut));
429		/* Enforce 8 byte boundaries */
430		ip->ip_off = htons(ntohs(ip->ip_off) + (precut >> 3));
431		off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
432		ip_len -= precut;
433		ip->ip_len = htons(ip_len);
434	}
435
436	for (; frea != NULL && ip_len + off > FR_IP_OFF(frea);
437	    frea = next)
438	{
439		u_int16_t	aftercut;
440
441		aftercut = ip_len + off - FR_IP_OFF(frea);
442		DPFPRINTF(("adjust overlap %d\n", aftercut));
443		if (aftercut < ntohs(frea->fr_ip->ip_len) - frea->fr_ip->ip_hl
444		    * 4)
445		{
446			frea->fr_ip->ip_len =
447			    htons(ntohs(frea->fr_ip->ip_len) - aftercut);
448			frea->fr_ip->ip_off = htons(ntohs(frea->fr_ip->ip_off) +
449			    (aftercut >> 3));
450			m_adj(frea->fr_m, aftercut);
451			break;
452		}
453
454		/* This fragment is completely overlapped, lose it */
455		next = LIST_NEXT(frea, fr_next);
456		m_freem(frea->fr_m);
457		LIST_REMOVE(frea, fr_next);
458		uma_zfree(V_pf_frent_z, frea);
459	}
460
461 insert:
462	/* Update maximum data size */
463	if ((*frag)->fr_max < max)
464		(*frag)->fr_max = max;
465	/* This is the last segment */
466	if (!mff)
467		(*frag)->fr_flags |= PFFRAG_SEENLAST;
468
469	if (frep == NULL)
470		LIST_INSERT_HEAD(&(*frag)->fr_queue, frent, fr_next);
471	else
472		LIST_INSERT_AFTER(frep, frent, fr_next);
473
474	/* Check if we are completely reassembled */
475	if (!((*frag)->fr_flags & PFFRAG_SEENLAST))
476		return (NULL);
477
478	/* Check if we have all the data */
479	off = 0;
480	for (frep = LIST_FIRST(&(*frag)->fr_queue); frep; frep = next) {
481		next = LIST_NEXT(frep, fr_next);
482
483		off += ntohs(frep->fr_ip->ip_len) - frep->fr_ip->ip_hl * 4;
484		if (off < (*frag)->fr_max &&
485		    (next == NULL || FR_IP_OFF(next) != off))
486		{
487			DPFPRINTF(("missing fragment at %d, next %d, max %d\n",
488			    off, next == NULL ? -1 : FR_IP_OFF(next),
489			    (*frag)->fr_max));
490			return (NULL);
491		}
492	}
493	DPFPRINTF(("%d < %d?\n", off, (*frag)->fr_max));
494	if (off < (*frag)->fr_max)
495		return (NULL);
496
497	/* We have all the data */
498	frent = LIST_FIRST(&(*frag)->fr_queue);
499	KASSERT((frent != NULL), ("frent == NULL: %s", __FUNCTION__));
500	if ((frent->fr_ip->ip_hl << 2) + off > IP_MAXPACKET) {
501		DPFPRINTF(("drop: too big: %d\n", off));
502		pf_free_fragment(*frag);
503		*frag = NULL;
504		return (NULL);
505	}
506	next = LIST_NEXT(frent, fr_next);
507
508	/* Magic from ip_input */
509	ip = frent->fr_ip;
510	m = frent->fr_m;
511	m2 = m->m_next;
512	m->m_next = NULL;
513	m_cat(m, m2);
514	uma_zfree(V_pf_frent_z, frent);
515	for (frent = next; frent != NULL; frent = next) {
516		next = LIST_NEXT(frent, fr_next);
517
518		m2 = frent->fr_m;
519		uma_zfree(V_pf_frent_z, frent);
520		m->m_pkthdr.csum_flags &= m2->m_pkthdr.csum_flags;
521		m->m_pkthdr.csum_data += m2->m_pkthdr.csum_data;
522		m_cat(m, m2);
523	}
524
525	while (m->m_pkthdr.csum_data & 0xffff0000)
526		m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
527		    (m->m_pkthdr.csum_data >> 16);
528	ip->ip_src = (*frag)->fr_src;
529	ip->ip_dst = (*frag)->fr_dst;
530
531	/* Remove from fragment queue */
532	pf_remove_fragment(*frag);
533	*frag = NULL;
534
535	hlen = ip->ip_hl << 2;
536	ip->ip_len = htons(off + hlen);
537	m->m_len += hlen;
538	m->m_data -= hlen;
539
540	/* some debugging cruft by sklower, below, will go away soon */
541	/* XXX this should be done elsewhere */
542	if (m->m_flags & M_PKTHDR) {
543		int plen = 0;
544		for (m2 = m; m2; m2 = m2->m_next)
545			plen += m2->m_len;
546		m->m_pkthdr.len = plen;
547	}
548
549	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
550	return (m);
551
552 drop_fragment:
553	/* Oops - fail safe - drop packet */
554	uma_zfree(V_pf_frent_z, frent);
555	m_freem(m);
556	return (NULL);
557}
558
559static struct mbuf *
560pf_fragcache(struct mbuf **m0, struct ip *h, struct pf_fragment **frag, int mff,
561    int drop, int *nomem)
562{
563	struct mbuf		*m = *m0;
564	struct pf_frent		*frp, *fra, *cur = NULL;
565	int			 ip_len = ntohs(h->ip_len) - (h->ip_hl << 2);
566	u_int16_t		 off = ntohs(h->ip_off) << 3;
567	u_int16_t		 max = ip_len + off;
568	int			 hosed = 0;
569
570	PF_FRAG_ASSERT();
571	KASSERT((*frag == NULL || !BUFFER_FRAGMENTS(*frag)),
572	    ("!(*frag == NULL || !BUFFER_FRAGMENTS(*frag)): %s", __FUNCTION__));
573
574	/* Create a new range queue for this packet */
575	if (*frag == NULL) {
576		*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
577		if (*frag == NULL) {
578			pf_flush_fragments();
579			*frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
580			if (*frag == NULL)
581				goto no_mem;
582		}
583
584		/* Get an entry for the queue */
585		cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
586		if (cur == NULL) {
587			uma_zfree(V_pf_frag_z, *frag);
588			*frag = NULL;
589			goto no_mem;
590		}
591
592		(*frag)->fr_flags = PFFRAG_NOBUFFER;
593		(*frag)->fr_max = 0;
594		(*frag)->fr_src = h->ip_src;
595		(*frag)->fr_dst = h->ip_dst;
596		(*frag)->fr_p = h->ip_p;
597		(*frag)->fr_id = h->ip_id;
598		(*frag)->fr_timeout = time_uptime;
599
600		cur->fr_off = off;
601		cur->fr_end = max;
602		LIST_INIT(&(*frag)->fr_queue);
603		LIST_INSERT_HEAD(&(*frag)->fr_queue, cur, fr_next);
604
605		RB_INSERT(pf_frag_tree, &V_pf_cache_tree, *frag);
606		TAILQ_INSERT_HEAD(&V_pf_cachequeue, *frag, frag_next);
607
608		DPFPRINTF(("fragcache[%d]: new %d-%d\n", h->ip_id, off, max));
609
610		goto pass;
611	}
612
613	/*
614	 * Find a fragment after the current one:
615	 *  - off contains the real shifted offset.
616	 */
617	frp = NULL;
618	LIST_FOREACH(fra, &(*frag)->fr_queue, fr_next) {
619		if (fra->fr_off > off)
620			break;
621		frp = fra;
622	}
623
624	KASSERT((frp != NULL || fra != NULL),
625	    ("!(frp != NULL || fra != NULL): %s", __FUNCTION__));
626
627	if (frp != NULL) {
628		int	precut;
629
630		precut = frp->fr_end - off;
631		if (precut >= ip_len) {
632			/* Fragment is entirely a duplicate */
633			DPFPRINTF(("fragcache[%d]: dead (%d-%d) %d-%d\n",
634			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
635			goto drop_fragment;
636		}
637		if (precut == 0) {
638			/* They are adjacent.  Fixup cache entry */
639			DPFPRINTF(("fragcache[%d]: adjacent (%d-%d) %d-%d\n",
640			    h->ip_id, frp->fr_off, frp->fr_end, off, max));
641			frp->fr_end = max;
642		} else if (precut > 0) {
643			/* The first part of this payload overlaps with a
644			 * fragment that has already been passed.
645			 * Need to trim off the first part of the payload.
646			 * But to do so easily, we need to create another
647			 * mbuf to throw the original header into.
648			 */
649
650			DPFPRINTF(("fragcache[%d]: chop %d (%d-%d) %d-%d\n",
651			    h->ip_id, precut, frp->fr_off, frp->fr_end, off,
652			    max));
653
654			off += precut;
655			max -= precut;
656			/* Update the previous frag to encompass this one */
657			frp->fr_end = max;
658
659			if (!drop) {
660				/* XXX Optimization opportunity
661				 * This is a very heavy way to trim the payload.
662				 * we could do it much faster by diddling mbuf
663				 * internals but that would be even less legible
664				 * than this mbuf magic.  For my next trick,
665				 * I'll pull a rabbit out of my laptop.
666				 */
667				*m0 = m_dup(m, M_NOWAIT);
668				if (*m0 == NULL)
669					goto no_mem;
670				/* From KAME Project : We have missed this! */
671				m_adj(*m0, (h->ip_hl << 2) -
672				    (*m0)->m_pkthdr.len);
673
674				KASSERT(((*m0)->m_next == NULL),
675				    ("(*m0)->m_next != NULL: %s",
676				    __FUNCTION__));
677				m_adj(m, precut + (h->ip_hl << 2));
678				m_cat(*m0, m);
679				m = *m0;
680				if (m->m_flags & M_PKTHDR) {
681					int plen = 0;
682					struct mbuf *t;
683					for (t = m; t; t = t->m_next)
684						plen += t->m_len;
685					m->m_pkthdr.len = plen;
686				}
687
688
689				h = mtod(m, struct ip *);
690
691				KASSERT(((int)m->m_len ==
692				    ntohs(h->ip_len) - precut),
693				    ("m->m_len != ntohs(h->ip_len) - precut: %s",
694				    __FUNCTION__));
695				h->ip_off = htons(ntohs(h->ip_off) +
696				    (precut >> 3));
697				h->ip_len = htons(ntohs(h->ip_len) - precut);
698			} else {
699				hosed++;
700			}
701		} else {
702			/* There is a gap between fragments */
703
704			DPFPRINTF(("fragcache[%d]: gap %d (%d-%d) %d-%d\n",
705			    h->ip_id, -precut, frp->fr_off, frp->fr_end, off,
706			    max));
707
708			cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
709			if (cur == NULL)
710				goto no_mem;
711
712			cur->fr_off = off;
713			cur->fr_end = max;
714			LIST_INSERT_AFTER(frp, cur, fr_next);
715		}
716	}
717
718	if (fra != NULL) {
719		int	aftercut;
720		int	merge = 0;
721
722		aftercut = max - fra->fr_off;
723		if (aftercut == 0) {
724			/* Adjacent fragments */
725			DPFPRINTF(("fragcache[%d]: adjacent %d-%d (%d-%d)\n",
726			    h->ip_id, off, max, fra->fr_off, fra->fr_end));
727			fra->fr_off = off;
728			merge = 1;
729		} else if (aftercut > 0) {
730			/* Need to chop off the tail of this fragment */
731			DPFPRINTF(("fragcache[%d]: chop %d %d-%d (%d-%d)\n",
732			    h->ip_id, aftercut, off, max, fra->fr_off,
733			    fra->fr_end));
734			fra->fr_off = off;
735			max -= aftercut;
736
737			merge = 1;
738
739			if (!drop) {
740				m_adj(m, -aftercut);
741				if (m->m_flags & M_PKTHDR) {
742					int plen = 0;
743					struct mbuf *t;
744					for (t = m; t; t = t->m_next)
745						plen += t->m_len;
746					m->m_pkthdr.len = plen;
747				}
748				h = mtod(m, struct ip *);
749				KASSERT(((int)m->m_len == ntohs(h->ip_len) - aftercut),
750				    ("m->m_len != ntohs(h->ip_len) - aftercut: %s",
751				    __FUNCTION__));
752				h->ip_len = htons(ntohs(h->ip_len) - aftercut);
753			} else {
754				hosed++;
755			}
756		} else if (frp == NULL) {
757			/* There is a gap between fragments */
758			DPFPRINTF(("fragcache[%d]: gap %d %d-%d (%d-%d)\n",
759			    h->ip_id, -aftercut, off, max, fra->fr_off,
760			    fra->fr_end));
761
762			cur = uma_zalloc(V_pf_frent_z, M_NOWAIT);
763			if (cur == NULL)
764				goto no_mem;
765
766			cur->fr_off = off;
767			cur->fr_end = max;
768			LIST_INSERT_BEFORE(fra, cur, fr_next);
769		}
770
771
772		/* Need to glue together two separate fragment descriptors */
773		if (merge) {
774			if (cur && fra->fr_off <= cur->fr_end) {
775				/* Need to merge in a previous 'cur' */
776				DPFPRINTF(("fragcache[%d]: adjacent(merge "
777				    "%d-%d) %d-%d (%d-%d)\n",
778				    h->ip_id, cur->fr_off, cur->fr_end, off,
779				    max, fra->fr_off, fra->fr_end));
780				fra->fr_off = cur->fr_off;
781				LIST_REMOVE(cur, fr_next);
782				uma_zfree(V_pf_frent_z, cur);
783				cur = NULL;
784
785			} else if (frp && fra->fr_off <= frp->fr_end) {
786				/* Need to merge in a modified 'frp' */
787				KASSERT((cur == NULL), ("cur != NULL: %s",
788				    __FUNCTION__));
789				DPFPRINTF(("fragcache[%d]: adjacent(merge "
790				    "%d-%d) %d-%d (%d-%d)\n",
791				    h->ip_id, frp->fr_off, frp->fr_end, off,
792				    max, fra->fr_off, fra->fr_end));
793				fra->fr_off = frp->fr_off;
794				LIST_REMOVE(frp, fr_next);
795				uma_zfree(V_pf_frent_z, frp);
796				frp = NULL;
797
798			}
799		}
800	}
801
802	if (hosed) {
803		/*
804		 * We must keep tracking the overall fragment even when
805		 * we're going to drop it anyway so that we know when to
806		 * free the overall descriptor.  Thus we drop the frag late.
807		 */
808		goto drop_fragment;
809	}
810
811
812 pass:
813	/* Update maximum data size */
814	if ((*frag)->fr_max < max)
815		(*frag)->fr_max = max;
816
817	/* This is the last segment */
818	if (!mff)
819		(*frag)->fr_flags |= PFFRAG_SEENLAST;
820
821	/* Check if we are completely reassembled */
822	if (((*frag)->fr_flags & PFFRAG_SEENLAST) &&
823	    LIST_FIRST(&(*frag)->fr_queue)->fr_off == 0 &&
824	    LIST_FIRST(&(*frag)->fr_queue)->fr_end == (*frag)->fr_max) {
825		/* Remove from fragment queue */
826		DPFPRINTF(("fragcache[%d]: done 0-%d\n", h->ip_id,
827		    (*frag)->fr_max));
828		pf_free_fragment(*frag);
829		*frag = NULL;
830	}
831
832	return (m);
833
834 no_mem:
835	*nomem = 1;
836
837	/* Still need to pay attention to !IP_MF */
838	if (!mff && *frag != NULL)
839		(*frag)->fr_flags |= PFFRAG_SEENLAST;
840
841	m_freem(m);
842	return (NULL);
843
844 drop_fragment:
845
846	/* Still need to pay attention to !IP_MF */
847	if (!mff && *frag != NULL)
848		(*frag)->fr_flags |= PFFRAG_SEENLAST;
849
850	if (drop) {
851		/* This fragment has been deemed bad.  Don't reass */
852		if (((*frag)->fr_flags & PFFRAG_DROP) == 0)
853			DPFPRINTF(("fragcache[%d]: dropping overall fragment\n",
854			    h->ip_id));
855		(*frag)->fr_flags |= PFFRAG_DROP;
856	}
857
858	m_freem(m);
859	return (NULL);
860}
861
862int
863pf_normalize_ip(struct mbuf **m0, int dir, struct pfi_kif *kif, u_short *reason,
864    struct pf_pdesc *pd)
865{
866	struct mbuf		*m = *m0;
867	struct pf_rule		*r;
868	struct pf_frent		*frent;
869	struct pf_fragment	*frag = NULL;
870	struct ip		*h = mtod(m, struct ip *);
871	int			 mff = (ntohs(h->ip_off) & IP_MF);
872	int			 hlen = h->ip_hl << 2;
873	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
874	u_int16_t		 max;
875	int			 ip_len;
876	int			 ip_off;
877	int			 tag = -1;
878
879	PF_RULES_RASSERT();
880
881	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
882	while (r != NULL) {
883		r->evaluations++;
884		if (pfi_kif_match(r->kif, kif) == r->ifnot)
885			r = r->skip[PF_SKIP_IFP].ptr;
886		else if (r->direction && r->direction != dir)
887			r = r->skip[PF_SKIP_DIR].ptr;
888		else if (r->af && r->af != AF_INET)
889			r = r->skip[PF_SKIP_AF].ptr;
890		else if (r->proto && r->proto != h->ip_p)
891			r = r->skip[PF_SKIP_PROTO].ptr;
892		else if (PF_MISMATCHAW(&r->src.addr,
893		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
894		    r->src.neg, kif, M_GETFIB(m)))
895			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
896		else if (PF_MISMATCHAW(&r->dst.addr,
897		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
898		    r->dst.neg, NULL, M_GETFIB(m)))
899			r = r->skip[PF_SKIP_DST_ADDR].ptr;
900		else if (r->match_tag && !pf_match_tag(m, r, &tag,
901		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
902			r = TAILQ_NEXT(r, entries);
903		else
904			break;
905	}
906
907	if (r == NULL || r->action == PF_NOSCRUB)
908		return (PF_PASS);
909	else {
910		r->packets[dir == PF_OUT]++;
911		r->bytes[dir == PF_OUT] += pd->tot_len;
912	}
913
914	/* Check for illegal packets */
915	if (hlen < (int)sizeof(struct ip))
916		goto drop;
917
918	if (hlen > ntohs(h->ip_len))
919		goto drop;
920
921	/* Clear IP_DF if the rule uses the no-df option */
922	if (r->rule_flag & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
923		u_int16_t ip_off = h->ip_off;
924
925		h->ip_off &= htons(~IP_DF);
926		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
927	}
928
929	/* We will need other tests here */
930	if (!fragoff && !mff)
931		goto no_fragment;
932
933	/* We're dealing with a fragment now. Don't allow fragments
934	 * with IP_DF to enter the cache. If the flag was cleared by
935	 * no-df above, fine. Otherwise drop it.
936	 */
937	if (h->ip_off & htons(IP_DF)) {
938		DPFPRINTF(("IP_DF\n"));
939		goto bad;
940	}
941
942	ip_len = ntohs(h->ip_len) - hlen;
943	ip_off = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
944
945	/* All fragments are 8 byte aligned */
946	if (mff && (ip_len & 0x7)) {
947		DPFPRINTF(("mff and %d\n", ip_len));
948		goto bad;
949	}
950
951	/* Respect maximum length */
952	if (fragoff + ip_len > IP_MAXPACKET) {
953		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
954		goto bad;
955	}
956	max = fragoff + ip_len;
957
958	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0) {
959
960		/* Fully buffer all of the fragments */
961		PF_FRAG_LOCK();
962		frag = pf_find_fragment(h, &V_pf_frag_tree);
963
964		/* Check if we saw the last fragment already */
965		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
966		    max > frag->fr_max)
967			goto bad;
968
969		/* Get an entry for the fragment queue */
970		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
971		if (frent == NULL) {
972			PF_FRAG_UNLOCK();
973			REASON_SET(reason, PFRES_MEMORY);
974			return (PF_DROP);
975		}
976		frent->fr_ip = h;
977		frent->fr_m = m;
978
979		/* Might return a completely reassembled mbuf, or NULL */
980		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
981		*m0 = m = pf_reassemble(m0, &frag, frent, mff);
982		PF_FRAG_UNLOCK();
983
984		if (m == NULL)
985			return (PF_DROP);
986
987		/* use mtag from concatenated mbuf chain */
988		pd->pf_mtag = pf_find_mtag(m);
989#ifdef DIAGNOSTIC
990		if (pd->pf_mtag == NULL) {
991			printf("%s: pf_find_mtag returned NULL(1)\n", __func__);
992			if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
993				m_freem(m);
994				*m0 = NULL;
995				goto no_mem;
996			}
997		}
998#endif
999		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1000			goto drop;
1001
1002		h = mtod(m, struct ip *);
1003	} else {
1004		/* non-buffering fragment cache (drops or masks overlaps) */
1005		int	nomem = 0;
1006
1007		if (dir == PF_OUT && pd->pf_mtag->flags & PF_TAG_FRAGCACHE) {
1008			/*
1009			 * Already passed the fragment cache in the
1010			 * input direction.  If we continued, it would
1011			 * appear to be a dup and would be dropped.
1012			 */
1013			goto fragment_pass;
1014		}
1015
1016		PF_FRAG_LOCK();
1017		frag = pf_find_fragment(h, &V_pf_cache_tree);
1018
1019		/* Check if we saw the last fragment already */
1020		if (frag != NULL && (frag->fr_flags & PFFRAG_SEENLAST) &&
1021		    max > frag->fr_max) {
1022			if (r->rule_flag & PFRULE_FRAGDROP)
1023				frag->fr_flags |= PFFRAG_DROP;
1024			goto bad;
1025		}
1026
1027		*m0 = m = pf_fragcache(m0, h, &frag, mff,
1028		    (r->rule_flag & PFRULE_FRAGDROP) ? 1 : 0, &nomem);
1029		PF_FRAG_UNLOCK();
1030		if (m == NULL) {
1031			if (nomem)
1032				goto no_mem;
1033			goto drop;
1034		}
1035
1036		/* use mtag from copied and trimmed mbuf chain */
1037		pd->pf_mtag = pf_find_mtag(m);
1038#ifdef DIAGNOSTIC
1039		if (pd->pf_mtag == NULL) {
1040			printf("%s: pf_find_mtag returned NULL(2)\n", __func__);
1041			if ((pd->pf_mtag = pf_get_mtag(m)) == NULL) {
1042				m_freem(m);
1043				*m0 = NULL;
1044				goto no_mem;
1045			}
1046		}
1047#endif
1048		if (dir == PF_IN)
1049			pd->pf_mtag->flags |= PF_TAG_FRAGCACHE;
1050
1051		if (frag != NULL && (frag->fr_flags & PFFRAG_DROP))
1052			goto drop;
1053		goto fragment_pass;
1054	}
1055
1056 no_fragment:
1057	/* At this point, only IP_DF is allowed in ip_off */
1058	if (h->ip_off & ~htons(IP_DF)) {
1059		u_int16_t ip_off = h->ip_off;
1060
1061		h->ip_off &= htons(IP_DF);
1062		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1063	}
1064
1065	/* not missing a return here */
1066
1067 fragment_pass:
1068	pf_scrub_ip(&m, r->rule_flag, r->min_ttl, r->set_tos);
1069
1070	if ((r->rule_flag & (PFRULE_FRAGCROP|PFRULE_FRAGDROP)) == 0)
1071		pd->flags |= PFDESC_IP_REAS;
1072	return (PF_PASS);
1073
1074 no_mem:
1075	REASON_SET(reason, PFRES_MEMORY);
1076	if (r != NULL && r->log)
1077		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1078		    1);
1079	return (PF_DROP);
1080
1081 drop:
1082	REASON_SET(reason, PFRES_NORM);
1083	if (r != NULL && r->log)
1084		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1085		    1);
1086	return (PF_DROP);
1087
1088 bad:
1089	DPFPRINTF(("dropping bad fragment\n"));
1090
1091	/* Free associated fragments */
1092	if (frag != NULL) {
1093		pf_free_fragment(frag);
1094		PF_FRAG_UNLOCK();
1095	}
1096
1097	REASON_SET(reason, PFRES_FRAG);
1098	if (r != NULL && r->log)
1099		PFLOG_PACKET(kif, m, AF_INET, dir, *reason, r, NULL, NULL, pd,
1100		    1);
1101
1102	return (PF_DROP);
1103}
1104#endif
1105
1106#ifdef INET6
1107int
1108pf_normalize_ip6(struct mbuf **m0, int dir, struct pfi_kif *kif,
1109    u_short *reason, struct pf_pdesc *pd)
1110{
1111	struct mbuf		*m = *m0;
1112	struct pf_rule		*r;
1113	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1114	int			 off;
1115	struct ip6_ext		 ext;
1116	struct ip6_opt		 opt;
1117	struct ip6_opt_jumbo	 jumbo;
1118	struct ip6_frag		 frag;
1119	u_int32_t		 jumbolen = 0, plen;
1120	u_int16_t		 fragoff = 0;
1121	int			 optend;
1122	int			 ooff;
1123	u_int8_t		 proto;
1124	int			 terminal;
1125
1126	PF_RULES_RASSERT();
1127
1128	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1129	while (r != NULL) {
1130		r->evaluations++;
1131		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1132			r = r->skip[PF_SKIP_IFP].ptr;
1133		else if (r->direction && r->direction != dir)
1134			r = r->skip[PF_SKIP_DIR].ptr;
1135		else if (r->af && r->af != AF_INET6)
1136			r = r->skip[PF_SKIP_AF].ptr;
1137#if 0 /* header chain! */
1138		else if (r->proto && r->proto != h->ip6_nxt)
1139			r = r->skip[PF_SKIP_PROTO].ptr;
1140#endif
1141		else if (PF_MISMATCHAW(&r->src.addr,
1142		    (struct pf_addr *)&h->ip6_src, AF_INET6,
1143		    r->src.neg, kif, M_GETFIB(m)))
1144			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1145		else if (PF_MISMATCHAW(&r->dst.addr,
1146		    (struct pf_addr *)&h->ip6_dst, AF_INET6,
1147		    r->dst.neg, NULL, M_GETFIB(m)))
1148			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1149		else
1150			break;
1151	}
1152
1153	if (r == NULL || r->action == PF_NOSCRUB)
1154		return (PF_PASS);
1155	else {
1156		r->packets[dir == PF_OUT]++;
1157		r->bytes[dir == PF_OUT] += pd->tot_len;
1158	}
1159
1160	/* Check for illegal packets */
1161	if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len)
1162		goto drop;
1163
1164	off = sizeof(struct ip6_hdr);
1165	proto = h->ip6_nxt;
1166	terminal = 0;
1167	do {
1168		switch (proto) {
1169		case IPPROTO_FRAGMENT:
1170			goto fragment;
1171			break;
1172		case IPPROTO_AH:
1173		case IPPROTO_ROUTING:
1174		case IPPROTO_DSTOPTS:
1175			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1176			    NULL, AF_INET6))
1177				goto shortpkt;
1178			if (proto == IPPROTO_AH)
1179				off += (ext.ip6e_len + 2) * 4;
1180			else
1181				off += (ext.ip6e_len + 1) * 8;
1182			proto = ext.ip6e_nxt;
1183			break;
1184		case IPPROTO_HOPOPTS:
1185			if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL,
1186			    NULL, AF_INET6))
1187				goto shortpkt;
1188			optend = off + (ext.ip6e_len + 1) * 8;
1189			ooff = off + sizeof(ext);
1190			do {
1191				if (!pf_pull_hdr(m, ooff, &opt.ip6o_type,
1192				    sizeof(opt.ip6o_type), NULL, NULL,
1193				    AF_INET6))
1194					goto shortpkt;
1195				if (opt.ip6o_type == IP6OPT_PAD1) {
1196					ooff++;
1197					continue;
1198				}
1199				if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt),
1200				    NULL, NULL, AF_INET6))
1201					goto shortpkt;
1202				if (ooff + sizeof(opt) + opt.ip6o_len > optend)
1203					goto drop;
1204				switch (opt.ip6o_type) {
1205				case IP6OPT_JUMBO:
1206					if (h->ip6_plen != 0)
1207						goto drop;
1208					if (!pf_pull_hdr(m, ooff, &jumbo,
1209					    sizeof(jumbo), NULL, NULL,
1210					    AF_INET6))
1211						goto shortpkt;
1212					memcpy(&jumbolen, jumbo.ip6oj_jumbo_len,
1213					    sizeof(jumbolen));
1214					jumbolen = ntohl(jumbolen);
1215					if (jumbolen <= IPV6_MAXPACKET)
1216						goto drop;
1217					if (sizeof(struct ip6_hdr) + jumbolen !=
1218					    m->m_pkthdr.len)
1219						goto drop;
1220					break;
1221				default:
1222					break;
1223				}
1224				ooff += sizeof(opt) + opt.ip6o_len;
1225			} while (ooff < optend);
1226
1227			off = optend;
1228			proto = ext.ip6e_nxt;
1229			break;
1230		default:
1231			terminal = 1;
1232			break;
1233		}
1234	} while (!terminal);
1235
1236	/* jumbo payload option must be present, or plen > 0 */
1237	if (ntohs(h->ip6_plen) == 0)
1238		plen = jumbolen;
1239	else
1240		plen = ntohs(h->ip6_plen);
1241	if (plen == 0)
1242		goto drop;
1243	if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len)
1244		goto shortpkt;
1245
1246	pf_scrub_ip6(&m, r->min_ttl);
1247
1248	return (PF_PASS);
1249
1250 fragment:
1251	if (ntohs(h->ip6_plen) == 0 || jumbolen)
1252		goto drop;
1253	plen = ntohs(h->ip6_plen);
1254
1255	if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6))
1256		goto shortpkt;
1257	fragoff = ntohs(frag.ip6f_offlg & IP6F_OFF_MASK);
1258	if (fragoff + (plen - off - sizeof(frag)) > IPV6_MAXPACKET)
1259		goto badfrag;
1260
1261	/* do something about it */
1262	/* remember to set pd->flags |= PFDESC_IP_REAS */
1263	return (PF_PASS);
1264
1265 shortpkt:
1266	REASON_SET(reason, PFRES_SHORT);
1267	if (r != NULL && r->log)
1268		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1269		    1);
1270	return (PF_DROP);
1271
1272 drop:
1273	REASON_SET(reason, PFRES_NORM);
1274	if (r != NULL && r->log)
1275		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1276		    1);
1277	return (PF_DROP);
1278
1279 badfrag:
1280	REASON_SET(reason, PFRES_FRAG);
1281	if (r != NULL && r->log)
1282		PFLOG_PACKET(kif, m, AF_INET6, dir, *reason, r, NULL, NULL, pd,
1283		    1);
1284	return (PF_DROP);
1285}
1286#endif /* INET6 */
1287
1288int
1289pf_normalize_tcp(int dir, struct pfi_kif *kif, struct mbuf *m, int ipoff,
1290    int off, void *h, struct pf_pdesc *pd)
1291{
1292	struct pf_rule	*r, *rm = NULL;
1293	struct tcphdr	*th = pd->hdr.tcp;
1294	int		 rewrite = 0;
1295	u_short		 reason;
1296	u_int8_t	 flags;
1297	sa_family_t	 af = pd->af;
1298
1299	PF_RULES_RASSERT();
1300
1301	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1302	while (r != NULL) {
1303		r->evaluations++;
1304		if (pfi_kif_match(r->kif, kif) == r->ifnot)
1305			r = r->skip[PF_SKIP_IFP].ptr;
1306		else if (r->direction && r->direction != dir)
1307			r = r->skip[PF_SKIP_DIR].ptr;
1308		else if (r->af && r->af != af)
1309			r = r->skip[PF_SKIP_AF].ptr;
1310		else if (r->proto && r->proto != pd->proto)
1311			r = r->skip[PF_SKIP_PROTO].ptr;
1312		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1313		    r->src.neg, kif, M_GETFIB(m)))
1314			r = r->skip[PF_SKIP_SRC_ADDR].ptr;
1315		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1316			    r->src.port[0], r->src.port[1], th->th_sport))
1317			r = r->skip[PF_SKIP_SRC_PORT].ptr;
1318		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1319		    r->dst.neg, NULL, M_GETFIB(m)))
1320			r = r->skip[PF_SKIP_DST_ADDR].ptr;
1321		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1322			    r->dst.port[0], r->dst.port[1], th->th_dport))
1323			r = r->skip[PF_SKIP_DST_PORT].ptr;
1324		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1325			    pf_osfp_fingerprint(pd, m, off, th),
1326			    r->os_fingerprint))
1327			r = TAILQ_NEXT(r, entries);
1328		else {
1329			rm = r;
1330			break;
1331		}
1332	}
1333
1334	if (rm == NULL || rm->action == PF_NOSCRUB)
1335		return (PF_PASS);
1336	else {
1337		r->packets[dir == PF_OUT]++;
1338		r->bytes[dir == PF_OUT] += pd->tot_len;
1339	}
1340
1341	if (rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1342		pd->flags |= PFDESC_TCP_NORM;
1343
1344	flags = th->th_flags;
1345	if (flags & TH_SYN) {
1346		/* Illegal packet */
1347		if (flags & TH_RST)
1348			goto tcp_drop;
1349
1350		if (flags & TH_FIN)
1351			flags &= ~TH_FIN;
1352	} else {
1353		/* Illegal packet */
1354		if (!(flags & (TH_ACK|TH_RST)))
1355			goto tcp_drop;
1356	}
1357
1358	if (!(flags & TH_ACK)) {
1359		/* These flags are only valid if ACK is set */
1360		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1361			goto tcp_drop;
1362	}
1363
1364	/* Check for illegal header length */
1365	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1366		goto tcp_drop;
1367
1368	/* If flags changed, or reserved data set, then adjust */
1369	if (flags != th->th_flags || th->th_x2 != 0) {
1370		u_int16_t	ov, nv;
1371
1372		ov = *(u_int16_t *)(&th->th_ack + 1);
1373		th->th_flags = flags;
1374		th->th_x2 = 0;
1375		nv = *(u_int16_t *)(&th->th_ack + 1);
1376
1377		th->th_sum = pf_cksum_fixup(th->th_sum, ov, nv, 0);
1378		rewrite = 1;
1379	}
1380
1381	/* Remove urgent pointer, if TH_URG is not set */
1382	if (!(flags & TH_URG) && th->th_urp) {
1383		th->th_sum = pf_cksum_fixup(th->th_sum, th->th_urp, 0, 0);
1384		th->th_urp = 0;
1385		rewrite = 1;
1386	}
1387
1388	/* Process options */
1389	if (r->max_mss && pf_normalize_tcpopt(r, m, th, off, pd->af))
1390		rewrite = 1;
1391
1392	/* copy back packet headers if we sanitized */
1393	if (rewrite)
1394		m_copyback(m, off, sizeof(*th), (caddr_t)th);
1395
1396	return (PF_PASS);
1397
1398 tcp_drop:
1399	REASON_SET(&reason, PFRES_NORM);
1400	if (rm != NULL && r->log)
1401		PFLOG_PACKET(kif, m, AF_INET, dir, reason, r, NULL, NULL, pd,
1402		    1);
1403	return (PF_DROP);
1404}
1405
1406int
1407pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd,
1408    struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst)
1409{
1410	u_int32_t tsval, tsecr;
1411	u_int8_t hdr[60];
1412	u_int8_t *opt;
1413
1414	KASSERT((src->scrub == NULL),
1415	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1416
1417	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1418	if (src->scrub == NULL)
1419		return (1);
1420
1421	switch (pd->af) {
1422#ifdef INET
1423	case AF_INET: {
1424		struct ip *h = mtod(m, struct ip *);
1425		src->scrub->pfss_ttl = h->ip_ttl;
1426		break;
1427	}
1428#endif /* INET */
1429#ifdef INET6
1430	case AF_INET6: {
1431		struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1432		src->scrub->pfss_ttl = h->ip6_hlim;
1433		break;
1434	}
1435#endif /* INET6 */
1436	}
1437
1438
1439	/*
1440	 * All normalizations below are only begun if we see the start of
1441	 * the connections.  They must all set an enabled bit in pfss_flags
1442	 */
1443	if ((th->th_flags & TH_SYN) == 0)
1444		return (0);
1445
1446
1447	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1448	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1449		/* Diddle with TCP options */
1450		int hlen;
1451		opt = hdr + sizeof(struct tcphdr);
1452		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1453		while (hlen >= TCPOLEN_TIMESTAMP) {
1454			switch (*opt) {
1455			case TCPOPT_EOL:	/* FALLTHROUGH */
1456			case TCPOPT_NOP:
1457				opt++;
1458				hlen--;
1459				break;
1460			case TCPOPT_TIMESTAMP:
1461				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1462					src->scrub->pfss_flags |=
1463					    PFSS_TIMESTAMP;
1464					src->scrub->pfss_ts_mod =
1465					    htonl(arc4random());
1466
1467					/* note PFSS_PAWS not set yet */
1468					memcpy(&tsval, &opt[2],
1469					    sizeof(u_int32_t));
1470					memcpy(&tsecr, &opt[6],
1471					    sizeof(u_int32_t));
1472					src->scrub->pfss_tsval0 = ntohl(tsval);
1473					src->scrub->pfss_tsval = ntohl(tsval);
1474					src->scrub->pfss_tsecr = ntohl(tsecr);
1475					getmicrouptime(&src->scrub->pfss_last);
1476				}
1477				/* FALLTHROUGH */
1478			default:
1479				hlen -= MAX(opt[1], 2);
1480				opt += MAX(opt[1], 2);
1481				break;
1482			}
1483		}
1484	}
1485
1486	return (0);
1487}
1488
1489void
1490pf_normalize_tcp_cleanup(struct pf_state *state)
1491{
1492	if (state->src.scrub)
1493		uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1494	if (state->dst.scrub)
1495		uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1496
1497	/* Someday... flush the TCP segment reassembly descriptors. */
1498}
1499
1500int
1501pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd,
1502    u_short *reason, struct tcphdr *th, struct pf_state *state,
1503    struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1504{
1505	struct timeval uptime;
1506	u_int32_t tsval, tsecr;
1507	u_int tsval_from_last;
1508	u_int8_t hdr[60];
1509	u_int8_t *opt;
1510	int copyback = 0;
1511	int got_ts = 0;
1512
1513	KASSERT((src->scrub || dst->scrub),
1514	    ("%s: src->scrub && dst->scrub!", __func__));
1515
1516	/*
1517	 * Enforce the minimum TTL seen for this connection.  Negate a common
1518	 * technique to evade an intrusion detection system and confuse
1519	 * firewall state code.
1520	 */
1521	switch (pd->af) {
1522#ifdef INET
1523	case AF_INET: {
1524		if (src->scrub) {
1525			struct ip *h = mtod(m, struct ip *);
1526			if (h->ip_ttl > src->scrub->pfss_ttl)
1527				src->scrub->pfss_ttl = h->ip_ttl;
1528			h->ip_ttl = src->scrub->pfss_ttl;
1529		}
1530		break;
1531	}
1532#endif /* INET */
1533#ifdef INET6
1534	case AF_INET6: {
1535		if (src->scrub) {
1536			struct ip6_hdr *h = mtod(m, struct ip6_hdr *);
1537			if (h->ip6_hlim > src->scrub->pfss_ttl)
1538				src->scrub->pfss_ttl = h->ip6_hlim;
1539			h->ip6_hlim = src->scrub->pfss_ttl;
1540		}
1541		break;
1542	}
1543#endif /* INET6 */
1544	}
1545
1546	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1547	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1548	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1549	    pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1550		/* Diddle with TCP options */
1551		int hlen;
1552		opt = hdr + sizeof(struct tcphdr);
1553		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1554		while (hlen >= TCPOLEN_TIMESTAMP) {
1555			switch (*opt) {
1556			case TCPOPT_EOL:	/* FALLTHROUGH */
1557			case TCPOPT_NOP:
1558				opt++;
1559				hlen--;
1560				break;
1561			case TCPOPT_TIMESTAMP:
1562				/* Modulate the timestamps.  Can be used for
1563				 * NAT detection, OS uptime determination or
1564				 * reboot detection.
1565				 */
1566
1567				if (got_ts) {
1568					/* Huh?  Multiple timestamps!? */
1569					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1570						DPFPRINTF(("multiple TS??"));
1571						pf_print_state(state);
1572						printf("\n");
1573					}
1574					REASON_SET(reason, PFRES_TS);
1575					return (PF_DROP);
1576				}
1577				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1578					memcpy(&tsval, &opt[2],
1579					    sizeof(u_int32_t));
1580					if (tsval && src->scrub &&
1581					    (src->scrub->pfss_flags &
1582					    PFSS_TIMESTAMP)) {
1583						tsval = ntohl(tsval);
1584						pf_change_a(&opt[2],
1585						    &th->th_sum,
1586						    htonl(tsval +
1587						    src->scrub->pfss_ts_mod),
1588						    0);
1589						copyback = 1;
1590					}
1591
1592					/* Modulate TS reply iff valid (!0) */
1593					memcpy(&tsecr, &opt[6],
1594					    sizeof(u_int32_t));
1595					if (tsecr && dst->scrub &&
1596					    (dst->scrub->pfss_flags &
1597					    PFSS_TIMESTAMP)) {
1598						tsecr = ntohl(tsecr)
1599						    - dst->scrub->pfss_ts_mod;
1600						pf_change_a(&opt[6],
1601						    &th->th_sum, htonl(tsecr),
1602						    0);
1603						copyback = 1;
1604					}
1605					got_ts = 1;
1606				}
1607				/* FALLTHROUGH */
1608			default:
1609				hlen -= MAX(opt[1], 2);
1610				opt += MAX(opt[1], 2);
1611				break;
1612			}
1613		}
1614		if (copyback) {
1615			/* Copyback the options, caller copys back header */
1616			*writeback = 1;
1617			m_copyback(m, off + sizeof(struct tcphdr),
1618			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1619			    sizeof(struct tcphdr));
1620		}
1621	}
1622
1623
1624	/*
1625	 * Must invalidate PAWS checks on connections idle for too long.
1626	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1627	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1628	 * TS echo check only works for the first 12 days of a connection
1629	 * when the TS has exhausted half its 32bit space
1630	 */
1631#define TS_MAX_IDLE	(24*24*60*60)
1632#define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1633
1634	getmicrouptime(&uptime);
1635	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1636	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1637	    time_uptime - state->creation > TS_MAX_CONN))  {
1638		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1639			DPFPRINTF(("src idled out of PAWS\n"));
1640			pf_print_state(state);
1641			printf("\n");
1642		}
1643		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1644		    | PFSS_PAWS_IDLED;
1645	}
1646	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1647	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1648		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1649			DPFPRINTF(("dst idled out of PAWS\n"));
1650			pf_print_state(state);
1651			printf("\n");
1652		}
1653		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1654		    | PFSS_PAWS_IDLED;
1655	}
1656
1657	if (got_ts && src->scrub && dst->scrub &&
1658	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1659	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1660		/* Validate that the timestamps are "in-window".
1661		 * RFC1323 describes TCP Timestamp options that allow
1662		 * measurement of RTT (round trip time) and PAWS
1663		 * (protection against wrapped sequence numbers).  PAWS
1664		 * gives us a set of rules for rejecting packets on
1665		 * long fat pipes (packets that were somehow delayed
1666		 * in transit longer than the time it took to send the
1667		 * full TCP sequence space of 4Gb).  We can use these
1668		 * rules and infer a few others that will let us treat
1669		 * the 32bit timestamp and the 32bit echoed timestamp
1670		 * as sequence numbers to prevent a blind attacker from
1671		 * inserting packets into a connection.
1672		 *
1673		 * RFC1323 tells us:
1674		 *  - The timestamp on this packet must be greater than
1675		 *    or equal to the last value echoed by the other
1676		 *    endpoint.  The RFC says those will be discarded
1677		 *    since it is a dup that has already been acked.
1678		 *    This gives us a lowerbound on the timestamp.
1679		 *        timestamp >= other last echoed timestamp
1680		 *  - The timestamp will be less than or equal to
1681		 *    the last timestamp plus the time between the
1682		 *    last packet and now.  The RFC defines the max
1683		 *    clock rate as 1ms.  We will allow clocks to be
1684		 *    up to 10% fast and will allow a total difference
1685		 *    or 30 seconds due to a route change.  And this
1686		 *    gives us an upperbound on the timestamp.
1687		 *        timestamp <= last timestamp + max ticks
1688		 *    We have to be careful here.  Windows will send an
1689		 *    initial timestamp of zero and then initialize it
1690		 *    to a random value after the 3whs; presumably to
1691		 *    avoid a DoS by having to call an expensive RNG
1692		 *    during a SYN flood.  Proof MS has at least one
1693		 *    good security geek.
1694		 *
1695		 *  - The TCP timestamp option must also echo the other
1696		 *    endpoints timestamp.  The timestamp echoed is the
1697		 *    one carried on the earliest unacknowledged segment
1698		 *    on the left edge of the sequence window.  The RFC
1699		 *    states that the host will reject any echoed
1700		 *    timestamps that were larger than any ever sent.
1701		 *    This gives us an upperbound on the TS echo.
1702		 *        tescr <= largest_tsval
1703		 *  - The lowerbound on the TS echo is a little more
1704		 *    tricky to determine.  The other endpoint's echoed
1705		 *    values will not decrease.  But there may be
1706		 *    network conditions that re-order packets and
1707		 *    cause our view of them to decrease.  For now the
1708		 *    only lowerbound we can safely determine is that
1709		 *    the TS echo will never be less than the original
1710		 *    TS.  XXX There is probably a better lowerbound.
1711		 *    Remove TS_MAX_CONN with better lowerbound check.
1712		 *        tescr >= other original TS
1713		 *
1714		 * It is also important to note that the fastest
1715		 * timestamp clock of 1ms will wrap its 32bit space in
1716		 * 24 days.  So we just disable TS checking after 24
1717		 * days of idle time.  We actually must use a 12d
1718		 * connection limit until we can come up with a better
1719		 * lowerbound to the TS echo check.
1720		 */
1721		struct timeval delta_ts;
1722		int ts_fudge;
1723
1724
1725		/*
1726		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1727		 * a host's timestamp.  This can happen if the previous
1728		 * packet got delayed in transit for much longer than
1729		 * this packet.
1730		 */
1731		if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0)
1732			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1733
1734		/* Calculate max ticks since the last timestamp */
1735#define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1736#define TS_MICROSECS	1000000		/* microseconds per second */
1737		delta_ts = uptime;
1738		timevalsub(&delta_ts, &src->scrub->pfss_last);
1739		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1740		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1741
1742		if ((src->state >= TCPS_ESTABLISHED &&
1743		    dst->state >= TCPS_ESTABLISHED) &&
1744		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1745		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1746		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1747		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1748			/* Bad RFC1323 implementation or an insertion attack.
1749			 *
1750			 * - Solaris 2.6 and 2.7 are known to send another ACK
1751			 *   after the FIN,FIN|ACK,ACK closing that carries
1752			 *   an old timestamp.
1753			 */
1754
1755			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1756			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1757			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1758			    tsval_from_last) ? '1' : ' ',
1759			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1760			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1761			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1762			    "idle: %jus %lums\n",
1763			    tsval, tsecr, tsval_from_last,
1764			    (uintmax_t)delta_ts.tv_sec,
1765			    delta_ts.tv_usec / 1000));
1766			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1767			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1768			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1769			    "\n", dst->scrub->pfss_tsval,
1770			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1771			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1772				pf_print_state(state);
1773				pf_print_flags(th->th_flags);
1774				printf("\n");
1775			}
1776			REASON_SET(reason, PFRES_TS);
1777			return (PF_DROP);
1778		}
1779
1780		/* XXX I'd really like to require tsecr but it's optional */
1781
1782	} else if (!got_ts && (th->th_flags & TH_RST) == 0 &&
1783	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1784	    || pd->p_len > 0 || (th->th_flags & TH_SYN)) &&
1785	    src->scrub && dst->scrub &&
1786	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1787	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1788		/* Didn't send a timestamp.  Timestamps aren't really useful
1789		 * when:
1790		 *  - connection opening or closing (often not even sent).
1791		 *    but we must not let an attacker to put a FIN on a
1792		 *    data packet to sneak it through our ESTABLISHED check.
1793		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1794		 *  - on an empty ACK.  The TS will not be echoed so it will
1795		 *    probably not help keep the RTT calculation in sync and
1796		 *    there isn't as much danger when the sequence numbers
1797		 *    got wrapped.  So some stacks don't include TS on empty
1798		 *    ACKs :-(
1799		 *
1800		 * To minimize the disruption to mostly RFC1323 conformant
1801		 * stacks, we will only require timestamps on data packets.
1802		 *
1803		 * And what do ya know, we cannot require timestamps on data
1804		 * packets.  There appear to be devices that do legitimate
1805		 * TCP connection hijacking.  There are HTTP devices that allow
1806		 * a 3whs (with timestamps) and then buffer the HTTP request.
1807		 * If the intermediate device has the HTTP response cache, it
1808		 * will spoof the response but not bother timestamping its
1809		 * packets.  So we can look for the presence of a timestamp in
1810		 * the first data packet and if there, require it in all future
1811		 * packets.
1812		 */
1813
1814		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1815			/*
1816			 * Hey!  Someone tried to sneak a packet in.  Or the
1817			 * stack changed its RFC1323 behavior?!?!
1818			 */
1819			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1820				DPFPRINTF(("Did not receive expected RFC1323 "
1821				    "timestamp\n"));
1822				pf_print_state(state);
1823				pf_print_flags(th->th_flags);
1824				printf("\n");
1825			}
1826			REASON_SET(reason, PFRES_TS);
1827			return (PF_DROP);
1828		}
1829	}
1830
1831
1832	/*
1833	 * We will note if a host sends his data packets with or without
1834	 * timestamps.  And require all data packets to contain a timestamp
1835	 * if the first does.  PAWS implicitly requires that all data packets be
1836	 * timestamped.  But I think there are middle-man devices that hijack
1837	 * TCP streams immediately after the 3whs and don't timestamp their
1838	 * packets (seen in a WWW accelerator or cache).
1839	 */
1840	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1841	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1842		if (got_ts)
1843			src->scrub->pfss_flags |= PFSS_DATA_TS;
1844		else {
1845			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1846			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1847			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1848				/* Don't warn if other host rejected RFC1323 */
1849				DPFPRINTF(("Broken RFC1323 stack did not "
1850				    "timestamp data packet. Disabled PAWS "
1851				    "security.\n"));
1852				pf_print_state(state);
1853				pf_print_flags(th->th_flags);
1854				printf("\n");
1855			}
1856		}
1857	}
1858
1859
1860	/*
1861	 * Update PAWS values
1862	 */
1863	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1864	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1865		getmicrouptime(&src->scrub->pfss_last);
1866		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1867		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1868			src->scrub->pfss_tsval = tsval;
1869
1870		if (tsecr) {
1871			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1872			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1873				src->scrub->pfss_tsecr = tsecr;
1874
1875			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1876			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1877			    src->scrub->pfss_tsval0 == 0)) {
1878				/* tsval0 MUST be the lowest timestamp */
1879				src->scrub->pfss_tsval0 = tsval;
1880			}
1881
1882			/* Only fully initialized after a TS gets echoed */
1883			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1884				src->scrub->pfss_flags |= PFSS_PAWS;
1885		}
1886	}
1887
1888	/* I have a dream....  TCP segment reassembly.... */
1889	return (0);
1890}
1891
1892static int
1893pf_normalize_tcpopt(struct pf_rule *r, struct mbuf *m, struct tcphdr *th,
1894    int off, sa_family_t af)
1895{
1896	u_int16_t	*mss;
1897	int		 thoff;
1898	int		 opt, cnt, optlen = 0;
1899	int		 rewrite = 0;
1900	u_char		 opts[TCP_MAXOLEN];
1901	u_char		*optp = opts;
1902
1903	thoff = th->th_off << 2;
1904	cnt = thoff - sizeof(struct tcphdr);
1905
1906	if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt,
1907	    NULL, NULL, af))
1908		return (rewrite);
1909
1910	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1911		opt = optp[0];
1912		if (opt == TCPOPT_EOL)
1913			break;
1914		if (opt == TCPOPT_NOP)
1915			optlen = 1;
1916		else {
1917			if (cnt < 2)
1918				break;
1919			optlen = optp[1];
1920			if (optlen < 2 || optlen > cnt)
1921				break;
1922		}
1923		switch (opt) {
1924		case TCPOPT_MAXSEG:
1925			mss = (u_int16_t *)(optp + 2);
1926			if ((ntohs(*mss)) > r->max_mss) {
1927				th->th_sum = pf_cksum_fixup(th->th_sum,
1928				    *mss, htons(r->max_mss), 0);
1929				*mss = htons(r->max_mss);
1930				rewrite = 1;
1931			}
1932			break;
1933		default:
1934			break;
1935		}
1936	}
1937
1938	if (rewrite)
1939		m_copyback(m, off + sizeof(*th), thoff - sizeof(*th), opts);
1940
1941	return (rewrite);
1942}
1943
1944#ifdef INET
1945static void
1946pf_scrub_ip(struct mbuf **m0, u_int32_t flags, u_int8_t min_ttl, u_int8_t tos)
1947{
1948	struct mbuf		*m = *m0;
1949	struct ip		*h = mtod(m, struct ip *);
1950
1951	/* Clear IP_DF if no-df was requested */
1952	if (flags & PFRULE_NODF && h->ip_off & htons(IP_DF)) {
1953		u_int16_t ip_off = h->ip_off;
1954
1955		h->ip_off &= htons(~IP_DF);
1956		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1957	}
1958
1959	/* Enforce a minimum ttl, may cause endless packet loops */
1960	if (min_ttl && h->ip_ttl < min_ttl) {
1961		u_int16_t ip_ttl = h->ip_ttl;
1962
1963		h->ip_ttl = min_ttl;
1964		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
1965	}
1966
1967	/* Enforce tos */
1968	if (flags & PFRULE_SET_TOS) {
1969		u_int16_t	ov, nv;
1970
1971		ov = *(u_int16_t *)h;
1972		h->ip_tos = tos;
1973		nv = *(u_int16_t *)h;
1974
1975		h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
1976	}
1977
1978	/* random-id, but not for fragments */
1979	if (flags & PFRULE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
1980		u_int16_t ip_id = h->ip_id;
1981
1982		h->ip_id = ip_randomid();
1983		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
1984	}
1985}
1986#endif /* INET */
1987
1988#ifdef INET6
1989static void
1990pf_scrub_ip6(struct mbuf **m0, u_int8_t min_ttl)
1991{
1992	struct mbuf		*m = *m0;
1993	struct ip6_hdr		*h = mtod(m, struct ip6_hdr *);
1994
1995	/* Enforce a minimum ttl, may cause endless packet loops */
1996	if (min_ttl && h->ip6_hlim < min_ttl)
1997		h->ip6_hlim = min_ttl;
1998}
1999#endif
2000