ip_fw_dynamic.c revision 262210
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: stable/10/sys/netpfil/ipfw/ip_fw_dynamic.c 262210 2014-02-19 07:51:58Z dim $");
28
29#define        DEB(x)
30#define        DDB(x) x
31
32/*
33 * Dynamic rule support for ipfw
34 */
35
36#include "opt_ipfw.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#include "opt_inet6.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/kernel.h>
48#include <sys/lock.h>
49#include <sys/socket.h>
50#include <sys/sysctl.h>
51#include <sys/syslog.h>
52#include <net/ethernet.h> /* for ETHERTYPE_IP */
53#include <net/if.h>
54#include <net/vnet.h>
55
56#include <netinet/in.h>
57#include <netinet/ip.h>
58#include <netinet/ip_var.h>	/* ip_defttl */
59#include <netinet/ip_fw.h>
60#include <netinet/tcp_var.h>
61#include <netinet/udp.h>
62
63#include <netinet/ip6.h>	/* IN6_ARE_ADDR_EQUAL */
64#ifdef INET6
65#include <netinet6/in6_var.h>
66#include <netinet6/ip6_var.h>
67#endif
68
69#include <netpfil/ipfw/ip_fw_private.h>
70
71#include <machine/in_cksum.h>	/* XXX for in_cksum */
72
73#ifdef MAC
74#include <security/mac/mac_framework.h>
75#endif
76
77/*
78 * Description of dynamic rules.
79 *
80 * Dynamic rules are stored in lists accessed through a hash table
81 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
82 * be modified through the sysctl variable dyn_buckets which is
83 * updated when the table becomes empty.
84 *
85 * XXX currently there is only one list, ipfw_dyn.
86 *
87 * When a packet is received, its address fields are first masked
88 * with the mask defined for the rule, then hashed, then matched
89 * against the entries in the corresponding list.
90 * Dynamic rules can be used for different purposes:
91 *  + stateful rules;
92 *  + enforcing limits on the number of sessions;
93 *  + in-kernel NAT (not implemented yet)
94 *
95 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
96 * measured in seconds and depending on the flags.
97 *
98 * The total number of dynamic rules is equal to UMA zone items count.
99 * The max number of dynamic rules is dyn_max. When we reach
100 * the maximum number of rules we do not create anymore. This is
101 * done to avoid consuming too much memory, but also too much
102 * time when searching on each packet (ideally, we should try instead
103 * to put a limit on the length of the list on each bucket...).
104 *
105 * Each dynamic rule holds a pointer to the parent ipfw rule so
106 * we know what action to perform. Dynamic rules are removed when
107 * the parent rule is deleted. XXX we should make them survive.
108 *
109 * There are some limitations with dynamic rules -- we do not
110 * obey the 'randomized match', and we do not do multiple
111 * passes through the firewall. XXX check the latter!!!
112 */
113
114struct ipfw_dyn_bucket {
115	struct mtx	mtx;		/* Bucket protecting lock */
116	ipfw_dyn_rule	*head;		/* Pointer to first rule */
117};
118
119/*
120 * Static variables followed by global ones
121 */
122static VNET_DEFINE(struct ipfw_dyn_bucket *, ipfw_dyn_v);
123static VNET_DEFINE(u_int32_t, dyn_buckets_max);
124static VNET_DEFINE(u_int32_t, curr_dyn_buckets);
125static VNET_DEFINE(struct callout, ipfw_timeout);
126#define	V_ipfw_dyn_v			VNET(ipfw_dyn_v)
127#define	V_dyn_buckets_max		VNET(dyn_buckets_max)
128#define	V_curr_dyn_buckets		VNET(curr_dyn_buckets)
129#define V_ipfw_timeout                  VNET(ipfw_timeout)
130
131static VNET_DEFINE(uma_zone_t, ipfw_dyn_rule_zone);
132#define	V_ipfw_dyn_rule_zone		VNET(ipfw_dyn_rule_zone)
133
134#define	IPFW_BUCK_LOCK_INIT(b)	\
135	mtx_init(&(b)->mtx, "IPFW dynamic bucket", NULL, MTX_DEF)
136#define	IPFW_BUCK_LOCK_DESTROY(b)	\
137	mtx_destroy(&(b)->mtx)
138#define	IPFW_BUCK_LOCK(i)	mtx_lock(&V_ipfw_dyn_v[(i)].mtx)
139#define	IPFW_BUCK_UNLOCK(i)	mtx_unlock(&V_ipfw_dyn_v[(i)].mtx)
140#define	IPFW_BUCK_ASSERT(i)	mtx_assert(&V_ipfw_dyn_v[(i)].mtx, MA_OWNED)
141
142/*
143 * Timeouts for various events in handing dynamic rules.
144 */
145static VNET_DEFINE(u_int32_t, dyn_ack_lifetime);
146static VNET_DEFINE(u_int32_t, dyn_syn_lifetime);
147static VNET_DEFINE(u_int32_t, dyn_fin_lifetime);
148static VNET_DEFINE(u_int32_t, dyn_rst_lifetime);
149static VNET_DEFINE(u_int32_t, dyn_udp_lifetime);
150static VNET_DEFINE(u_int32_t, dyn_short_lifetime);
151
152#define	V_dyn_ack_lifetime		VNET(dyn_ack_lifetime)
153#define	V_dyn_syn_lifetime		VNET(dyn_syn_lifetime)
154#define	V_dyn_fin_lifetime		VNET(dyn_fin_lifetime)
155#define	V_dyn_rst_lifetime		VNET(dyn_rst_lifetime)
156#define	V_dyn_udp_lifetime		VNET(dyn_udp_lifetime)
157#define	V_dyn_short_lifetime		VNET(dyn_short_lifetime)
158
159/*
160 * Keepalives are sent if dyn_keepalive is set. They are sent every
161 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
162 * seconds of lifetime of a rule.
163 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
164 * than dyn_keepalive_period.
165 */
166
167static VNET_DEFINE(u_int32_t, dyn_keepalive_interval);
168static VNET_DEFINE(u_int32_t, dyn_keepalive_period);
169static VNET_DEFINE(u_int32_t, dyn_keepalive);
170static VNET_DEFINE(time_t, dyn_keepalive_last);
171
172#define	V_dyn_keepalive_interval	VNET(dyn_keepalive_interval)
173#define	V_dyn_keepalive_period		VNET(dyn_keepalive_period)
174#define	V_dyn_keepalive			VNET(dyn_keepalive)
175#define	V_dyn_keepalive_last		VNET(dyn_keepalive_last)
176
177static VNET_DEFINE(u_int32_t, dyn_max);		/* max # of dynamic rules */
178
179#define	DYN_COUNT			uma_zone_get_cur(V_ipfw_dyn_rule_zone)
180#define	V_dyn_max			VNET(dyn_max)
181
182static int last_log;	/* Log ratelimiting */
183
184static void ipfw_dyn_tick(void *vnetx);
185static void check_dyn_rules(struct ip_fw_chain *, struct ip_fw *,
186    int, int, int);
187#ifdef SYSCTL_NODE
188
189static int sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS);
190static int sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS);
191
192SYSBEGIN(f2)
193
194SYSCTL_DECL(_net_inet_ip_fw);
195SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_buckets,
196    CTLFLAG_RW, &VNET_NAME(dyn_buckets_max), 0,
197    "Max number of dyn. buckets");
198SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets,
199    CTLFLAG_RD, &VNET_NAME(curr_dyn_buckets), 0,
200    "Current Number of dyn. buckets");
201SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_count,
202    CTLTYPE_UINT|CTLFLAG_RD, 0, 0, sysctl_ipfw_dyn_count, "IU",
203    "Number of dyn. rules");
204SYSCTL_VNET_PROC(_net_inet_ip_fw, OID_AUTO, dyn_max,
205    CTLTYPE_UINT|CTLFLAG_RW, 0, 0, sysctl_ipfw_dyn_max, "IU",
206    "Max number of dyn. rules");
207SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime,
208    CTLFLAG_RW, &VNET_NAME(dyn_ack_lifetime), 0,
209    "Lifetime of dyn. rules for acks");
210SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime,
211    CTLFLAG_RW, &VNET_NAME(dyn_syn_lifetime), 0,
212    "Lifetime of dyn. rules for syn");
213SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime,
214    CTLFLAG_RW, &VNET_NAME(dyn_fin_lifetime), 0,
215    "Lifetime of dyn. rules for fin");
216SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime,
217    CTLFLAG_RW, &VNET_NAME(dyn_rst_lifetime), 0,
218    "Lifetime of dyn. rules for rst");
219SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime,
220    CTLFLAG_RW, &VNET_NAME(dyn_udp_lifetime), 0,
221    "Lifetime of dyn. rules for UDP");
222SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime,
223    CTLFLAG_RW, &VNET_NAME(dyn_short_lifetime), 0,
224    "Lifetime of dyn. rules for other situations");
225SYSCTL_VNET_UINT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive,
226    CTLFLAG_RW, &VNET_NAME(dyn_keepalive), 0,
227    "Enable keepalives for dyn. rules");
228
229SYSEND
230
231#endif /* SYSCTL_NODE */
232
233
234#ifdef INET6
235static __inline int
236hash_packet6(struct ipfw_flow_id *id)
237{
238	u_int32_t i;
239	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
240	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
241	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
242	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
243	    (id->dst_port) ^ (id->src_port);
244	return i;
245}
246#endif
247
248/*
249 * IMPORTANT: the hash function for dynamic rules must be commutative
250 * in source and destination (ip,port), because rules are bidirectional
251 * and we want to find both in the same bucket.
252 */
253static __inline int
254hash_packet(struct ipfw_flow_id *id, int buckets)
255{
256	u_int32_t i;
257
258#ifdef INET6
259	if (IS_IP6_FLOW_ID(id))
260		i = hash_packet6(id);
261	else
262#endif /* INET6 */
263	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
264	i &= (buckets - 1);
265	return i;
266}
267
268/**
269 * Print customizable flow id description via log(9) facility.
270 */
271static void
272print_dyn_rule_flags(struct ipfw_flow_id *id, int dyn_type, int log_flags,
273    char *prefix, char *postfix)
274{
275	struct in_addr da;
276#ifdef INET6
277	char src[INET6_ADDRSTRLEN], dst[INET6_ADDRSTRLEN];
278#else
279	char src[INET_ADDRSTRLEN], dst[INET_ADDRSTRLEN];
280#endif
281
282#ifdef INET6
283	if (IS_IP6_FLOW_ID(id)) {
284		ip6_sprintf(src, &id->src_ip6);
285		ip6_sprintf(dst, &id->dst_ip6);
286	} else
287#endif
288	{
289		da.s_addr = htonl(id->src_ip);
290		inet_ntop(AF_INET, &da, src, sizeof(src));
291		da.s_addr = htonl(id->dst_ip);
292		inet_ntop(AF_INET, &da, dst, sizeof(dst));
293	}
294	log(log_flags, "ipfw: %s type %d %s %d -> %s %d, %d %s\n",
295	    prefix, dyn_type, src, id->src_port, dst,
296	    id->dst_port, DYN_COUNT, postfix);
297}
298
299#define	print_dyn_rule(id, dtype, prefix, postfix)	\
300	print_dyn_rule_flags(id, dtype, LOG_DEBUG, prefix, postfix)
301
302#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
303
304/*
305 * Lookup a dynamic rule, locked version.
306 */
307static ipfw_dyn_rule *
308lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int i, int *match_direction,
309    struct tcphdr *tcp)
310{
311	/*
312	 * Stateful ipfw extensions.
313	 * Lookup into dynamic session queue.
314	 */
315#define MATCH_REVERSE	0
316#define MATCH_FORWARD	1
317#define MATCH_NONE	2
318#define MATCH_UNKNOWN	3
319	int dir = MATCH_NONE;
320	ipfw_dyn_rule *prev, *q = NULL;
321
322	IPFW_BUCK_ASSERT(i);
323
324	for (prev = NULL, q = V_ipfw_dyn_v[i].head; q; prev = q, q = q->next) {
325		if (q->dyn_type == O_LIMIT_PARENT && q->count)
326			continue;
327
328		if (pkt->proto != q->id.proto || q->dyn_type == O_LIMIT_PARENT)
329			continue;
330
331		if (IS_IP6_FLOW_ID(pkt)) {
332			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.src_ip6) &&
333			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.dst_ip6) &&
334			    pkt->src_port == q->id.src_port &&
335			    pkt->dst_port == q->id.dst_port) {
336				dir = MATCH_FORWARD;
337				break;
338			}
339			if (IN6_ARE_ADDR_EQUAL(&pkt->src_ip6, &q->id.dst_ip6) &&
340			    IN6_ARE_ADDR_EQUAL(&pkt->dst_ip6, &q->id.src_ip6) &&
341			    pkt->src_port == q->id.dst_port &&
342			    pkt->dst_port == q->id.src_port) {
343				dir = MATCH_REVERSE;
344				break;
345			}
346		} else {
347			if (pkt->src_ip == q->id.src_ip &&
348			    pkt->dst_ip == q->id.dst_ip &&
349			    pkt->src_port == q->id.src_port &&
350			    pkt->dst_port == q->id.dst_port) {
351				dir = MATCH_FORWARD;
352				break;
353			}
354			if (pkt->src_ip == q->id.dst_ip &&
355			    pkt->dst_ip == q->id.src_ip &&
356			    pkt->src_port == q->id.dst_port &&
357			    pkt->dst_port == q->id.src_port) {
358				dir = MATCH_REVERSE;
359				break;
360			}
361		}
362	}
363	if (q == NULL)
364		goto done;	/* q = NULL, not found */
365
366	if (prev != NULL) {	/* found and not in front */
367		prev->next = q->next;
368		q->next = V_ipfw_dyn_v[i].head;
369		V_ipfw_dyn_v[i].head = q;
370	}
371	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
372		uint32_t ack;
373		u_char flags = pkt->_flags & (TH_FIN | TH_SYN | TH_RST);
374
375#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
376#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
377#define	TCP_FLAGS	(TH_FLAGS | (TH_FLAGS << 8))
378#define	ACK_FWD		0x10000			/* fwd ack seen */
379#define	ACK_REV		0x20000			/* rev ack seen */
380
381		q->state |= (dir == MATCH_FORWARD) ? flags : (flags << 8);
382		switch (q->state & TCP_FLAGS) {
383		case TH_SYN:			/* opening */
384			q->expire = time_uptime + V_dyn_syn_lifetime;
385			break;
386
387		case BOTH_SYN:			/* move to established */
388		case BOTH_SYN | TH_FIN:		/* one side tries to close */
389		case BOTH_SYN | (TH_FIN << 8):
390#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
391			if (tcp == NULL)
392				break;
393
394			ack = ntohl(tcp->th_ack);
395			if (dir == MATCH_FORWARD) {
396				if (q->ack_fwd == 0 ||
397				    _SEQ_GE(ack, q->ack_fwd)) {
398					q->ack_fwd = ack;
399					q->state |= ACK_FWD;
400				}
401			} else {
402				if (q->ack_rev == 0 ||
403				    _SEQ_GE(ack, q->ack_rev)) {
404					q->ack_rev = ack;
405					q->state |= ACK_REV;
406				}
407			}
408			if ((q->state & (ACK_FWD | ACK_REV)) ==
409			    (ACK_FWD | ACK_REV)) {
410				q->expire = time_uptime + V_dyn_ack_lifetime;
411				q->state &= ~(ACK_FWD | ACK_REV);
412			}
413			break;
414
415		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
416			if (V_dyn_fin_lifetime >= V_dyn_keepalive_period)
417				V_dyn_fin_lifetime = V_dyn_keepalive_period - 1;
418			q->expire = time_uptime + V_dyn_fin_lifetime;
419			break;
420
421		default:
422#if 0
423			/*
424			 * reset or some invalid combination, but can also
425			 * occur if we use keep-state the wrong way.
426			 */
427			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
428				printf("invalid state: 0x%x\n", q->state);
429#endif
430			if (V_dyn_rst_lifetime >= V_dyn_keepalive_period)
431				V_dyn_rst_lifetime = V_dyn_keepalive_period - 1;
432			q->expire = time_uptime + V_dyn_rst_lifetime;
433			break;
434		}
435	} else if (pkt->proto == IPPROTO_UDP) {
436		q->expire = time_uptime + V_dyn_udp_lifetime;
437	} else {
438		/* other protocols */
439		q->expire = time_uptime + V_dyn_short_lifetime;
440	}
441done:
442	if (match_direction != NULL)
443		*match_direction = dir;
444	return (q);
445}
446
447ipfw_dyn_rule *
448ipfw_lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
449    struct tcphdr *tcp)
450{
451	ipfw_dyn_rule *q;
452	int i;
453
454	i = hash_packet(pkt, V_curr_dyn_buckets);
455
456	IPFW_BUCK_LOCK(i);
457	q = lookup_dyn_rule_locked(pkt, i, match_direction, tcp);
458	if (q == NULL)
459		IPFW_BUCK_UNLOCK(i);
460	/* NB: return table locked when q is not NULL */
461	return q;
462}
463
464/*
465 * Unlock bucket mtx
466 * @p - pointer to dynamic rule
467 */
468void
469ipfw_dyn_unlock(ipfw_dyn_rule *q)
470{
471
472	IPFW_BUCK_UNLOCK(q->bucket);
473}
474
475static int
476resize_dynamic_table(struct ip_fw_chain *chain, int nbuckets)
477{
478	int i, k, nbuckets_old;
479	ipfw_dyn_rule *q;
480	struct ipfw_dyn_bucket *dyn_v, *dyn_v_old;
481
482	/* Check if given number is power of 2 and less than 64k */
483	if ((nbuckets > 65536) || (!powerof2(nbuckets)))
484		return 1;
485
486	CTR3(KTR_NET, "%s: resize dynamic hash: %d -> %d", __func__,
487	    V_curr_dyn_buckets, nbuckets);
488
489	/* Allocate and initialize new hash */
490	dyn_v = malloc(nbuckets * sizeof(ipfw_dyn_rule), M_IPFW,
491	    M_WAITOK | M_ZERO);
492
493	for (i = 0 ; i < nbuckets; i++)
494		IPFW_BUCK_LOCK_INIT(&dyn_v[i]);
495
496	/*
497	 * Call upper half lock, as get_map() do to ease
498	 * read-only access to dynamic rules hash from sysctl
499	 */
500	IPFW_UH_WLOCK(chain);
501
502	/*
503	 * Acquire chain write lock to permit hash access
504	 * for main traffic path without additional locks
505	 */
506	IPFW_WLOCK(chain);
507
508	/* Save old values */
509	nbuckets_old = V_curr_dyn_buckets;
510	dyn_v_old = V_ipfw_dyn_v;
511
512	/* Skip relinking if array is not set up */
513	if (V_ipfw_dyn_v == NULL)
514		V_curr_dyn_buckets = 0;
515
516	/* Re-link all dynamic states */
517	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
518		while (V_ipfw_dyn_v[i].head != NULL) {
519			/* Remove from current chain */
520			q = V_ipfw_dyn_v[i].head;
521			V_ipfw_dyn_v[i].head = q->next;
522
523			/* Get new hash value */
524			k = hash_packet(&q->id, nbuckets);
525			q->bucket = k;
526			/* Add to the new head */
527			q->next = dyn_v[k].head;
528			dyn_v[k].head = q;
529             }
530	}
531
532	/* Update current pointers/buckets values */
533	V_curr_dyn_buckets = nbuckets;
534	V_ipfw_dyn_v = dyn_v;
535
536	IPFW_WUNLOCK(chain);
537
538	IPFW_UH_WUNLOCK(chain);
539
540	/* Start periodic callout on initial creation */
541	if (dyn_v_old == NULL) {
542        	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, curvnet, 0);
543		return (0);
544	}
545
546	/* Destroy all mutexes */
547	for (i = 0 ; i < nbuckets_old ; i++)
548		IPFW_BUCK_LOCK_DESTROY(&dyn_v_old[i]);
549
550	/* Free old hash */
551	free(dyn_v_old, M_IPFW);
552
553	return 0;
554}
555
556/**
557 * Install state of type 'type' for a dynamic session.
558 * The hash table contains two type of rules:
559 * - regular rules (O_KEEP_STATE)
560 * - rules for sessions with limited number of sess per user
561 *   (O_LIMIT). When they are created, the parent is
562 *   increased by 1, and decreased on delete. In this case,
563 *   the third parameter is the parent rule and not the chain.
564 * - "parent" rules for the above (O_LIMIT_PARENT).
565 */
566static ipfw_dyn_rule *
567add_dyn_rule(struct ipfw_flow_id *id, int i, u_int8_t dyn_type, struct ip_fw *rule)
568{
569	ipfw_dyn_rule *r;
570
571	IPFW_BUCK_ASSERT(i);
572
573	r = uma_zalloc(V_ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
574	if (r == NULL) {
575		if (last_log != time_uptime) {
576			last_log = time_uptime;
577			log(LOG_DEBUG, "ipfw: %s: Cannot allocate rule\n",
578			    __func__);
579		}
580		return NULL;
581	}
582
583	/*
584	 * refcount on parent is already incremented, so
585	 * it is safe to use parent unlocked.
586	 */
587	if (dyn_type == O_LIMIT) {
588		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
589		if ( parent->dyn_type != O_LIMIT_PARENT)
590			panic("invalid parent");
591		r->parent = parent;
592		rule = parent->rule;
593	}
594
595	r->id = *id;
596	r->expire = time_uptime + V_dyn_syn_lifetime;
597	r->rule = rule;
598	r->dyn_type = dyn_type;
599	IPFW_ZERO_DYN_COUNTER(r);
600	r->count = 0;
601
602	r->bucket = i;
603	r->next = V_ipfw_dyn_v[i].head;
604	V_ipfw_dyn_v[i].head = r;
605	DEB(print_dyn_rule(id, dyn_type, "add dyn entry", "total");)
606	return r;
607}
608
609/**
610 * lookup dynamic parent rule using pkt and rule as search keys.
611 * If the lookup fails, then install one.
612 */
613static ipfw_dyn_rule *
614lookup_dyn_parent(struct ipfw_flow_id *pkt, int *pindex, struct ip_fw *rule)
615{
616	ipfw_dyn_rule *q;
617	int i, is_v6;
618
619	is_v6 = IS_IP6_FLOW_ID(pkt);
620	i = hash_packet( pkt, V_curr_dyn_buckets );
621	*pindex = i;
622	IPFW_BUCK_LOCK(i);
623	for (q = V_ipfw_dyn_v[i].head ; q != NULL ; q=q->next)
624		if (q->dyn_type == O_LIMIT_PARENT &&
625		    rule== q->rule &&
626		    pkt->proto == q->id.proto &&
627		    pkt->src_port == q->id.src_port &&
628		    pkt->dst_port == q->id.dst_port &&
629		    (
630			(is_v6 &&
631			 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
632				&(q->id.src_ip6)) &&
633			 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
634				&(q->id.dst_ip6))) ||
635			(!is_v6 &&
636			 pkt->src_ip == q->id.src_ip &&
637			 pkt->dst_ip == q->id.dst_ip)
638		    )
639		) {
640			q->expire = time_uptime + V_dyn_short_lifetime;
641			DEB(print_dyn_rule(pkt, q->dyn_type,
642			    "lookup_dyn_parent found", "");)
643			return q;
644		}
645
646	/* Add virtual limiting rule */
647	return add_dyn_rule(pkt, i, O_LIMIT_PARENT, rule);
648}
649
650/**
651 * Install dynamic state for rule type cmd->o.opcode
652 *
653 * Returns 1 (failure) if state is not installed because of errors or because
654 * session limitations are enforced.
655 */
656int
657ipfw_install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
658    struct ip_fw_args *args, uint32_t tablearg)
659{
660	ipfw_dyn_rule *q;
661	int i;
662
663	DEB(print_dyn_rule(&args->f_id, cmd->o.opcode, "install_state", "");)
664
665	i = hash_packet(&args->f_id, V_curr_dyn_buckets);
666
667	IPFW_BUCK_LOCK(i);
668
669	q = lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
670
671	if (q != NULL) {	/* should never occur */
672		DEB(
673		if (last_log != time_uptime) {
674			last_log = time_uptime;
675			printf("ipfw: %s: entry already present, done\n",
676			    __func__);
677		})
678		IPFW_BUCK_UNLOCK(i);
679		return (0);
680	}
681
682	/*
683	 * State limiting is done via uma(9) zone limiting.
684	 * Save pointer to newly-installed rule and reject
685	 * packet if add_dyn_rule() returned NULL.
686	 * Note q is currently set to NULL.
687	 */
688
689	switch (cmd->o.opcode) {
690	case O_KEEP_STATE:	/* bidir rule */
691		q = add_dyn_rule(&args->f_id, i, O_KEEP_STATE, rule);
692		break;
693
694	case O_LIMIT: {		/* limit number of sessions */
695		struct ipfw_flow_id id;
696		ipfw_dyn_rule *parent;
697		uint32_t conn_limit;
698		uint16_t limit_mask = cmd->limit_mask;
699		int pindex;
700
701		conn_limit = IP_FW_ARG_TABLEARG(cmd->conn_limit);
702
703		DEB(
704		if (cmd->conn_limit == IP_FW_TABLEARG)
705			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
706			    "(tablearg)\n", __func__, conn_limit);
707		else
708			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
709			    __func__, conn_limit);
710		)
711
712		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
713		id.proto = args->f_id.proto;
714		id.addr_type = args->f_id.addr_type;
715		id.fib = M_GETFIB(args->m);
716
717		if (IS_IP6_FLOW_ID (&(args->f_id))) {
718			if (limit_mask & DYN_SRC_ADDR)
719				id.src_ip6 = args->f_id.src_ip6;
720			if (limit_mask & DYN_DST_ADDR)
721				id.dst_ip6 = args->f_id.dst_ip6;
722		} else {
723			if (limit_mask & DYN_SRC_ADDR)
724				id.src_ip = args->f_id.src_ip;
725			if (limit_mask & DYN_DST_ADDR)
726				id.dst_ip = args->f_id.dst_ip;
727		}
728		if (limit_mask & DYN_SRC_PORT)
729			id.src_port = args->f_id.src_port;
730		if (limit_mask & DYN_DST_PORT)
731			id.dst_port = args->f_id.dst_port;
732
733		/*
734		 * We have to release lock for previous bucket to
735		 * avoid possible deadlock
736		 */
737		IPFW_BUCK_UNLOCK(i);
738
739		if ((parent = lookup_dyn_parent(&id, &pindex, rule)) == NULL) {
740			printf("ipfw: %s: add parent failed\n", __func__);
741			IPFW_BUCK_UNLOCK(pindex);
742			return (1);
743		}
744
745		if (parent->count >= conn_limit) {
746			if (V_fw_verbose && last_log != time_uptime) {
747				last_log = time_uptime;
748				char sbuf[24];
749				last_log = time_uptime;
750				snprintf(sbuf, sizeof(sbuf),
751				    "%d drop session",
752				    parent->rule->rulenum);
753				print_dyn_rule_flags(&args->f_id,
754				    cmd->o.opcode,
755				    LOG_SECURITY | LOG_DEBUG,
756				    sbuf, "too many entries");
757			}
758			IPFW_BUCK_UNLOCK(pindex);
759			return (1);
760		}
761		/* Increment counter on parent */
762		parent->count++;
763		IPFW_BUCK_UNLOCK(pindex);
764
765		IPFW_BUCK_LOCK(i);
766		q = add_dyn_rule(&args->f_id, i, O_LIMIT, (struct ip_fw *)parent);
767		if (q == NULL) {
768			/* Decrement index and notify caller */
769			IPFW_BUCK_UNLOCK(i);
770			IPFW_BUCK_LOCK(pindex);
771			parent->count--;
772			IPFW_BUCK_UNLOCK(pindex);
773			return (1);
774		}
775		break;
776	}
777	default:
778		printf("ipfw: %s: unknown dynamic rule type %u\n",
779		    __func__, cmd->o.opcode);
780	}
781
782	if (q == NULL) {
783		IPFW_BUCK_UNLOCK(i);
784		return (1);	/* Notify caller about failure */
785	}
786
787	/* XXX just set lifetime */
788	lookup_dyn_rule_locked(&args->f_id, i, NULL, NULL);
789
790	IPFW_BUCK_UNLOCK(i);
791	return (0);
792}
793
794/*
795 * Generate a TCP packet, containing either a RST or a keepalive.
796 * When flags & TH_RST, we are sending a RST packet, because of a
797 * "reset" action matched the packet.
798 * Otherwise we are sending a keepalive, and flags & TH_
799 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
800 * so that MAC can label the reply appropriately.
801 */
802struct mbuf *
803ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
804    u_int32_t ack, int flags)
805{
806	struct mbuf *m = NULL;		/* stupid compiler */
807	int len, dir;
808	struct ip *h = NULL;		/* stupid compiler */
809#ifdef INET6
810	struct ip6_hdr *h6 = NULL;
811#endif
812	struct tcphdr *th = NULL;
813
814	MGETHDR(m, M_NOWAIT, MT_DATA);
815	if (m == NULL)
816		return (NULL);
817
818	M_SETFIB(m, id->fib);
819#ifdef MAC
820	if (replyto != NULL)
821		mac_netinet_firewall_reply(replyto, m);
822	else
823		mac_netinet_firewall_send(m);
824#else
825	(void)replyto;		/* don't warn about unused arg */
826#endif
827
828	switch (id->addr_type) {
829	case 4:
830		len = sizeof(struct ip) + sizeof(struct tcphdr);
831		break;
832#ifdef INET6
833	case 6:
834		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
835		break;
836#endif
837	default:
838		/* XXX: log me?!? */
839		FREE_PKT(m);
840		return (NULL);
841	}
842	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
843
844	m->m_data += max_linkhdr;
845	m->m_flags |= M_SKIP_FIREWALL;
846	m->m_pkthdr.len = m->m_len = len;
847	m->m_pkthdr.rcvif = NULL;
848	bzero(m->m_data, len);
849
850	switch (id->addr_type) {
851	case 4:
852		h = mtod(m, struct ip *);
853
854		/* prepare for checksum */
855		h->ip_p = IPPROTO_TCP;
856		h->ip_len = htons(sizeof(struct tcphdr));
857		if (dir) {
858			h->ip_src.s_addr = htonl(id->src_ip);
859			h->ip_dst.s_addr = htonl(id->dst_ip);
860		} else {
861			h->ip_src.s_addr = htonl(id->dst_ip);
862			h->ip_dst.s_addr = htonl(id->src_ip);
863		}
864
865		th = (struct tcphdr *)(h + 1);
866		break;
867#ifdef INET6
868	case 6:
869		h6 = mtod(m, struct ip6_hdr *);
870
871		/* prepare for checksum */
872		h6->ip6_nxt = IPPROTO_TCP;
873		h6->ip6_plen = htons(sizeof(struct tcphdr));
874		if (dir) {
875			h6->ip6_src = id->src_ip6;
876			h6->ip6_dst = id->dst_ip6;
877		} else {
878			h6->ip6_src = id->dst_ip6;
879			h6->ip6_dst = id->src_ip6;
880		}
881
882		th = (struct tcphdr *)(h6 + 1);
883		break;
884#endif
885	}
886
887	if (dir) {
888		th->th_sport = htons(id->src_port);
889		th->th_dport = htons(id->dst_port);
890	} else {
891		th->th_sport = htons(id->dst_port);
892		th->th_dport = htons(id->src_port);
893	}
894	th->th_off = sizeof(struct tcphdr) >> 2;
895
896	if (flags & TH_RST) {
897		if (flags & TH_ACK) {
898			th->th_seq = htonl(ack);
899			th->th_flags = TH_RST;
900		} else {
901			if (flags & TH_SYN)
902				seq++;
903			th->th_ack = htonl(seq);
904			th->th_flags = TH_RST | TH_ACK;
905		}
906	} else {
907		/*
908		 * Keepalive - use caller provided sequence numbers
909		 */
910		th->th_seq = htonl(seq);
911		th->th_ack = htonl(ack);
912		th->th_flags = TH_ACK;
913	}
914
915	switch (id->addr_type) {
916	case 4:
917		th->th_sum = in_cksum(m, len);
918
919		/* finish the ip header */
920		h->ip_v = 4;
921		h->ip_hl = sizeof(*h) >> 2;
922		h->ip_tos = IPTOS_LOWDELAY;
923		h->ip_off = htons(0);
924		h->ip_len = htons(len);
925		h->ip_ttl = V_ip_defttl;
926		h->ip_sum = 0;
927		break;
928#ifdef INET6
929	case 6:
930		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
931		    sizeof(struct tcphdr));
932
933		/* finish the ip6 header */
934		h6->ip6_vfc |= IPV6_VERSION;
935		h6->ip6_hlim = IPV6_DEFHLIM;
936		break;
937#endif
938	}
939
940	return (m);
941}
942
943/*
944 * Queue keepalive packets for given dynamic rule
945 */
946static struct mbuf **
947ipfw_dyn_send_ka(struct mbuf **mtailp, ipfw_dyn_rule *q)
948{
949	struct mbuf *m_rev, *m_fwd;
950
951	m_rev = (q->state & ACK_REV) ? NULL :
952	    ipfw_send_pkt(NULL, &(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
953	m_fwd = (q->state & ACK_FWD) ? NULL :
954	    ipfw_send_pkt(NULL, &(q->id), q->ack_fwd - 1, q->ack_rev, 0);
955
956	if (m_rev != NULL) {
957		*mtailp = m_rev;
958		mtailp = &(*mtailp)->m_nextpkt;
959	}
960	if (m_fwd != NULL) {
961		*mtailp = m_fwd;
962		mtailp = &(*mtailp)->m_nextpkt;
963	}
964
965	return (mtailp);
966}
967
968/*
969 * This procedure is used to perform various maintance
970 * on dynamic hash list. Currently it is called every second.
971 */
972static void
973ipfw_dyn_tick(void * vnetx)
974{
975	struct ip_fw_chain *chain;
976	int check_ka = 0;
977#ifdef VIMAGE
978	struct vnet *vp = vnetx;
979#endif
980
981	CURVNET_SET(vp);
982
983	chain = &V_layer3_chain;
984
985	/* Run keepalive checks every keepalive_period iff ka is enabled */
986	if ((V_dyn_keepalive_last + V_dyn_keepalive_period <= time_uptime) &&
987	    (V_dyn_keepalive != 0)) {
988		V_dyn_keepalive_last = time_uptime;
989		check_ka = 1;
990	}
991
992	check_dyn_rules(chain, NULL, RESVD_SET, check_ka, 1);
993
994	callout_reset_on(&V_ipfw_timeout, hz, ipfw_dyn_tick, vnetx, 0);
995
996	CURVNET_RESTORE();
997}
998
999
1000/*
1001 * Walk thru all dynamic states doing generic maintance:
1002 * 1) free expired states
1003 * 2) free all states based on deleted rule / set
1004 * 3) send keepalives for states if needed
1005 *
1006 * @chain - pointer to current ipfw rules chain
1007 * @rule - delete all states originated by given rule if != NULL
1008 * @set - delete all states originated by any rule in set @set if != RESVD_SET
1009 * @check_ka - perform checking/sending keepalives
1010 * @timer - indicate call from timer routine.
1011 *
1012 * Timer routine must call this function unlocked to permit
1013 * sending keepalives/resizing table.
1014 *
1015 * Others has to call function with IPFW_UH_WLOCK held.
1016 * Additionally, function assume that dynamic rule/set is
1017 * ALREADY deleted so no new states can be generated by
1018 * 'deleted' rules.
1019 *
1020 * Write lock is needed to ensure that unused parent rules
1021 * are not freed by other instance (see stage 2, 3)
1022 */
1023static void
1024check_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule,
1025    int set, int check_ka, int timer)
1026{
1027	struct mbuf *m0, *m, *mnext, **mtailp;
1028	struct ip *h;
1029	int i, dyn_count, new_buckets = 0, max_buckets;
1030	int expired = 0, expired_limits = 0, parents = 0, total = 0;
1031	ipfw_dyn_rule *q, *q_prev, *q_next;
1032	ipfw_dyn_rule *exp_head, **exptailp;
1033	ipfw_dyn_rule *exp_lhead, **expltailp;
1034
1035	KASSERT(V_ipfw_dyn_v != NULL, ("%s: dynamic table not allocated",
1036	    __func__));
1037
1038	/* Avoid possible LOR */
1039	KASSERT(!check_ka || timer, ("%s: keepalive check with lock held",
1040	    __func__));
1041
1042	/*
1043	 * Do not perform any checks if we currently have no dynamic states
1044	 */
1045	if (DYN_COUNT == 0)
1046		return;
1047
1048	/* Expired states */
1049	exp_head = NULL;
1050	exptailp = &exp_head;
1051
1052	/* Expired limit states */
1053	exp_lhead = NULL;
1054	expltailp = &exp_lhead;
1055
1056	/*
1057	 * We make a chain of packets to go out here -- not deferring
1058	 * until after we drop the IPFW dynamic rule lock would result
1059	 * in a lock order reversal with the normal packet input -> ipfw
1060	 * call stack.
1061	 */
1062	m0 = NULL;
1063	mtailp = &m0;
1064
1065	/* Protect from hash resizing */
1066	if (timer != 0)
1067		IPFW_UH_WLOCK(chain);
1068	else
1069		IPFW_UH_WLOCK_ASSERT(chain);
1070
1071#define	NEXT_RULE()	{ q_prev = q; q = q->next ; continue; }
1072
1073	/* Stage 1: perform requested deletion */
1074	for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1075		IPFW_BUCK_LOCK(i);
1076		for (q = V_ipfw_dyn_v[i].head, q_prev = q; q ; ) {
1077			/* account every rule */
1078			total++;
1079
1080			/* Skip parent rules at all */
1081			if (q->dyn_type == O_LIMIT_PARENT) {
1082				parents++;
1083				NEXT_RULE();
1084			}
1085
1086			/*
1087			 * Remove rules which are:
1088			 * 1) expired
1089			 * 2) created by given rule
1090			 * 3) created by any rule in given set
1091			 */
1092			if ((TIME_LEQ(q->expire, time_uptime)) ||
1093			    ((rule != NULL) && (q->rule == rule)) ||
1094			    ((set != RESVD_SET) && (q->rule->set == set))) {
1095				/* Unlink q from current list */
1096				q_next = q->next;
1097				if (q == V_ipfw_dyn_v[i].head)
1098					V_ipfw_dyn_v[i].head = q_next;
1099				else
1100					q_prev->next = q_next;
1101
1102				q->next = NULL;
1103
1104				/* queue q to expire list */
1105				if (q->dyn_type != O_LIMIT) {
1106					*exptailp = q;
1107					exptailp = &(*exptailp)->next;
1108					DEB(print_dyn_rule(&q->id, q->dyn_type,
1109					    "unlink entry", "left");
1110					)
1111				} else {
1112					/* Separate list for limit rules */
1113					*expltailp = q;
1114					expltailp = &(*expltailp)->next;
1115					expired_limits++;
1116					DEB(print_dyn_rule(&q->id, q->dyn_type,
1117					    "unlink limit entry", "left");
1118					)
1119				}
1120
1121				q = q_next;
1122				expired++;
1123				continue;
1124			}
1125
1126			/*
1127			 * Check if we need to send keepalive:
1128			 * we need to ensure if is time to do KA,
1129			 * this is established TCP session, and
1130			 * expire time is within keepalive interval
1131			 */
1132			if ((check_ka != 0) && (q->id.proto == IPPROTO_TCP) &&
1133			    ((q->state & BOTH_SYN) == BOTH_SYN) &&
1134			    (TIME_LEQ(q->expire, time_uptime +
1135			      V_dyn_keepalive_interval)))
1136				mtailp = ipfw_dyn_send_ka(mtailp, q);
1137
1138			NEXT_RULE();
1139		}
1140		IPFW_BUCK_UNLOCK(i);
1141	}
1142
1143	/* Stage 2: decrement counters from O_LIMIT parents */
1144	if (expired_limits != 0) {
1145		/*
1146		 * XXX: Note that deleting set with more than one
1147		 * heavily-used LIMIT rules can result in overwhelming
1148		 * locking due to lack of per-hash value sorting
1149		 *
1150		 * We should probably think about:
1151		 * 1) pre-allocating hash of size, say,
1152		 * MAX(16, V_curr_dyn_buckets / 1024)
1153		 * 2) checking if expired_limits is large enough
1154		 * 3) If yes, init hash (or its part), re-link
1155		 * current list and start decrementing procedure in
1156		 * each bucket separately
1157		 */
1158
1159		/*
1160		 * Small optimization: do not unlock bucket until
1161		 * we see the next item resides in different bucket
1162		 */
1163		if (exp_lhead != NULL) {
1164			i = exp_lhead->parent->bucket;
1165			IPFW_BUCK_LOCK(i);
1166		}
1167		for (q = exp_lhead; q != NULL; q = q->next) {
1168			if (i != q->parent->bucket) {
1169				IPFW_BUCK_UNLOCK(i);
1170				i = q->parent->bucket;
1171				IPFW_BUCK_LOCK(i);
1172			}
1173
1174			/* Decrease parent refcount */
1175			q->parent->count--;
1176		}
1177		if (exp_lhead != NULL)
1178			IPFW_BUCK_UNLOCK(i);
1179	}
1180
1181	/*
1182	 * We protectet ourselves from unused parent deletion
1183	 * (from the timer function) by holding UH write lock.
1184	 */
1185
1186	/* Stage 3: remove unused parent rules */
1187	if ((parents != 0) && (expired != 0)) {
1188		for (i = 0 ; i < V_curr_dyn_buckets ; i++) {
1189			IPFW_BUCK_LOCK(i);
1190			for (q = V_ipfw_dyn_v[i].head, q_prev = q ; q ; ) {
1191				if (q->dyn_type != O_LIMIT_PARENT)
1192					NEXT_RULE();
1193
1194				if (q->count != 0)
1195					NEXT_RULE();
1196
1197				/* Parent rule without consumers */
1198
1199				/* Unlink q from current list */
1200				q_next = q->next;
1201				if (q == V_ipfw_dyn_v[i].head)
1202					V_ipfw_dyn_v[i].head = q_next;
1203				else
1204					q_prev->next = q_next;
1205
1206				q->next = NULL;
1207
1208				/* Add to expired list */
1209				*exptailp = q;
1210				exptailp = &(*exptailp)->next;
1211
1212				DEB(print_dyn_rule(&q->id, q->dyn_type,
1213				    "unlink parent entry", "left");
1214				)
1215
1216				expired++;
1217
1218				q = q_next;
1219			}
1220			IPFW_BUCK_UNLOCK(i);
1221		}
1222	}
1223
1224#undef NEXT_RULE
1225
1226	if (timer != 0) {
1227		/*
1228		 * Check if we need to resize hash:
1229		 * if current number of states exceeds number of buckes in hash,
1230		 * grow hash size to the minimum power of 2 which is bigger than
1231		 * current states count. Limit hash size by 64k.
1232		 */
1233		max_buckets = (V_dyn_buckets_max > 65536) ?
1234		    65536 : V_dyn_buckets_max;
1235
1236		dyn_count = DYN_COUNT;
1237
1238		if ((dyn_count > V_curr_dyn_buckets * 2) &&
1239		    (dyn_count < max_buckets)) {
1240			new_buckets = V_curr_dyn_buckets;
1241			while (new_buckets < dyn_count) {
1242				new_buckets *= 2;
1243
1244				if (new_buckets >= max_buckets)
1245					break;
1246			}
1247		}
1248
1249		IPFW_UH_WUNLOCK(chain);
1250	}
1251
1252	/* Finally delete old states ad limits if any */
1253	for (q = exp_head; q != NULL; q = q_next) {
1254		q_next = q->next;
1255		uma_zfree(V_ipfw_dyn_rule_zone, q);
1256	}
1257
1258	for (q = exp_lhead; q != NULL; q = q_next) {
1259		q_next = q->next;
1260		uma_zfree(V_ipfw_dyn_rule_zone, q);
1261	}
1262
1263	/*
1264	 * The rest code MUST be called from timer routine only
1265	 * without holding any locks
1266	 */
1267	if (timer == 0)
1268		return;
1269
1270	/* Send keepalive packets if any */
1271	for (m = m0; m != NULL; m = mnext) {
1272		mnext = m->m_nextpkt;
1273		m->m_nextpkt = NULL;
1274		h = mtod(m, struct ip *);
1275		if (h->ip_v == 4)
1276			ip_output(m, NULL, NULL, 0, NULL, NULL);
1277#ifdef INET6
1278		else
1279			ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1280#endif
1281	}
1282
1283	/* Run table resize without holding any locks */
1284	if (new_buckets != 0)
1285		resize_dynamic_table(chain, new_buckets);
1286}
1287
1288/*
1289 * Deletes all dynamic rules originated by given rule or all rules in
1290 * given set. Specify RESVD_SET to indicate set should not be used.
1291 * @chain - pointer to current ipfw rules chain
1292 * @rule - delete all states originated by given rule if != NULL
1293 * @set - delete all states originated by any rule in set @set if != RESVD_SET
1294 *
1295 * Function has to be called with IPFW_UH_WLOCK held.
1296 * Additionally, function assume that dynamic rule/set is
1297 * ALREADY deleted so no new states can be generated by
1298 * 'deleted' rules.
1299 */
1300void
1301ipfw_expire_dyn_rules(struct ip_fw_chain *chain, struct ip_fw *rule, int set)
1302{
1303
1304	check_dyn_rules(chain, rule, set, 0, 0);
1305}
1306
1307void
1308ipfw_dyn_init(struct ip_fw_chain *chain)
1309{
1310
1311        V_ipfw_dyn_v = NULL;
1312        V_dyn_buckets_max = 256; /* must be power of 2 */
1313        V_curr_dyn_buckets = 256; /* must be power of 2 */
1314
1315        V_dyn_ack_lifetime = 300;
1316        V_dyn_syn_lifetime = 20;
1317        V_dyn_fin_lifetime = 1;
1318        V_dyn_rst_lifetime = 1;
1319        V_dyn_udp_lifetime = 10;
1320        V_dyn_short_lifetime = 5;
1321
1322        V_dyn_keepalive_interval = 20;
1323        V_dyn_keepalive_period = 5;
1324        V_dyn_keepalive = 1;    /* do send keepalives */
1325	V_dyn_keepalive_last = time_uptime;
1326
1327        V_dyn_max = 4096;       /* max # of dynamic rules */
1328
1329	V_ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
1330	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
1331	    UMA_ALIGN_PTR, 0);
1332
1333	/* Enforce limit on dynamic rules */
1334	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1335
1336        callout_init(&V_ipfw_timeout, CALLOUT_MPSAFE);
1337
1338	/*
1339	 * This can potentially be done on first dynamic rule
1340	 * being added to chain.
1341	 */
1342	resize_dynamic_table(chain, V_curr_dyn_buckets);
1343}
1344
1345void
1346ipfw_dyn_uninit(int pass)
1347{
1348	int i;
1349
1350	if (pass == 0) {
1351		callout_drain(&V_ipfw_timeout);
1352		return;
1353	}
1354
1355	if (V_ipfw_dyn_v != NULL) {
1356		/*
1357		 * Skip deleting all dynamic states -
1358		 * uma_zdestroy() does this more efficiently;
1359		 */
1360
1361		/* Destroy all mutexes */
1362		for (i = 0 ; i < V_curr_dyn_buckets ; i++)
1363			IPFW_BUCK_LOCK_DESTROY(&V_ipfw_dyn_v[i]);
1364		free(V_ipfw_dyn_v, M_IPFW);
1365		V_ipfw_dyn_v = NULL;
1366	}
1367
1368        uma_zdestroy(V_ipfw_dyn_rule_zone);
1369}
1370
1371#ifdef SYSCTL_NODE
1372/*
1373 * Get/set maximum number of dynamic states in given VNET instance.
1374 */
1375static int
1376sysctl_ipfw_dyn_max(SYSCTL_HANDLER_ARGS)
1377{
1378	int error;
1379	unsigned int nstates;
1380
1381	nstates = V_dyn_max;
1382
1383	error = sysctl_handle_int(oidp, &nstates, 0, req);
1384	/* Read operation or some error */
1385	if ((error != 0) || (req->newptr == NULL))
1386		return (error);
1387
1388	V_dyn_max = nstates;
1389	uma_zone_set_max(V_ipfw_dyn_rule_zone, V_dyn_max);
1390
1391	return (0);
1392}
1393
1394/*
1395 * Get current number of dynamic states in given VNET instance.
1396 */
1397static int
1398sysctl_ipfw_dyn_count(SYSCTL_HANDLER_ARGS)
1399{
1400	int error;
1401	unsigned int nstates;
1402
1403	nstates = DYN_COUNT;
1404
1405	error = sysctl_handle_int(oidp, &nstates, 0, req);
1406
1407	return (error);
1408}
1409#endif
1410
1411/*
1412 * Returns number of dynamic rules.
1413 */
1414int
1415ipfw_dyn_len(void)
1416{
1417
1418	return (V_ipfw_dyn_v == NULL) ? 0 :
1419		(DYN_COUNT * sizeof(ipfw_dyn_rule));
1420}
1421
1422/*
1423 * Fill given buffer with dynamic states.
1424 * IPFW_UH_RLOCK has to be held while calling.
1425 */
1426void
1427ipfw_get_dynamic(struct ip_fw_chain *chain, char **pbp, const char *ep)
1428{
1429	ipfw_dyn_rule *p, *last = NULL;
1430	char *bp;
1431	int i;
1432
1433	if (V_ipfw_dyn_v == NULL)
1434		return;
1435	bp = *pbp;
1436
1437	IPFW_UH_RLOCK_ASSERT(chain);
1438
1439	for (i = 0 ; i < V_curr_dyn_buckets; i++) {
1440		IPFW_BUCK_LOCK(i);
1441		for (p = V_ipfw_dyn_v[i].head ; p != NULL; p = p->next) {
1442			if (bp + sizeof *p <= ep) {
1443				ipfw_dyn_rule *dst =
1444					(ipfw_dyn_rule *)bp;
1445				bcopy(p, dst, sizeof *p);
1446				bcopy(&(p->rule->rulenum), &(dst->rule),
1447				    sizeof(p->rule->rulenum));
1448				/*
1449				 * store set number into high word of
1450				 * dst->rule pointer.
1451				 */
1452				bcopy(&(p->rule->set),
1453				    (char *)&dst->rule +
1454				    sizeof(p->rule->rulenum),
1455				    sizeof(p->rule->set));
1456				/*
1457				 * store a non-null value in "next".
1458				 * The userland code will interpret a
1459				 * NULL here as a marker
1460				 * for the last dynamic rule.
1461				 */
1462				bcopy(&dst, &dst->next, sizeof(dst));
1463				last = dst;
1464				dst->expire =
1465				    TIME_LEQ(dst->expire, time_uptime) ?
1466					0 : dst->expire - time_uptime ;
1467				bp += sizeof(ipfw_dyn_rule);
1468			}
1469		}
1470		IPFW_BUCK_UNLOCK(i);
1471	}
1472
1473	if (last != NULL) /* mark last dynamic rule */
1474		bzero(&last->next, sizeof(last));
1475	*pbp = bp;
1476}
1477/* end of file */
1478