ip_dn_io.c revision 325731
1/*-
2 * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
3 * All rights reserved
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Dummynet portions related to packet handling.
29 */
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/netpfil/ipfw/ip_dn_io.c 325731 2017-11-12 01:28:20Z truckman $");
32
33#include "opt_inet6.h"
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/module.h>
42#include <sys/priv.h>
43#include <sys/proc.h>
44#include <sys/rwlock.h>
45#include <sys/socket.h>
46#include <sys/time.h>
47#include <sys/sysctl.h>
48
49#include <net/if.h>	/* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
50#include <net/netisr.h>
51#include <net/vnet.h>
52
53#include <netinet/in.h>
54#include <netinet/ip.h>		/* ip_len, ip_off */
55#include <netinet/ip_var.h>	/* ip_output(), IP_FORWARDING */
56#include <netinet/ip_fw.h>
57#include <netinet/ip_dummynet.h>
58#include <netinet/if_ether.h> /* various ether_* routines */
59#include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
60#include <netinet6/ip6_var.h>
61
62#include <netpfil/ipfw/ip_fw_private.h>
63#include <netpfil/ipfw/dn_heap.h>
64#include <netpfil/ipfw/ip_dn_private.h>
65#ifdef NEW_AQM
66#include <netpfil/ipfw/dn_aqm.h>
67#endif
68#include <netpfil/ipfw/dn_sched.h>
69
70/*
71 * We keep a private variable for the simulation time, but we could
72 * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
73 * instead of dn_cfg.curr_time
74 */
75
76struct dn_parms dn_cfg;
77//VNET_DEFINE(struct dn_parms, _base_dn_cfg);
78
79static long tick_last;		/* Last tick duration (usec). */
80static long tick_delta;		/* Last vs standard tick diff (usec). */
81static long tick_delta_sum;	/* Accumulated tick difference (usec).*/
82static long tick_adjustment;	/* Tick adjustments done. */
83static long tick_lost;		/* Lost(coalesced) ticks number. */
84/* Adjusted vs non-adjusted curr_time difference (ticks). */
85static long tick_diff;
86
87static unsigned long	io_pkt;
88static unsigned long	io_pkt_fast;
89
90#ifdef NEW_AQM
91unsigned long	io_pkt_drop;
92#else
93static unsigned long	io_pkt_drop;
94#endif
95/*
96 * We use a heap to store entities for which we have pending timer events.
97 * The heap is checked at every tick and all entities with expired events
98 * are extracted.
99 */
100
101MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
102
103extern	void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
104
105#ifdef SYSCTL_NODE
106
107/*
108 * Because of the way the SYSBEGIN/SYSEND macros work on other
109 * platforms, there should not be functions between them.
110 * So keep the handlers outside the block.
111 */
112static int
113sysctl_hash_size(SYSCTL_HANDLER_ARGS)
114{
115	int error, value;
116
117	value = dn_cfg.hash_size;
118	error = sysctl_handle_int(oidp, &value, 0, req);
119	if (error != 0 || req->newptr == NULL)
120		return (error);
121	if (value < 16 || value > 65536)
122		return (EINVAL);
123	dn_cfg.hash_size = value;
124	return (0);
125}
126
127static int
128sysctl_limits(SYSCTL_HANDLER_ARGS)
129{
130	int error;
131	long value;
132
133	if (arg2 != 0)
134		value = dn_cfg.slot_limit;
135	else
136		value = dn_cfg.byte_limit;
137	error = sysctl_handle_long(oidp, &value, 0, req);
138
139	if (error != 0 || req->newptr == NULL)
140		return (error);
141	if (arg2 != 0) {
142		if (value < 1)
143			return (EINVAL);
144		dn_cfg.slot_limit = value;
145	} else {
146		if (value < 1500)
147			return (EINVAL);
148		dn_cfg.byte_limit = value;
149	}
150	return (0);
151}
152
153SYSBEGIN(f4)
154
155SYSCTL_DECL(_net_inet);
156SYSCTL_DECL(_net_inet_ip);
157#ifdef NEW_AQM
158SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
159#else
160static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
161#endif
162
163/* wrapper to pass dn_cfg fields to SYSCTL_* */
164//#define DC(x)	(&(VNET_NAME(_base_dn_cfg).x))
165#define DC(x)	(&(dn_cfg.x))
166/* parameters */
167
168
169SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
170    CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_hash_size,
171    "I", "Default hash table size");
172
173
174SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
175    CTLTYPE_LONG | CTLFLAG_RW, 0, 1, sysctl_limits,
176    "L", "Upper limit in slots for pipe queue.");
177SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
178    CTLTYPE_LONG | CTLFLAG_RW, 0, 0, sysctl_limits,
179    "L", "Upper limit in bytes for pipe queue.");
180SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
181    CTLFLAG_RW, DC(io_fast), 0, "Enable fast dummynet io.");
182SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
183    CTLFLAG_RW, DC(debug), 0, "Dummynet debug level");
184
185/* RED parameters */
186SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
187    CTLFLAG_RD, DC(red_lookup_depth), 0, "Depth of RED lookup table");
188SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
189    CTLFLAG_RD, DC(red_avg_pkt_size), 0, "RED Medium packet size");
190SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
191    CTLFLAG_RD, DC(red_max_pkt_size), 0, "RED Max packet size");
192
193/* time adjustment */
194SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
195    CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
196SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
197    CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
198SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
199    CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
200SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
201    CTLFLAG_RD, &tick_diff, 0,
202    "Adjusted vs non-adjusted curr_time difference (ticks).");
203SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
204    CTLFLAG_RD, &tick_lost, 0,
205    "Number of ticks coalesced by dummynet taskqueue.");
206
207/* Drain parameters */
208SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
209    CTLFLAG_RW, DC(expire), 0, "Expire empty queues/pipes");
210SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
211    CTLFLAG_RD, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
212
213/* statistics */
214SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
215    CTLFLAG_RD, DC(schk_count), 0, "Number of schedulers");
216SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
217    CTLFLAG_RD, DC(si_count), 0, "Number of scheduler instances");
218SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
219    CTLFLAG_RD, DC(fsk_count), 0, "Number of flowsets");
220SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
221    CTLFLAG_RD, DC(queue_count), 0, "Number of queues");
222SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
223    CTLFLAG_RD, &io_pkt, 0,
224    "Number of packets passed to dummynet.");
225SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
226    CTLFLAG_RD, &io_pkt_fast, 0,
227    "Number of packets bypassed dummynet scheduler.");
228SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
229    CTLFLAG_RD, &io_pkt_drop, 0,
230    "Number of packets dropped by dummynet.");
231#undef DC
232SYSEND
233
234#endif
235
236static void	dummynet_send(struct mbuf *);
237
238/*
239 * Return the mbuf tag holding the dummynet state (it should
240 * be the first one on the list).
241 */
242struct dn_pkt_tag *
243dn_tag_get(struct mbuf *m)
244{
245	struct m_tag *mtag = m_tag_first(m);
246#ifdef NEW_AQM
247	/* XXX: to skip ts m_tag. For Debugging only*/
248	if (mtag != NULL && mtag->m_tag_id == DN_AQM_MTAG_TS) {
249		m_tag_delete(m,mtag);
250		mtag = m_tag_first(m);
251		D("skip TS tag");
252	}
253#endif
254	KASSERT(mtag != NULL &&
255	    mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
256	    mtag->m_tag_id == PACKET_TAG_DUMMYNET,
257	    ("packet on dummynet queue w/o dummynet tag!"));
258	return (struct dn_pkt_tag *)(mtag+1);
259}
260
261#ifndef NEW_AQM
262static inline void
263mq_append(struct mq *q, struct mbuf *m)
264{
265	if (q->head == NULL)
266		q->head = m;
267	else
268		q->tail->m_nextpkt = m;
269	q->tail = m;
270	m->m_nextpkt = NULL;
271}
272#endif
273
274/*
275 * Dispose a list of packet. Use a functions so if we need to do
276 * more work, this is a central point to do it.
277 */
278void dn_free_pkts(struct mbuf *mnext)
279{
280        struct mbuf *m;
281
282        while ((m = mnext) != NULL) {
283                mnext = m->m_nextpkt;
284                FREE_PKT(m);
285        }
286}
287
288static int
289red_drops (struct dn_queue *q, int len)
290{
291	/*
292	 * RED algorithm
293	 *
294	 * RED calculates the average queue size (avg) using a low-pass filter
295	 * with an exponential weighted (w_q) moving average:
296	 * 	avg  <-  (1-w_q) * avg + w_q * q_size
297	 * where q_size is the queue length (measured in bytes or * packets).
298	 *
299	 * If q_size == 0, we compute the idle time for the link, and set
300	 *	avg = (1 - w_q)^(idle/s)
301	 * where s is the time needed for transmitting a medium-sized packet.
302	 *
303	 * Now, if avg < min_th the packet is enqueued.
304	 * If avg > max_th the packet is dropped. Otherwise, the packet is
305	 * dropped with probability P function of avg.
306	 */
307
308	struct dn_fsk *fs = q->fs;
309	int64_t p_b = 0;
310
311	/* Queue in bytes or packets? */
312	uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
313	    q->ni.len_bytes : q->ni.length;
314
315	/* Average queue size estimation. */
316	if (q_size != 0) {
317		/* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
318		int diff = SCALE(q_size) - q->avg;
319		int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
320
321		q->avg += (int)v;
322	} else {
323		/*
324		 * Queue is empty, find for how long the queue has been
325		 * empty and use a lookup table for computing
326		 * (1 - * w_q)^(idle_time/s) where s is the time to send a
327		 * (small) packet.
328		 * XXX check wraps...
329		 */
330		if (q->avg) {
331			u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step);
332
333			q->avg = (t < fs->lookup_depth) ?
334			    SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
335		}
336	}
337
338	/* Should i drop? */
339	if (q->avg < fs->min_th) {
340		q->count = -1;
341		return (0);	/* accept packet */
342	}
343	if (q->avg >= fs->max_th) {	/* average queue >=  max threshold */
344		if (fs->fs.flags & DN_IS_ECN)
345			return (1);
346		if (fs->fs.flags & DN_IS_GENTLE_RED) {
347			/*
348			 * According to Gentle-RED, if avg is greater than
349			 * max_th the packet is dropped with a probability
350			 *	 p_b = c_3 * avg - c_4
351			 * where c_3 = (1 - max_p) / max_th
352			 *       c_4 = 1 - 2 * max_p
353			 */
354			p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
355			    fs->c_4;
356		} else {
357			q->count = -1;
358			return (1);
359		}
360	} else if (q->avg > fs->min_th) {
361		if (fs->fs.flags & DN_IS_ECN)
362			return (1);
363		/*
364		 * We compute p_b using the linear dropping function
365		 *	 p_b = c_1 * avg - c_2
366		 * where c_1 = max_p / (max_th - min_th)
367		 * 	 c_2 = max_p * min_th / (max_th - min_th)
368		 */
369		p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
370	}
371
372	if (fs->fs.flags & DN_QSIZE_BYTES)
373		p_b = div64((p_b * len) , fs->max_pkt_size);
374	if (++q->count == 0)
375		q->random = random() & 0xffff;
376	else {
377		/*
378		 * q->count counts packets arrived since last drop, so a greater
379		 * value of q->count means a greater packet drop probability.
380		 */
381		if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
382			q->count = 0;
383			/* After a drop we calculate a new random value. */
384			q->random = random() & 0xffff;
385			return (1);	/* drop */
386		}
387	}
388	/* End of RED algorithm. */
389
390	return (0);	/* accept */
391
392}
393
394/*
395 * ECN/ECT Processing (partially adopted from altq)
396 */
397#ifndef NEW_AQM
398static
399#endif
400int
401ecn_mark(struct mbuf* m)
402{
403	struct ip *ip;
404	ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off);
405
406	switch (ip->ip_v) {
407	case IPVERSION:
408	{
409		u_int8_t otos;
410		int sum;
411
412		if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_NOTECT)
413			return (0);	/* not-ECT */
414		if ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_CE)
415			return (1);	/* already marked */
416
417		/*
418		 * ecn-capable but not marked,
419		 * mark CE and update checksum
420		 */
421		otos = ip->ip_tos;
422		ip->ip_tos |= IPTOS_ECN_CE;
423		/*
424		 * update checksum (from RFC1624)
425		 *	   HC' = ~(~HC + ~m + m')
426		 */
427		sum = ~ntohs(ip->ip_sum) & 0xffff;
428		sum += (~otos & 0xffff) + ip->ip_tos;
429		sum = (sum >> 16) + (sum & 0xffff);
430		sum += (sum >> 16);  /* add carry */
431		ip->ip_sum = htons(~sum & 0xffff);
432		return (1);
433	}
434#ifdef INET6
435	case (IPV6_VERSION >> 4):
436	{
437		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
438		u_int32_t flowlabel;
439
440		flowlabel = ntohl(ip6->ip6_flow);
441		if ((flowlabel >> 28) != 6)
442			return (0);	/* version mismatch! */
443		if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
444		    (IPTOS_ECN_NOTECT << 20))
445			return (0);	/* not-ECT */
446		if ((flowlabel & (IPTOS_ECN_MASK << 20)) ==
447		    (IPTOS_ECN_CE << 20))
448			return (1);	/* already marked */
449		/*
450		 * ecn-capable but not marked, mark CE
451		 */
452		flowlabel |= (IPTOS_ECN_CE << 20);
453		ip6->ip6_flow = htonl(flowlabel);
454		return (1);
455	}
456#endif
457	}
458	return (0);
459}
460
461/*
462 * Enqueue a packet in q, subject to space and queue management policy
463 * (whose parameters are in q->fs).
464 * Update stats for the queue and the scheduler.
465 * Return 0 on success, 1 on drop. The packet is consumed anyways.
466 */
467int
468dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
469{
470	struct dn_fs *f;
471	struct dn_flow *ni;	/* stats for scheduler instance */
472	uint64_t len;
473
474	if (q->fs == NULL || q->_si == NULL) {
475		printf("%s fs %p si %p, dropping\n",
476			__FUNCTION__, q->fs, q->_si);
477		FREE_PKT(m);
478		return 1;
479	}
480	f = &(q->fs->fs);
481	ni = &q->_si->ni;
482	len = m->m_pkthdr.len;
483	/* Update statistics, then check reasons to drop pkt. */
484	q->ni.tot_bytes += len;
485	q->ni.tot_pkts++;
486	ni->tot_bytes += len;
487	ni->tot_pkts++;
488	if (drop)
489		goto drop;
490	if (f->plr && random() < f->plr)
491		goto drop;
492#ifdef NEW_AQM
493	/* Call AQM enqueue function */
494	if (q->fs->aqmfp)
495		return q->fs->aqmfp->enqueue(q ,m);
496#endif
497	if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len)) {
498		if (!(f->flags & DN_IS_ECN) || !ecn_mark(m))
499			goto drop;
500	}
501	if (f->flags & DN_QSIZE_BYTES) {
502		if (q->ni.len_bytes > f->qsize)
503			goto drop;
504	} else if (q->ni.length >= f->qsize) {
505		goto drop;
506	}
507	mq_append(&q->mq, m);
508	q->ni.length++;
509	q->ni.len_bytes += len;
510	ni->length++;
511	ni->len_bytes += len;
512	return (0);
513
514drop:
515	io_pkt_drop++;
516	q->ni.drops++;
517	ni->drops++;
518	FREE_PKT(m);
519	return (1);
520}
521
522/*
523 * Fetch packets from the delay line which are due now. If there are
524 * leftover packets, reinsert the delay line in the heap.
525 * Runs under scheduler lock.
526 */
527static void
528transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
529{
530	struct mbuf *m;
531	struct dn_pkt_tag *pkt = NULL;
532
533	dline->oid.subtype = 0; /* not in heap */
534	while ((m = dline->mq.head) != NULL) {
535		pkt = dn_tag_get(m);
536		if (!DN_KEY_LEQ(pkt->output_time, now))
537			break;
538		dline->mq.head = m->m_nextpkt;
539		mq_append(q, m);
540	}
541	if (m != NULL) {
542		dline->oid.subtype = 1; /* in heap */
543		heap_insert(&dn_cfg.evheap, pkt->output_time, dline);
544	}
545}
546
547/*
548 * Convert the additional MAC overheads/delays into an equivalent
549 * number of bits for the given data rate. The samples are
550 * in milliseconds so we need to divide by 1000.
551 */
552static uint64_t
553extra_bits(struct mbuf *m, struct dn_schk *s)
554{
555	int index;
556	uint64_t bits;
557	struct dn_profile *pf = s->profile;
558
559	if (!pf || pf->samples_no == 0)
560		return 0;
561	index  = random() % pf->samples_no;
562	bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
563	if (index >= pf->loss_level) {
564		struct dn_pkt_tag *dt = dn_tag_get(m);
565		if (dt)
566			dt->dn_dir = DIR_DROP;
567	}
568	return bits;
569}
570
571/*
572 * Send traffic from a scheduler instance due by 'now'.
573 * Return a pointer to the head of the queue.
574 */
575static struct mbuf *
576serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
577{
578	struct mq def_q;
579	struct dn_schk *s = si->sched;
580	struct mbuf *m = NULL;
581	int delay_line_idle = (si->dline.mq.head == NULL);
582	int done, bw;
583
584	if (q == NULL) {
585		q = &def_q;
586		q->head = NULL;
587	}
588
589	bw = s->link.bandwidth;
590	si->kflags &= ~DN_ACTIVE;
591
592	if (bw > 0)
593		si->credit += (now - si->sched_time) * bw;
594	else
595		si->credit = 0;
596	si->sched_time = now;
597	done = 0;
598	while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
599		uint64_t len_scaled;
600
601		done++;
602		len_scaled = (bw == 0) ? 0 : hz *
603			(m->m_pkthdr.len * 8 + extra_bits(m, s));
604		si->credit -= len_scaled;
605		/* Move packet in the delay line */
606		dn_tag_get(m)->output_time = dn_cfg.curr_time + s->link.delay ;
607		mq_append(&si->dline.mq, m);
608	}
609
610	/*
611	 * If credit >= 0 the instance is idle, mark time.
612	 * Otherwise put back in the heap, and adjust the output
613	 * time of the last inserted packet, m, which was too early.
614	 */
615	if (si->credit >= 0) {
616		si->idle_time = now;
617	} else {
618		uint64_t t;
619		KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
620		t = div64(bw - 1 - si->credit, bw);
621		if (m)
622			dn_tag_get(m)->output_time += t;
623		si->kflags |= DN_ACTIVE;
624		heap_insert(&dn_cfg.evheap, now + t, si);
625	}
626	if (delay_line_idle && done)
627		transmit_event(q, &si->dline, now);
628	return q->head;
629}
630
631/*
632 * The timer handler for dummynet. Time is computed in ticks, but
633 * but the code is tolerant to the actual rate at which this is called.
634 * Once complete, the function reschedules itself for the next tick.
635 */
636void
637dummynet_task(void *context, int pending)
638{
639	struct timeval t;
640	struct mq q = { NULL, NULL }; /* queue to accumulate results */
641
642	CURVNET_SET((struct vnet *)context);
643
644	DN_BH_WLOCK();
645
646	/* Update number of lost(coalesced) ticks. */
647	tick_lost += pending - 1;
648
649	getmicrouptime(&t);
650	/* Last tick duration (usec). */
651	tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 +
652	(t.tv_usec - dn_cfg.prev_t.tv_usec);
653	/* Last tick vs standard tick difference (usec). */
654	tick_delta = (tick_last * hz - 1000000) / hz;
655	/* Accumulated tick difference (usec). */
656	tick_delta_sum += tick_delta;
657
658	dn_cfg.prev_t = t;
659
660	/*
661	* Adjust curr_time if the accumulated tick difference is
662	* greater than the 'standard' tick. Since curr_time should
663	* be monotonically increasing, we do positive adjustments
664	* as required, and throttle curr_time in case of negative
665	* adjustment.
666	*/
667	dn_cfg.curr_time++;
668	if (tick_delta_sum - tick >= 0) {
669		int diff = tick_delta_sum / tick;
670
671		dn_cfg.curr_time += diff;
672		tick_diff += diff;
673		tick_delta_sum %= tick;
674		tick_adjustment++;
675	} else if (tick_delta_sum + tick <= 0) {
676		dn_cfg.curr_time--;
677		tick_diff--;
678		tick_delta_sum += tick;
679		tick_adjustment++;
680	}
681
682	/* serve pending events, accumulate in q */
683	for (;;) {
684		struct dn_id *p;    /* generic parameter to handler */
685
686		if (dn_cfg.evheap.elements == 0 ||
687		    DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key))
688			break;
689		p = HEAP_TOP(&dn_cfg.evheap)->object;
690		heap_extract(&dn_cfg.evheap, NULL);
691
692		if (p->type == DN_SCH_I) {
693			serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time);
694		} else { /* extracted a delay line */
695			transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time);
696		}
697	}
698	if (dn_cfg.expire && ++dn_cfg.expire_cycle >= dn_cfg.expire) {
699		dn_cfg.expire_cycle = 0;
700		dn_drain_scheduler();
701		dn_drain_queue();
702	}
703
704	dn_reschedule();
705	DN_BH_WUNLOCK();
706	if (q.head != NULL)
707		dummynet_send(q.head);
708	CURVNET_RESTORE();
709}
710
711/*
712 * forward a chain of packets to the proper destination.
713 * This runs outside the dummynet lock.
714 */
715static void
716dummynet_send(struct mbuf *m)
717{
718	struct mbuf *n;
719
720	for (; m != NULL; m = n) {
721		struct ifnet *ifp = NULL;	/* gcc 3.4.6 complains */
722        	struct m_tag *tag;
723		int dst;
724
725		n = m->m_nextpkt;
726		m->m_nextpkt = NULL;
727		tag = m_tag_first(m);
728		if (tag == NULL) { /* should not happen */
729			dst = DIR_DROP;
730		} else {
731			struct dn_pkt_tag *pkt = dn_tag_get(m);
732			/* extract the dummynet info, rename the tag
733			 * to carry reinject info.
734			 */
735			dst = pkt->dn_dir;
736			ifp = pkt->ifp;
737			tag->m_tag_cookie = MTAG_IPFW_RULE;
738			tag->m_tag_id = 0;
739		}
740
741		switch (dst) {
742		case DIR_OUT:
743			ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
744			break ;
745
746		case DIR_IN :
747			netisr_dispatch(NETISR_IP, m);
748			break;
749
750#ifdef INET6
751		case DIR_IN | PROTO_IPV6:
752			netisr_dispatch(NETISR_IPV6, m);
753			break;
754
755		case DIR_OUT | PROTO_IPV6:
756			ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
757			break;
758#endif
759
760		case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
761			if (bridge_dn_p != NULL)
762				((*bridge_dn_p)(m, ifp));
763			else
764				printf("dummynet: if_bridge not loaded\n");
765
766			break;
767
768		case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
769			/*
770			 * The Ethernet code assumes the Ethernet header is
771			 * contiguous in the first mbuf header.
772			 * Insure this is true.
773			 */
774			if (m->m_len < ETHER_HDR_LEN &&
775			    (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
776				printf("dummynet/ether: pullup failed, "
777				    "dropping packet\n");
778				break;
779			}
780			ether_demux(m->m_pkthdr.rcvif, m);
781			break;
782
783		case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */
784			ether_output_frame(ifp, m);
785			break;
786
787		case DIR_DROP:
788			/* drop the packet after some time */
789			FREE_PKT(m);
790			break;
791
792		default:
793			printf("dummynet: bad switch %d!\n", dst);
794			FREE_PKT(m);
795			break;
796		}
797	}
798}
799
800static inline int
801tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
802{
803	struct dn_pkt_tag *dt;
804	struct m_tag *mtag;
805
806	mtag = m_tag_get(PACKET_TAG_DUMMYNET,
807		    sizeof(*dt), M_NOWAIT | M_ZERO);
808	if (mtag == NULL)
809		return 1;		/* Cannot allocate packet header. */
810	m_tag_prepend(m, mtag);		/* Attach to mbuf chain. */
811	dt = (struct dn_pkt_tag *)(mtag + 1);
812	dt->rule = fwa->rule;
813	dt->rule.info &= IPFW_ONEPASS;	/* only keep this info */
814	dt->dn_dir = dir;
815	dt->ifp = fwa->oif;
816	/* dt->output tame is updated as we move through */
817	dt->output_time = dn_cfg.curr_time;
818	dt->iphdr_off = (dir & PROTO_LAYER2) ? ETHER_HDR_LEN : 0;
819	return 0;
820}
821
822
823/*
824 * dummynet hook for packets.
825 * We use the argument to locate the flowset fs and the sched_set sch
826 * associated to it. The we apply flow_mask and sched_mask to
827 * determine the queue and scheduler instances.
828 *
829 * dir		where shall we send the packet after dummynet.
830 * *m0		the mbuf with the packet
831 * ifp		the 'ifp' parameter from the caller.
832 *		NULL in ip_input, destination interface in ip_output,
833 */
834int
835dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
836{
837	struct mbuf *m = *m0;
838	struct dn_fsk *fs = NULL;
839	struct dn_sch_inst *si;
840	struct dn_queue *q = NULL;	/* default */
841
842	int fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
843		((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
844	DN_BH_WLOCK();
845	io_pkt++;
846	/* we could actually tag outside the lock, but who cares... */
847	if (tag_mbuf(m, dir, fwa))
848		goto dropit;
849	if (dn_cfg.busy) {
850		/* if the upper half is busy doing something expensive,
851		 * lets queue the packet and move forward
852		 */
853		mq_append(&dn_cfg.pending, m);
854		m = *m0 = NULL; /* consumed */
855		goto done; /* already active, nothing to do */
856	}
857	/* XXX locate_flowset could be optimised with a direct ref. */
858	fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL);
859	if (fs == NULL)
860		goto dropit;	/* This queue/pipe does not exist! */
861	if (fs->sched == NULL)	/* should not happen */
862		goto dropit;
863	/* find scheduler instance, possibly applying sched_mask */
864	si = ipdn_si_find(fs->sched, &(fwa->f_id));
865	if (si == NULL)
866		goto dropit;
867	/*
868	 * If the scheduler supports multiple queues, find the right one
869	 * (otherwise it will be ignored by enqueue).
870	 */
871	if (fs->sched->fp->flags & DN_MULTIQUEUE) {
872		q = ipdn_q_find(fs, si, &(fwa->f_id));
873		if (q == NULL)
874			goto dropit;
875	}
876	if (fs->sched->fp->enqueue(si, q, m)) {
877		/* packet was dropped by enqueue() */
878		m = *m0 = NULL;
879
880		/* dn_enqueue already increases io_pkt_drop */
881		io_pkt_drop--;
882
883		goto dropit;
884	}
885
886	if (si->kflags & DN_ACTIVE) {
887		m = *m0 = NULL; /* consumed */
888		goto done; /* already active, nothing to do */
889	}
890
891	/* compute the initial allowance */
892	if (si->idle_time < dn_cfg.curr_time) {
893	    /* Do this only on the first packet on an idle pipe */
894	    struct dn_link *p = &fs->sched->link;
895
896	    si->sched_time = dn_cfg.curr_time;
897	    si->credit = dn_cfg.io_fast ? p->bandwidth : 0;
898	    if (p->burst) {
899		uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth;
900		if (burst > p->burst)
901			burst = p->burst;
902		si->credit += burst;
903	    }
904	}
905	/* pass through scheduler and delay line */
906	m = serve_sched(NULL, si, dn_cfg.curr_time);
907
908	/* optimization -- pass it back to ipfw for immediate send */
909	/* XXX Don't call dummynet_send() if scheduler return the packet
910	 *     just enqueued. This avoid a lock order reversal.
911	 *
912	 */
913	if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
914		/* fast io, rename the tag * to carry reinject info. */
915		struct m_tag *tag = m_tag_first(m);
916
917		tag->m_tag_cookie = MTAG_IPFW_RULE;
918		tag->m_tag_id = 0;
919		io_pkt_fast++;
920		if (m->m_nextpkt != NULL) {
921			printf("dummynet: fast io: pkt chain detected!\n");
922			m->m_nextpkt = NULL;
923		}
924		m = NULL;
925	} else {
926		*m0 = NULL;
927	}
928done:
929	DN_BH_WUNLOCK();
930	if (m)
931		dummynet_send(m);
932	return 0;
933
934dropit:
935	io_pkt_drop++;
936	DN_BH_WUNLOCK();
937	if (m)
938		FREE_PKT(m);
939	*m0 = NULL;
940	return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
941}
942