key.c revision 270053
1/*	$FreeBSD: stable/10/sys/netipsec/key.c 270053 2014-08-16 13:55:44Z bz $	*/
2/*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * This code is referd to RFC 2367
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40
41#include <sys/types.h>
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/mbuf.h>
48#include <sys/domain.h>
49#include <sys/protosw.h>
50#include <sys/malloc.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/sysctl.h>
54#include <sys/errno.h>
55#include <sys/proc.h>
56#include <sys/queue.h>
57#include <sys/refcount.h>
58#include <sys/syslog.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/raw_cb.h>
63#include <net/vnet.h>
64
65#include <netinet/in.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#include <netinet/in_var.h>
69
70#ifdef INET6
71#include <netinet/ip6.h>
72#include <netinet6/in6_var.h>
73#include <netinet6/ip6_var.h>
74#endif /* INET6 */
75
76#if defined(INET) || defined(INET6)
77#include <netinet/in_pcb.h>
78#endif
79#ifdef INET6
80#include <netinet6/in6_pcb.h>
81#endif /* INET6 */
82
83#include <net/pfkeyv2.h>
84#include <netipsec/keydb.h>
85#include <netipsec/key.h>
86#include <netipsec/keysock.h>
87#include <netipsec/key_debug.h>
88
89#include <netipsec/ipsec.h>
90#ifdef INET6
91#include <netipsec/ipsec6.h>
92#endif
93
94#include <netipsec/xform.h>
95
96#include <machine/stdarg.h>
97
98/* randomness */
99#include <sys/random.h>
100
101#define FULLMASK	0xff
102#define	_BITS(bytes)	((bytes) << 3)
103
104/*
105 * Note on SA reference counting:
106 * - SAs that are not in DEAD state will have (total external reference + 1)
107 *   following value in reference count field.  they cannot be freed and are
108 *   referenced from SA header.
109 * - SAs that are in DEAD state will have (total external reference)
110 *   in reference count field.  they are ready to be freed.  reference from
111 *   SA header will be removed in key_delsav(), when the reference count
112 *   field hits 0 (= no external reference other than from SA header.
113 */
114
115VNET_DEFINE(u_int32_t, key_debug_level) = 0;
116static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
117static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
118static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
119static VNET_DEFINE(u_int32_t, policy_id) = 0;
120/*interval to initialize randseed,1(m)*/
121static VNET_DEFINE(u_int, key_int_random) = 60;
122/* interval to expire acquiring, 30(s)*/
123static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
124/* counter for blocking SADB_ACQUIRE.*/
125static VNET_DEFINE(int, key_blockacq_count) = 10;
126/* lifetime for blocking SADB_ACQUIRE.*/
127static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
128/* preferred old sa rather than new sa.*/
129static VNET_DEFINE(int, key_preferred_oldsa) = 1;
130#define	V_key_spi_trycnt	VNET(key_spi_trycnt)
131#define	V_key_spi_minval	VNET(key_spi_minval)
132#define	V_key_spi_maxval	VNET(key_spi_maxval)
133#define	V_policy_id		VNET(policy_id)
134#define	V_key_int_random	VNET(key_int_random)
135#define	V_key_larval_lifetime	VNET(key_larval_lifetime)
136#define	V_key_blockacq_count	VNET(key_blockacq_count)
137#define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
138#define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
139
140static VNET_DEFINE(u_int32_t, acq_seq) = 0;
141#define	V_acq_seq		VNET(acq_seq)
142
143								/* SPD */
144static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
145#define	V_sptree		VNET(sptree)
146static struct mtx sptree_lock;
147#define	SPTREE_LOCK_INIT() \
148	mtx_init(&sptree_lock, "sptree", \
149		"fast ipsec security policy database", MTX_DEF)
150#define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
151#define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
152#define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
153#define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
154
155static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
156#define	V_sahtree		VNET(sahtree)
157static struct mtx sahtree_lock;
158#define	SAHTREE_LOCK_INIT() \
159	mtx_init(&sahtree_lock, "sahtree", \
160		"fast ipsec security association database", MTX_DEF)
161#define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
162#define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
163#define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
164#define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
165
166							/* registed list */
167static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
168#define	V_regtree		VNET(regtree)
169static struct mtx regtree_lock;
170#define	REGTREE_LOCK_INIT() \
171	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
172#define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
173#define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
174#define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
175#define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
176
177static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
178#define	V_acqtree		VNET(acqtree)
179static struct mtx acq_lock;
180#define	ACQ_LOCK_INIT() \
181	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
182#define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
183#define	ACQ_LOCK()		mtx_lock(&acq_lock)
184#define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
185#define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
186
187							/* SP acquiring list */
188static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
189#define	V_spacqtree		VNET(spacqtree)
190static struct mtx spacq_lock;
191#define	SPACQ_LOCK_INIT() \
192	mtx_init(&spacq_lock, "spacqtree", \
193		"fast ipsec security policy acquire list", MTX_DEF)
194#define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
195#define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
196#define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
197#define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
198
199/* search order for SAs */
200static const u_int saorder_state_valid_prefer_old[] = {
201	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
202};
203static const u_int saorder_state_valid_prefer_new[] = {
204	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
205};
206static const u_int saorder_state_alive[] = {
207	/* except DEAD */
208	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
209};
210static const u_int saorder_state_any[] = {
211	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
212	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
213};
214
215static const int minsize[] = {
216	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
217	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
218	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
219	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
220	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
221	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
222	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
223	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
224	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
225	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
226	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
227	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
228	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
229	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
230	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
231	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
232	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
233	0,				/* SADB_X_EXT_KMPRIVATE */
234	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
235	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
236	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
237	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
238	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
239	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
240	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
241	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
242};
243static const int maxsize[] = {
244	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
245	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
246	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
247	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
248	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
249	0,				/* SADB_EXT_ADDRESS_SRC */
250	0,				/* SADB_EXT_ADDRESS_DST */
251	0,				/* SADB_EXT_ADDRESS_PROXY */
252	0,				/* SADB_EXT_KEY_AUTH */
253	0,				/* SADB_EXT_KEY_ENCRYPT */
254	0,				/* SADB_EXT_IDENTITY_SRC */
255	0,				/* SADB_EXT_IDENTITY_DST */
256	0,				/* SADB_EXT_SENSITIVITY */
257	0,				/* SADB_EXT_PROPOSAL */
258	0,				/* SADB_EXT_SUPPORTED_AUTH */
259	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
260	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
261	0,				/* SADB_X_EXT_KMPRIVATE */
262	0,				/* SADB_X_EXT_POLICY */
263	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
264	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
265	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
266	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
267	0,				/* SADB_X_EXT_NAT_T_OAI */
268	0,				/* SADB_X_EXT_NAT_T_OAR */
269	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
270};
271
272static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
273static VNET_DEFINE(int, ipsec_esp_auth) = 0;
274static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
275
276#define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
277#define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
278#define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
279
280#ifdef SYSCTL_DECL
281SYSCTL_DECL(_net_key);
282#endif
283
284SYSCTL_VNET_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
285	CTLFLAG_RW, &VNET_NAME(key_debug_level),	0,	"");
286
287/* max count of trial for the decision of spi value */
288SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
289	CTLFLAG_RW, &VNET_NAME(key_spi_trycnt),	0,	"");
290
291/* minimum spi value to allocate automatically. */
292SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MIN_VALUE,
293	spi_minval,	CTLFLAG_RW, &VNET_NAME(key_spi_minval),	0,	"");
294
295/* maximun spi value to allocate automatically. */
296SYSCTL_VNET_INT(_net_key, KEYCTL_SPI_MAX_VALUE,
297	spi_maxval,	CTLFLAG_RW, &VNET_NAME(key_spi_maxval),	0,	"");
298
299/* interval to initialize randseed */
300SYSCTL_VNET_INT(_net_key, KEYCTL_RANDOM_INT,
301	int_random,	CTLFLAG_RW, &VNET_NAME(key_int_random),	0,	"");
302
303/* lifetime for larval SA */
304SYSCTL_VNET_INT(_net_key, KEYCTL_LARVAL_LIFETIME,
305	larval_lifetime, CTLFLAG_RW, &VNET_NAME(key_larval_lifetime),	0, "");
306
307/* counter for blocking to send SADB_ACQUIRE to IKEd */
308SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,
309	blockacq_count,	CTLFLAG_RW, &VNET_NAME(key_blockacq_count),	0, "");
310
311/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
312SYSCTL_VNET_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,
313	blockacq_lifetime, CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
314
315/* ESP auth */
316SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth,
317	CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth),	0,	"");
318
319/* minimum ESP key length */
320SYSCTL_VNET_INT(_net_key, KEYCTL_ESP_KEYMIN,
321	esp_keymin, CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin),	0,	"");
322
323/* minimum AH key length */
324SYSCTL_VNET_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin,
325	CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin),	0,	"");
326
327/* perfered old SA rather than new SA */
328SYSCTL_VNET_INT(_net_key, KEYCTL_PREFERED_OLDSA,
329	preferred_oldsa, CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa),	0, "");
330
331#define __LIST_CHAINED(elm) \
332	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
333#define LIST_INSERT_TAIL(head, elm, type, field) \
334do {\
335	struct type *curelm = LIST_FIRST(head); \
336	if (curelm == NULL) {\
337		LIST_INSERT_HEAD(head, elm, field); \
338	} else { \
339		while (LIST_NEXT(curelm, field)) \
340			curelm = LIST_NEXT(curelm, field);\
341		LIST_INSERT_AFTER(curelm, elm, field);\
342	}\
343} while (0)
344
345#define KEY_CHKSASTATE(head, sav, name) \
346do { \
347	if ((head) != (sav)) {						\
348		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
349			(name), (head), (sav)));			\
350		continue;						\
351	}								\
352} while (0)
353
354#define KEY_CHKSPDIR(head, sp, name) \
355do { \
356	if ((head) != (sp)) {						\
357		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
358			"anyway continue.\n",				\
359			(name), (head), (sp)));				\
360	}								\
361} while (0)
362
363MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
364MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
365MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
366MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
367MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
368MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
369MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
370
371/*
372 * set parameters into secpolicyindex buffer.
373 * Must allocate secpolicyindex buffer passed to this function.
374 */
375#define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
376do { \
377	bzero((idx), sizeof(struct secpolicyindex));                         \
378	(idx)->dir = (_dir);                                                 \
379	(idx)->prefs = (ps);                                                 \
380	(idx)->prefd = (pd);                                                 \
381	(idx)->ul_proto = (ulp);                                             \
382	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
383	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
384} while (0)
385
386/*
387 * set parameters into secasindex buffer.
388 * Must allocate secasindex buffer before calling this function.
389 */
390#define KEY_SETSECASIDX(p, m, r, s, d, idx) \
391do { \
392	bzero((idx), sizeof(struct secasindex));                             \
393	(idx)->proto = (p);                                                  \
394	(idx)->mode = (m);                                                   \
395	(idx)->reqid = (r);                                                  \
396	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
397	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
398} while (0)
399
400/* key statistics */
401struct _keystat {
402	u_long getspi_count; /* the avarage of count to try to get new SPI */
403} keystat;
404
405struct sadb_msghdr {
406	struct sadb_msg *msg;
407	struct sadb_ext *ext[SADB_EXT_MAX + 1];
408	int extoff[SADB_EXT_MAX + 1];
409	int extlen[SADB_EXT_MAX + 1];
410};
411
412static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
413static void key_freesp_so __P((struct secpolicy **));
414static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
415static void key_delsp __P((struct secpolicy *));
416static struct secpolicy *key_getsp __P((struct secpolicyindex *));
417static void _key_delsp(struct secpolicy *sp);
418static struct secpolicy *key_getspbyid __P((u_int32_t));
419static u_int32_t key_newreqid __P((void));
420static struct mbuf *key_gather_mbuf __P((struct mbuf *,
421	const struct sadb_msghdr *, int, int, ...));
422static int key_spdadd __P((struct socket *, struct mbuf *,
423	const struct sadb_msghdr *));
424static u_int32_t key_getnewspid __P((void));
425static int key_spddelete __P((struct socket *, struct mbuf *,
426	const struct sadb_msghdr *));
427static int key_spddelete2 __P((struct socket *, struct mbuf *,
428	const struct sadb_msghdr *));
429static int key_spdget __P((struct socket *, struct mbuf *,
430	const struct sadb_msghdr *));
431static int key_spdflush __P((struct socket *, struct mbuf *,
432	const struct sadb_msghdr *));
433static int key_spddump __P((struct socket *, struct mbuf *,
434	const struct sadb_msghdr *));
435static struct mbuf *key_setdumpsp __P((struct secpolicy *,
436	u_int8_t, u_int32_t, u_int32_t));
437static u_int key_getspreqmsglen __P((struct secpolicy *));
438static int key_spdexpire __P((struct secpolicy *));
439static struct secashead *key_newsah __P((struct secasindex *));
440static void key_delsah __P((struct secashead *));
441static struct secasvar *key_newsav __P((struct mbuf *,
442	const struct sadb_msghdr *, struct secashead *, int *,
443	const char*, int));
444#define	KEY_NEWSAV(m, sadb, sah, e)				\
445	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
446static void key_delsav __P((struct secasvar *));
447static struct secashead *key_getsah __P((struct secasindex *));
448static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
449static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
450static int key_setsaval __P((struct secasvar *, struct mbuf *,
451	const struct sadb_msghdr *));
452static int key_mature __P((struct secasvar *));
453static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
454	u_int8_t, u_int32_t, u_int32_t));
455static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
456	u_int32_t, pid_t, u_int16_t));
457static struct mbuf *key_setsadbsa __P((struct secasvar *));
458static struct mbuf *key_setsadbaddr __P((u_int16_t,
459	const struct sockaddr *, u_int8_t, u_int16_t));
460#ifdef IPSEC_NAT_T
461static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
462static struct mbuf *key_setsadbxtype(u_int16_t);
463#endif
464static void key_porttosaddr(struct sockaddr *, u_int16_t);
465#define	KEY_PORTTOSADDR(saddr, port)				\
466	key_porttosaddr((struct sockaddr *)(saddr), (port))
467static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
468static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
469	u_int32_t));
470static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
471				     struct malloc_type *);
472static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
473					    struct malloc_type *type);
474#ifdef INET6
475static int key_ismyaddr6 __P((struct sockaddr_in6 *));
476#endif
477
478/* flags for key_cmpsaidx() */
479#define CMP_HEAD	1	/* protocol, addresses. */
480#define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
481#define CMP_REQID	3	/* additionally HEAD, reaid. */
482#define CMP_EXACTLY	4	/* all elements. */
483static int key_cmpsaidx
484	__P((const struct secasindex *, const struct secasindex *, int));
485
486static int key_cmpspidx_exactly
487	__P((struct secpolicyindex *, struct secpolicyindex *));
488static int key_cmpspidx_withmask
489	__P((struct secpolicyindex *, struct secpolicyindex *));
490static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
491static int key_bbcmp __P((const void *, const void *, u_int));
492static u_int16_t key_satype2proto __P((u_int8_t));
493static u_int8_t key_proto2satype __P((u_int16_t));
494
495static int key_getspi __P((struct socket *, struct mbuf *,
496	const struct sadb_msghdr *));
497static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
498					struct secasindex *));
499static int key_update __P((struct socket *, struct mbuf *,
500	const struct sadb_msghdr *));
501#ifdef IPSEC_DOSEQCHECK
502static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
503#endif
504static int key_add __P((struct socket *, struct mbuf *,
505	const struct sadb_msghdr *));
506static int key_setident __P((struct secashead *, struct mbuf *,
507	const struct sadb_msghdr *));
508static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
509	const struct sadb_msghdr *));
510static int key_delete __P((struct socket *, struct mbuf *,
511	const struct sadb_msghdr *));
512static int key_get __P((struct socket *, struct mbuf *,
513	const struct sadb_msghdr *));
514
515static void key_getcomb_setlifetime __P((struct sadb_comb *));
516static struct mbuf *key_getcomb_esp __P((void));
517static struct mbuf *key_getcomb_ah __P((void));
518static struct mbuf *key_getcomb_ipcomp __P((void));
519static struct mbuf *key_getprop __P((const struct secasindex *));
520
521static int key_acquire __P((const struct secasindex *, struct secpolicy *));
522static struct secacq *key_newacq __P((const struct secasindex *));
523static struct secacq *key_getacq __P((const struct secasindex *));
524static struct secacq *key_getacqbyseq __P((u_int32_t));
525static struct secspacq *key_newspacq __P((struct secpolicyindex *));
526static struct secspacq *key_getspacq __P((struct secpolicyindex *));
527static int key_acquire2 __P((struct socket *, struct mbuf *,
528	const struct sadb_msghdr *));
529static int key_register __P((struct socket *, struct mbuf *,
530	const struct sadb_msghdr *));
531static int key_expire __P((struct secasvar *));
532static int key_flush __P((struct socket *, struct mbuf *,
533	const struct sadb_msghdr *));
534static int key_dump __P((struct socket *, struct mbuf *,
535	const struct sadb_msghdr *));
536static int key_promisc __P((struct socket *, struct mbuf *,
537	const struct sadb_msghdr *));
538static int key_senderror __P((struct socket *, struct mbuf *, int));
539static int key_validate_ext __P((const struct sadb_ext *, int));
540static int key_align __P((struct mbuf *, struct sadb_msghdr *));
541static struct mbuf *key_setlifetime(struct seclifetime *src,
542				     u_int16_t exttype);
543static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
544
545#if 0
546static const char *key_getfqdn __P((void));
547static const char *key_getuserfqdn __P((void));
548#endif
549static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
550
551static __inline void
552sa_initref(struct secasvar *sav)
553{
554
555	refcount_init(&sav->refcnt, 1);
556}
557static __inline void
558sa_addref(struct secasvar *sav)
559{
560
561	refcount_acquire(&sav->refcnt);
562	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
563}
564static __inline int
565sa_delref(struct secasvar *sav)
566{
567
568	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
569	return (refcount_release(&sav->refcnt));
570}
571
572#define	SP_ADDREF(p) do {						\
573	(p)->refcnt++;							\
574	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
575} while (0)
576#define	SP_DELREF(p) do {						\
577	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
578	(p)->refcnt--;							\
579} while (0)
580
581
582/*
583 * Update the refcnt while holding the SPTREE lock.
584 */
585void
586key_addref(struct secpolicy *sp)
587{
588	SPTREE_LOCK();
589	SP_ADDREF(sp);
590	SPTREE_UNLOCK();
591}
592
593/*
594 * Return 0 when there are known to be no SP's for the specified
595 * direction.  Otherwise return 1.  This is used by IPsec code
596 * to optimize performance.
597 */
598int
599key_havesp(u_int dir)
600{
601
602	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
603		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
604}
605
606/* %%% IPsec policy management */
607/*
608 * allocating a SP for OUTBOUND or INBOUND packet.
609 * Must call key_freesp() later.
610 * OUT:	NULL:	not found
611 *	others:	found and return the pointer.
612 */
613struct secpolicy *
614key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
615{
616	struct secpolicy *sp;
617
618	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
619	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
620		("invalid direction %u", dir));
621
622	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
623		printf("DP %s from %s:%u\n", __func__, where, tag));
624
625	/* get a SP entry */
626	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
627		printf("*** objects\n");
628		kdebug_secpolicyindex(spidx));
629
630	SPTREE_LOCK();
631	LIST_FOREACH(sp, &V_sptree[dir], chain) {
632		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
633			printf("*** in SPD\n");
634			kdebug_secpolicyindex(&sp->spidx));
635
636		if (sp->state == IPSEC_SPSTATE_DEAD)
637			continue;
638		if (key_cmpspidx_withmask(&sp->spidx, spidx))
639			goto found;
640	}
641	sp = NULL;
642found:
643	if (sp) {
644		/* sanity check */
645		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
646
647		/* found a SPD entry */
648		sp->lastused = time_second;
649		SP_ADDREF(sp);
650	}
651	SPTREE_UNLOCK();
652
653	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
654		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
655			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
656	return sp;
657}
658
659/*
660 * allocating a SP for OUTBOUND or INBOUND packet.
661 * Must call key_freesp() later.
662 * OUT:	NULL:	not found
663 *	others:	found and return the pointer.
664 */
665struct secpolicy *
666key_allocsp2(u_int32_t spi,
667	     union sockaddr_union *dst,
668	     u_int8_t proto,
669	     u_int dir,
670	     const char* where, int tag)
671{
672	struct secpolicy *sp;
673
674	IPSEC_ASSERT(dst != NULL, ("null dst"));
675	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
676		("invalid direction %u", dir));
677
678	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
679		printf("DP %s from %s:%u\n", __func__, where, tag));
680
681	/* get a SP entry */
682	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
683		printf("*** objects\n");
684		printf("spi %u proto %u dir %u\n", spi, proto, dir);
685		kdebug_sockaddr(&dst->sa));
686
687	SPTREE_LOCK();
688	LIST_FOREACH(sp, &V_sptree[dir], chain) {
689		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
690			printf("*** in SPD\n");
691			kdebug_secpolicyindex(&sp->spidx));
692
693		if (sp->state == IPSEC_SPSTATE_DEAD)
694			continue;
695		/* compare simple values, then dst address */
696		if (sp->spidx.ul_proto != proto)
697			continue;
698		/* NB: spi's must exist and match */
699		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
700			continue;
701		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
702			goto found;
703	}
704	sp = NULL;
705found:
706	if (sp) {
707		/* sanity check */
708		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
709
710		/* found a SPD entry */
711		sp->lastused = time_second;
712		SP_ADDREF(sp);
713	}
714	SPTREE_UNLOCK();
715
716	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
717		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
718			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
719	return sp;
720}
721
722#if 0
723/*
724 * return a policy that matches this particular inbound packet.
725 * XXX slow
726 */
727struct secpolicy *
728key_gettunnel(const struct sockaddr *osrc,
729	      const struct sockaddr *odst,
730	      const struct sockaddr *isrc,
731	      const struct sockaddr *idst,
732	      const char* where, int tag)
733{
734	struct secpolicy *sp;
735	const int dir = IPSEC_DIR_INBOUND;
736	struct ipsecrequest *r1, *r2, *p;
737	struct secpolicyindex spidx;
738
739	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
740		printf("DP %s from %s:%u\n", __func__, where, tag));
741
742	if (isrc->sa_family != idst->sa_family) {
743		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
744			__func__, isrc->sa_family, idst->sa_family));
745		sp = NULL;
746		goto done;
747	}
748
749	SPTREE_LOCK();
750	LIST_FOREACH(sp, &V_sptree[dir], chain) {
751		if (sp->state == IPSEC_SPSTATE_DEAD)
752			continue;
753
754		r1 = r2 = NULL;
755		for (p = sp->req; p; p = p->next) {
756			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
757				continue;
758
759			r1 = r2;
760			r2 = p;
761
762			if (!r1) {
763				/* here we look at address matches only */
764				spidx = sp->spidx;
765				if (isrc->sa_len > sizeof(spidx.src) ||
766				    idst->sa_len > sizeof(spidx.dst))
767					continue;
768				bcopy(isrc, &spidx.src, isrc->sa_len);
769				bcopy(idst, &spidx.dst, idst->sa_len);
770				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
771					continue;
772			} else {
773				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
774				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
775					continue;
776			}
777
778			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
779			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
780				continue;
781
782			goto found;
783		}
784	}
785	sp = NULL;
786found:
787	if (sp) {
788		sp->lastused = time_second;
789		SP_ADDREF(sp);
790	}
791	SPTREE_UNLOCK();
792done:
793	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
794		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
795			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
796	return sp;
797}
798#endif
799
800/*
801 * allocating an SA entry for an *OUTBOUND* packet.
802 * checking each request entries in SP, and acquire an SA if need.
803 * OUT:	0: there are valid requests.
804 *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
805 */
806int
807key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
808{
809	u_int level;
810	int error;
811	struct secasvar *sav;
812
813	IPSEC_ASSERT(isr != NULL, ("null isr"));
814	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
815	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
816		saidx->mode == IPSEC_MODE_TUNNEL,
817		("unexpected policy %u", saidx->mode));
818
819	/*
820	 * XXX guard against protocol callbacks from the crypto
821	 * thread as they reference ipsecrequest.sav which we
822	 * temporarily null out below.  Need to rethink how we
823	 * handle bundled SA's in the callback thread.
824	 */
825	IPSECREQUEST_LOCK_ASSERT(isr);
826
827	/* get current level */
828	level = ipsec_get_reqlevel(isr);
829
830	/*
831	 * We check new SA in the IPsec request because a different
832	 * SA may be involved each time this request is checked, either
833	 * because new SAs are being configured, or this request is
834	 * associated with an unconnected datagram socket, or this request
835	 * is associated with a system default policy.
836	 *
837	 * key_allocsa_policy should allocate the oldest SA available.
838	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
839	 */
840	sav = key_allocsa_policy(saidx);
841	if (sav != isr->sav) {
842		/* SA need to be updated. */
843		if (!IPSECREQUEST_UPGRADE(isr)) {
844			/* Kick everyone off. */
845			IPSECREQUEST_UNLOCK(isr);
846			IPSECREQUEST_WLOCK(isr);
847		}
848		if (isr->sav != NULL)
849			KEY_FREESAV(&isr->sav);
850		isr->sav = sav;
851		IPSECREQUEST_DOWNGRADE(isr);
852	} else if (sav != NULL)
853		KEY_FREESAV(&sav);
854
855	/* When there is SA. */
856	if (isr->sav != NULL) {
857		if (isr->sav->state != SADB_SASTATE_MATURE &&
858		    isr->sav->state != SADB_SASTATE_DYING)
859			return EINVAL;
860		return 0;
861	}
862
863	/* there is no SA */
864	error = key_acquire(saidx, isr->sp);
865	if (error != 0) {
866		/* XXX What should I do ? */
867		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
868			__func__, error));
869		return error;
870	}
871
872	if (level != IPSEC_LEVEL_REQUIRE) {
873		/* XXX sigh, the interface to this routine is botched */
874		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
875		return 0;
876	} else {
877		return ENOENT;
878	}
879}
880
881/*
882 * allocating a SA for policy entry from SAD.
883 * NOTE: searching SAD of aliving state.
884 * OUT:	NULL:	not found.
885 *	others:	found and return the pointer.
886 */
887static struct secasvar *
888key_allocsa_policy(const struct secasindex *saidx)
889{
890#define	N(a)	_ARRAYLEN(a)
891	struct secashead *sah;
892	struct secasvar *sav;
893	u_int stateidx, arraysize;
894	const u_int *state_valid;
895
896	state_valid = NULL;	/* silence gcc */
897	arraysize = 0;		/* silence gcc */
898
899	SAHTREE_LOCK();
900	LIST_FOREACH(sah, &V_sahtree, chain) {
901		if (sah->state == SADB_SASTATE_DEAD)
902			continue;
903		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
904			if (V_key_preferred_oldsa) {
905				state_valid = saorder_state_valid_prefer_old;
906				arraysize = N(saorder_state_valid_prefer_old);
907			} else {
908				state_valid = saorder_state_valid_prefer_new;
909				arraysize = N(saorder_state_valid_prefer_new);
910			}
911			break;
912		}
913	}
914	SAHTREE_UNLOCK();
915	if (sah == NULL)
916		return NULL;
917
918	/* search valid state */
919	for (stateidx = 0; stateidx < arraysize; stateidx++) {
920		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
921		if (sav != NULL)
922			return sav;
923	}
924
925	return NULL;
926#undef N
927}
928
929/*
930 * searching SAD with direction, protocol, mode and state.
931 * called by key_allocsa_policy().
932 * OUT:
933 *	NULL	: not found
934 *	others	: found, pointer to a SA.
935 */
936static struct secasvar *
937key_do_allocsa_policy(struct secashead *sah, u_int state)
938{
939	struct secasvar *sav, *nextsav, *candidate, *d;
940
941	/* initilize */
942	candidate = NULL;
943
944	SAHTREE_LOCK();
945	for (sav = LIST_FIRST(&sah->savtree[state]);
946	     sav != NULL;
947	     sav = nextsav) {
948
949		nextsav = LIST_NEXT(sav, chain);
950
951		/* sanity check */
952		KEY_CHKSASTATE(sav->state, state, __func__);
953
954		/* initialize */
955		if (candidate == NULL) {
956			candidate = sav;
957			continue;
958		}
959
960		/* Which SA is the better ? */
961
962		IPSEC_ASSERT(candidate->lft_c != NULL,
963			("null candidate lifetime"));
964		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
965
966		/* What the best method is to compare ? */
967		if (V_key_preferred_oldsa) {
968			if (candidate->lft_c->addtime >
969					sav->lft_c->addtime) {
970				candidate = sav;
971			}
972			continue;
973			/*NOTREACHED*/
974		}
975
976		/* preferred new sa rather than old sa */
977		if (candidate->lft_c->addtime <
978				sav->lft_c->addtime) {
979			d = candidate;
980			candidate = sav;
981		} else
982			d = sav;
983
984		/*
985		 * prepared to delete the SA when there is more
986		 * suitable candidate and the lifetime of the SA is not
987		 * permanent.
988		 */
989		if (d->lft_h->addtime != 0) {
990			struct mbuf *m, *result;
991			u_int8_t satype;
992
993			key_sa_chgstate(d, SADB_SASTATE_DEAD);
994
995			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
996
997			satype = key_proto2satype(d->sah->saidx.proto);
998			if (satype == 0)
999				goto msgfail;
1000
1001			m = key_setsadbmsg(SADB_DELETE, 0,
1002			    satype, 0, 0, d->refcnt - 1);
1003			if (!m)
1004				goto msgfail;
1005			result = m;
1006
1007			/* set sadb_address for saidx's. */
1008			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1009				&d->sah->saidx.src.sa,
1010				d->sah->saidx.src.sa.sa_len << 3,
1011				IPSEC_ULPROTO_ANY);
1012			if (!m)
1013				goto msgfail;
1014			m_cat(result, m);
1015
1016			/* set sadb_address for saidx's. */
1017			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1018				&d->sah->saidx.dst.sa,
1019				d->sah->saidx.dst.sa.sa_len << 3,
1020				IPSEC_ULPROTO_ANY);
1021			if (!m)
1022				goto msgfail;
1023			m_cat(result, m);
1024
1025			/* create SA extension */
1026			m = key_setsadbsa(d);
1027			if (!m)
1028				goto msgfail;
1029			m_cat(result, m);
1030
1031			if (result->m_len < sizeof(struct sadb_msg)) {
1032				result = m_pullup(result,
1033						sizeof(struct sadb_msg));
1034				if (result == NULL)
1035					goto msgfail;
1036			}
1037
1038			result->m_pkthdr.len = 0;
1039			for (m = result; m; m = m->m_next)
1040				result->m_pkthdr.len += m->m_len;
1041			mtod(result, struct sadb_msg *)->sadb_msg_len =
1042				PFKEY_UNIT64(result->m_pkthdr.len);
1043
1044			if (key_sendup_mbuf(NULL, result,
1045					KEY_SENDUP_REGISTERED))
1046				goto msgfail;
1047		 msgfail:
1048			KEY_FREESAV(&d);
1049		}
1050	}
1051	if (candidate) {
1052		sa_addref(candidate);
1053		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1054			printf("DP %s cause refcnt++:%d SA:%p\n",
1055				__func__, candidate->refcnt, candidate));
1056	}
1057	SAHTREE_UNLOCK();
1058
1059	return candidate;
1060}
1061
1062/*
1063 * allocating a usable SA entry for a *INBOUND* packet.
1064 * Must call key_freesav() later.
1065 * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1066 *	NULL:		not found, or error occured.
1067 *
1068 * In the comparison, no source address is used--for RFC2401 conformance.
1069 * To quote, from section 4.1:
1070 *	A security association is uniquely identified by a triple consisting
1071 *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1072 *	security protocol (AH or ESP) identifier.
1073 * Note that, however, we do need to keep source address in IPsec SA.
1074 * IKE specification and PF_KEY specification do assume that we
1075 * keep source address in IPsec SA.  We see a tricky situation here.
1076 */
1077struct secasvar *
1078key_allocsa(
1079	union sockaddr_union *dst,
1080	u_int proto,
1081	u_int32_t spi,
1082	const char* where, int tag)
1083{
1084	struct secashead *sah;
1085	struct secasvar *sav;
1086	u_int stateidx, arraysize, state;
1087	const u_int *saorder_state_valid;
1088#ifdef IPSEC_NAT_T
1089	int natt_chkport;
1090#endif
1091
1092	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1093
1094	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1095		printf("DP %s from %s:%u\n", __func__, where, tag));
1096
1097#ifdef IPSEC_NAT_T
1098        natt_chkport = (dst->sa.sa_family == AF_INET &&
1099	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1100	    dst->sin.sin_port != 0);
1101#endif
1102
1103	/*
1104	 * searching SAD.
1105	 * XXX: to be checked internal IP header somewhere.  Also when
1106	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1107	 * encrypted so we can't check internal IP header.
1108	 */
1109	SAHTREE_LOCK();
1110	if (V_key_preferred_oldsa) {
1111		saorder_state_valid = saorder_state_valid_prefer_old;
1112		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1113	} else {
1114		saorder_state_valid = saorder_state_valid_prefer_new;
1115		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1116	}
1117	LIST_FOREACH(sah, &V_sahtree, chain) {
1118		int checkport;
1119
1120		/* search valid state */
1121		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1122			state = saorder_state_valid[stateidx];
1123			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1124				/* sanity check */
1125				KEY_CHKSASTATE(sav->state, state, __func__);
1126				/* do not return entries w/ unusable state */
1127				if (sav->state != SADB_SASTATE_MATURE &&
1128				    sav->state != SADB_SASTATE_DYING)
1129					continue;
1130				if (proto != sav->sah->saidx.proto)
1131					continue;
1132				if (spi != sav->spi)
1133					continue;
1134				checkport = 0;
1135#ifdef IPSEC_NAT_T
1136				/*
1137				 * Really only check ports when this is a NAT-T
1138				 * SA.  Otherwise other lookups providing ports
1139				 * might suffer.
1140				 */
1141				if (sav->natt_type && natt_chkport)
1142					checkport = 1;
1143#endif
1144#if 0	/* don't check src */
1145				/* check src address */
1146				if (key_sockaddrcmp(&src->sa,
1147				    &sav->sah->saidx.src.sa, checkport) != 0)
1148					continue;
1149#endif
1150				/* check dst address */
1151				if (key_sockaddrcmp(&dst->sa,
1152				    &sav->sah->saidx.dst.sa, checkport) != 0)
1153					continue;
1154				sa_addref(sav);
1155				goto done;
1156			}
1157		}
1158	}
1159	sav = NULL;
1160done:
1161	SAHTREE_UNLOCK();
1162
1163	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1164		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1165			sav, sav ? sav->refcnt : 0));
1166	return sav;
1167}
1168
1169/*
1170 * Must be called after calling key_allocsp().
1171 * For both the packet without socket and key_freeso().
1172 */
1173void
1174_key_freesp(struct secpolicy **spp, const char* where, int tag)
1175{
1176	struct secpolicy *sp = *spp;
1177
1178	IPSEC_ASSERT(sp != NULL, ("null sp"));
1179
1180	SPTREE_LOCK();
1181	SP_DELREF(sp);
1182
1183	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1184		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1185			__func__, sp, sp->id, where, tag, sp->refcnt));
1186
1187	if (sp->refcnt == 0) {
1188		*spp = NULL;
1189		key_delsp(sp);
1190	}
1191	SPTREE_UNLOCK();
1192}
1193
1194/*
1195 * Must be called after calling key_allocsp().
1196 * For the packet with socket.
1197 */
1198void
1199key_freeso(struct socket *so)
1200{
1201	IPSEC_ASSERT(so != NULL, ("null so"));
1202
1203	switch (so->so_proto->pr_domain->dom_family) {
1204#if defined(INET) || defined(INET6)
1205#ifdef INET
1206	case PF_INET:
1207#endif
1208#ifdef INET6
1209	case PF_INET6:
1210#endif
1211	    {
1212		struct inpcb *pcb = sotoinpcb(so);
1213
1214		/* Does it have a PCB ? */
1215		if (pcb == NULL)
1216			return;
1217		key_freesp_so(&pcb->inp_sp->sp_in);
1218		key_freesp_so(&pcb->inp_sp->sp_out);
1219	    }
1220		break;
1221#endif /* INET || INET6 */
1222	default:
1223		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1224		    __func__, so->so_proto->pr_domain->dom_family));
1225		return;
1226	}
1227}
1228
1229static void
1230key_freesp_so(struct secpolicy **sp)
1231{
1232	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1233
1234	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1235	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1236		return;
1237
1238	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1239		("invalid policy %u", (*sp)->policy));
1240	KEY_FREESP(sp);
1241}
1242
1243void
1244key_addrefsa(struct secasvar *sav, const char* where, int tag)
1245{
1246
1247	IPSEC_ASSERT(sav != NULL, ("null sav"));
1248	IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1249
1250	sa_addref(sav);
1251}
1252
1253/*
1254 * Must be called after calling key_allocsa().
1255 * This function is called by key_freesp() to free some SA allocated
1256 * for a policy.
1257 */
1258void
1259key_freesav(struct secasvar **psav, const char* where, int tag)
1260{
1261	struct secasvar *sav = *psav;
1262
1263	IPSEC_ASSERT(sav != NULL, ("null sav"));
1264
1265	if (sa_delref(sav)) {
1266		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1267			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1268				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1269		*psav = NULL;
1270		key_delsav(sav);
1271	} else {
1272		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1273			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1274				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1275	}
1276}
1277
1278/* %%% SPD management */
1279/*
1280 * free security policy entry.
1281 */
1282static void
1283key_delsp(struct secpolicy *sp)
1284{
1285	struct ipsecrequest *isr, *nextisr;
1286
1287	IPSEC_ASSERT(sp != NULL, ("null sp"));
1288	SPTREE_LOCK_ASSERT();
1289
1290	sp->state = IPSEC_SPSTATE_DEAD;
1291
1292	IPSEC_ASSERT(sp->refcnt == 0,
1293		("SP with references deleted (refcnt %u)", sp->refcnt));
1294
1295	/* remove from SP index */
1296	if (__LIST_CHAINED(sp))
1297		LIST_REMOVE(sp, chain);
1298
1299	for (isr = sp->req; isr != NULL; isr = nextisr) {
1300		if (isr->sav != NULL) {
1301			KEY_FREESAV(&isr->sav);
1302			isr->sav = NULL;
1303		}
1304
1305		nextisr = isr->next;
1306		ipsec_delisr(isr);
1307	}
1308	_key_delsp(sp);
1309}
1310
1311/*
1312 * search SPD
1313 * OUT:	NULL	: not found
1314 *	others	: found, pointer to a SP.
1315 */
1316static struct secpolicy *
1317key_getsp(struct secpolicyindex *spidx)
1318{
1319	struct secpolicy *sp;
1320
1321	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1322
1323	SPTREE_LOCK();
1324	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1325		if (sp->state == IPSEC_SPSTATE_DEAD)
1326			continue;
1327		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1328			SP_ADDREF(sp);
1329			break;
1330		}
1331	}
1332	SPTREE_UNLOCK();
1333
1334	return sp;
1335}
1336
1337/*
1338 * get SP by index.
1339 * OUT:	NULL	: not found
1340 *	others	: found, pointer to a SP.
1341 */
1342static struct secpolicy *
1343key_getspbyid(u_int32_t id)
1344{
1345	struct secpolicy *sp;
1346
1347	SPTREE_LOCK();
1348	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1349		if (sp->state == IPSEC_SPSTATE_DEAD)
1350			continue;
1351		if (sp->id == id) {
1352			SP_ADDREF(sp);
1353			goto done;
1354		}
1355	}
1356
1357	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1358		if (sp->state == IPSEC_SPSTATE_DEAD)
1359			continue;
1360		if (sp->id == id) {
1361			SP_ADDREF(sp);
1362			goto done;
1363		}
1364	}
1365done:
1366	SPTREE_UNLOCK();
1367
1368	return sp;
1369}
1370
1371struct secpolicy *
1372key_newsp(const char* where, int tag)
1373{
1374	struct secpolicy *newsp = NULL;
1375
1376	newsp = (struct secpolicy *)
1377		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1378	if (newsp) {
1379		SECPOLICY_LOCK_INIT(newsp);
1380		newsp->refcnt = 1;
1381		newsp->req = NULL;
1382	}
1383
1384	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1385		printf("DP %s from %s:%u return SP:%p\n", __func__,
1386			where, tag, newsp));
1387	return newsp;
1388}
1389
1390static void
1391_key_delsp(struct secpolicy *sp)
1392{
1393	SECPOLICY_LOCK_DESTROY(sp);
1394	free(sp, M_IPSEC_SP);
1395}
1396
1397/*
1398 * create secpolicy structure from sadb_x_policy structure.
1399 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1400 * so must be set properly later.
1401 */
1402struct secpolicy *
1403key_msg2sp(xpl0, len, error)
1404	struct sadb_x_policy *xpl0;
1405	size_t len;
1406	int *error;
1407{
1408	struct secpolicy *newsp;
1409
1410	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1411	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1412
1413	if (len != PFKEY_EXTLEN(xpl0)) {
1414		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1415		*error = EINVAL;
1416		return NULL;
1417	}
1418
1419	if ((newsp = KEY_NEWSP()) == NULL) {
1420		*error = ENOBUFS;
1421		return NULL;
1422	}
1423
1424	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1425	newsp->policy = xpl0->sadb_x_policy_type;
1426
1427	/* check policy */
1428	switch (xpl0->sadb_x_policy_type) {
1429	case IPSEC_POLICY_DISCARD:
1430	case IPSEC_POLICY_NONE:
1431	case IPSEC_POLICY_ENTRUST:
1432	case IPSEC_POLICY_BYPASS:
1433		newsp->req = NULL;
1434		break;
1435
1436	case IPSEC_POLICY_IPSEC:
1437	    {
1438		int tlen;
1439		struct sadb_x_ipsecrequest *xisr;
1440		struct ipsecrequest **p_isr = &newsp->req;
1441
1442		/* validity check */
1443		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1444			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1445				__func__));
1446			KEY_FREESP(&newsp);
1447			*error = EINVAL;
1448			return NULL;
1449		}
1450
1451		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1452		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1453
1454		while (tlen > 0) {
1455			/* length check */
1456			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1457				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1458					"length.\n", __func__));
1459				KEY_FREESP(&newsp);
1460				*error = EINVAL;
1461				return NULL;
1462			}
1463
1464			/* allocate request buffer */
1465			/* NB: data structure is zero'd */
1466			*p_isr = ipsec_newisr();
1467			if ((*p_isr) == NULL) {
1468				ipseclog((LOG_DEBUG,
1469				    "%s: No more memory.\n", __func__));
1470				KEY_FREESP(&newsp);
1471				*error = ENOBUFS;
1472				return NULL;
1473			}
1474
1475			/* set values */
1476			switch (xisr->sadb_x_ipsecrequest_proto) {
1477			case IPPROTO_ESP:
1478			case IPPROTO_AH:
1479			case IPPROTO_IPCOMP:
1480				break;
1481			default:
1482				ipseclog((LOG_DEBUG,
1483				    "%s: invalid proto type=%u\n", __func__,
1484				    xisr->sadb_x_ipsecrequest_proto));
1485				KEY_FREESP(&newsp);
1486				*error = EPROTONOSUPPORT;
1487				return NULL;
1488			}
1489			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1490
1491			switch (xisr->sadb_x_ipsecrequest_mode) {
1492			case IPSEC_MODE_TRANSPORT:
1493			case IPSEC_MODE_TUNNEL:
1494				break;
1495			case IPSEC_MODE_ANY:
1496			default:
1497				ipseclog((LOG_DEBUG,
1498				    "%s: invalid mode=%u\n", __func__,
1499				    xisr->sadb_x_ipsecrequest_mode));
1500				KEY_FREESP(&newsp);
1501				*error = EINVAL;
1502				return NULL;
1503			}
1504			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1505
1506			switch (xisr->sadb_x_ipsecrequest_level) {
1507			case IPSEC_LEVEL_DEFAULT:
1508			case IPSEC_LEVEL_USE:
1509			case IPSEC_LEVEL_REQUIRE:
1510				break;
1511			case IPSEC_LEVEL_UNIQUE:
1512				/* validity check */
1513				/*
1514				 * If range violation of reqid, kernel will
1515				 * update it, don't refuse it.
1516				 */
1517				if (xisr->sadb_x_ipsecrequest_reqid
1518						> IPSEC_MANUAL_REQID_MAX) {
1519					ipseclog((LOG_DEBUG,
1520					    "%s: reqid=%d range "
1521					    "violation, updated by kernel.\n",
1522					    __func__,
1523					    xisr->sadb_x_ipsecrequest_reqid));
1524					xisr->sadb_x_ipsecrequest_reqid = 0;
1525				}
1526
1527				/* allocate new reqid id if reqid is zero. */
1528				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1529					u_int32_t reqid;
1530					if ((reqid = key_newreqid()) == 0) {
1531						KEY_FREESP(&newsp);
1532						*error = ENOBUFS;
1533						return NULL;
1534					}
1535					(*p_isr)->saidx.reqid = reqid;
1536					xisr->sadb_x_ipsecrequest_reqid = reqid;
1537				} else {
1538				/* set it for manual keying. */
1539					(*p_isr)->saidx.reqid =
1540						xisr->sadb_x_ipsecrequest_reqid;
1541				}
1542				break;
1543
1544			default:
1545				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1546					__func__,
1547					xisr->sadb_x_ipsecrequest_level));
1548				KEY_FREESP(&newsp);
1549				*error = EINVAL;
1550				return NULL;
1551			}
1552			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1553
1554			/* set IP addresses if there */
1555			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1556				struct sockaddr *paddr;
1557
1558				paddr = (struct sockaddr *)(xisr + 1);
1559
1560				/* validity check */
1561				if (paddr->sa_len
1562				    > sizeof((*p_isr)->saidx.src)) {
1563					ipseclog((LOG_DEBUG, "%s: invalid "
1564						"request address length.\n",
1565						__func__));
1566					KEY_FREESP(&newsp);
1567					*error = EINVAL;
1568					return NULL;
1569				}
1570				bcopy(paddr, &(*p_isr)->saidx.src,
1571					paddr->sa_len);
1572
1573				paddr = (struct sockaddr *)((caddr_t)paddr
1574							+ paddr->sa_len);
1575
1576				/* validity check */
1577				if (paddr->sa_len
1578				    > sizeof((*p_isr)->saidx.dst)) {
1579					ipseclog((LOG_DEBUG, "%s: invalid "
1580						"request address length.\n",
1581						__func__));
1582					KEY_FREESP(&newsp);
1583					*error = EINVAL;
1584					return NULL;
1585				}
1586				bcopy(paddr, &(*p_isr)->saidx.dst,
1587					paddr->sa_len);
1588			}
1589
1590			(*p_isr)->sp = newsp;
1591
1592			/* initialization for the next. */
1593			p_isr = &(*p_isr)->next;
1594			tlen -= xisr->sadb_x_ipsecrequest_len;
1595
1596			/* validity check */
1597			if (tlen < 0) {
1598				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1599					__func__));
1600				KEY_FREESP(&newsp);
1601				*error = EINVAL;
1602				return NULL;
1603			}
1604
1605			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1606			                 + xisr->sadb_x_ipsecrequest_len);
1607		}
1608	    }
1609		break;
1610	default:
1611		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1612		KEY_FREESP(&newsp);
1613		*error = EINVAL;
1614		return NULL;
1615	}
1616
1617	*error = 0;
1618	return newsp;
1619}
1620
1621static u_int32_t
1622key_newreqid()
1623{
1624	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1625
1626	auto_reqid = (auto_reqid == ~0
1627			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1628
1629	/* XXX should be unique check */
1630
1631	return auto_reqid;
1632}
1633
1634/*
1635 * copy secpolicy struct to sadb_x_policy structure indicated.
1636 */
1637struct mbuf *
1638key_sp2msg(sp)
1639	struct secpolicy *sp;
1640{
1641	struct sadb_x_policy *xpl;
1642	int tlen;
1643	caddr_t p;
1644	struct mbuf *m;
1645
1646	IPSEC_ASSERT(sp != NULL, ("null policy"));
1647
1648	tlen = key_getspreqmsglen(sp);
1649
1650	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1651	if (m == NULL)
1652		return (NULL);
1653	m_align(m, tlen);
1654	m->m_len = tlen;
1655	xpl = mtod(m, struct sadb_x_policy *);
1656	bzero(xpl, tlen);
1657
1658	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1659	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1660	xpl->sadb_x_policy_type = sp->policy;
1661	xpl->sadb_x_policy_dir = sp->spidx.dir;
1662	xpl->sadb_x_policy_id = sp->id;
1663	p = (caddr_t)xpl + sizeof(*xpl);
1664
1665	/* if is the policy for ipsec ? */
1666	if (sp->policy == IPSEC_POLICY_IPSEC) {
1667		struct sadb_x_ipsecrequest *xisr;
1668		struct ipsecrequest *isr;
1669
1670		for (isr = sp->req; isr != NULL; isr = isr->next) {
1671
1672			xisr = (struct sadb_x_ipsecrequest *)p;
1673
1674			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1675			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1676			xisr->sadb_x_ipsecrequest_level = isr->level;
1677			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1678
1679			p += sizeof(*xisr);
1680			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1681			p += isr->saidx.src.sa.sa_len;
1682			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1683			p += isr->saidx.src.sa.sa_len;
1684
1685			xisr->sadb_x_ipsecrequest_len =
1686				PFKEY_ALIGN8(sizeof(*xisr)
1687					+ isr->saidx.src.sa.sa_len
1688					+ isr->saidx.dst.sa.sa_len);
1689		}
1690	}
1691
1692	return m;
1693}
1694
1695/* m will not be freed nor modified */
1696static struct mbuf *
1697#ifdef __STDC__
1698key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1699	int ndeep, int nitem, ...)
1700#else
1701key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1702	struct mbuf *m;
1703	const struct sadb_msghdr *mhp;
1704	int ndeep;
1705	int nitem;
1706	va_dcl
1707#endif
1708{
1709	va_list ap;
1710	int idx;
1711	int i;
1712	struct mbuf *result = NULL, *n;
1713	int len;
1714
1715	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1716	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1717
1718	va_start(ap, nitem);
1719	for (i = 0; i < nitem; i++) {
1720		idx = va_arg(ap, int);
1721		if (idx < 0 || idx > SADB_EXT_MAX)
1722			goto fail;
1723		/* don't attempt to pull empty extension */
1724		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1725			continue;
1726		if (idx != SADB_EXT_RESERVED  &&
1727		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1728			continue;
1729
1730		if (idx == SADB_EXT_RESERVED) {
1731			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1732
1733			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1734
1735			MGETHDR(n, M_NOWAIT, MT_DATA);
1736			if (!n)
1737				goto fail;
1738			n->m_len = len;
1739			n->m_next = NULL;
1740			m_copydata(m, 0, sizeof(struct sadb_msg),
1741			    mtod(n, caddr_t));
1742		} else if (i < ndeep) {
1743			len = mhp->extlen[idx];
1744			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1745			if (n == NULL)
1746				goto fail;
1747			m_align(n, len);
1748			n->m_len = len;
1749			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1750			    mtod(n, caddr_t));
1751		} else {
1752			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1753			    M_NOWAIT);
1754		}
1755		if (n == NULL)
1756			goto fail;
1757
1758		if (result)
1759			m_cat(result, n);
1760		else
1761			result = n;
1762	}
1763	va_end(ap);
1764
1765	if ((result->m_flags & M_PKTHDR) != 0) {
1766		result->m_pkthdr.len = 0;
1767		for (n = result; n; n = n->m_next)
1768			result->m_pkthdr.len += n->m_len;
1769	}
1770
1771	return result;
1772
1773fail:
1774	m_freem(result);
1775	va_end(ap);
1776	return NULL;
1777}
1778
1779/*
1780 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1781 * add an entry to SP database, when received
1782 *   <base, address(SD), (lifetime(H),) policy>
1783 * from the user(?).
1784 * Adding to SP database,
1785 * and send
1786 *   <base, address(SD), (lifetime(H),) policy>
1787 * to the socket which was send.
1788 *
1789 * SPDADD set a unique policy entry.
1790 * SPDSETIDX like SPDADD without a part of policy requests.
1791 * SPDUPDATE replace a unique policy entry.
1792 *
1793 * m will always be freed.
1794 */
1795static int
1796key_spdadd(so, m, mhp)
1797	struct socket *so;
1798	struct mbuf *m;
1799	const struct sadb_msghdr *mhp;
1800{
1801	struct sadb_address *src0, *dst0;
1802	struct sadb_x_policy *xpl0, *xpl;
1803	struct sadb_lifetime *lft = NULL;
1804	struct secpolicyindex spidx;
1805	struct secpolicy *newsp;
1806	int error;
1807
1808	IPSEC_ASSERT(so != NULL, ("null socket"));
1809	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1810	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1811	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1812
1813	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1814	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1815	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1816		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1817		return key_senderror(so, m, EINVAL);
1818	}
1819	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1820	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1821	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1822		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1823			__func__));
1824		return key_senderror(so, m, EINVAL);
1825	}
1826	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1827		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1828			< sizeof(struct sadb_lifetime)) {
1829			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1830				__func__));
1831			return key_senderror(so, m, EINVAL);
1832		}
1833		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1834	}
1835
1836	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1837	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1838	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1839
1840	/*
1841	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1842	 * we are processing traffic endpoints.
1843	 */
1844
1845	/* make secindex */
1846	/* XXX boundary check against sa_len */
1847	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1848	                src0 + 1,
1849	                dst0 + 1,
1850	                src0->sadb_address_prefixlen,
1851	                dst0->sadb_address_prefixlen,
1852	                src0->sadb_address_proto,
1853	                &spidx);
1854
1855	/* checking the direciton. */
1856	switch (xpl0->sadb_x_policy_dir) {
1857	case IPSEC_DIR_INBOUND:
1858	case IPSEC_DIR_OUTBOUND:
1859		break;
1860	default:
1861		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1862		mhp->msg->sadb_msg_errno = EINVAL;
1863		return 0;
1864	}
1865
1866	/* check policy */
1867	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1868	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1869	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1870		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1871		return key_senderror(so, m, EINVAL);
1872	}
1873
1874	/* policy requests are mandatory when action is ipsec. */
1875        if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1876	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1877	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1878		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1879			__func__));
1880		return key_senderror(so, m, EINVAL);
1881	}
1882
1883	/*
1884	 * checking there is SP already or not.
1885	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1886	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1887	 * then error.
1888	 */
1889	newsp = key_getsp(&spidx);
1890	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1891		if (newsp) {
1892			SPTREE_LOCK();
1893			newsp->state = IPSEC_SPSTATE_DEAD;
1894			SPTREE_UNLOCK();
1895			KEY_FREESP(&newsp);
1896		}
1897	} else {
1898		if (newsp != NULL) {
1899			KEY_FREESP(&newsp);
1900			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1901				__func__));
1902			return key_senderror(so, m, EEXIST);
1903		}
1904	}
1905
1906	/* allocation new SP entry */
1907	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1908		return key_senderror(so, m, error);
1909	}
1910
1911	if ((newsp->id = key_getnewspid()) == 0) {
1912		_key_delsp(newsp);
1913		return key_senderror(so, m, ENOBUFS);
1914	}
1915
1916	/* XXX boundary check against sa_len */
1917	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1918	                src0 + 1,
1919	                dst0 + 1,
1920	                src0->sadb_address_prefixlen,
1921	                dst0->sadb_address_prefixlen,
1922	                src0->sadb_address_proto,
1923	                &newsp->spidx);
1924
1925	/* sanity check on addr pair */
1926	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1927			((struct sockaddr *)(dst0+ 1))->sa_family) {
1928		_key_delsp(newsp);
1929		return key_senderror(so, m, EINVAL);
1930	}
1931	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1932			((struct sockaddr *)(dst0+ 1))->sa_len) {
1933		_key_delsp(newsp);
1934		return key_senderror(so, m, EINVAL);
1935	}
1936#if 1
1937	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1938		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1939			_key_delsp(newsp);
1940			return key_senderror(so, m, EINVAL);
1941		}
1942	}
1943#endif
1944
1945	newsp->created = time_second;
1946	newsp->lastused = newsp->created;
1947	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1948	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1949
1950	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1951	newsp->state = IPSEC_SPSTATE_ALIVE;
1952	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1953
1954	/* delete the entry in spacqtree */
1955	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1956		struct secspacq *spacq = key_getspacq(&spidx);
1957		if (spacq != NULL) {
1958			/* reset counter in order to deletion by timehandler. */
1959			spacq->created = time_second;
1960			spacq->count = 0;
1961			SPACQ_UNLOCK();
1962		}
1963    	}
1964
1965    {
1966	struct mbuf *n, *mpolicy;
1967	struct sadb_msg *newmsg;
1968	int off;
1969
1970	/*
1971	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1972	 * we are sending traffic endpoints.
1973	 */
1974
1975	/* create new sadb_msg to reply. */
1976	if (lft) {
1977		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1978		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1979		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1980	} else {
1981		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1982		    SADB_X_EXT_POLICY,
1983		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1984	}
1985	if (!n)
1986		return key_senderror(so, m, ENOBUFS);
1987
1988	if (n->m_len < sizeof(*newmsg)) {
1989		n = m_pullup(n, sizeof(*newmsg));
1990		if (!n)
1991			return key_senderror(so, m, ENOBUFS);
1992	}
1993	newmsg = mtod(n, struct sadb_msg *);
1994	newmsg->sadb_msg_errno = 0;
1995	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
1996
1997	off = 0;
1998	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
1999	    sizeof(*xpl), &off);
2000	if (mpolicy == NULL) {
2001		/* n is already freed */
2002		return key_senderror(so, m, ENOBUFS);
2003	}
2004	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2005	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2006		m_freem(n);
2007		return key_senderror(so, m, EINVAL);
2008	}
2009	xpl->sadb_x_policy_id = newsp->id;
2010
2011	m_freem(m);
2012	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2013    }
2014}
2015
2016/*
2017 * get new policy id.
2018 * OUT:
2019 *	0:	failure.
2020 *	others: success.
2021 */
2022static u_int32_t
2023key_getnewspid()
2024{
2025	u_int32_t newid = 0;
2026	int count = V_key_spi_trycnt;	/* XXX */
2027	struct secpolicy *sp;
2028
2029	/* when requesting to allocate spi ranged */
2030	while (count--) {
2031		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2032
2033		if ((sp = key_getspbyid(newid)) == NULL)
2034			break;
2035
2036		KEY_FREESP(&sp);
2037	}
2038
2039	if (count == 0 || newid == 0) {
2040		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2041			__func__));
2042		return 0;
2043	}
2044
2045	return newid;
2046}
2047
2048/*
2049 * SADB_SPDDELETE processing
2050 * receive
2051 *   <base, address(SD), policy(*)>
2052 * from the user(?), and set SADB_SASTATE_DEAD,
2053 * and send,
2054 *   <base, address(SD), policy(*)>
2055 * to the ikmpd.
2056 * policy(*) including direction of policy.
2057 *
2058 * m will always be freed.
2059 */
2060static int
2061key_spddelete(so, m, mhp)
2062	struct socket *so;
2063	struct mbuf *m;
2064	const struct sadb_msghdr *mhp;
2065{
2066	struct sadb_address *src0, *dst0;
2067	struct sadb_x_policy *xpl0;
2068	struct secpolicyindex spidx;
2069	struct secpolicy *sp;
2070
2071	IPSEC_ASSERT(so != NULL, ("null so"));
2072	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2073	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2074	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2075
2076	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2077	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2078	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2079		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2080			__func__));
2081		return key_senderror(so, m, EINVAL);
2082	}
2083	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2084	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2085	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2086		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2087			__func__));
2088		return key_senderror(so, m, EINVAL);
2089	}
2090
2091	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2092	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2093	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2094
2095	/*
2096	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2097	 * we are processing traffic endpoints.
2098	 */
2099
2100	/* make secindex */
2101	/* XXX boundary check against sa_len */
2102	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2103	                src0 + 1,
2104	                dst0 + 1,
2105	                src0->sadb_address_prefixlen,
2106	                dst0->sadb_address_prefixlen,
2107	                src0->sadb_address_proto,
2108	                &spidx);
2109
2110	/* checking the direciton. */
2111	switch (xpl0->sadb_x_policy_dir) {
2112	case IPSEC_DIR_INBOUND:
2113	case IPSEC_DIR_OUTBOUND:
2114		break;
2115	default:
2116		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2117		return key_senderror(so, m, EINVAL);
2118	}
2119
2120	/* Is there SP in SPD ? */
2121	if ((sp = key_getsp(&spidx)) == NULL) {
2122		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2123		return key_senderror(so, m, EINVAL);
2124	}
2125
2126	/* save policy id to buffer to be returned. */
2127	xpl0->sadb_x_policy_id = sp->id;
2128
2129	SPTREE_LOCK();
2130	sp->state = IPSEC_SPSTATE_DEAD;
2131	SPTREE_UNLOCK();
2132	KEY_FREESP(&sp);
2133
2134    {
2135	struct mbuf *n;
2136	struct sadb_msg *newmsg;
2137
2138	/*
2139	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2140	 * we are sending traffic endpoints.
2141	 */
2142
2143	/* create new sadb_msg to reply. */
2144	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2145	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2146	if (!n)
2147		return key_senderror(so, m, ENOBUFS);
2148
2149	newmsg = mtod(n, struct sadb_msg *);
2150	newmsg->sadb_msg_errno = 0;
2151	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2152
2153	m_freem(m);
2154	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2155    }
2156}
2157
2158/*
2159 * SADB_SPDDELETE2 processing
2160 * receive
2161 *   <base, policy(*)>
2162 * from the user(?), and set SADB_SASTATE_DEAD,
2163 * and send,
2164 *   <base, policy(*)>
2165 * to the ikmpd.
2166 * policy(*) including direction of policy.
2167 *
2168 * m will always be freed.
2169 */
2170static int
2171key_spddelete2(so, m, mhp)
2172	struct socket *so;
2173	struct mbuf *m;
2174	const struct sadb_msghdr *mhp;
2175{
2176	u_int32_t id;
2177	struct secpolicy *sp;
2178
2179	IPSEC_ASSERT(so != NULL, ("null socket"));
2180	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2181	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2182	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2183
2184	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2185	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2186		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2187		return key_senderror(so, m, EINVAL);
2188	}
2189
2190	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2191
2192	/* Is there SP in SPD ? */
2193	if ((sp = key_getspbyid(id)) == NULL) {
2194		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2195		return key_senderror(so, m, EINVAL);
2196	}
2197
2198	SPTREE_LOCK();
2199	sp->state = IPSEC_SPSTATE_DEAD;
2200	SPTREE_UNLOCK();
2201	KEY_FREESP(&sp);
2202
2203    {
2204	struct mbuf *n, *nn;
2205	struct sadb_msg *newmsg;
2206	int off, len;
2207
2208	/* create new sadb_msg to reply. */
2209	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2210
2211	MGETHDR(n, M_NOWAIT, MT_DATA);
2212	if (n && len > MHLEN) {
2213		MCLGET(n, M_NOWAIT);
2214		if ((n->m_flags & M_EXT) == 0) {
2215			m_freem(n);
2216			n = NULL;
2217		}
2218	}
2219	if (!n)
2220		return key_senderror(so, m, ENOBUFS);
2221
2222	n->m_len = len;
2223	n->m_next = NULL;
2224	off = 0;
2225
2226	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2227	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2228
2229	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2230		off, len));
2231
2232	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2233	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2234	if (!n->m_next) {
2235		m_freem(n);
2236		return key_senderror(so, m, ENOBUFS);
2237	}
2238
2239	n->m_pkthdr.len = 0;
2240	for (nn = n; nn; nn = nn->m_next)
2241		n->m_pkthdr.len += nn->m_len;
2242
2243	newmsg = mtod(n, struct sadb_msg *);
2244	newmsg->sadb_msg_errno = 0;
2245	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2246
2247	m_freem(m);
2248	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2249    }
2250}
2251
2252/*
2253 * SADB_X_GET processing
2254 * receive
2255 *   <base, policy(*)>
2256 * from the user(?),
2257 * and send,
2258 *   <base, address(SD), policy>
2259 * to the ikmpd.
2260 * policy(*) including direction of policy.
2261 *
2262 * m will always be freed.
2263 */
2264static int
2265key_spdget(so, m, mhp)
2266	struct socket *so;
2267	struct mbuf *m;
2268	const struct sadb_msghdr *mhp;
2269{
2270	u_int32_t id;
2271	struct secpolicy *sp;
2272	struct mbuf *n;
2273
2274	IPSEC_ASSERT(so != NULL, ("null socket"));
2275	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2276	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2277	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2278
2279	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2280	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2281		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2282			__func__));
2283		return key_senderror(so, m, EINVAL);
2284	}
2285
2286	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2287
2288	/* Is there SP in SPD ? */
2289	if ((sp = key_getspbyid(id)) == NULL) {
2290		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2291		return key_senderror(so, m, ENOENT);
2292	}
2293
2294	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2295	KEY_FREESP(&sp);
2296	if (n != NULL) {
2297		m_freem(m);
2298		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2299	} else
2300		return key_senderror(so, m, ENOBUFS);
2301}
2302
2303/*
2304 * SADB_X_SPDACQUIRE processing.
2305 * Acquire policy and SA(s) for a *OUTBOUND* packet.
2306 * send
2307 *   <base, policy(*)>
2308 * to KMD, and expect to receive
2309 *   <base> with SADB_X_SPDACQUIRE if error occured,
2310 * or
2311 *   <base, policy>
2312 * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2313 * policy(*) is without policy requests.
2314 *
2315 *    0     : succeed
2316 *    others: error number
2317 */
2318int
2319key_spdacquire(sp)
2320	struct secpolicy *sp;
2321{
2322	struct mbuf *result = NULL, *m;
2323	struct secspacq *newspacq;
2324
2325	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2326	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2327	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2328		("policy not IPSEC %u", sp->policy));
2329
2330	/* Get an entry to check whether sent message or not. */
2331	newspacq = key_getspacq(&sp->spidx);
2332	if (newspacq != NULL) {
2333		if (V_key_blockacq_count < newspacq->count) {
2334			/* reset counter and do send message. */
2335			newspacq->count = 0;
2336		} else {
2337			/* increment counter and do nothing. */
2338			newspacq->count++;
2339			return 0;
2340		}
2341		SPACQ_UNLOCK();
2342	} else {
2343		/* make new entry for blocking to send SADB_ACQUIRE. */
2344		newspacq = key_newspacq(&sp->spidx);
2345		if (newspacq == NULL)
2346			return ENOBUFS;
2347	}
2348
2349	/* create new sadb_msg to reply. */
2350	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2351	if (!m)
2352		return ENOBUFS;
2353
2354	result = m;
2355
2356	result->m_pkthdr.len = 0;
2357	for (m = result; m; m = m->m_next)
2358		result->m_pkthdr.len += m->m_len;
2359
2360	mtod(result, struct sadb_msg *)->sadb_msg_len =
2361	    PFKEY_UNIT64(result->m_pkthdr.len);
2362
2363	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2364}
2365
2366/*
2367 * SADB_SPDFLUSH processing
2368 * receive
2369 *   <base>
2370 * from the user, and free all entries in secpctree.
2371 * and send,
2372 *   <base>
2373 * to the user.
2374 * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2375 *
2376 * m will always be freed.
2377 */
2378static int
2379key_spdflush(so, m, mhp)
2380	struct socket *so;
2381	struct mbuf *m;
2382	const struct sadb_msghdr *mhp;
2383{
2384	struct sadb_msg *newmsg;
2385	struct secpolicy *sp;
2386	u_int dir;
2387
2388	IPSEC_ASSERT(so != NULL, ("null socket"));
2389	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2390	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2391	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2392
2393	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2394		return key_senderror(so, m, EINVAL);
2395
2396	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2397		SPTREE_LOCK();
2398		LIST_FOREACH(sp, &V_sptree[dir], chain)
2399			sp->state = IPSEC_SPSTATE_DEAD;
2400		SPTREE_UNLOCK();
2401	}
2402
2403	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2404		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2405		return key_senderror(so, m, ENOBUFS);
2406	}
2407
2408	if (m->m_next)
2409		m_freem(m->m_next);
2410	m->m_next = NULL;
2411	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2412	newmsg = mtod(m, struct sadb_msg *);
2413	newmsg->sadb_msg_errno = 0;
2414	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2415
2416	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2417}
2418
2419/*
2420 * SADB_SPDDUMP processing
2421 * receive
2422 *   <base>
2423 * from the user, and dump all SP leaves
2424 * and send,
2425 *   <base> .....
2426 * to the ikmpd.
2427 *
2428 * m will always be freed.
2429 */
2430static int
2431key_spddump(so, m, mhp)
2432	struct socket *so;
2433	struct mbuf *m;
2434	const struct sadb_msghdr *mhp;
2435{
2436	struct secpolicy *sp;
2437	int cnt;
2438	u_int dir;
2439	struct mbuf *n;
2440
2441	IPSEC_ASSERT(so != NULL, ("null socket"));
2442	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2443	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2444	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2445
2446	/* search SPD entry and get buffer size. */
2447	cnt = 0;
2448	SPTREE_LOCK();
2449	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2450		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2451			cnt++;
2452		}
2453	}
2454
2455	if (cnt == 0) {
2456		SPTREE_UNLOCK();
2457		return key_senderror(so, m, ENOENT);
2458	}
2459
2460	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2461		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2462			--cnt;
2463			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2464			    mhp->msg->sadb_msg_pid);
2465
2466			if (n)
2467				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2468		}
2469	}
2470
2471	SPTREE_UNLOCK();
2472	m_freem(m);
2473	return 0;
2474}
2475
2476static struct mbuf *
2477key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2478{
2479	struct mbuf *result = NULL, *m;
2480	struct seclifetime lt;
2481
2482	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2483	if (!m)
2484		goto fail;
2485	result = m;
2486
2487	/*
2488	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2489	 * we are sending traffic endpoints.
2490	 */
2491	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2492	    &sp->spidx.src.sa, sp->spidx.prefs,
2493	    sp->spidx.ul_proto);
2494	if (!m)
2495		goto fail;
2496	m_cat(result, m);
2497
2498	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2499	    &sp->spidx.dst.sa, sp->spidx.prefd,
2500	    sp->spidx.ul_proto);
2501	if (!m)
2502		goto fail;
2503	m_cat(result, m);
2504
2505	m = key_sp2msg(sp);
2506	if (!m)
2507		goto fail;
2508	m_cat(result, m);
2509
2510	if(sp->lifetime){
2511		lt.addtime=sp->created;
2512		lt.usetime= sp->lastused;
2513		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2514		if (!m)
2515			goto fail;
2516		m_cat(result, m);
2517
2518		lt.addtime=sp->lifetime;
2519		lt.usetime= sp->validtime;
2520		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2521		if (!m)
2522			goto fail;
2523		m_cat(result, m);
2524	}
2525
2526	if ((result->m_flags & M_PKTHDR) == 0)
2527		goto fail;
2528
2529	if (result->m_len < sizeof(struct sadb_msg)) {
2530		result = m_pullup(result, sizeof(struct sadb_msg));
2531		if (result == NULL)
2532			goto fail;
2533	}
2534
2535	result->m_pkthdr.len = 0;
2536	for (m = result; m; m = m->m_next)
2537		result->m_pkthdr.len += m->m_len;
2538
2539	mtod(result, struct sadb_msg *)->sadb_msg_len =
2540	    PFKEY_UNIT64(result->m_pkthdr.len);
2541
2542	return result;
2543
2544fail:
2545	m_freem(result);
2546	return NULL;
2547}
2548
2549/*
2550 * get PFKEY message length for security policy and request.
2551 */
2552static u_int
2553key_getspreqmsglen(sp)
2554	struct secpolicy *sp;
2555{
2556	u_int tlen;
2557
2558	tlen = sizeof(struct sadb_x_policy);
2559
2560	/* if is the policy for ipsec ? */
2561	if (sp->policy != IPSEC_POLICY_IPSEC)
2562		return tlen;
2563
2564	/* get length of ipsec requests */
2565    {
2566	struct ipsecrequest *isr;
2567	int len;
2568
2569	for (isr = sp->req; isr != NULL; isr = isr->next) {
2570		len = sizeof(struct sadb_x_ipsecrequest)
2571			+ isr->saidx.src.sa.sa_len
2572			+ isr->saidx.dst.sa.sa_len;
2573
2574		tlen += PFKEY_ALIGN8(len);
2575	}
2576    }
2577
2578	return tlen;
2579}
2580
2581/*
2582 * SADB_SPDEXPIRE processing
2583 * send
2584 *   <base, address(SD), lifetime(CH), policy>
2585 * to KMD by PF_KEY.
2586 *
2587 * OUT:	0	: succeed
2588 *	others	: error number
2589 */
2590static int
2591key_spdexpire(sp)
2592	struct secpolicy *sp;
2593{
2594	struct mbuf *result = NULL, *m;
2595	int len;
2596	int error = -1;
2597	struct sadb_lifetime *lt;
2598
2599	/* XXX: Why do we lock ? */
2600
2601	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2602
2603	/* set msg header */
2604	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2605	if (!m) {
2606		error = ENOBUFS;
2607		goto fail;
2608	}
2609	result = m;
2610
2611	/* create lifetime extension (current and hard) */
2612	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2613	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2614	if (m == NULL) {
2615		error = ENOBUFS;
2616		goto fail;
2617	}
2618	m_align(m, len);
2619	m->m_len = len;
2620	bzero(mtod(m, caddr_t), len);
2621	lt = mtod(m, struct sadb_lifetime *);
2622	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2623	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2624	lt->sadb_lifetime_allocations = 0;
2625	lt->sadb_lifetime_bytes = 0;
2626	lt->sadb_lifetime_addtime = sp->created;
2627	lt->sadb_lifetime_usetime = sp->lastused;
2628	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2629	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2630	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2631	lt->sadb_lifetime_allocations = 0;
2632	lt->sadb_lifetime_bytes = 0;
2633	lt->sadb_lifetime_addtime = sp->lifetime;
2634	lt->sadb_lifetime_usetime = sp->validtime;
2635	m_cat(result, m);
2636
2637	/*
2638	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2639	 * we are sending traffic endpoints.
2640	 */
2641
2642	/* set sadb_address for source */
2643	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2644	    &sp->spidx.src.sa,
2645	    sp->spidx.prefs, sp->spidx.ul_proto);
2646	if (!m) {
2647		error = ENOBUFS;
2648		goto fail;
2649	}
2650	m_cat(result, m);
2651
2652	/* set sadb_address for destination */
2653	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2654	    &sp->spidx.dst.sa,
2655	    sp->spidx.prefd, sp->spidx.ul_proto);
2656	if (!m) {
2657		error = ENOBUFS;
2658		goto fail;
2659	}
2660	m_cat(result, m);
2661
2662	/* set secpolicy */
2663	m = key_sp2msg(sp);
2664	if (!m) {
2665		error = ENOBUFS;
2666		goto fail;
2667	}
2668	m_cat(result, m);
2669
2670	if ((result->m_flags & M_PKTHDR) == 0) {
2671		error = EINVAL;
2672		goto fail;
2673	}
2674
2675	if (result->m_len < sizeof(struct sadb_msg)) {
2676		result = m_pullup(result, sizeof(struct sadb_msg));
2677		if (result == NULL) {
2678			error = ENOBUFS;
2679			goto fail;
2680		}
2681	}
2682
2683	result->m_pkthdr.len = 0;
2684	for (m = result; m; m = m->m_next)
2685		result->m_pkthdr.len += m->m_len;
2686
2687	mtod(result, struct sadb_msg *)->sadb_msg_len =
2688	    PFKEY_UNIT64(result->m_pkthdr.len);
2689
2690	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2691
2692 fail:
2693	if (result)
2694		m_freem(result);
2695	return error;
2696}
2697
2698/* %%% SAD management */
2699/*
2700 * allocating a memory for new SA head, and copy from the values of mhp.
2701 * OUT:	NULL	: failure due to the lack of memory.
2702 *	others	: pointer to new SA head.
2703 */
2704static struct secashead *
2705key_newsah(saidx)
2706	struct secasindex *saidx;
2707{
2708	struct secashead *newsah;
2709
2710	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2711
2712	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2713	if (newsah != NULL) {
2714		int i;
2715		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2716			LIST_INIT(&newsah->savtree[i]);
2717		newsah->saidx = *saidx;
2718
2719		/* add to saidxtree */
2720		newsah->state = SADB_SASTATE_MATURE;
2721
2722		SAHTREE_LOCK();
2723		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2724		SAHTREE_UNLOCK();
2725	}
2726	return(newsah);
2727}
2728
2729/*
2730 * delete SA index and all SA registerd.
2731 */
2732static void
2733key_delsah(sah)
2734	struct secashead *sah;
2735{
2736	struct secasvar *sav, *nextsav;
2737	u_int stateidx;
2738	int zombie = 0;
2739
2740	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2741	SAHTREE_LOCK_ASSERT();
2742
2743	/* searching all SA registerd in the secindex. */
2744	for (stateidx = 0;
2745	     stateidx < _ARRAYLEN(saorder_state_any);
2746	     stateidx++) {
2747		u_int state = saorder_state_any[stateidx];
2748		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2749			if (sav->refcnt == 0) {
2750				/* sanity check */
2751				KEY_CHKSASTATE(state, sav->state, __func__);
2752				/*
2753				 * do NOT call KEY_FREESAV here:
2754				 * it will only delete the sav if refcnt == 1,
2755				 * where we already know that refcnt == 0
2756				 */
2757				key_delsav(sav);
2758			} else {
2759				/* give up to delete this sa */
2760				zombie++;
2761			}
2762		}
2763	}
2764	if (!zombie) {		/* delete only if there are savs */
2765		/* remove from tree of SA index */
2766		if (__LIST_CHAINED(sah))
2767			LIST_REMOVE(sah, chain);
2768		if (sah->route_cache.sa_route.ro_rt) {
2769			RTFREE(sah->route_cache.sa_route.ro_rt);
2770			sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2771		}
2772		free(sah, M_IPSEC_SAH);
2773	}
2774}
2775
2776/*
2777 * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2778 * and copy the values of mhp into new buffer.
2779 * When SAD message type is GETSPI:
2780 *	to set sequence number from acq_seq++,
2781 *	to set zero to SPI.
2782 *	not to call key_setsava().
2783 * OUT:	NULL	: fail
2784 *	others	: pointer to new secasvar.
2785 *
2786 * does not modify mbuf.  does not free mbuf on error.
2787 */
2788static struct secasvar *
2789key_newsav(m, mhp, sah, errp, where, tag)
2790	struct mbuf *m;
2791	const struct sadb_msghdr *mhp;
2792	struct secashead *sah;
2793	int *errp;
2794	const char* where;
2795	int tag;
2796{
2797	struct secasvar *newsav;
2798	const struct sadb_sa *xsa;
2799
2800	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2801	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2802	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2803	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2804
2805	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2806	if (newsav == NULL) {
2807		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2808		*errp = ENOBUFS;
2809		goto done;
2810	}
2811
2812	switch (mhp->msg->sadb_msg_type) {
2813	case SADB_GETSPI:
2814		newsav->spi = 0;
2815
2816#ifdef IPSEC_DOSEQCHECK
2817		/* sync sequence number */
2818		if (mhp->msg->sadb_msg_seq == 0)
2819			newsav->seq =
2820				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2821		else
2822#endif
2823			newsav->seq = mhp->msg->sadb_msg_seq;
2824		break;
2825
2826	case SADB_ADD:
2827		/* sanity check */
2828		if (mhp->ext[SADB_EXT_SA] == NULL) {
2829			free(newsav, M_IPSEC_SA);
2830			newsav = NULL;
2831			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2832				__func__));
2833			*errp = EINVAL;
2834			goto done;
2835		}
2836		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2837		newsav->spi = xsa->sadb_sa_spi;
2838		newsav->seq = mhp->msg->sadb_msg_seq;
2839		break;
2840	default:
2841		free(newsav, M_IPSEC_SA);
2842		newsav = NULL;
2843		*errp = EINVAL;
2844		goto done;
2845	}
2846
2847
2848	/* copy sav values */
2849	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2850		*errp = key_setsaval(newsav, m, mhp);
2851		if (*errp) {
2852			free(newsav, M_IPSEC_SA);
2853			newsav = NULL;
2854			goto done;
2855		}
2856	}
2857
2858	SECASVAR_LOCK_INIT(newsav);
2859
2860	/* reset created */
2861	newsav->created = time_second;
2862	newsav->pid = mhp->msg->sadb_msg_pid;
2863
2864	/* add to satree */
2865	newsav->sah = sah;
2866	sa_initref(newsav);
2867	newsav->state = SADB_SASTATE_LARVAL;
2868
2869	SAHTREE_LOCK();
2870	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2871			secasvar, chain);
2872	SAHTREE_UNLOCK();
2873done:
2874	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2875		printf("DP %s from %s:%u return SP:%p\n", __func__,
2876			where, tag, newsav));
2877
2878	return newsav;
2879}
2880
2881/*
2882 * free() SA variable entry.
2883 */
2884static void
2885key_cleansav(struct secasvar *sav)
2886{
2887	/*
2888	 * Cleanup xform state.  Note that zeroize'ing causes the
2889	 * keys to be cleared; otherwise we must do it ourself.
2890	 */
2891	if (sav->tdb_xform != NULL) {
2892		sav->tdb_xform->xf_zeroize(sav);
2893		sav->tdb_xform = NULL;
2894	} else {
2895		KASSERT(sav->iv == NULL, ("iv but no xform"));
2896		if (sav->key_auth != NULL)
2897			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2898		if (sav->key_enc != NULL)
2899			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2900	}
2901	if (sav->key_auth != NULL) {
2902		if (sav->key_auth->key_data != NULL)
2903			free(sav->key_auth->key_data, M_IPSEC_MISC);
2904		free(sav->key_auth, M_IPSEC_MISC);
2905		sav->key_auth = NULL;
2906	}
2907	if (sav->key_enc != NULL) {
2908		if (sav->key_enc->key_data != NULL)
2909			free(sav->key_enc->key_data, M_IPSEC_MISC);
2910		free(sav->key_enc, M_IPSEC_MISC);
2911		sav->key_enc = NULL;
2912	}
2913	if (sav->sched) {
2914		bzero(sav->sched, sav->schedlen);
2915		free(sav->sched, M_IPSEC_MISC);
2916		sav->sched = NULL;
2917	}
2918	if (sav->replay != NULL) {
2919		free(sav->replay, M_IPSEC_MISC);
2920		sav->replay = NULL;
2921	}
2922	if (sav->lft_c != NULL) {
2923		free(sav->lft_c, M_IPSEC_MISC);
2924		sav->lft_c = NULL;
2925	}
2926	if (sav->lft_h != NULL) {
2927		free(sav->lft_h, M_IPSEC_MISC);
2928		sav->lft_h = NULL;
2929	}
2930	if (sav->lft_s != NULL) {
2931		free(sav->lft_s, M_IPSEC_MISC);
2932		sav->lft_s = NULL;
2933	}
2934}
2935
2936/*
2937 * free() SA variable entry.
2938 */
2939static void
2940key_delsav(sav)
2941	struct secasvar *sav;
2942{
2943	IPSEC_ASSERT(sav != NULL, ("null sav"));
2944	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2945
2946	/* remove from SA header */
2947	if (__LIST_CHAINED(sav))
2948		LIST_REMOVE(sav, chain);
2949	key_cleansav(sav);
2950	SECASVAR_LOCK_DESTROY(sav);
2951	free(sav, M_IPSEC_SA);
2952}
2953
2954/*
2955 * search SAD.
2956 * OUT:
2957 *	NULL	: not found
2958 *	others	: found, pointer to a SA.
2959 */
2960static struct secashead *
2961key_getsah(saidx)
2962	struct secasindex *saidx;
2963{
2964	struct secashead *sah;
2965
2966	SAHTREE_LOCK();
2967	LIST_FOREACH(sah, &V_sahtree, chain) {
2968		if (sah->state == SADB_SASTATE_DEAD)
2969			continue;
2970		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2971			break;
2972	}
2973	SAHTREE_UNLOCK();
2974
2975	return sah;
2976}
2977
2978/*
2979 * check not to be duplicated SPI.
2980 * NOTE: this function is too slow due to searching all SAD.
2981 * OUT:
2982 *	NULL	: not found
2983 *	others	: found, pointer to a SA.
2984 */
2985static struct secasvar *
2986key_checkspidup(saidx, spi)
2987	struct secasindex *saidx;
2988	u_int32_t spi;
2989{
2990	struct secashead *sah;
2991	struct secasvar *sav;
2992
2993	/* check address family */
2994	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
2995		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
2996			__func__));
2997		return NULL;
2998	}
2999
3000	sav = NULL;
3001	/* check all SAD */
3002	SAHTREE_LOCK();
3003	LIST_FOREACH(sah, &V_sahtree, chain) {
3004		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3005			continue;
3006		sav = key_getsavbyspi(sah, spi);
3007		if (sav != NULL)
3008			break;
3009	}
3010	SAHTREE_UNLOCK();
3011
3012	return sav;
3013}
3014
3015/*
3016 * search SAD litmited alive SA, protocol, SPI.
3017 * OUT:
3018 *	NULL	: not found
3019 *	others	: found, pointer to a SA.
3020 */
3021static struct secasvar *
3022key_getsavbyspi(sah, spi)
3023	struct secashead *sah;
3024	u_int32_t spi;
3025{
3026	struct secasvar *sav;
3027	u_int stateidx, state;
3028
3029	sav = NULL;
3030	SAHTREE_LOCK_ASSERT();
3031	/* search all status */
3032	for (stateidx = 0;
3033	     stateidx < _ARRAYLEN(saorder_state_alive);
3034	     stateidx++) {
3035
3036		state = saorder_state_alive[stateidx];
3037		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3038
3039			/* sanity check */
3040			if (sav->state != state) {
3041				ipseclog((LOG_DEBUG, "%s: "
3042				    "invalid sav->state (queue: %d SA: %d)\n",
3043				    __func__, state, sav->state));
3044				continue;
3045			}
3046
3047			if (sav->spi == spi)
3048				return sav;
3049		}
3050	}
3051
3052	return NULL;
3053}
3054
3055/*
3056 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3057 * You must update these if need.
3058 * OUT:	0:	success.
3059 *	!0:	failure.
3060 *
3061 * does not modify mbuf.  does not free mbuf on error.
3062 */
3063static int
3064key_setsaval(sav, m, mhp)
3065	struct secasvar *sav;
3066	struct mbuf *m;
3067	const struct sadb_msghdr *mhp;
3068{
3069	int error = 0;
3070
3071	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3072	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3073	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3074
3075	/* initialization */
3076	sav->replay = NULL;
3077	sav->key_auth = NULL;
3078	sav->key_enc = NULL;
3079	sav->sched = NULL;
3080	sav->schedlen = 0;
3081	sav->iv = NULL;
3082	sav->lft_c = NULL;
3083	sav->lft_h = NULL;
3084	sav->lft_s = NULL;
3085	sav->tdb_xform = NULL;		/* transform */
3086	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3087	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3088	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3089	/*  Initialize even if NAT-T not compiled in: */
3090	sav->natt_type = 0;
3091	sav->natt_esp_frag_len = 0;
3092
3093	/* SA */
3094	if (mhp->ext[SADB_EXT_SA] != NULL) {
3095		const struct sadb_sa *sa0;
3096
3097		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3098		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3099			error = EINVAL;
3100			goto fail;
3101		}
3102
3103		sav->alg_auth = sa0->sadb_sa_auth;
3104		sav->alg_enc = sa0->sadb_sa_encrypt;
3105		sav->flags = sa0->sadb_sa_flags;
3106
3107		/* replay window */
3108		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3109			sav->replay = (struct secreplay *)
3110				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3111			if (sav->replay == NULL) {
3112				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3113					__func__));
3114				error = ENOBUFS;
3115				goto fail;
3116			}
3117			if (sa0->sadb_sa_replay != 0)
3118				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3119			sav->replay->wsize = sa0->sadb_sa_replay;
3120		}
3121	}
3122
3123	/* Authentication keys */
3124	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3125		const struct sadb_key *key0;
3126		int len;
3127
3128		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3129		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3130
3131		error = 0;
3132		if (len < sizeof(*key0)) {
3133			error = EINVAL;
3134			goto fail;
3135		}
3136		switch (mhp->msg->sadb_msg_satype) {
3137		case SADB_SATYPE_AH:
3138		case SADB_SATYPE_ESP:
3139		case SADB_X_SATYPE_TCPSIGNATURE:
3140			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3141			    sav->alg_auth != SADB_X_AALG_NULL)
3142				error = EINVAL;
3143			break;
3144		case SADB_X_SATYPE_IPCOMP:
3145		default:
3146			error = EINVAL;
3147			break;
3148		}
3149		if (error) {
3150			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3151				__func__));
3152			goto fail;
3153		}
3154
3155		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3156								M_IPSEC_MISC);
3157		if (sav->key_auth == NULL ) {
3158			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3159				  __func__));
3160			error = ENOBUFS;
3161			goto fail;
3162		}
3163	}
3164
3165	/* Encryption key */
3166	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3167		const struct sadb_key *key0;
3168		int len;
3169
3170		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3171		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3172
3173		error = 0;
3174		if (len < sizeof(*key0)) {
3175			error = EINVAL;
3176			goto fail;
3177		}
3178		switch (mhp->msg->sadb_msg_satype) {
3179		case SADB_SATYPE_ESP:
3180			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3181			    sav->alg_enc != SADB_EALG_NULL) {
3182				error = EINVAL;
3183				break;
3184			}
3185			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3186								       len,
3187								       M_IPSEC_MISC);
3188			if (sav->key_enc == NULL) {
3189				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3190					__func__));
3191				error = ENOBUFS;
3192				goto fail;
3193			}
3194			break;
3195		case SADB_X_SATYPE_IPCOMP:
3196			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3197				error = EINVAL;
3198			sav->key_enc = NULL;	/*just in case*/
3199			break;
3200		case SADB_SATYPE_AH:
3201		case SADB_X_SATYPE_TCPSIGNATURE:
3202		default:
3203			error = EINVAL;
3204			break;
3205		}
3206		if (error) {
3207			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3208				__func__));
3209			goto fail;
3210		}
3211	}
3212
3213	/* set iv */
3214	sav->ivlen = 0;
3215
3216	switch (mhp->msg->sadb_msg_satype) {
3217	case SADB_SATYPE_AH:
3218		error = xform_init(sav, XF_AH);
3219		break;
3220	case SADB_SATYPE_ESP:
3221		error = xform_init(sav, XF_ESP);
3222		break;
3223	case SADB_X_SATYPE_IPCOMP:
3224		error = xform_init(sav, XF_IPCOMP);
3225		break;
3226	case SADB_X_SATYPE_TCPSIGNATURE:
3227		error = xform_init(sav, XF_TCPSIGNATURE);
3228		break;
3229	}
3230	if (error) {
3231		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3232		        __func__, mhp->msg->sadb_msg_satype));
3233		goto fail;
3234	}
3235
3236	/* reset created */
3237	sav->created = time_second;
3238
3239	/* make lifetime for CURRENT */
3240	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3241	if (sav->lft_c == NULL) {
3242		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3243		error = ENOBUFS;
3244		goto fail;
3245	}
3246
3247	sav->lft_c->allocations = 0;
3248	sav->lft_c->bytes = 0;
3249	sav->lft_c->addtime = time_second;
3250	sav->lft_c->usetime = 0;
3251
3252	/* lifetimes for HARD and SOFT */
3253    {
3254	const struct sadb_lifetime *lft0;
3255
3256	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3257	if (lft0 != NULL) {
3258		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3259			error = EINVAL;
3260			goto fail;
3261		}
3262		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3263		if (sav->lft_h == NULL) {
3264			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3265			error = ENOBUFS;
3266			goto fail;
3267		}
3268		/* to be initialize ? */
3269	}
3270
3271	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3272	if (lft0 != NULL) {
3273		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3274			error = EINVAL;
3275			goto fail;
3276		}
3277		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3278		if (sav->lft_s == NULL) {
3279			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3280			error = ENOBUFS;
3281			goto fail;
3282		}
3283		/* to be initialize ? */
3284	}
3285    }
3286
3287	return 0;
3288
3289 fail:
3290	/* initialization */
3291	key_cleansav(sav);
3292
3293	return error;
3294}
3295
3296/*
3297 * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3298 * OUT:	0:	valid
3299 *	other:	errno
3300 */
3301static int
3302key_mature(struct secasvar *sav)
3303{
3304	int error;
3305
3306	/* check SPI value */
3307	switch (sav->sah->saidx.proto) {
3308	case IPPROTO_ESP:
3309	case IPPROTO_AH:
3310		/*
3311		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3312		 * 1-255 reserved by IANA for future use,
3313		 * 0 for implementation specific, local use.
3314		 */
3315		if (ntohl(sav->spi) <= 255) {
3316			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3317			    __func__, (u_int32_t)ntohl(sav->spi)));
3318			return EINVAL;
3319		}
3320		break;
3321	}
3322
3323	/* check satype */
3324	switch (sav->sah->saidx.proto) {
3325	case IPPROTO_ESP:
3326		/* check flags */
3327		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3328		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3329			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3330				"given to old-esp.\n", __func__));
3331			return EINVAL;
3332		}
3333		error = xform_init(sav, XF_ESP);
3334		break;
3335	case IPPROTO_AH:
3336		/* check flags */
3337		if (sav->flags & SADB_X_EXT_DERIV) {
3338			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3339				"given to AH SA.\n", __func__));
3340			return EINVAL;
3341		}
3342		if (sav->alg_enc != SADB_EALG_NONE) {
3343			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3344				"mismated.\n", __func__));
3345			return(EINVAL);
3346		}
3347		error = xform_init(sav, XF_AH);
3348		break;
3349	case IPPROTO_IPCOMP:
3350		if (sav->alg_auth != SADB_AALG_NONE) {
3351			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3352				"mismated.\n", __func__));
3353			return(EINVAL);
3354		}
3355		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3356		 && ntohl(sav->spi) >= 0x10000) {
3357			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3358				__func__));
3359			return(EINVAL);
3360		}
3361		error = xform_init(sav, XF_IPCOMP);
3362		break;
3363	case IPPROTO_TCP:
3364		if (sav->alg_enc != SADB_EALG_NONE) {
3365			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3366				"mismated.\n", __func__));
3367			return(EINVAL);
3368		}
3369		error = xform_init(sav, XF_TCPSIGNATURE);
3370		break;
3371	default:
3372		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3373		error = EPROTONOSUPPORT;
3374		break;
3375	}
3376	if (error == 0) {
3377		SAHTREE_LOCK();
3378		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3379		SAHTREE_UNLOCK();
3380	}
3381	return (error);
3382}
3383
3384/*
3385 * subroutine for SADB_GET and SADB_DUMP.
3386 */
3387static struct mbuf *
3388key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3389    u_int32_t seq, u_int32_t pid)
3390{
3391	struct mbuf *result = NULL, *tres = NULL, *m;
3392	int i;
3393	int dumporder[] = {
3394		SADB_EXT_SA, SADB_X_EXT_SA2,
3395		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3396		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3397		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3398		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3399		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3400#ifdef IPSEC_NAT_T
3401		SADB_X_EXT_NAT_T_TYPE,
3402		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3403		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3404		SADB_X_EXT_NAT_T_FRAG,
3405#endif
3406	};
3407
3408	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3409	if (m == NULL)
3410		goto fail;
3411	result = m;
3412
3413	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3414		m = NULL;
3415		switch (dumporder[i]) {
3416		case SADB_EXT_SA:
3417			m = key_setsadbsa(sav);
3418			if (!m)
3419				goto fail;
3420			break;
3421
3422		case SADB_X_EXT_SA2:
3423			m = key_setsadbxsa2(sav->sah->saidx.mode,
3424					sav->replay ? sav->replay->count : 0,
3425					sav->sah->saidx.reqid);
3426			if (!m)
3427				goto fail;
3428			break;
3429
3430		case SADB_EXT_ADDRESS_SRC:
3431			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3432			    &sav->sah->saidx.src.sa,
3433			    FULLMASK, IPSEC_ULPROTO_ANY);
3434			if (!m)
3435				goto fail;
3436			break;
3437
3438		case SADB_EXT_ADDRESS_DST:
3439			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3440			    &sav->sah->saidx.dst.sa,
3441			    FULLMASK, IPSEC_ULPROTO_ANY);
3442			if (!m)
3443				goto fail;
3444			break;
3445
3446		case SADB_EXT_KEY_AUTH:
3447			if (!sav->key_auth)
3448				continue;
3449			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3450			if (!m)
3451				goto fail;
3452			break;
3453
3454		case SADB_EXT_KEY_ENCRYPT:
3455			if (!sav->key_enc)
3456				continue;
3457			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3458			if (!m)
3459				goto fail;
3460			break;
3461
3462		case SADB_EXT_LIFETIME_CURRENT:
3463			if (!sav->lft_c)
3464				continue;
3465			m = key_setlifetime(sav->lft_c,
3466					    SADB_EXT_LIFETIME_CURRENT);
3467			if (!m)
3468				goto fail;
3469			break;
3470
3471		case SADB_EXT_LIFETIME_HARD:
3472			if (!sav->lft_h)
3473				continue;
3474			m = key_setlifetime(sav->lft_h,
3475					    SADB_EXT_LIFETIME_HARD);
3476			if (!m)
3477				goto fail;
3478			break;
3479
3480		case SADB_EXT_LIFETIME_SOFT:
3481			if (!sav->lft_s)
3482				continue;
3483			m = key_setlifetime(sav->lft_s,
3484					    SADB_EXT_LIFETIME_SOFT);
3485
3486			if (!m)
3487				goto fail;
3488			break;
3489
3490#ifdef IPSEC_NAT_T
3491		case SADB_X_EXT_NAT_T_TYPE:
3492			m = key_setsadbxtype(sav->natt_type);
3493			if (!m)
3494				goto fail;
3495			break;
3496
3497		case SADB_X_EXT_NAT_T_DPORT:
3498			m = key_setsadbxport(
3499			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3500			    SADB_X_EXT_NAT_T_DPORT);
3501			if (!m)
3502				goto fail;
3503			break;
3504
3505		case SADB_X_EXT_NAT_T_SPORT:
3506			m = key_setsadbxport(
3507			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3508			    SADB_X_EXT_NAT_T_SPORT);
3509			if (!m)
3510				goto fail;
3511			break;
3512
3513		case SADB_X_EXT_NAT_T_OAI:
3514		case SADB_X_EXT_NAT_T_OAR:
3515		case SADB_X_EXT_NAT_T_FRAG:
3516			/* We do not (yet) support those. */
3517			continue;
3518#endif
3519
3520		case SADB_EXT_ADDRESS_PROXY:
3521		case SADB_EXT_IDENTITY_SRC:
3522		case SADB_EXT_IDENTITY_DST:
3523			/* XXX: should we brought from SPD ? */
3524		case SADB_EXT_SENSITIVITY:
3525		default:
3526			continue;
3527		}
3528
3529		if (!m)
3530			goto fail;
3531		if (tres)
3532			m_cat(m, tres);
3533		tres = m;
3534
3535	}
3536
3537	m_cat(result, tres);
3538	if (result->m_len < sizeof(struct sadb_msg)) {
3539		result = m_pullup(result, sizeof(struct sadb_msg));
3540		if (result == NULL)
3541			goto fail;
3542	}
3543
3544	result->m_pkthdr.len = 0;
3545	for (m = result; m; m = m->m_next)
3546		result->m_pkthdr.len += m->m_len;
3547
3548	mtod(result, struct sadb_msg *)->sadb_msg_len =
3549	    PFKEY_UNIT64(result->m_pkthdr.len);
3550
3551	return result;
3552
3553fail:
3554	m_freem(result);
3555	m_freem(tres);
3556	return NULL;
3557}
3558
3559/*
3560 * set data into sadb_msg.
3561 */
3562static struct mbuf *
3563key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3564    pid_t pid, u_int16_t reserved)
3565{
3566	struct mbuf *m;
3567	struct sadb_msg *p;
3568	int len;
3569
3570	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3571	if (len > MCLBYTES)
3572		return NULL;
3573	MGETHDR(m, M_NOWAIT, MT_DATA);
3574	if (m && len > MHLEN) {
3575		MCLGET(m, M_NOWAIT);
3576		if ((m->m_flags & M_EXT) == 0) {
3577			m_freem(m);
3578			m = NULL;
3579		}
3580	}
3581	if (!m)
3582		return NULL;
3583	m->m_pkthdr.len = m->m_len = len;
3584	m->m_next = NULL;
3585
3586	p = mtod(m, struct sadb_msg *);
3587
3588	bzero(p, len);
3589	p->sadb_msg_version = PF_KEY_V2;
3590	p->sadb_msg_type = type;
3591	p->sadb_msg_errno = 0;
3592	p->sadb_msg_satype = satype;
3593	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3594	p->sadb_msg_reserved = reserved;
3595	p->sadb_msg_seq = seq;
3596	p->sadb_msg_pid = (u_int32_t)pid;
3597
3598	return m;
3599}
3600
3601/*
3602 * copy secasvar data into sadb_address.
3603 */
3604static struct mbuf *
3605key_setsadbsa(sav)
3606	struct secasvar *sav;
3607{
3608	struct mbuf *m;
3609	struct sadb_sa *p;
3610	int len;
3611
3612	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3613	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3614	if (m == NULL)
3615		return (NULL);
3616	m_align(m, len);
3617	m->m_len = len;
3618	p = mtod(m, struct sadb_sa *);
3619	bzero(p, len);
3620	p->sadb_sa_len = PFKEY_UNIT64(len);
3621	p->sadb_sa_exttype = SADB_EXT_SA;
3622	p->sadb_sa_spi = sav->spi;
3623	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3624	p->sadb_sa_state = sav->state;
3625	p->sadb_sa_auth = sav->alg_auth;
3626	p->sadb_sa_encrypt = sav->alg_enc;
3627	p->sadb_sa_flags = sav->flags;
3628
3629	return m;
3630}
3631
3632/*
3633 * set data into sadb_address.
3634 */
3635static struct mbuf *
3636key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3637{
3638	struct mbuf *m;
3639	struct sadb_address *p;
3640	size_t len;
3641
3642	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3643	    PFKEY_ALIGN8(saddr->sa_len);
3644	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3645	if (m == NULL)
3646		return (NULL);
3647	m_align(m, len);
3648	m->m_len = len;
3649	p = mtod(m, struct sadb_address *);
3650
3651	bzero(p, len);
3652	p->sadb_address_len = PFKEY_UNIT64(len);
3653	p->sadb_address_exttype = exttype;
3654	p->sadb_address_proto = ul_proto;
3655	if (prefixlen == FULLMASK) {
3656		switch (saddr->sa_family) {
3657		case AF_INET:
3658			prefixlen = sizeof(struct in_addr) << 3;
3659			break;
3660		case AF_INET6:
3661			prefixlen = sizeof(struct in6_addr) << 3;
3662			break;
3663		default:
3664			; /*XXX*/
3665		}
3666	}
3667	p->sadb_address_prefixlen = prefixlen;
3668	p->sadb_address_reserved = 0;
3669
3670	bcopy(saddr,
3671	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3672	    saddr->sa_len);
3673
3674	return m;
3675}
3676
3677/*
3678 * set data into sadb_x_sa2.
3679 */
3680static struct mbuf *
3681key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3682{
3683	struct mbuf *m;
3684	struct sadb_x_sa2 *p;
3685	size_t len;
3686
3687	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3688	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3689	if (m == NULL)
3690		return (NULL);
3691	m_align(m, len);
3692	m->m_len = len;
3693	p = mtod(m, struct sadb_x_sa2 *);
3694
3695	bzero(p, len);
3696	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3697	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3698	p->sadb_x_sa2_mode = mode;
3699	p->sadb_x_sa2_reserved1 = 0;
3700	p->sadb_x_sa2_reserved2 = 0;
3701	p->sadb_x_sa2_sequence = seq;
3702	p->sadb_x_sa2_reqid = reqid;
3703
3704	return m;
3705}
3706
3707#ifdef IPSEC_NAT_T
3708/*
3709 * Set a type in sadb_x_nat_t_type.
3710 */
3711static struct mbuf *
3712key_setsadbxtype(u_int16_t type)
3713{
3714	struct mbuf *m;
3715	size_t len;
3716	struct sadb_x_nat_t_type *p;
3717
3718	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3719
3720	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3721	if (m == NULL)
3722		return (NULL);
3723	m_align(m, len);
3724	m->m_len = len;
3725	p = mtod(m, struct sadb_x_nat_t_type *);
3726
3727	bzero(p, len);
3728	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3729	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3730	p->sadb_x_nat_t_type_type = type;
3731
3732	return (m);
3733}
3734/*
3735 * Set a port in sadb_x_nat_t_port.
3736 * In contrast to default RFC 2367 behaviour, port is in network byte order.
3737 */
3738static struct mbuf *
3739key_setsadbxport(u_int16_t port, u_int16_t type)
3740{
3741	struct mbuf *m;
3742	size_t len;
3743	struct sadb_x_nat_t_port *p;
3744
3745	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3746
3747	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3748	if (m == NULL)
3749		return (NULL);
3750	m_align(m, len);
3751	m->m_len = len;
3752	p = mtod(m, struct sadb_x_nat_t_port *);
3753
3754	bzero(p, len);
3755	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3756	p->sadb_x_nat_t_port_exttype = type;
3757	p->sadb_x_nat_t_port_port = port;
3758
3759	return (m);
3760}
3761
3762/*
3763 * Get port from sockaddr. Port is in network byte order.
3764 */
3765u_int16_t
3766key_portfromsaddr(struct sockaddr *sa)
3767{
3768
3769	switch (sa->sa_family) {
3770#ifdef INET
3771	case AF_INET:
3772		return ((struct sockaddr_in *)sa)->sin_port;
3773#endif
3774#ifdef INET6
3775	case AF_INET6:
3776		return ((struct sockaddr_in6 *)sa)->sin6_port;
3777#endif
3778	}
3779	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3780		printf("DP %s unexpected address family %d\n",
3781			__func__, sa->sa_family));
3782	return (0);
3783}
3784#endif /* IPSEC_NAT_T */
3785
3786/*
3787 * Set port in struct sockaddr. Port is in network byte order.
3788 */
3789static void
3790key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3791{
3792
3793	switch (sa->sa_family) {
3794#ifdef INET
3795	case AF_INET:
3796		((struct sockaddr_in *)sa)->sin_port = port;
3797		break;
3798#endif
3799#ifdef INET6
3800	case AF_INET6:
3801		((struct sockaddr_in6 *)sa)->sin6_port = port;
3802		break;
3803#endif
3804	default:
3805		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3806			__func__, sa->sa_family));
3807		break;
3808	}
3809}
3810
3811/*
3812 * set data into sadb_x_policy
3813 */
3814static struct mbuf *
3815key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3816{
3817	struct mbuf *m;
3818	struct sadb_x_policy *p;
3819	size_t len;
3820
3821	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3822	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3823	if (m == NULL)
3824		return (NULL);
3825	m_align(m, len);
3826	m->m_len = len;
3827	p = mtod(m, struct sadb_x_policy *);
3828
3829	bzero(p, len);
3830	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3831	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3832	p->sadb_x_policy_type = type;
3833	p->sadb_x_policy_dir = dir;
3834	p->sadb_x_policy_id = id;
3835
3836	return m;
3837}
3838
3839/* %%% utilities */
3840/* Take a key message (sadb_key) from the socket and turn it into one
3841 * of the kernel's key structures (seckey).
3842 *
3843 * IN: pointer to the src
3844 * OUT: NULL no more memory
3845 */
3846struct seckey *
3847key_dup_keymsg(const struct sadb_key *src, u_int len,
3848	       struct malloc_type *type)
3849{
3850	struct seckey *dst;
3851	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3852	if (dst != NULL) {
3853		dst->bits = src->sadb_key_bits;
3854		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3855		if (dst->key_data != NULL) {
3856			bcopy((const char *)src + sizeof(struct sadb_key),
3857			      dst->key_data, len);
3858		} else {
3859			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3860				  __func__));
3861			free(dst, type);
3862			dst = NULL;
3863		}
3864	} else {
3865		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3866			  __func__));
3867
3868	}
3869	return dst;
3870}
3871
3872/* Take a lifetime message (sadb_lifetime) passed in on a socket and
3873 * turn it into one of the kernel's lifetime structures (seclifetime).
3874 *
3875 * IN: pointer to the destination, source and malloc type
3876 * OUT: NULL, no more memory
3877 */
3878
3879static struct seclifetime *
3880key_dup_lifemsg(const struct sadb_lifetime *src,
3881		 struct malloc_type *type)
3882{
3883	struct seclifetime *dst = NULL;
3884
3885	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3886					   type, M_NOWAIT);
3887	if (dst == NULL) {
3888		/* XXX counter */
3889		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3890	} else {
3891		dst->allocations = src->sadb_lifetime_allocations;
3892		dst->bytes = src->sadb_lifetime_bytes;
3893		dst->addtime = src->sadb_lifetime_addtime;
3894		dst->usetime = src->sadb_lifetime_usetime;
3895	}
3896	return dst;
3897}
3898
3899/* compare my own address
3900 * OUT:	1: true, i.e. my address.
3901 *	0: false
3902 */
3903int
3904key_ismyaddr(sa)
3905	struct sockaddr *sa;
3906{
3907#ifdef INET
3908	struct sockaddr_in *sin;
3909	struct in_ifaddr *ia;
3910#endif
3911
3912	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3913
3914	switch (sa->sa_family) {
3915#ifdef INET
3916	case AF_INET:
3917		sin = (struct sockaddr_in *)sa;
3918		IN_IFADDR_RLOCK();
3919		TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
3920		{
3921			if (sin->sin_family == ia->ia_addr.sin_family &&
3922			    sin->sin_len == ia->ia_addr.sin_len &&
3923			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
3924			{
3925				IN_IFADDR_RUNLOCK();
3926				return 1;
3927			}
3928		}
3929		IN_IFADDR_RUNLOCK();
3930		break;
3931#endif
3932#ifdef INET6
3933	case AF_INET6:
3934		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3935#endif
3936	}
3937
3938	return 0;
3939}
3940
3941#ifdef INET6
3942/*
3943 * compare my own address for IPv6.
3944 * 1: ours
3945 * 0: other
3946 * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3947 */
3948#include <netinet6/in6_var.h>
3949
3950static int
3951key_ismyaddr6(sin6)
3952	struct sockaddr_in6 *sin6;
3953{
3954	struct in6_ifaddr *ia;
3955#if 0
3956	struct in6_multi *in6m;
3957#endif
3958
3959	IN6_IFADDR_RLOCK();
3960	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3961		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3962		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3963			IN6_IFADDR_RUNLOCK();
3964			return 1;
3965		}
3966
3967#if 0
3968		/*
3969		 * XXX Multicast
3970		 * XXX why do we care about multlicast here while we don't care
3971		 * about IPv4 multicast??
3972		 * XXX scope
3973		 */
3974		in6m = NULL;
3975		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3976		if (in6m) {
3977			IN6_IFADDR_RUNLOCK();
3978			return 1;
3979		}
3980#endif
3981	}
3982	IN6_IFADDR_RUNLOCK();
3983
3984	/* loopback, just for safety */
3985	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3986		return 1;
3987
3988	return 0;
3989}
3990#endif /*INET6*/
3991
3992/*
3993 * compare two secasindex structure.
3994 * flag can specify to compare 2 saidxes.
3995 * compare two secasindex structure without both mode and reqid.
3996 * don't compare port.
3997 * IN:
3998 *      saidx0: source, it can be in SAD.
3999 *      saidx1: object.
4000 * OUT:
4001 *      1 : equal
4002 *      0 : not equal
4003 */
4004static int
4005key_cmpsaidx(
4006	const struct secasindex *saidx0,
4007	const struct secasindex *saidx1,
4008	int flag)
4009{
4010	int chkport = 0;
4011
4012	/* sanity */
4013	if (saidx0 == NULL && saidx1 == NULL)
4014		return 1;
4015
4016	if (saidx0 == NULL || saidx1 == NULL)
4017		return 0;
4018
4019	if (saidx0->proto != saidx1->proto)
4020		return 0;
4021
4022	if (flag == CMP_EXACTLY) {
4023		if (saidx0->mode != saidx1->mode)
4024			return 0;
4025		if (saidx0->reqid != saidx1->reqid)
4026			return 0;
4027		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4028		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4029			return 0;
4030	} else {
4031
4032		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4033		if (flag == CMP_MODE_REQID
4034		  ||flag == CMP_REQID) {
4035			/*
4036			 * If reqid of SPD is non-zero, unique SA is required.
4037			 * The result must be of same reqid in this case.
4038			 */
4039			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4040				return 0;
4041		}
4042
4043		if (flag == CMP_MODE_REQID) {
4044			if (saidx0->mode != IPSEC_MODE_ANY
4045			 && saidx0->mode != saidx1->mode)
4046				return 0;
4047		}
4048
4049#ifdef IPSEC_NAT_T
4050		/*
4051		 * If NAT-T is enabled, check ports for tunnel mode.
4052		 * Do not check ports if they are set to zero in the SPD.
4053		 * Also do not do it for native transport mode, as there
4054		 * is no port information available in the SP.
4055		 */
4056		if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
4057		     (saidx1->mode == IPSEC_MODE_TRANSPORT &&
4058		      saidx1->proto == IPPROTO_ESP)) &&
4059		    saidx1->src.sa.sa_family == AF_INET &&
4060		    saidx1->dst.sa.sa_family == AF_INET &&
4061		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4062		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4063			chkport = 1;
4064#endif /* IPSEC_NAT_T */
4065
4066		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4067			return 0;
4068		}
4069		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4070			return 0;
4071		}
4072	}
4073
4074	return 1;
4075}
4076
4077/*
4078 * compare two secindex structure exactly.
4079 * IN:
4080 *	spidx0: source, it is often in SPD.
4081 *	spidx1: object, it is often from PFKEY message.
4082 * OUT:
4083 *	1 : equal
4084 *	0 : not equal
4085 */
4086static int
4087key_cmpspidx_exactly(
4088	struct secpolicyindex *spidx0,
4089	struct secpolicyindex *spidx1)
4090{
4091	/* sanity */
4092	if (spidx0 == NULL && spidx1 == NULL)
4093		return 1;
4094
4095	if (spidx0 == NULL || spidx1 == NULL)
4096		return 0;
4097
4098	if (spidx0->prefs != spidx1->prefs
4099	 || spidx0->prefd != spidx1->prefd
4100	 || spidx0->ul_proto != spidx1->ul_proto)
4101		return 0;
4102
4103	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4104	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4105}
4106
4107/*
4108 * compare two secindex structure with mask.
4109 * IN:
4110 *	spidx0: source, it is often in SPD.
4111 *	spidx1: object, it is often from IP header.
4112 * OUT:
4113 *	1 : equal
4114 *	0 : not equal
4115 */
4116static int
4117key_cmpspidx_withmask(
4118	struct secpolicyindex *spidx0,
4119	struct secpolicyindex *spidx1)
4120{
4121	/* sanity */
4122	if (spidx0 == NULL && spidx1 == NULL)
4123		return 1;
4124
4125	if (spidx0 == NULL || spidx1 == NULL)
4126		return 0;
4127
4128	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4129	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4130	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4131	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4132		return 0;
4133
4134	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4135	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4136	 && spidx0->ul_proto != spidx1->ul_proto)
4137		return 0;
4138
4139	switch (spidx0->src.sa.sa_family) {
4140	case AF_INET:
4141		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4142		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4143			return 0;
4144		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4145		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4146			return 0;
4147		break;
4148	case AF_INET6:
4149		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4150		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4151			return 0;
4152		/*
4153		 * scope_id check. if sin6_scope_id is 0, we regard it
4154		 * as a wildcard scope, which matches any scope zone ID.
4155		 */
4156		if (spidx0->src.sin6.sin6_scope_id &&
4157		    spidx1->src.sin6.sin6_scope_id &&
4158		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4159			return 0;
4160		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4161		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4162			return 0;
4163		break;
4164	default:
4165		/* XXX */
4166		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4167			return 0;
4168		break;
4169	}
4170
4171	switch (spidx0->dst.sa.sa_family) {
4172	case AF_INET:
4173		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4174		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4175			return 0;
4176		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4177		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4178			return 0;
4179		break;
4180	case AF_INET6:
4181		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4182		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4183			return 0;
4184		/*
4185		 * scope_id check. if sin6_scope_id is 0, we regard it
4186		 * as a wildcard scope, which matches any scope zone ID.
4187		 */
4188		if (spidx0->dst.sin6.sin6_scope_id &&
4189		    spidx1->dst.sin6.sin6_scope_id &&
4190		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4191			return 0;
4192		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4193		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4194			return 0;
4195		break;
4196	default:
4197		/* XXX */
4198		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4199			return 0;
4200		break;
4201	}
4202
4203	/* XXX Do we check other field ?  e.g. flowinfo */
4204
4205	return 1;
4206}
4207
4208/* returns 0 on match */
4209static int
4210key_sockaddrcmp(
4211	const struct sockaddr *sa1,
4212	const struct sockaddr *sa2,
4213	int port)
4214{
4215#ifdef satosin
4216#undef satosin
4217#endif
4218#define satosin(s) ((const struct sockaddr_in *)s)
4219#ifdef satosin6
4220#undef satosin6
4221#endif
4222#define satosin6(s) ((const struct sockaddr_in6 *)s)
4223	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4224		return 1;
4225
4226	switch (sa1->sa_family) {
4227	case AF_INET:
4228		if (sa1->sa_len != sizeof(struct sockaddr_in))
4229			return 1;
4230		if (satosin(sa1)->sin_addr.s_addr !=
4231		    satosin(sa2)->sin_addr.s_addr) {
4232			return 1;
4233		}
4234		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4235			return 1;
4236		break;
4237	case AF_INET6:
4238		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4239			return 1;	/*EINVAL*/
4240		if (satosin6(sa1)->sin6_scope_id !=
4241		    satosin6(sa2)->sin6_scope_id) {
4242			return 1;
4243		}
4244		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4245		    &satosin6(sa2)->sin6_addr)) {
4246			return 1;
4247		}
4248		if (port &&
4249		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4250			return 1;
4251		}
4252		break;
4253	default:
4254		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4255			return 1;
4256		break;
4257	}
4258
4259	return 0;
4260#undef satosin
4261#undef satosin6
4262}
4263
4264/*
4265 * compare two buffers with mask.
4266 * IN:
4267 *	addr1: source
4268 *	addr2: object
4269 *	bits:  Number of bits to compare
4270 * OUT:
4271 *	1 : equal
4272 *	0 : not equal
4273 */
4274static int
4275key_bbcmp(const void *a1, const void *a2, u_int bits)
4276{
4277	const unsigned char *p1 = a1;
4278	const unsigned char *p2 = a2;
4279
4280	/* XXX: This could be considerably faster if we compare a word
4281	 * at a time, but it is complicated on LSB Endian machines */
4282
4283	/* Handle null pointers */
4284	if (p1 == NULL || p2 == NULL)
4285		return (p1 == p2);
4286
4287	while (bits >= 8) {
4288		if (*p1++ != *p2++)
4289			return 0;
4290		bits -= 8;
4291	}
4292
4293	if (bits > 0) {
4294		u_int8_t mask = ~((1<<(8-bits))-1);
4295		if ((*p1 & mask) != (*p2 & mask))
4296			return 0;
4297	}
4298	return 1;	/* Match! */
4299}
4300
4301static void
4302key_flush_spd(time_t now)
4303{
4304	static u_int16_t sptree_scangen = 0;
4305	u_int16_t gen = sptree_scangen++;
4306	struct secpolicy *sp;
4307	u_int dir;
4308
4309	/* SPD */
4310	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4311restart:
4312		SPTREE_LOCK();
4313		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4314			if (sp->scangen == gen)		/* previously handled */
4315				continue;
4316			sp->scangen = gen;
4317			if (sp->state == IPSEC_SPSTATE_DEAD &&
4318			    sp->refcnt == 1) {
4319				/*
4320				 * Ensure that we only decrease refcnt once,
4321				 * when we're the last consumer.
4322				 * Directly call SP_DELREF/key_delsp instead
4323				 * of KEY_FREESP to avoid unlocking/relocking
4324				 * SPTREE_LOCK before key_delsp: may refcnt
4325				 * be increased again during that time ?
4326				 * NB: also clean entries created by
4327				 * key_spdflush
4328				 */
4329				SP_DELREF(sp);
4330				key_delsp(sp);
4331				SPTREE_UNLOCK();
4332				goto restart;
4333			}
4334			if (sp->lifetime == 0 && sp->validtime == 0)
4335				continue;
4336			if ((sp->lifetime && now - sp->created > sp->lifetime)
4337			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4338				sp->state = IPSEC_SPSTATE_DEAD;
4339				SPTREE_UNLOCK();
4340				key_spdexpire(sp);
4341				goto restart;
4342			}
4343		}
4344		SPTREE_UNLOCK();
4345	}
4346}
4347
4348static void
4349key_flush_sad(time_t now)
4350{
4351	struct secashead *sah, *nextsah;
4352	struct secasvar *sav, *nextsav;
4353
4354	/* SAD */
4355	SAHTREE_LOCK();
4356	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4357		/* if sah has been dead, then delete it and process next sah. */
4358		if (sah->state == SADB_SASTATE_DEAD) {
4359			key_delsah(sah);
4360			continue;
4361		}
4362
4363		/* if LARVAL entry doesn't become MATURE, delete it. */
4364		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4365			/* Need to also check refcnt for a larval SA ??? */
4366			if (now - sav->created > V_key_larval_lifetime)
4367				KEY_FREESAV(&sav);
4368		}
4369
4370		/*
4371		 * check MATURE entry to start to send expire message
4372		 * whether or not.
4373		 */
4374		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4375			/* we don't need to check. */
4376			if (sav->lft_s == NULL)
4377				continue;
4378
4379			/* sanity check */
4380			if (sav->lft_c == NULL) {
4381				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4382					"time, why?\n", __func__));
4383				continue;
4384			}
4385
4386			/* check SOFT lifetime */
4387			if (sav->lft_s->addtime != 0 &&
4388			    now - sav->created > sav->lft_s->addtime) {
4389				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4390				/*
4391				 * Actually, only send expire message if
4392				 * SA has been used, as it was done before,
4393				 * but should we always send such message,
4394				 * and let IKE daemon decide if it should be
4395				 * renegotiated or not ?
4396				 * XXX expire message will actually NOT be
4397				 * sent if SA is only used after soft
4398				 * lifetime has been reached, see below
4399				 * (DYING state)
4400				 */
4401				if (sav->lft_c->usetime != 0)
4402					key_expire(sav);
4403			}
4404			/* check SOFT lifetime by bytes */
4405			/*
4406			 * XXX I don't know the way to delete this SA
4407			 * when new SA is installed.  Caution when it's
4408			 * installed too big lifetime by time.
4409			 */
4410			else if (sav->lft_s->bytes != 0 &&
4411			    sav->lft_s->bytes < sav->lft_c->bytes) {
4412
4413				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4414				/*
4415				 * XXX If we keep to send expire
4416				 * message in the status of
4417				 * DYING. Do remove below code.
4418				 */
4419				key_expire(sav);
4420			}
4421		}
4422
4423		/* check DYING entry to change status to DEAD. */
4424		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4425			/* we don't need to check. */
4426			if (sav->lft_h == NULL)
4427				continue;
4428
4429			/* sanity check */
4430			if (sav->lft_c == NULL) {
4431				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4432					"time, why?\n", __func__));
4433				continue;
4434			}
4435
4436			if (sav->lft_h->addtime != 0 &&
4437			    now - sav->created > sav->lft_h->addtime) {
4438				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4439				KEY_FREESAV(&sav);
4440			}
4441#if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4442			else if (sav->lft_s != NULL
4443			      && sav->lft_s->addtime != 0
4444			      && now - sav->created > sav->lft_s->addtime) {
4445				/*
4446				 * XXX: should be checked to be
4447				 * installed the valid SA.
4448				 */
4449
4450				/*
4451				 * If there is no SA then sending
4452				 * expire message.
4453				 */
4454				key_expire(sav);
4455			}
4456#endif
4457			/* check HARD lifetime by bytes */
4458			else if (sav->lft_h->bytes != 0 &&
4459			    sav->lft_h->bytes < sav->lft_c->bytes) {
4460				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4461				KEY_FREESAV(&sav);
4462			}
4463		}
4464
4465		/* delete entry in DEAD */
4466		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4467			/* sanity check */
4468			if (sav->state != SADB_SASTATE_DEAD) {
4469				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4470					"(queue: %d SA: %d): kill it anyway\n",
4471					__func__,
4472					SADB_SASTATE_DEAD, sav->state));
4473			}
4474			/*
4475			 * do not call key_freesav() here.
4476			 * sav should already be freed, and sav->refcnt
4477			 * shows other references to sav
4478			 * (such as from SPD).
4479			 */
4480		}
4481	}
4482	SAHTREE_UNLOCK();
4483}
4484
4485static void
4486key_flush_acq(time_t now)
4487{
4488	struct secacq *acq, *nextacq;
4489
4490	/* ACQ tree */
4491	ACQ_LOCK();
4492	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4493		nextacq = LIST_NEXT(acq, chain);
4494		if (now - acq->created > V_key_blockacq_lifetime
4495		 && __LIST_CHAINED(acq)) {
4496			LIST_REMOVE(acq, chain);
4497			free(acq, M_IPSEC_SAQ);
4498		}
4499	}
4500	ACQ_UNLOCK();
4501}
4502
4503static void
4504key_flush_spacq(time_t now)
4505{
4506	struct secspacq *acq, *nextacq;
4507
4508	/* SP ACQ tree */
4509	SPACQ_LOCK();
4510	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4511		nextacq = LIST_NEXT(acq, chain);
4512		if (now - acq->created > V_key_blockacq_lifetime
4513		 && __LIST_CHAINED(acq)) {
4514			LIST_REMOVE(acq, chain);
4515			free(acq, M_IPSEC_SAQ);
4516		}
4517	}
4518	SPACQ_UNLOCK();
4519}
4520
4521/*
4522 * time handler.
4523 * scanning SPD and SAD to check status for each entries,
4524 * and do to remove or to expire.
4525 * XXX: year 2038 problem may remain.
4526 */
4527void
4528key_timehandler(void)
4529{
4530	VNET_ITERATOR_DECL(vnet_iter);
4531	time_t now = time_second;
4532
4533	VNET_LIST_RLOCK_NOSLEEP();
4534	VNET_FOREACH(vnet_iter) {
4535		CURVNET_SET(vnet_iter);
4536		key_flush_spd(now);
4537		key_flush_sad(now);
4538		key_flush_acq(now);
4539		key_flush_spacq(now);
4540		CURVNET_RESTORE();
4541	}
4542	VNET_LIST_RUNLOCK_NOSLEEP();
4543
4544#ifndef IPSEC_DEBUG2
4545	/* do exchange to tick time !! */
4546	(void)timeout((void *)key_timehandler, (void *)0, hz);
4547#endif /* IPSEC_DEBUG2 */
4548}
4549
4550u_long
4551key_random()
4552{
4553	u_long value;
4554
4555	key_randomfill(&value, sizeof(value));
4556	return value;
4557}
4558
4559void
4560key_randomfill(p, l)
4561	void *p;
4562	size_t l;
4563{
4564	size_t n;
4565	u_long v;
4566	static int warn = 1;
4567
4568	n = 0;
4569	n = (size_t)read_random(p, (u_int)l);
4570	/* last resort */
4571	while (n < l) {
4572		v = random();
4573		bcopy(&v, (u_int8_t *)p + n,
4574		    l - n < sizeof(v) ? l - n : sizeof(v));
4575		n += sizeof(v);
4576
4577		if (warn) {
4578			printf("WARNING: pseudo-random number generator "
4579			    "used for IPsec processing\n");
4580			warn = 0;
4581		}
4582	}
4583}
4584
4585/*
4586 * map SADB_SATYPE_* to IPPROTO_*.
4587 * if satype == SADB_SATYPE then satype is mapped to ~0.
4588 * OUT:
4589 *	0: invalid satype.
4590 */
4591static u_int16_t
4592key_satype2proto(u_int8_t satype)
4593{
4594	switch (satype) {
4595	case SADB_SATYPE_UNSPEC:
4596		return IPSEC_PROTO_ANY;
4597	case SADB_SATYPE_AH:
4598		return IPPROTO_AH;
4599	case SADB_SATYPE_ESP:
4600		return IPPROTO_ESP;
4601	case SADB_X_SATYPE_IPCOMP:
4602		return IPPROTO_IPCOMP;
4603	case SADB_X_SATYPE_TCPSIGNATURE:
4604		return IPPROTO_TCP;
4605	default:
4606		return 0;
4607	}
4608	/* NOTREACHED */
4609}
4610
4611/*
4612 * map IPPROTO_* to SADB_SATYPE_*
4613 * OUT:
4614 *	0: invalid protocol type.
4615 */
4616static u_int8_t
4617key_proto2satype(u_int16_t proto)
4618{
4619	switch (proto) {
4620	case IPPROTO_AH:
4621		return SADB_SATYPE_AH;
4622	case IPPROTO_ESP:
4623		return SADB_SATYPE_ESP;
4624	case IPPROTO_IPCOMP:
4625		return SADB_X_SATYPE_IPCOMP;
4626	case IPPROTO_TCP:
4627		return SADB_X_SATYPE_TCPSIGNATURE;
4628	default:
4629		return 0;
4630	}
4631	/* NOTREACHED */
4632}
4633
4634/* %%% PF_KEY */
4635/*
4636 * SADB_GETSPI processing is to receive
4637 *	<base, (SA2), src address, dst address, (SPI range)>
4638 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4639 * tree with the status of LARVAL, and send
4640 *	<base, SA(*), address(SD)>
4641 * to the IKMPd.
4642 *
4643 * IN:	mhp: pointer to the pointer to each header.
4644 * OUT:	NULL if fail.
4645 *	other if success, return pointer to the message to send.
4646 */
4647static int
4648key_getspi(so, m, mhp)
4649	struct socket *so;
4650	struct mbuf *m;
4651	const struct sadb_msghdr *mhp;
4652{
4653	struct sadb_address *src0, *dst0;
4654	struct secasindex saidx;
4655	struct secashead *newsah;
4656	struct secasvar *newsav;
4657	u_int8_t proto;
4658	u_int32_t spi;
4659	u_int8_t mode;
4660	u_int32_t reqid;
4661	int error;
4662
4663	IPSEC_ASSERT(so != NULL, ("null socket"));
4664	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4665	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4666	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4667
4668	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4669	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4670		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4671			__func__));
4672		return key_senderror(so, m, EINVAL);
4673	}
4674	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4675	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4676		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4677			__func__));
4678		return key_senderror(so, m, EINVAL);
4679	}
4680	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4681		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4682		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4683	} else {
4684		mode = IPSEC_MODE_ANY;
4685		reqid = 0;
4686	}
4687
4688	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4689	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4690
4691	/* map satype to proto */
4692	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4693		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4694			__func__));
4695		return key_senderror(so, m, EINVAL);
4696	}
4697
4698	/*
4699	 * Make sure the port numbers are zero.
4700	 * In case of NAT-T we will update them later if needed.
4701	 */
4702	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4703	case AF_INET:
4704		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4705		    sizeof(struct sockaddr_in))
4706			return key_senderror(so, m, EINVAL);
4707		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4708		break;
4709	case AF_INET6:
4710		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4711		    sizeof(struct sockaddr_in6))
4712			return key_senderror(so, m, EINVAL);
4713		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4714		break;
4715	default:
4716		; /*???*/
4717	}
4718	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4719	case AF_INET:
4720		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4721		    sizeof(struct sockaddr_in))
4722			return key_senderror(so, m, EINVAL);
4723		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4724		break;
4725	case AF_INET6:
4726		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4727		    sizeof(struct sockaddr_in6))
4728			return key_senderror(so, m, EINVAL);
4729		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4730		break;
4731	default:
4732		; /*???*/
4733	}
4734
4735	/* XXX boundary check against sa_len */
4736	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4737
4738#ifdef IPSEC_NAT_T
4739	/*
4740	 * Handle NAT-T info if present.
4741	 * We made sure the port numbers are zero above, so we do
4742	 * not have to worry in case we do not update them.
4743	 */
4744	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4745		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4746	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4747		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4748
4749	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4750	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4751	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4752		struct sadb_x_nat_t_type *type;
4753		struct sadb_x_nat_t_port *sport, *dport;
4754
4755		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4756		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4757		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4758			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4759			    "passed.\n", __func__));
4760			return key_senderror(so, m, EINVAL);
4761		}
4762
4763		sport = (struct sadb_x_nat_t_port *)
4764		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4765		dport = (struct sadb_x_nat_t_port *)
4766		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4767
4768		if (sport)
4769			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4770		if (dport)
4771			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4772	}
4773#endif
4774
4775	/* SPI allocation */
4776	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4777	                       &saidx);
4778	if (spi == 0)
4779		return key_senderror(so, m, EINVAL);
4780
4781	/* get a SA index */
4782	if ((newsah = key_getsah(&saidx)) == NULL) {
4783		/* create a new SA index */
4784		if ((newsah = key_newsah(&saidx)) == NULL) {
4785			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4786			return key_senderror(so, m, ENOBUFS);
4787		}
4788	}
4789
4790	/* get a new SA */
4791	/* XXX rewrite */
4792	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4793	if (newsav == NULL) {
4794		/* XXX don't free new SA index allocated in above. */
4795		return key_senderror(so, m, error);
4796	}
4797
4798	/* set spi */
4799	newsav->spi = htonl(spi);
4800
4801	/* delete the entry in acqtree */
4802	if (mhp->msg->sadb_msg_seq != 0) {
4803		struct secacq *acq;
4804		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4805			/* reset counter in order to deletion by timehandler. */
4806			acq->created = time_second;
4807			acq->count = 0;
4808		}
4809    	}
4810
4811    {
4812	struct mbuf *n, *nn;
4813	struct sadb_sa *m_sa;
4814	struct sadb_msg *newmsg;
4815	int off, len;
4816
4817	/* create new sadb_msg to reply. */
4818	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4819	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4820
4821	MGETHDR(n, M_NOWAIT, MT_DATA);
4822	if (len > MHLEN) {
4823		MCLGET(n, M_NOWAIT);
4824		if ((n->m_flags & M_EXT) == 0) {
4825			m_freem(n);
4826			n = NULL;
4827		}
4828	}
4829	if (!n)
4830		return key_senderror(so, m, ENOBUFS);
4831
4832	n->m_len = len;
4833	n->m_next = NULL;
4834	off = 0;
4835
4836	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4837	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4838
4839	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4840	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4841	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4842	m_sa->sadb_sa_spi = htonl(spi);
4843	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4844
4845	IPSEC_ASSERT(off == len,
4846		("length inconsistency (off %u len %u)", off, len));
4847
4848	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4849	    SADB_EXT_ADDRESS_DST);
4850	if (!n->m_next) {
4851		m_freem(n);
4852		return key_senderror(so, m, ENOBUFS);
4853	}
4854
4855	if (n->m_len < sizeof(struct sadb_msg)) {
4856		n = m_pullup(n, sizeof(struct sadb_msg));
4857		if (n == NULL)
4858			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4859	}
4860
4861	n->m_pkthdr.len = 0;
4862	for (nn = n; nn; nn = nn->m_next)
4863		n->m_pkthdr.len += nn->m_len;
4864
4865	newmsg = mtod(n, struct sadb_msg *);
4866	newmsg->sadb_msg_seq = newsav->seq;
4867	newmsg->sadb_msg_errno = 0;
4868	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4869
4870	m_freem(m);
4871	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4872    }
4873}
4874
4875/*
4876 * allocating new SPI
4877 * called by key_getspi().
4878 * OUT:
4879 *	0:	failure.
4880 *	others: success.
4881 */
4882static u_int32_t
4883key_do_getnewspi(spirange, saidx)
4884	struct sadb_spirange *spirange;
4885	struct secasindex *saidx;
4886{
4887	u_int32_t newspi;
4888	u_int32_t min, max;
4889	int count = V_key_spi_trycnt;
4890
4891	/* set spi range to allocate */
4892	if (spirange != NULL) {
4893		min = spirange->sadb_spirange_min;
4894		max = spirange->sadb_spirange_max;
4895	} else {
4896		min = V_key_spi_minval;
4897		max = V_key_spi_maxval;
4898	}
4899	/* IPCOMP needs 2-byte SPI */
4900	if (saidx->proto == IPPROTO_IPCOMP) {
4901		u_int32_t t;
4902		if (min >= 0x10000)
4903			min = 0xffff;
4904		if (max >= 0x10000)
4905			max = 0xffff;
4906		if (min > max) {
4907			t = min; min = max; max = t;
4908		}
4909	}
4910
4911	if (min == max) {
4912		if (key_checkspidup(saidx, min) != NULL) {
4913			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4914				__func__, min));
4915			return 0;
4916		}
4917
4918		count--; /* taking one cost. */
4919		newspi = min;
4920
4921	} else {
4922
4923		/* init SPI */
4924		newspi = 0;
4925
4926		/* when requesting to allocate spi ranged */
4927		while (count--) {
4928			/* generate pseudo-random SPI value ranged. */
4929			newspi = min + (key_random() % (max - min + 1));
4930
4931			if (key_checkspidup(saidx, newspi) == NULL)
4932				break;
4933		}
4934
4935		if (count == 0 || newspi == 0) {
4936			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4937				__func__));
4938			return 0;
4939		}
4940	}
4941
4942	/* statistics */
4943	keystat.getspi_count =
4944		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4945
4946	return newspi;
4947}
4948
4949/*
4950 * SADB_UPDATE processing
4951 * receive
4952 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4953 *       key(AE), (identity(SD),) (sensitivity)>
4954 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4955 * and send
4956 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4957 *       (identity(SD),) (sensitivity)>
4958 * to the ikmpd.
4959 *
4960 * m will always be freed.
4961 */
4962static int
4963key_update(so, m, mhp)
4964	struct socket *so;
4965	struct mbuf *m;
4966	const struct sadb_msghdr *mhp;
4967{
4968	struct sadb_sa *sa0;
4969	struct sadb_address *src0, *dst0;
4970#ifdef IPSEC_NAT_T
4971	struct sadb_x_nat_t_type *type;
4972	struct sadb_x_nat_t_port *sport, *dport;
4973	struct sadb_address *iaddr, *raddr;
4974	struct sadb_x_nat_t_frag *frag;
4975#endif
4976	struct secasindex saidx;
4977	struct secashead *sah;
4978	struct secasvar *sav;
4979	u_int16_t proto;
4980	u_int8_t mode;
4981	u_int32_t reqid;
4982	int error;
4983
4984	IPSEC_ASSERT(so != NULL, ("null socket"));
4985	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4986	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4987	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4988
4989	/* map satype to proto */
4990	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4991		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4992			__func__));
4993		return key_senderror(so, m, EINVAL);
4994	}
4995
4996	if (mhp->ext[SADB_EXT_SA] == NULL ||
4997	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4998	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4999	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5000	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5001	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5002	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5003	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5004	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5005	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5006	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5007		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5008			__func__));
5009		return key_senderror(so, m, EINVAL);
5010	}
5011	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5012	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5013	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5014		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5015			__func__));
5016		return key_senderror(so, m, EINVAL);
5017	}
5018	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5019		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5020		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5021	} else {
5022		mode = IPSEC_MODE_ANY;
5023		reqid = 0;
5024	}
5025	/* XXX boundary checking for other extensions */
5026
5027	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5028	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5029	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5030
5031	/* XXX boundary check against sa_len */
5032	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5033
5034	/*
5035	 * Make sure the port numbers are zero.
5036	 * In case of NAT-T we will update them later if needed.
5037	 */
5038	KEY_PORTTOSADDR(&saidx.src, 0);
5039	KEY_PORTTOSADDR(&saidx.dst, 0);
5040
5041#ifdef IPSEC_NAT_T
5042	/*
5043	 * Handle NAT-T info if present.
5044	 */
5045	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5046	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5047	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5048
5049		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5050		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5051		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5052			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5053			    __func__));
5054			return key_senderror(so, m, EINVAL);
5055		}
5056
5057		type = (struct sadb_x_nat_t_type *)
5058		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5059		sport = (struct sadb_x_nat_t_port *)
5060		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5061		dport = (struct sadb_x_nat_t_port *)
5062		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5063	} else {
5064		type = 0;
5065		sport = dport = 0;
5066	}
5067	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5068	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5069		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5070		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5071			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5072			    __func__));
5073			return key_senderror(so, m, EINVAL);
5074		}
5075		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5076		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5077		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5078	} else {
5079		iaddr = raddr = NULL;
5080	}
5081	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5082		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5083			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5084			    __func__));
5085			return key_senderror(so, m, EINVAL);
5086		}
5087		frag = (struct sadb_x_nat_t_frag *)
5088		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5089	} else {
5090		frag = 0;
5091	}
5092#endif
5093
5094	/* get a SA header */
5095	if ((sah = key_getsah(&saidx)) == NULL) {
5096		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5097		return key_senderror(so, m, ENOENT);
5098	}
5099
5100	/* set spidx if there */
5101	/* XXX rewrite */
5102	error = key_setident(sah, m, mhp);
5103	if (error)
5104		return key_senderror(so, m, error);
5105
5106	/* find a SA with sequence number. */
5107#ifdef IPSEC_DOSEQCHECK
5108	if (mhp->msg->sadb_msg_seq != 0
5109	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5110		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5111			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5112		return key_senderror(so, m, ENOENT);
5113	}
5114#else
5115	SAHTREE_LOCK();
5116	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5117	SAHTREE_UNLOCK();
5118	if (sav == NULL) {
5119		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5120			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5121		return key_senderror(so, m, EINVAL);
5122	}
5123#endif
5124
5125	/* validity check */
5126	if (sav->sah->saidx.proto != proto) {
5127		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5128			"(DB=%u param=%u)\n", __func__,
5129			sav->sah->saidx.proto, proto));
5130		return key_senderror(so, m, EINVAL);
5131	}
5132#ifdef IPSEC_DOSEQCHECK
5133	if (sav->spi != sa0->sadb_sa_spi) {
5134		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5135		    __func__,
5136		    (u_int32_t)ntohl(sav->spi),
5137		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5138		return key_senderror(so, m, EINVAL);
5139	}
5140#endif
5141	if (sav->pid != mhp->msg->sadb_msg_pid) {
5142		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5143		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5144		return key_senderror(so, m, EINVAL);
5145	}
5146
5147	/* copy sav values */
5148	error = key_setsaval(sav, m, mhp);
5149	if (error) {
5150		KEY_FREESAV(&sav);
5151		return key_senderror(so, m, error);
5152	}
5153
5154#ifdef IPSEC_NAT_T
5155	/*
5156	 * Handle more NAT-T info if present,
5157	 * now that we have a sav to fill.
5158	 */
5159	if (type)
5160		sav->natt_type = type->sadb_x_nat_t_type_type;
5161
5162	if (sport)
5163		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5164		    sport->sadb_x_nat_t_port_port);
5165	if (dport)
5166		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5167		    dport->sadb_x_nat_t_port_port);
5168
5169#if 0
5170	/*
5171	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5172	 * We should actually check for a minimum MTU here, if we
5173	 * want to support it in ip_output.
5174	 */
5175	if (frag)
5176		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5177#endif
5178#endif
5179
5180	/* check SA values to be mature. */
5181	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5182		KEY_FREESAV(&sav);
5183		return key_senderror(so, m, 0);
5184	}
5185
5186    {
5187	struct mbuf *n;
5188
5189	/* set msg buf from mhp */
5190	n = key_getmsgbuf_x1(m, mhp);
5191	if (n == NULL) {
5192		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5193		return key_senderror(so, m, ENOBUFS);
5194	}
5195
5196	m_freem(m);
5197	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5198    }
5199}
5200
5201/*
5202 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5203 * only called by key_update().
5204 * OUT:
5205 *	NULL	: not found
5206 *	others	: found, pointer to a SA.
5207 */
5208#ifdef IPSEC_DOSEQCHECK
5209static struct secasvar *
5210key_getsavbyseq(sah, seq)
5211	struct secashead *sah;
5212	u_int32_t seq;
5213{
5214	struct secasvar *sav;
5215	u_int state;
5216
5217	state = SADB_SASTATE_LARVAL;
5218
5219	/* search SAD with sequence number ? */
5220	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5221
5222		KEY_CHKSASTATE(state, sav->state, __func__);
5223
5224		if (sav->seq == seq) {
5225			sa_addref(sav);
5226			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5227				printf("DP %s cause refcnt++:%d SA:%p\n",
5228					__func__, sav->refcnt, sav));
5229			return sav;
5230		}
5231	}
5232
5233	return NULL;
5234}
5235#endif
5236
5237/*
5238 * SADB_ADD processing
5239 * add an entry to SA database, when received
5240 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5241 *       key(AE), (identity(SD),) (sensitivity)>
5242 * from the ikmpd,
5243 * and send
5244 *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5245 *       (identity(SD),) (sensitivity)>
5246 * to the ikmpd.
5247 *
5248 * IGNORE identity and sensitivity messages.
5249 *
5250 * m will always be freed.
5251 */
5252static int
5253key_add(so, m, mhp)
5254	struct socket *so;
5255	struct mbuf *m;
5256	const struct sadb_msghdr *mhp;
5257{
5258	struct sadb_sa *sa0;
5259	struct sadb_address *src0, *dst0;
5260#ifdef IPSEC_NAT_T
5261	struct sadb_x_nat_t_type *type;
5262	struct sadb_address *iaddr, *raddr;
5263	struct sadb_x_nat_t_frag *frag;
5264#endif
5265	struct secasindex saidx;
5266	struct secashead *newsah;
5267	struct secasvar *newsav;
5268	u_int16_t proto;
5269	u_int8_t mode;
5270	u_int32_t reqid;
5271	int error;
5272
5273	IPSEC_ASSERT(so != NULL, ("null socket"));
5274	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5275	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5276	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5277
5278	/* map satype to proto */
5279	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5280		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5281			__func__));
5282		return key_senderror(so, m, EINVAL);
5283	}
5284
5285	if (mhp->ext[SADB_EXT_SA] == NULL ||
5286	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5287	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5288	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5289	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5290	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5291	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5292	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5293	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5294	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5295	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5296		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5297			__func__));
5298		return key_senderror(so, m, EINVAL);
5299	}
5300	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5301	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5302	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5303		/* XXX need more */
5304		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5305			__func__));
5306		return key_senderror(so, m, EINVAL);
5307	}
5308	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5309		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5310		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5311	} else {
5312		mode = IPSEC_MODE_ANY;
5313		reqid = 0;
5314	}
5315
5316	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5317	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5318	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5319
5320	/* XXX boundary check against sa_len */
5321	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5322
5323	/*
5324	 * Make sure the port numbers are zero.
5325	 * In case of NAT-T we will update them later if needed.
5326	 */
5327	KEY_PORTTOSADDR(&saidx.src, 0);
5328	KEY_PORTTOSADDR(&saidx.dst, 0);
5329
5330#ifdef IPSEC_NAT_T
5331	/*
5332	 * Handle NAT-T info if present.
5333	 */
5334	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5335	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5336	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5337		struct sadb_x_nat_t_port *sport, *dport;
5338
5339		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5340		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5341		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5342			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5343			    __func__));
5344			return key_senderror(so, m, EINVAL);
5345		}
5346
5347		type = (struct sadb_x_nat_t_type *)
5348		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5349		sport = (struct sadb_x_nat_t_port *)
5350		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5351		dport = (struct sadb_x_nat_t_port *)
5352		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5353
5354		if (sport)
5355			KEY_PORTTOSADDR(&saidx.src,
5356			    sport->sadb_x_nat_t_port_port);
5357		if (dport)
5358			KEY_PORTTOSADDR(&saidx.dst,
5359			    dport->sadb_x_nat_t_port_port);
5360	} else {
5361		type = 0;
5362	}
5363	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5364	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5365		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5366		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5367			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5368			    __func__));
5369			return key_senderror(so, m, EINVAL);
5370		}
5371		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5372		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5373		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5374	} else {
5375		iaddr = raddr = NULL;
5376	}
5377	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5378		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5379			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5380			    __func__));
5381			return key_senderror(so, m, EINVAL);
5382		}
5383		frag = (struct sadb_x_nat_t_frag *)
5384		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5385	} else {
5386		frag = 0;
5387	}
5388#endif
5389
5390	/* get a SA header */
5391	if ((newsah = key_getsah(&saidx)) == NULL) {
5392		/* create a new SA header */
5393		if ((newsah = key_newsah(&saidx)) == NULL) {
5394			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5395			return key_senderror(so, m, ENOBUFS);
5396		}
5397	}
5398
5399	/* set spidx if there */
5400	/* XXX rewrite */
5401	error = key_setident(newsah, m, mhp);
5402	if (error) {
5403		return key_senderror(so, m, error);
5404	}
5405
5406	/* create new SA entry. */
5407	/* We can create new SA only if SPI is differenct. */
5408	SAHTREE_LOCK();
5409	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5410	SAHTREE_UNLOCK();
5411	if (newsav != NULL) {
5412		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5413		return key_senderror(so, m, EEXIST);
5414	}
5415	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5416	if (newsav == NULL) {
5417		return key_senderror(so, m, error);
5418	}
5419
5420#ifdef IPSEC_NAT_T
5421	/*
5422	 * Handle more NAT-T info if present,
5423	 * now that we have a sav to fill.
5424	 */
5425	if (type)
5426		newsav->natt_type = type->sadb_x_nat_t_type_type;
5427
5428#if 0
5429	/*
5430	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5431	 * We should actually check for a minimum MTU here, if we
5432	 * want to support it in ip_output.
5433	 */
5434	if (frag)
5435		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5436#endif
5437#endif
5438
5439	/* check SA values to be mature. */
5440	if ((error = key_mature(newsav)) != 0) {
5441		KEY_FREESAV(&newsav);
5442		return key_senderror(so, m, error);
5443	}
5444
5445	/*
5446	 * don't call key_freesav() here, as we would like to keep the SA
5447	 * in the database on success.
5448	 */
5449
5450    {
5451	struct mbuf *n;
5452
5453	/* set msg buf from mhp */
5454	n = key_getmsgbuf_x1(m, mhp);
5455	if (n == NULL) {
5456		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5457		return key_senderror(so, m, ENOBUFS);
5458	}
5459
5460	m_freem(m);
5461	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5462    }
5463}
5464
5465/* m is retained */
5466static int
5467key_setident(sah, m, mhp)
5468	struct secashead *sah;
5469	struct mbuf *m;
5470	const struct sadb_msghdr *mhp;
5471{
5472	const struct sadb_ident *idsrc, *iddst;
5473	int idsrclen, iddstlen;
5474
5475	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5476	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5477	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5478	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5479
5480	/* don't make buffer if not there */
5481	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5482	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5483		sah->idents = NULL;
5484		sah->identd = NULL;
5485		return 0;
5486	}
5487
5488	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5489	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5490		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5491		return EINVAL;
5492	}
5493
5494	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5495	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5496	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5497	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5498
5499	/* validity check */
5500	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5501		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5502		return EINVAL;
5503	}
5504
5505	switch (idsrc->sadb_ident_type) {
5506	case SADB_IDENTTYPE_PREFIX:
5507	case SADB_IDENTTYPE_FQDN:
5508	case SADB_IDENTTYPE_USERFQDN:
5509	default:
5510		/* XXX do nothing */
5511		sah->idents = NULL;
5512		sah->identd = NULL;
5513	 	return 0;
5514	}
5515
5516	/* make structure */
5517	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5518	if (sah->idents == NULL) {
5519		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5520		return ENOBUFS;
5521	}
5522	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5523	if (sah->identd == NULL) {
5524		free(sah->idents, M_IPSEC_MISC);
5525		sah->idents = NULL;
5526		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5527		return ENOBUFS;
5528	}
5529	sah->idents->type = idsrc->sadb_ident_type;
5530	sah->idents->id = idsrc->sadb_ident_id;
5531
5532	sah->identd->type = iddst->sadb_ident_type;
5533	sah->identd->id = iddst->sadb_ident_id;
5534
5535	return 0;
5536}
5537
5538/*
5539 * m will not be freed on return.
5540 * it is caller's responsibility to free the result.
5541 */
5542static struct mbuf *
5543key_getmsgbuf_x1(m, mhp)
5544	struct mbuf *m;
5545	const struct sadb_msghdr *mhp;
5546{
5547	struct mbuf *n;
5548
5549	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5550	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5551	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5552
5553	/* create new sadb_msg to reply. */
5554	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5555	    SADB_EXT_SA, SADB_X_EXT_SA2,
5556	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5557	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5558	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5559	if (!n)
5560		return NULL;
5561
5562	if (n->m_len < sizeof(struct sadb_msg)) {
5563		n = m_pullup(n, sizeof(struct sadb_msg));
5564		if (n == NULL)
5565			return NULL;
5566	}
5567	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5568	mtod(n, struct sadb_msg *)->sadb_msg_len =
5569	    PFKEY_UNIT64(n->m_pkthdr.len);
5570
5571	return n;
5572}
5573
5574static int key_delete_all __P((struct socket *, struct mbuf *,
5575	const struct sadb_msghdr *, u_int16_t));
5576
5577/*
5578 * SADB_DELETE processing
5579 * receive
5580 *   <base, SA(*), address(SD)>
5581 * from the ikmpd, and set SADB_SASTATE_DEAD,
5582 * and send,
5583 *   <base, SA(*), address(SD)>
5584 * to the ikmpd.
5585 *
5586 * m will always be freed.
5587 */
5588static int
5589key_delete(so, m, mhp)
5590	struct socket *so;
5591	struct mbuf *m;
5592	const struct sadb_msghdr *mhp;
5593{
5594	struct sadb_sa *sa0;
5595	struct sadb_address *src0, *dst0;
5596	struct secasindex saidx;
5597	struct secashead *sah;
5598	struct secasvar *sav = NULL;
5599	u_int16_t proto;
5600
5601	IPSEC_ASSERT(so != NULL, ("null socket"));
5602	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5603	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5604	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5605
5606	/* map satype to proto */
5607	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5608		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5609			__func__));
5610		return key_senderror(so, m, EINVAL);
5611	}
5612
5613	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5614	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5615		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5616			__func__));
5617		return key_senderror(so, m, EINVAL);
5618	}
5619
5620	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5621	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5622		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5623			__func__));
5624		return key_senderror(so, m, EINVAL);
5625	}
5626
5627	if (mhp->ext[SADB_EXT_SA] == NULL) {
5628		/*
5629		 * Caller wants us to delete all non-LARVAL SAs
5630		 * that match the src/dst.  This is used during
5631		 * IKE INITIAL-CONTACT.
5632		 */
5633		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5634		return key_delete_all(so, m, mhp, proto);
5635	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5636		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5637			__func__));
5638		return key_senderror(so, m, EINVAL);
5639	}
5640
5641	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5642	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5643	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5644
5645	/* XXX boundary check against sa_len */
5646	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5647
5648	/*
5649	 * Make sure the port numbers are zero.
5650	 * In case of NAT-T we will update them later if needed.
5651	 */
5652	KEY_PORTTOSADDR(&saidx.src, 0);
5653	KEY_PORTTOSADDR(&saidx.dst, 0);
5654
5655#ifdef IPSEC_NAT_T
5656	/*
5657	 * Handle NAT-T info if present.
5658	 */
5659	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5660	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5661		struct sadb_x_nat_t_port *sport, *dport;
5662
5663		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5664		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5665			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5666			    __func__));
5667			return key_senderror(so, m, EINVAL);
5668		}
5669
5670		sport = (struct sadb_x_nat_t_port *)
5671		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5672		dport = (struct sadb_x_nat_t_port *)
5673		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5674
5675		if (sport)
5676			KEY_PORTTOSADDR(&saidx.src,
5677			    sport->sadb_x_nat_t_port_port);
5678		if (dport)
5679			KEY_PORTTOSADDR(&saidx.dst,
5680			    dport->sadb_x_nat_t_port_port);
5681	}
5682#endif
5683
5684	/* get a SA header */
5685	SAHTREE_LOCK();
5686	LIST_FOREACH(sah, &V_sahtree, chain) {
5687		if (sah->state == SADB_SASTATE_DEAD)
5688			continue;
5689		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5690			continue;
5691
5692		/* get a SA with SPI. */
5693		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5694		if (sav)
5695			break;
5696	}
5697	if (sah == NULL) {
5698		SAHTREE_UNLOCK();
5699		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5700		return key_senderror(so, m, ENOENT);
5701	}
5702
5703	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5704	KEY_FREESAV(&sav);
5705	SAHTREE_UNLOCK();
5706
5707    {
5708	struct mbuf *n;
5709	struct sadb_msg *newmsg;
5710
5711	/* create new sadb_msg to reply. */
5712	/* XXX-BZ NAT-T extensions? */
5713	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5714	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5715	if (!n)
5716		return key_senderror(so, m, ENOBUFS);
5717
5718	if (n->m_len < sizeof(struct sadb_msg)) {
5719		n = m_pullup(n, sizeof(struct sadb_msg));
5720		if (n == NULL)
5721			return key_senderror(so, m, ENOBUFS);
5722	}
5723	newmsg = mtod(n, struct sadb_msg *);
5724	newmsg->sadb_msg_errno = 0;
5725	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5726
5727	m_freem(m);
5728	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5729    }
5730}
5731
5732/*
5733 * delete all SAs for src/dst.  Called from key_delete().
5734 */
5735static int
5736key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5737    u_int16_t proto)
5738{
5739	struct sadb_address *src0, *dst0;
5740	struct secasindex saidx;
5741	struct secashead *sah;
5742	struct secasvar *sav, *nextsav;
5743	u_int stateidx, state;
5744
5745	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5746	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5747
5748	/* XXX boundary check against sa_len */
5749	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5750
5751	/*
5752	 * Make sure the port numbers are zero.
5753	 * In case of NAT-T we will update them later if needed.
5754	 */
5755	KEY_PORTTOSADDR(&saidx.src, 0);
5756	KEY_PORTTOSADDR(&saidx.dst, 0);
5757
5758#ifdef IPSEC_NAT_T
5759	/*
5760	 * Handle NAT-T info if present.
5761	 */
5762
5763	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5764	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5765		struct sadb_x_nat_t_port *sport, *dport;
5766
5767		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5768		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5769			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5770			    __func__));
5771			return key_senderror(so, m, EINVAL);
5772		}
5773
5774		sport = (struct sadb_x_nat_t_port *)
5775		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5776		dport = (struct sadb_x_nat_t_port *)
5777		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5778
5779		if (sport)
5780			KEY_PORTTOSADDR(&saidx.src,
5781			    sport->sadb_x_nat_t_port_port);
5782		if (dport)
5783			KEY_PORTTOSADDR(&saidx.dst,
5784			    dport->sadb_x_nat_t_port_port);
5785	}
5786#endif
5787
5788	SAHTREE_LOCK();
5789	LIST_FOREACH(sah, &V_sahtree, chain) {
5790		if (sah->state == SADB_SASTATE_DEAD)
5791			continue;
5792		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5793			continue;
5794
5795		/* Delete all non-LARVAL SAs. */
5796		for (stateidx = 0;
5797		     stateidx < _ARRAYLEN(saorder_state_alive);
5798		     stateidx++) {
5799			state = saorder_state_alive[stateidx];
5800			if (state == SADB_SASTATE_LARVAL)
5801				continue;
5802			for (sav = LIST_FIRST(&sah->savtree[state]);
5803			     sav != NULL; sav = nextsav) {
5804				nextsav = LIST_NEXT(sav, chain);
5805				/* sanity check */
5806				if (sav->state != state) {
5807					ipseclog((LOG_DEBUG, "%s: invalid "
5808						"sav->state (queue %d SA %d)\n",
5809						__func__, state, sav->state));
5810					continue;
5811				}
5812
5813				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5814				KEY_FREESAV(&sav);
5815			}
5816		}
5817	}
5818	SAHTREE_UNLOCK();
5819    {
5820	struct mbuf *n;
5821	struct sadb_msg *newmsg;
5822
5823	/* create new sadb_msg to reply. */
5824	/* XXX-BZ NAT-T extensions? */
5825	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5826	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5827	if (!n)
5828		return key_senderror(so, m, ENOBUFS);
5829
5830	if (n->m_len < sizeof(struct sadb_msg)) {
5831		n = m_pullup(n, sizeof(struct sadb_msg));
5832		if (n == NULL)
5833			return key_senderror(so, m, ENOBUFS);
5834	}
5835	newmsg = mtod(n, struct sadb_msg *);
5836	newmsg->sadb_msg_errno = 0;
5837	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5838
5839	m_freem(m);
5840	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5841    }
5842}
5843
5844/*
5845 * SADB_GET processing
5846 * receive
5847 *   <base, SA(*), address(SD)>
5848 * from the ikmpd, and get a SP and a SA to respond,
5849 * and send,
5850 *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5851 *       (identity(SD),) (sensitivity)>
5852 * to the ikmpd.
5853 *
5854 * m will always be freed.
5855 */
5856static int
5857key_get(so, m, mhp)
5858	struct socket *so;
5859	struct mbuf *m;
5860	const struct sadb_msghdr *mhp;
5861{
5862	struct sadb_sa *sa0;
5863	struct sadb_address *src0, *dst0;
5864	struct secasindex saidx;
5865	struct secashead *sah;
5866	struct secasvar *sav = NULL;
5867	u_int16_t proto;
5868
5869	IPSEC_ASSERT(so != NULL, ("null socket"));
5870	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5871	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5872	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5873
5874	/* map satype to proto */
5875	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5876		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5877			__func__));
5878		return key_senderror(so, m, EINVAL);
5879	}
5880
5881	if (mhp->ext[SADB_EXT_SA] == NULL ||
5882	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5883	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5884		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5885			__func__));
5886		return key_senderror(so, m, EINVAL);
5887	}
5888	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5889	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5890	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5891		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5892			__func__));
5893		return key_senderror(so, m, EINVAL);
5894	}
5895
5896	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5897	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5898	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5899
5900	/* XXX boundary check against sa_len */
5901	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5902
5903	/*
5904	 * Make sure the port numbers are zero.
5905	 * In case of NAT-T we will update them later if needed.
5906	 */
5907	KEY_PORTTOSADDR(&saidx.src, 0);
5908	KEY_PORTTOSADDR(&saidx.dst, 0);
5909
5910#ifdef IPSEC_NAT_T
5911	/*
5912	 * Handle NAT-T info if present.
5913	 */
5914
5915	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5916	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5917		struct sadb_x_nat_t_port *sport, *dport;
5918
5919		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5920		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5921			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5922			    __func__));
5923			return key_senderror(so, m, EINVAL);
5924		}
5925
5926		sport = (struct sadb_x_nat_t_port *)
5927		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5928		dport = (struct sadb_x_nat_t_port *)
5929		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5930
5931		if (sport)
5932			KEY_PORTTOSADDR(&saidx.src,
5933			    sport->sadb_x_nat_t_port_port);
5934		if (dport)
5935			KEY_PORTTOSADDR(&saidx.dst,
5936			    dport->sadb_x_nat_t_port_port);
5937	}
5938#endif
5939
5940	/* get a SA header */
5941	SAHTREE_LOCK();
5942	LIST_FOREACH(sah, &V_sahtree, chain) {
5943		if (sah->state == SADB_SASTATE_DEAD)
5944			continue;
5945		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5946			continue;
5947
5948		/* get a SA with SPI. */
5949		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5950		if (sav)
5951			break;
5952	}
5953	SAHTREE_UNLOCK();
5954	if (sah == NULL) {
5955		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5956		return key_senderror(so, m, ENOENT);
5957	}
5958
5959    {
5960	struct mbuf *n;
5961	u_int8_t satype;
5962
5963	/* map proto to satype */
5964	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5965		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5966			__func__));
5967		return key_senderror(so, m, EINVAL);
5968	}
5969
5970	/* create new sadb_msg to reply. */
5971	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5972	    mhp->msg->sadb_msg_pid);
5973	if (!n)
5974		return key_senderror(so, m, ENOBUFS);
5975
5976	m_freem(m);
5977	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5978    }
5979}
5980
5981/* XXX make it sysctl-configurable? */
5982static void
5983key_getcomb_setlifetime(comb)
5984	struct sadb_comb *comb;
5985{
5986
5987	comb->sadb_comb_soft_allocations = 1;
5988	comb->sadb_comb_hard_allocations = 1;
5989	comb->sadb_comb_soft_bytes = 0;
5990	comb->sadb_comb_hard_bytes = 0;
5991	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5992	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5993	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5994	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5995}
5996
5997/*
5998 * XXX reorder combinations by preference
5999 * XXX no idea if the user wants ESP authentication or not
6000 */
6001static struct mbuf *
6002key_getcomb_esp()
6003{
6004	struct sadb_comb *comb;
6005	struct enc_xform *algo;
6006	struct mbuf *result = NULL, *m, *n;
6007	int encmin;
6008	int i, off, o;
6009	int totlen;
6010	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6011
6012	m = NULL;
6013	for (i = 1; i <= SADB_EALG_MAX; i++) {
6014		algo = esp_algorithm_lookup(i);
6015		if (algo == NULL)
6016			continue;
6017
6018		/* discard algorithms with key size smaller than system min */
6019		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6020			continue;
6021		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6022			encmin = V_ipsec_esp_keymin;
6023		else
6024			encmin = _BITS(algo->minkey);
6025
6026		if (V_ipsec_esp_auth)
6027			m = key_getcomb_ah();
6028		else {
6029			IPSEC_ASSERT(l <= MLEN,
6030				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6031			MGET(m, M_NOWAIT, MT_DATA);
6032			if (m) {
6033				M_ALIGN(m, l);
6034				m->m_len = l;
6035				m->m_next = NULL;
6036				bzero(mtod(m, caddr_t), m->m_len);
6037			}
6038		}
6039		if (!m)
6040			goto fail;
6041
6042		totlen = 0;
6043		for (n = m; n; n = n->m_next)
6044			totlen += n->m_len;
6045		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6046
6047		for (off = 0; off < totlen; off += l) {
6048			n = m_pulldown(m, off, l, &o);
6049			if (!n) {
6050				/* m is already freed */
6051				goto fail;
6052			}
6053			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6054			bzero(comb, sizeof(*comb));
6055			key_getcomb_setlifetime(comb);
6056			comb->sadb_comb_encrypt = i;
6057			comb->sadb_comb_encrypt_minbits = encmin;
6058			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6059		}
6060
6061		if (!result)
6062			result = m;
6063		else
6064			m_cat(result, m);
6065	}
6066
6067	return result;
6068
6069 fail:
6070	if (result)
6071		m_freem(result);
6072	return NULL;
6073}
6074
6075static void
6076key_getsizes_ah(
6077	const struct auth_hash *ah,
6078	int alg,
6079	u_int16_t* min,
6080	u_int16_t* max)
6081{
6082
6083	*min = *max = ah->keysize;
6084	if (ah->keysize == 0) {
6085		/*
6086		 * Transform takes arbitrary key size but algorithm
6087		 * key size is restricted.  Enforce this here.
6088		 */
6089		switch (alg) {
6090		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6091		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6092		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6093		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6094		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6095		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6096		default:
6097			DPRINTF(("%s: unknown AH algorithm %u\n",
6098				__func__, alg));
6099			break;
6100		}
6101	}
6102}
6103
6104/*
6105 * XXX reorder combinations by preference
6106 */
6107static struct mbuf *
6108key_getcomb_ah()
6109{
6110	struct sadb_comb *comb;
6111	struct auth_hash *algo;
6112	struct mbuf *m;
6113	u_int16_t minkeysize, maxkeysize;
6114	int i;
6115	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6116
6117	m = NULL;
6118	for (i = 1; i <= SADB_AALG_MAX; i++) {
6119#if 1
6120		/* we prefer HMAC algorithms, not old algorithms */
6121		if (i != SADB_AALG_SHA1HMAC &&
6122		    i != SADB_AALG_MD5HMAC  &&
6123		    i != SADB_X_AALG_SHA2_256 &&
6124		    i != SADB_X_AALG_SHA2_384 &&
6125		    i != SADB_X_AALG_SHA2_512)
6126			continue;
6127#endif
6128		algo = ah_algorithm_lookup(i);
6129		if (!algo)
6130			continue;
6131		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6132		/* discard algorithms with key size smaller than system min */
6133		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6134			continue;
6135
6136		if (!m) {
6137			IPSEC_ASSERT(l <= MLEN,
6138				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6139			MGET(m, M_NOWAIT, MT_DATA);
6140			if (m) {
6141				M_ALIGN(m, l);
6142				m->m_len = l;
6143				m->m_next = NULL;
6144			}
6145		} else
6146			M_PREPEND(m, l, M_NOWAIT);
6147		if (!m)
6148			return NULL;
6149
6150		comb = mtod(m, struct sadb_comb *);
6151		bzero(comb, sizeof(*comb));
6152		key_getcomb_setlifetime(comb);
6153		comb->sadb_comb_auth = i;
6154		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6155		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6156	}
6157
6158	return m;
6159}
6160
6161/*
6162 * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6163 * XXX reorder combinations by preference
6164 */
6165static struct mbuf *
6166key_getcomb_ipcomp()
6167{
6168	struct sadb_comb *comb;
6169	struct comp_algo *algo;
6170	struct mbuf *m;
6171	int i;
6172	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6173
6174	m = NULL;
6175	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6176		algo = ipcomp_algorithm_lookup(i);
6177		if (!algo)
6178			continue;
6179
6180		if (!m) {
6181			IPSEC_ASSERT(l <= MLEN,
6182				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6183			MGET(m, M_NOWAIT, MT_DATA);
6184			if (m) {
6185				M_ALIGN(m, l);
6186				m->m_len = l;
6187				m->m_next = NULL;
6188			}
6189		} else
6190			M_PREPEND(m, l, M_NOWAIT);
6191		if (!m)
6192			return NULL;
6193
6194		comb = mtod(m, struct sadb_comb *);
6195		bzero(comb, sizeof(*comb));
6196		key_getcomb_setlifetime(comb);
6197		comb->sadb_comb_encrypt = i;
6198		/* what should we set into sadb_comb_*_{min,max}bits? */
6199	}
6200
6201	return m;
6202}
6203
6204/*
6205 * XXX no way to pass mode (transport/tunnel) to userland
6206 * XXX replay checking?
6207 * XXX sysctl interface to ipsec_{ah,esp}_keymin
6208 */
6209static struct mbuf *
6210key_getprop(saidx)
6211	const struct secasindex *saidx;
6212{
6213	struct sadb_prop *prop;
6214	struct mbuf *m, *n;
6215	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6216	int totlen;
6217
6218	switch (saidx->proto)  {
6219	case IPPROTO_ESP:
6220		m = key_getcomb_esp();
6221		break;
6222	case IPPROTO_AH:
6223		m = key_getcomb_ah();
6224		break;
6225	case IPPROTO_IPCOMP:
6226		m = key_getcomb_ipcomp();
6227		break;
6228	default:
6229		return NULL;
6230	}
6231
6232	if (!m)
6233		return NULL;
6234	M_PREPEND(m, l, M_NOWAIT);
6235	if (!m)
6236		return NULL;
6237
6238	totlen = 0;
6239	for (n = m; n; n = n->m_next)
6240		totlen += n->m_len;
6241
6242	prop = mtod(m, struct sadb_prop *);
6243	bzero(prop, sizeof(*prop));
6244	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6245	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6246	prop->sadb_prop_replay = 32;	/* XXX */
6247
6248	return m;
6249}
6250
6251/*
6252 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6253 * send
6254 *   <base, SA, address(SD), (address(P)), x_policy,
6255 *       (identity(SD),) (sensitivity,) proposal>
6256 * to KMD, and expect to receive
6257 *   <base> with SADB_ACQUIRE if error occured,
6258 * or
6259 *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6260 * from KMD by PF_KEY.
6261 *
6262 * XXX x_policy is outside of RFC2367 (KAME extension).
6263 * XXX sensitivity is not supported.
6264 * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6265 * see comment for key_getcomb_ipcomp().
6266 *
6267 * OUT:
6268 *    0     : succeed
6269 *    others: error number
6270 */
6271static int
6272key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6273{
6274	struct mbuf *result = NULL, *m;
6275	struct secacq *newacq;
6276	u_int8_t satype;
6277	int error = -1;
6278	u_int32_t seq;
6279
6280	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6281	satype = key_proto2satype(saidx->proto);
6282	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6283
6284	/*
6285	 * We never do anything about acquirng SA.  There is anather
6286	 * solution that kernel blocks to send SADB_ACQUIRE message until
6287	 * getting something message from IKEd.  In later case, to be
6288	 * managed with ACQUIRING list.
6289	 */
6290	/* Get an entry to check whether sending message or not. */
6291	if ((newacq = key_getacq(saidx)) != NULL) {
6292		if (V_key_blockacq_count < newacq->count) {
6293			/* reset counter and do send message. */
6294			newacq->count = 0;
6295		} else {
6296			/* increment counter and do nothing. */
6297			newacq->count++;
6298			return 0;
6299		}
6300	} else {
6301		/* make new entry for blocking to send SADB_ACQUIRE. */
6302		if ((newacq = key_newacq(saidx)) == NULL)
6303			return ENOBUFS;
6304	}
6305
6306
6307	seq = newacq->seq;
6308	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6309	if (!m) {
6310		error = ENOBUFS;
6311		goto fail;
6312	}
6313	result = m;
6314
6315	/*
6316	 * No SADB_X_EXT_NAT_T_* here: we do not know
6317	 * anything related to NAT-T at this time.
6318	 */
6319
6320	/* set sadb_address for saidx's. */
6321	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6322	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6323	if (!m) {
6324		error = ENOBUFS;
6325		goto fail;
6326	}
6327	m_cat(result, m);
6328
6329	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6330	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6331	if (!m) {
6332		error = ENOBUFS;
6333		goto fail;
6334	}
6335	m_cat(result, m);
6336
6337	/* XXX proxy address (optional) */
6338
6339	/* set sadb_x_policy */
6340	if (sp) {
6341		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6342		if (!m) {
6343			error = ENOBUFS;
6344			goto fail;
6345		}
6346		m_cat(result, m);
6347	}
6348
6349	/* XXX identity (optional) */
6350#if 0
6351	if (idexttype && fqdn) {
6352		/* create identity extension (FQDN) */
6353		struct sadb_ident *id;
6354		int fqdnlen;
6355
6356		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6357		id = (struct sadb_ident *)p;
6358		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6359		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6360		id->sadb_ident_exttype = idexttype;
6361		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6362		bcopy(fqdn, id + 1, fqdnlen);
6363		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6364	}
6365
6366	if (idexttype) {
6367		/* create identity extension (USERFQDN) */
6368		struct sadb_ident *id;
6369		int userfqdnlen;
6370
6371		if (userfqdn) {
6372			/* +1 for terminating-NUL */
6373			userfqdnlen = strlen(userfqdn) + 1;
6374		} else
6375			userfqdnlen = 0;
6376		id = (struct sadb_ident *)p;
6377		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6378		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6379		id->sadb_ident_exttype = idexttype;
6380		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6381		/* XXX is it correct? */
6382		if (curproc && curproc->p_cred)
6383			id->sadb_ident_id = curproc->p_cred->p_ruid;
6384		if (userfqdn && userfqdnlen)
6385			bcopy(userfqdn, id + 1, userfqdnlen);
6386		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6387	}
6388#endif
6389
6390	/* XXX sensitivity (optional) */
6391
6392	/* create proposal/combination extension */
6393	m = key_getprop(saidx);
6394#if 0
6395	/*
6396	 * spec conformant: always attach proposal/combination extension,
6397	 * the problem is that we have no way to attach it for ipcomp,
6398	 * due to the way sadb_comb is declared in RFC2367.
6399	 */
6400	if (!m) {
6401		error = ENOBUFS;
6402		goto fail;
6403	}
6404	m_cat(result, m);
6405#else
6406	/*
6407	 * outside of spec; make proposal/combination extension optional.
6408	 */
6409	if (m)
6410		m_cat(result, m);
6411#endif
6412
6413	if ((result->m_flags & M_PKTHDR) == 0) {
6414		error = EINVAL;
6415		goto fail;
6416	}
6417
6418	if (result->m_len < sizeof(struct sadb_msg)) {
6419		result = m_pullup(result, sizeof(struct sadb_msg));
6420		if (result == NULL) {
6421			error = ENOBUFS;
6422			goto fail;
6423		}
6424	}
6425
6426	result->m_pkthdr.len = 0;
6427	for (m = result; m; m = m->m_next)
6428		result->m_pkthdr.len += m->m_len;
6429
6430	mtod(result, struct sadb_msg *)->sadb_msg_len =
6431	    PFKEY_UNIT64(result->m_pkthdr.len);
6432
6433	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6434
6435 fail:
6436	if (result)
6437		m_freem(result);
6438	return error;
6439}
6440
6441static struct secacq *
6442key_newacq(const struct secasindex *saidx)
6443{
6444	struct secacq *newacq;
6445
6446	/* get new entry */
6447	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6448	if (newacq == NULL) {
6449		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6450		return NULL;
6451	}
6452
6453	/* copy secindex */
6454	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6455	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6456	newacq->created = time_second;
6457	newacq->count = 0;
6458
6459	/* add to acqtree */
6460	ACQ_LOCK();
6461	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6462	ACQ_UNLOCK();
6463
6464	return newacq;
6465}
6466
6467static struct secacq *
6468key_getacq(const struct secasindex *saidx)
6469{
6470	struct secacq *acq;
6471
6472	ACQ_LOCK();
6473	LIST_FOREACH(acq, &V_acqtree, chain) {
6474		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6475			break;
6476	}
6477	ACQ_UNLOCK();
6478
6479	return acq;
6480}
6481
6482static struct secacq *
6483key_getacqbyseq(seq)
6484	u_int32_t seq;
6485{
6486	struct secacq *acq;
6487
6488	ACQ_LOCK();
6489	LIST_FOREACH(acq, &V_acqtree, chain) {
6490		if (acq->seq == seq)
6491			break;
6492	}
6493	ACQ_UNLOCK();
6494
6495	return acq;
6496}
6497
6498static struct secspacq *
6499key_newspacq(spidx)
6500	struct secpolicyindex *spidx;
6501{
6502	struct secspacq *acq;
6503
6504	/* get new entry */
6505	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6506	if (acq == NULL) {
6507		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6508		return NULL;
6509	}
6510
6511	/* copy secindex */
6512	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6513	acq->created = time_second;
6514	acq->count = 0;
6515
6516	/* add to spacqtree */
6517	SPACQ_LOCK();
6518	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6519	SPACQ_UNLOCK();
6520
6521	return acq;
6522}
6523
6524static struct secspacq *
6525key_getspacq(spidx)
6526	struct secpolicyindex *spidx;
6527{
6528	struct secspacq *acq;
6529
6530	SPACQ_LOCK();
6531	LIST_FOREACH(acq, &V_spacqtree, chain) {
6532		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6533			/* NB: return holding spacq_lock */
6534			return acq;
6535		}
6536	}
6537	SPACQ_UNLOCK();
6538
6539	return NULL;
6540}
6541
6542/*
6543 * SADB_ACQUIRE processing,
6544 * in first situation, is receiving
6545 *   <base>
6546 * from the ikmpd, and clear sequence of its secasvar entry.
6547 *
6548 * In second situation, is receiving
6549 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6550 * from a user land process, and return
6551 *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6552 * to the socket.
6553 *
6554 * m will always be freed.
6555 */
6556static int
6557key_acquire2(so, m, mhp)
6558	struct socket *so;
6559	struct mbuf *m;
6560	const struct sadb_msghdr *mhp;
6561{
6562	const struct sadb_address *src0, *dst0;
6563	struct secasindex saidx;
6564	struct secashead *sah;
6565	u_int16_t proto;
6566	int error;
6567
6568	IPSEC_ASSERT(so != NULL, ("null socket"));
6569	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6570	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6571	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6572
6573	/*
6574	 * Error message from KMd.
6575	 * We assume that if error was occured in IKEd, the length of PFKEY
6576	 * message is equal to the size of sadb_msg structure.
6577	 * We do not raise error even if error occured in this function.
6578	 */
6579	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6580		struct secacq *acq;
6581
6582		/* check sequence number */
6583		if (mhp->msg->sadb_msg_seq == 0) {
6584			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6585				"number.\n", __func__));
6586			m_freem(m);
6587			return 0;
6588		}
6589
6590		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6591			/*
6592			 * the specified larval SA is already gone, or we got
6593			 * a bogus sequence number.  we can silently ignore it.
6594			 */
6595			m_freem(m);
6596			return 0;
6597		}
6598
6599		/* reset acq counter in order to deletion by timehander. */
6600		acq->created = time_second;
6601		acq->count = 0;
6602		m_freem(m);
6603		return 0;
6604	}
6605
6606	/*
6607	 * This message is from user land.
6608	 */
6609
6610	/* map satype to proto */
6611	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6612		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6613			__func__));
6614		return key_senderror(so, m, EINVAL);
6615	}
6616
6617	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6618	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6619	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6620		/* error */
6621		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6622			__func__));
6623		return key_senderror(so, m, EINVAL);
6624	}
6625	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6626	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6627	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6628		/* error */
6629		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6630			__func__));
6631		return key_senderror(so, m, EINVAL);
6632	}
6633
6634	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6635	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6636
6637	/* XXX boundary check against sa_len */
6638	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6639
6640	/*
6641	 * Make sure the port numbers are zero.
6642	 * In case of NAT-T we will update them later if needed.
6643	 */
6644	KEY_PORTTOSADDR(&saidx.src, 0);
6645	KEY_PORTTOSADDR(&saidx.dst, 0);
6646
6647#ifndef IPSEC_NAT_T
6648	/*
6649	 * Handle NAT-T info if present.
6650	 */
6651
6652	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6653	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6654		struct sadb_x_nat_t_port *sport, *dport;
6655
6656		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6657		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6658			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6659			    __func__));
6660			return key_senderror(so, m, EINVAL);
6661		}
6662
6663		sport = (struct sadb_x_nat_t_port *)
6664		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6665		dport = (struct sadb_x_nat_t_port *)
6666		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6667
6668		if (sport)
6669			KEY_PORTTOSADDR(&saidx.src,
6670			    sport->sadb_x_nat_t_port_port);
6671		if (dport)
6672			KEY_PORTTOSADDR(&saidx.dst,
6673			    dport->sadb_x_nat_t_port_port);
6674	}
6675#endif
6676
6677	/* get a SA index */
6678	SAHTREE_LOCK();
6679	LIST_FOREACH(sah, &V_sahtree, chain) {
6680		if (sah->state == SADB_SASTATE_DEAD)
6681			continue;
6682		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6683			break;
6684	}
6685	SAHTREE_UNLOCK();
6686	if (sah != NULL) {
6687		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6688		return key_senderror(so, m, EEXIST);
6689	}
6690
6691	error = key_acquire(&saidx, NULL);
6692	if (error != 0) {
6693		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6694			__func__, mhp->msg->sadb_msg_errno));
6695		return key_senderror(so, m, error);
6696	}
6697
6698	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6699}
6700
6701/*
6702 * SADB_REGISTER processing.
6703 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6704 * receive
6705 *   <base>
6706 * from the ikmpd, and register a socket to send PF_KEY messages,
6707 * and send
6708 *   <base, supported>
6709 * to KMD by PF_KEY.
6710 * If socket is detached, must free from regnode.
6711 *
6712 * m will always be freed.
6713 */
6714static int
6715key_register(so, m, mhp)
6716	struct socket *so;
6717	struct mbuf *m;
6718	const struct sadb_msghdr *mhp;
6719{
6720	struct secreg *reg, *newreg = 0;
6721
6722	IPSEC_ASSERT(so != NULL, ("null socket"));
6723	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6724	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6725	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6726
6727	/* check for invalid register message */
6728	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6729		return key_senderror(so, m, EINVAL);
6730
6731	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6732	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6733		goto setmsg;
6734
6735	/* check whether existing or not */
6736	REGTREE_LOCK();
6737	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6738		if (reg->so == so) {
6739			REGTREE_UNLOCK();
6740			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6741				__func__));
6742			return key_senderror(so, m, EEXIST);
6743		}
6744	}
6745
6746	/* create regnode */
6747	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6748	if (newreg == NULL) {
6749		REGTREE_UNLOCK();
6750		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6751		return key_senderror(so, m, ENOBUFS);
6752	}
6753
6754	newreg->so = so;
6755	((struct keycb *)sotorawcb(so))->kp_registered++;
6756
6757	/* add regnode to regtree. */
6758	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6759	REGTREE_UNLOCK();
6760
6761  setmsg:
6762    {
6763	struct mbuf *n;
6764	struct sadb_msg *newmsg;
6765	struct sadb_supported *sup;
6766	u_int len, alen, elen;
6767	int off;
6768	int i;
6769	struct sadb_alg *alg;
6770
6771	/* create new sadb_msg to reply. */
6772	alen = 0;
6773	for (i = 1; i <= SADB_AALG_MAX; i++) {
6774		if (ah_algorithm_lookup(i))
6775			alen += sizeof(struct sadb_alg);
6776	}
6777	if (alen)
6778		alen += sizeof(struct sadb_supported);
6779	elen = 0;
6780	for (i = 1; i <= SADB_EALG_MAX; i++) {
6781		if (esp_algorithm_lookup(i))
6782			elen += sizeof(struct sadb_alg);
6783	}
6784	if (elen)
6785		elen += sizeof(struct sadb_supported);
6786
6787	len = sizeof(struct sadb_msg) + alen + elen;
6788
6789	if (len > MCLBYTES)
6790		return key_senderror(so, m, ENOBUFS);
6791
6792	MGETHDR(n, M_NOWAIT, MT_DATA);
6793	if (len > MHLEN) {
6794		MCLGET(n, M_NOWAIT);
6795		if ((n->m_flags & M_EXT) == 0) {
6796			m_freem(n);
6797			n = NULL;
6798		}
6799	}
6800	if (!n)
6801		return key_senderror(so, m, ENOBUFS);
6802
6803	n->m_pkthdr.len = n->m_len = len;
6804	n->m_next = NULL;
6805	off = 0;
6806
6807	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6808	newmsg = mtod(n, struct sadb_msg *);
6809	newmsg->sadb_msg_errno = 0;
6810	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6811	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6812
6813	/* for authentication algorithm */
6814	if (alen) {
6815		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6816		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6817		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6818		off += PFKEY_ALIGN8(sizeof(*sup));
6819
6820		for (i = 1; i <= SADB_AALG_MAX; i++) {
6821			struct auth_hash *aalgo;
6822			u_int16_t minkeysize, maxkeysize;
6823
6824			aalgo = ah_algorithm_lookup(i);
6825			if (!aalgo)
6826				continue;
6827			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6828			alg->sadb_alg_id = i;
6829			alg->sadb_alg_ivlen = 0;
6830			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6831			alg->sadb_alg_minbits = _BITS(minkeysize);
6832			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6833			off += PFKEY_ALIGN8(sizeof(*alg));
6834		}
6835	}
6836
6837	/* for encryption algorithm */
6838	if (elen) {
6839		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6840		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6841		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6842		off += PFKEY_ALIGN8(sizeof(*sup));
6843
6844		for (i = 1; i <= SADB_EALG_MAX; i++) {
6845			struct enc_xform *ealgo;
6846
6847			ealgo = esp_algorithm_lookup(i);
6848			if (!ealgo)
6849				continue;
6850			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6851			alg->sadb_alg_id = i;
6852			alg->sadb_alg_ivlen = ealgo->blocksize;
6853			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6854			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6855			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6856		}
6857	}
6858
6859	IPSEC_ASSERT(off == len,
6860		("length assumption failed (off %u len %u)", off, len));
6861
6862	m_freem(m);
6863	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6864    }
6865}
6866
6867/*
6868 * free secreg entry registered.
6869 * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6870 */
6871void
6872key_freereg(struct socket *so)
6873{
6874	struct secreg *reg;
6875	int i;
6876
6877	IPSEC_ASSERT(so != NULL, ("NULL so"));
6878
6879	/*
6880	 * check whether existing or not.
6881	 * check all type of SA, because there is a potential that
6882	 * one socket is registered to multiple type of SA.
6883	 */
6884	REGTREE_LOCK();
6885	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6886		LIST_FOREACH(reg, &V_regtree[i], chain) {
6887			if (reg->so == so && __LIST_CHAINED(reg)) {
6888				LIST_REMOVE(reg, chain);
6889				free(reg, M_IPSEC_SAR);
6890				break;
6891			}
6892		}
6893	}
6894	REGTREE_UNLOCK();
6895}
6896
6897/*
6898 * SADB_EXPIRE processing
6899 * send
6900 *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6901 * to KMD by PF_KEY.
6902 * NOTE: We send only soft lifetime extension.
6903 *
6904 * OUT:	0	: succeed
6905 *	others	: error number
6906 */
6907static int
6908key_expire(struct secasvar *sav)
6909{
6910	int satype;
6911	struct mbuf *result = NULL, *m;
6912	int len;
6913	int error = -1;
6914	struct sadb_lifetime *lt;
6915
6916	IPSEC_ASSERT (sav != NULL, ("null sav"));
6917	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6918
6919	/* set msg header */
6920	satype = key_proto2satype(sav->sah->saidx.proto);
6921	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6922	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6923	if (!m) {
6924		error = ENOBUFS;
6925		goto fail;
6926	}
6927	result = m;
6928
6929	/* create SA extension */
6930	m = key_setsadbsa(sav);
6931	if (!m) {
6932		error = ENOBUFS;
6933		goto fail;
6934	}
6935	m_cat(result, m);
6936
6937	/* create SA extension */
6938	m = key_setsadbxsa2(sav->sah->saidx.mode,
6939			sav->replay ? sav->replay->count : 0,
6940			sav->sah->saidx.reqid);
6941	if (!m) {
6942		error = ENOBUFS;
6943		goto fail;
6944	}
6945	m_cat(result, m);
6946
6947	/* create lifetime extension (current and soft) */
6948	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6949	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
6950	if (m == NULL) {
6951		error = ENOBUFS;
6952		goto fail;
6953	}
6954	m_align(m, len);
6955	m->m_len = len;
6956	bzero(mtod(m, caddr_t), len);
6957	lt = mtod(m, struct sadb_lifetime *);
6958	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6959	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6960	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6961	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6962	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6963	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6964	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6965	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6966	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6967	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6968	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6969	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6970	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6971	m_cat(result, m);
6972
6973	/* set sadb_address for source */
6974	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6975	    &sav->sah->saidx.src.sa,
6976	    FULLMASK, IPSEC_ULPROTO_ANY);
6977	if (!m) {
6978		error = ENOBUFS;
6979		goto fail;
6980	}
6981	m_cat(result, m);
6982
6983	/* set sadb_address for destination */
6984	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6985	    &sav->sah->saidx.dst.sa,
6986	    FULLMASK, IPSEC_ULPROTO_ANY);
6987	if (!m) {
6988		error = ENOBUFS;
6989		goto fail;
6990	}
6991	m_cat(result, m);
6992
6993	/*
6994	 * XXX-BZ Handle NAT-T extensions here.
6995	 */
6996
6997	if ((result->m_flags & M_PKTHDR) == 0) {
6998		error = EINVAL;
6999		goto fail;
7000	}
7001
7002	if (result->m_len < sizeof(struct sadb_msg)) {
7003		result = m_pullup(result, sizeof(struct sadb_msg));
7004		if (result == NULL) {
7005			error = ENOBUFS;
7006			goto fail;
7007		}
7008	}
7009
7010	result->m_pkthdr.len = 0;
7011	for (m = result; m; m = m->m_next)
7012		result->m_pkthdr.len += m->m_len;
7013
7014	mtod(result, struct sadb_msg *)->sadb_msg_len =
7015	    PFKEY_UNIT64(result->m_pkthdr.len);
7016
7017	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7018
7019 fail:
7020	if (result)
7021		m_freem(result);
7022	return error;
7023}
7024
7025/*
7026 * SADB_FLUSH processing
7027 * receive
7028 *   <base>
7029 * from the ikmpd, and free all entries in secastree.
7030 * and send,
7031 *   <base>
7032 * to the ikmpd.
7033 * NOTE: to do is only marking SADB_SASTATE_DEAD.
7034 *
7035 * m will always be freed.
7036 */
7037static int
7038key_flush(so, m, mhp)
7039	struct socket *so;
7040	struct mbuf *m;
7041	const struct sadb_msghdr *mhp;
7042{
7043	struct sadb_msg *newmsg;
7044	struct secashead *sah, *nextsah;
7045	struct secasvar *sav, *nextsav;
7046	u_int16_t proto;
7047	u_int8_t state;
7048	u_int stateidx;
7049
7050	IPSEC_ASSERT(so != NULL, ("null socket"));
7051	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7052	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7053
7054	/* map satype to proto */
7055	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7056		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7057			__func__));
7058		return key_senderror(so, m, EINVAL);
7059	}
7060
7061	/* no SATYPE specified, i.e. flushing all SA. */
7062	SAHTREE_LOCK();
7063	for (sah = LIST_FIRST(&V_sahtree);
7064	     sah != NULL;
7065	     sah = nextsah) {
7066		nextsah = LIST_NEXT(sah, chain);
7067
7068		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7069		 && proto != sah->saidx.proto)
7070			continue;
7071
7072		for (stateidx = 0;
7073		     stateidx < _ARRAYLEN(saorder_state_alive);
7074		     stateidx++) {
7075			state = saorder_state_any[stateidx];
7076			for (sav = LIST_FIRST(&sah->savtree[state]);
7077			     sav != NULL;
7078			     sav = nextsav) {
7079
7080				nextsav = LIST_NEXT(sav, chain);
7081
7082				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7083				KEY_FREESAV(&sav);
7084			}
7085		}
7086
7087		sah->state = SADB_SASTATE_DEAD;
7088	}
7089	SAHTREE_UNLOCK();
7090
7091	if (m->m_len < sizeof(struct sadb_msg) ||
7092	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7093		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7094		return key_senderror(so, m, ENOBUFS);
7095	}
7096
7097	if (m->m_next)
7098		m_freem(m->m_next);
7099	m->m_next = NULL;
7100	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7101	newmsg = mtod(m, struct sadb_msg *);
7102	newmsg->sadb_msg_errno = 0;
7103	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7104
7105	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7106}
7107
7108/*
7109 * SADB_DUMP processing
7110 * dump all entries including status of DEAD in SAD.
7111 * receive
7112 *   <base>
7113 * from the ikmpd, and dump all secasvar leaves
7114 * and send,
7115 *   <base> .....
7116 * to the ikmpd.
7117 *
7118 * m will always be freed.
7119 */
7120static int
7121key_dump(so, m, mhp)
7122	struct socket *so;
7123	struct mbuf *m;
7124	const struct sadb_msghdr *mhp;
7125{
7126	struct secashead *sah;
7127	struct secasvar *sav;
7128	u_int16_t proto;
7129	u_int stateidx;
7130	u_int8_t satype;
7131	u_int8_t state;
7132	int cnt;
7133	struct sadb_msg *newmsg;
7134	struct mbuf *n;
7135
7136	IPSEC_ASSERT(so != NULL, ("null socket"));
7137	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7138	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7139	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7140
7141	/* map satype to proto */
7142	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7143		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7144			__func__));
7145		return key_senderror(so, m, EINVAL);
7146	}
7147
7148	/* count sav entries to be sent to the userland. */
7149	cnt = 0;
7150	SAHTREE_LOCK();
7151	LIST_FOREACH(sah, &V_sahtree, chain) {
7152		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7153		 && proto != sah->saidx.proto)
7154			continue;
7155
7156		for (stateidx = 0;
7157		     stateidx < _ARRAYLEN(saorder_state_any);
7158		     stateidx++) {
7159			state = saorder_state_any[stateidx];
7160			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7161				cnt++;
7162			}
7163		}
7164	}
7165
7166	if (cnt == 0) {
7167		SAHTREE_UNLOCK();
7168		return key_senderror(so, m, ENOENT);
7169	}
7170
7171	/* send this to the userland, one at a time. */
7172	newmsg = NULL;
7173	LIST_FOREACH(sah, &V_sahtree, chain) {
7174		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7175		 && proto != sah->saidx.proto)
7176			continue;
7177
7178		/* map proto to satype */
7179		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7180			SAHTREE_UNLOCK();
7181			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7182				"SAD.\n", __func__));
7183			return key_senderror(so, m, EINVAL);
7184		}
7185
7186		for (stateidx = 0;
7187		     stateidx < _ARRAYLEN(saorder_state_any);
7188		     stateidx++) {
7189			state = saorder_state_any[stateidx];
7190			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7191				n = key_setdumpsa(sav, SADB_DUMP, satype,
7192				    --cnt, mhp->msg->sadb_msg_pid);
7193				if (!n) {
7194					SAHTREE_UNLOCK();
7195					return key_senderror(so, m, ENOBUFS);
7196				}
7197				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7198			}
7199		}
7200	}
7201	SAHTREE_UNLOCK();
7202
7203	m_freem(m);
7204	return 0;
7205}
7206
7207/*
7208 * SADB_X_PROMISC processing
7209 *
7210 * m will always be freed.
7211 */
7212static int
7213key_promisc(so, m, mhp)
7214	struct socket *so;
7215	struct mbuf *m;
7216	const struct sadb_msghdr *mhp;
7217{
7218	int olen;
7219
7220	IPSEC_ASSERT(so != NULL, ("null socket"));
7221	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7222	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7223	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7224
7225	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7226
7227	if (olen < sizeof(struct sadb_msg)) {
7228#if 1
7229		return key_senderror(so, m, EINVAL);
7230#else
7231		m_freem(m);
7232		return 0;
7233#endif
7234	} else if (olen == sizeof(struct sadb_msg)) {
7235		/* enable/disable promisc mode */
7236		struct keycb *kp;
7237
7238		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7239			return key_senderror(so, m, EINVAL);
7240		mhp->msg->sadb_msg_errno = 0;
7241		switch (mhp->msg->sadb_msg_satype) {
7242		case 0:
7243		case 1:
7244			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7245			break;
7246		default:
7247			return key_senderror(so, m, EINVAL);
7248		}
7249
7250		/* send the original message back to everyone */
7251		mhp->msg->sadb_msg_errno = 0;
7252		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7253	} else {
7254		/* send packet as is */
7255
7256		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7257
7258		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7259		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7260	}
7261}
7262
7263static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7264		const struct sadb_msghdr *)) = {
7265	NULL,		/* SADB_RESERVED */
7266	key_getspi,	/* SADB_GETSPI */
7267	key_update,	/* SADB_UPDATE */
7268	key_add,	/* SADB_ADD */
7269	key_delete,	/* SADB_DELETE */
7270	key_get,	/* SADB_GET */
7271	key_acquire2,	/* SADB_ACQUIRE */
7272	key_register,	/* SADB_REGISTER */
7273	NULL,		/* SADB_EXPIRE */
7274	key_flush,	/* SADB_FLUSH */
7275	key_dump,	/* SADB_DUMP */
7276	key_promisc,	/* SADB_X_PROMISC */
7277	NULL,		/* SADB_X_PCHANGE */
7278	key_spdadd,	/* SADB_X_SPDUPDATE */
7279	key_spdadd,	/* SADB_X_SPDADD */
7280	key_spddelete,	/* SADB_X_SPDDELETE */
7281	key_spdget,	/* SADB_X_SPDGET */
7282	NULL,		/* SADB_X_SPDACQUIRE */
7283	key_spddump,	/* SADB_X_SPDDUMP */
7284	key_spdflush,	/* SADB_X_SPDFLUSH */
7285	key_spdadd,	/* SADB_X_SPDSETIDX */
7286	NULL,		/* SADB_X_SPDEXPIRE */
7287	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7288};
7289
7290/*
7291 * parse sadb_msg buffer to process PFKEYv2,
7292 * and create a data to response if needed.
7293 * I think to be dealed with mbuf directly.
7294 * IN:
7295 *     msgp  : pointer to pointer to a received buffer pulluped.
7296 *             This is rewrited to response.
7297 *     so    : pointer to socket.
7298 * OUT:
7299 *    length for buffer to send to user process.
7300 */
7301int
7302key_parse(m, so)
7303	struct mbuf *m;
7304	struct socket *so;
7305{
7306	struct sadb_msg *msg;
7307	struct sadb_msghdr mh;
7308	u_int orglen;
7309	int error;
7310	int target;
7311
7312	IPSEC_ASSERT(so != NULL, ("null socket"));
7313	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7314
7315#if 0	/*kdebug_sadb assumes msg in linear buffer*/
7316	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7317		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7318		kdebug_sadb(msg));
7319#endif
7320
7321	if (m->m_len < sizeof(struct sadb_msg)) {
7322		m = m_pullup(m, sizeof(struct sadb_msg));
7323		if (!m)
7324			return ENOBUFS;
7325	}
7326	msg = mtod(m, struct sadb_msg *);
7327	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7328	target = KEY_SENDUP_ONE;
7329
7330	if ((m->m_flags & M_PKTHDR) == 0 ||
7331	    m->m_pkthdr.len != m->m_pkthdr.len) {
7332		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7333		PFKEYSTAT_INC(out_invlen);
7334		error = EINVAL;
7335		goto senderror;
7336	}
7337
7338	if (msg->sadb_msg_version != PF_KEY_V2) {
7339		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7340		    __func__, msg->sadb_msg_version));
7341		PFKEYSTAT_INC(out_invver);
7342		error = EINVAL;
7343		goto senderror;
7344	}
7345
7346	if (msg->sadb_msg_type > SADB_MAX) {
7347		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7348		    __func__, msg->sadb_msg_type));
7349		PFKEYSTAT_INC(out_invmsgtype);
7350		error = EINVAL;
7351		goto senderror;
7352	}
7353
7354	/* for old-fashioned code - should be nuked */
7355	if (m->m_pkthdr.len > MCLBYTES) {
7356		m_freem(m);
7357		return ENOBUFS;
7358	}
7359	if (m->m_next) {
7360		struct mbuf *n;
7361
7362		MGETHDR(n, M_NOWAIT, MT_DATA);
7363		if (n && m->m_pkthdr.len > MHLEN) {
7364			MCLGET(n, M_NOWAIT);
7365			if ((n->m_flags & M_EXT) == 0) {
7366				m_free(n);
7367				n = NULL;
7368			}
7369		}
7370		if (!n) {
7371			m_freem(m);
7372			return ENOBUFS;
7373		}
7374		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7375		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7376		n->m_next = NULL;
7377		m_freem(m);
7378		m = n;
7379	}
7380
7381	/* align the mbuf chain so that extensions are in contiguous region. */
7382	error = key_align(m, &mh);
7383	if (error)
7384		return error;
7385
7386	msg = mh.msg;
7387
7388	/* check SA type */
7389	switch (msg->sadb_msg_satype) {
7390	case SADB_SATYPE_UNSPEC:
7391		switch (msg->sadb_msg_type) {
7392		case SADB_GETSPI:
7393		case SADB_UPDATE:
7394		case SADB_ADD:
7395		case SADB_DELETE:
7396		case SADB_GET:
7397		case SADB_ACQUIRE:
7398		case SADB_EXPIRE:
7399			ipseclog((LOG_DEBUG, "%s: must specify satype "
7400			    "when msg type=%u.\n", __func__,
7401			    msg->sadb_msg_type));
7402			PFKEYSTAT_INC(out_invsatype);
7403			error = EINVAL;
7404			goto senderror;
7405		}
7406		break;
7407	case SADB_SATYPE_AH:
7408	case SADB_SATYPE_ESP:
7409	case SADB_X_SATYPE_IPCOMP:
7410	case SADB_X_SATYPE_TCPSIGNATURE:
7411		switch (msg->sadb_msg_type) {
7412		case SADB_X_SPDADD:
7413		case SADB_X_SPDDELETE:
7414		case SADB_X_SPDGET:
7415		case SADB_X_SPDDUMP:
7416		case SADB_X_SPDFLUSH:
7417		case SADB_X_SPDSETIDX:
7418		case SADB_X_SPDUPDATE:
7419		case SADB_X_SPDDELETE2:
7420			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7421				__func__, msg->sadb_msg_type));
7422			PFKEYSTAT_INC(out_invsatype);
7423			error = EINVAL;
7424			goto senderror;
7425		}
7426		break;
7427	case SADB_SATYPE_RSVP:
7428	case SADB_SATYPE_OSPFV2:
7429	case SADB_SATYPE_RIPV2:
7430	case SADB_SATYPE_MIP:
7431		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7432			__func__, msg->sadb_msg_satype));
7433		PFKEYSTAT_INC(out_invsatype);
7434		error = EOPNOTSUPP;
7435		goto senderror;
7436	case 1:	/* XXX: What does it do? */
7437		if (msg->sadb_msg_type == SADB_X_PROMISC)
7438			break;
7439		/*FALLTHROUGH*/
7440	default:
7441		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7442			__func__, msg->sadb_msg_satype));
7443		PFKEYSTAT_INC(out_invsatype);
7444		error = EINVAL;
7445		goto senderror;
7446	}
7447
7448	/* check field of upper layer protocol and address family */
7449	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7450	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7451		struct sadb_address *src0, *dst0;
7452		u_int plen;
7453
7454		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7455		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7456
7457		/* check upper layer protocol */
7458		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7459			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7460				"mismatched.\n", __func__));
7461			PFKEYSTAT_INC(out_invaddr);
7462			error = EINVAL;
7463			goto senderror;
7464		}
7465
7466		/* check family */
7467		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7468		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7469			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7470				__func__));
7471			PFKEYSTAT_INC(out_invaddr);
7472			error = EINVAL;
7473			goto senderror;
7474		}
7475		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7476		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7477			ipseclog((LOG_DEBUG, "%s: address struct size "
7478				"mismatched.\n", __func__));
7479			PFKEYSTAT_INC(out_invaddr);
7480			error = EINVAL;
7481			goto senderror;
7482		}
7483
7484		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7485		case AF_INET:
7486			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7487			    sizeof(struct sockaddr_in)) {
7488				PFKEYSTAT_INC(out_invaddr);
7489				error = EINVAL;
7490				goto senderror;
7491			}
7492			break;
7493		case AF_INET6:
7494			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7495			    sizeof(struct sockaddr_in6)) {
7496				PFKEYSTAT_INC(out_invaddr);
7497				error = EINVAL;
7498				goto senderror;
7499			}
7500			break;
7501		default:
7502			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7503				__func__));
7504			PFKEYSTAT_INC(out_invaddr);
7505			error = EAFNOSUPPORT;
7506			goto senderror;
7507		}
7508
7509		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7510		case AF_INET:
7511			plen = sizeof(struct in_addr) << 3;
7512			break;
7513		case AF_INET6:
7514			plen = sizeof(struct in6_addr) << 3;
7515			break;
7516		default:
7517			plen = 0;	/*fool gcc*/
7518			break;
7519		}
7520
7521		/* check max prefix length */
7522		if (src0->sadb_address_prefixlen > plen ||
7523		    dst0->sadb_address_prefixlen > plen) {
7524			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7525				__func__));
7526			PFKEYSTAT_INC(out_invaddr);
7527			error = EINVAL;
7528			goto senderror;
7529		}
7530
7531		/*
7532		 * prefixlen == 0 is valid because there can be a case when
7533		 * all addresses are matched.
7534		 */
7535	}
7536
7537	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7538	    key_typesw[msg->sadb_msg_type] == NULL) {
7539		PFKEYSTAT_INC(out_invmsgtype);
7540		error = EINVAL;
7541		goto senderror;
7542	}
7543
7544	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7545
7546senderror:
7547	msg->sadb_msg_errno = error;
7548	return key_sendup_mbuf(so, m, target);
7549}
7550
7551static int
7552key_senderror(so, m, code)
7553	struct socket *so;
7554	struct mbuf *m;
7555	int code;
7556{
7557	struct sadb_msg *msg;
7558
7559	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7560		("mbuf too small, len %u", m->m_len));
7561
7562	msg = mtod(m, struct sadb_msg *);
7563	msg->sadb_msg_errno = code;
7564	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7565}
7566
7567/*
7568 * set the pointer to each header into message buffer.
7569 * m will be freed on error.
7570 * XXX larger-than-MCLBYTES extension?
7571 */
7572static int
7573key_align(m, mhp)
7574	struct mbuf *m;
7575	struct sadb_msghdr *mhp;
7576{
7577	struct mbuf *n;
7578	struct sadb_ext *ext;
7579	size_t off, end;
7580	int extlen;
7581	int toff;
7582
7583	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7584	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7585	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7586		("mbuf too small, len %u", m->m_len));
7587
7588	/* initialize */
7589	bzero(mhp, sizeof(*mhp));
7590
7591	mhp->msg = mtod(m, struct sadb_msg *);
7592	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7593
7594	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7595	extlen = end;	/*just in case extlen is not updated*/
7596	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7597		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7598		if (!n) {
7599			/* m is already freed */
7600			return ENOBUFS;
7601		}
7602		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7603
7604		/* set pointer */
7605		switch (ext->sadb_ext_type) {
7606		case SADB_EXT_SA:
7607		case SADB_EXT_ADDRESS_SRC:
7608		case SADB_EXT_ADDRESS_DST:
7609		case SADB_EXT_ADDRESS_PROXY:
7610		case SADB_EXT_LIFETIME_CURRENT:
7611		case SADB_EXT_LIFETIME_HARD:
7612		case SADB_EXT_LIFETIME_SOFT:
7613		case SADB_EXT_KEY_AUTH:
7614		case SADB_EXT_KEY_ENCRYPT:
7615		case SADB_EXT_IDENTITY_SRC:
7616		case SADB_EXT_IDENTITY_DST:
7617		case SADB_EXT_SENSITIVITY:
7618		case SADB_EXT_PROPOSAL:
7619		case SADB_EXT_SUPPORTED_AUTH:
7620		case SADB_EXT_SUPPORTED_ENCRYPT:
7621		case SADB_EXT_SPIRANGE:
7622		case SADB_X_EXT_POLICY:
7623		case SADB_X_EXT_SA2:
7624#ifdef IPSEC_NAT_T
7625		case SADB_X_EXT_NAT_T_TYPE:
7626		case SADB_X_EXT_NAT_T_SPORT:
7627		case SADB_X_EXT_NAT_T_DPORT:
7628		case SADB_X_EXT_NAT_T_OAI:
7629		case SADB_X_EXT_NAT_T_OAR:
7630		case SADB_X_EXT_NAT_T_FRAG:
7631#endif
7632			/* duplicate check */
7633			/*
7634			 * XXX Are there duplication payloads of either
7635			 * KEY_AUTH or KEY_ENCRYPT ?
7636			 */
7637			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7638				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7639					"%u\n", __func__, ext->sadb_ext_type));
7640				m_freem(m);
7641				PFKEYSTAT_INC(out_dupext);
7642				return EINVAL;
7643			}
7644			break;
7645		default:
7646			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7647				__func__, ext->sadb_ext_type));
7648			m_freem(m);
7649			PFKEYSTAT_INC(out_invexttype);
7650			return EINVAL;
7651		}
7652
7653		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7654
7655		if (key_validate_ext(ext, extlen)) {
7656			m_freem(m);
7657			PFKEYSTAT_INC(out_invlen);
7658			return EINVAL;
7659		}
7660
7661		n = m_pulldown(m, off, extlen, &toff);
7662		if (!n) {
7663			/* m is already freed */
7664			return ENOBUFS;
7665		}
7666		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7667
7668		mhp->ext[ext->sadb_ext_type] = ext;
7669		mhp->extoff[ext->sadb_ext_type] = off;
7670		mhp->extlen[ext->sadb_ext_type] = extlen;
7671	}
7672
7673	if (off != end) {
7674		m_freem(m);
7675		PFKEYSTAT_INC(out_invlen);
7676		return EINVAL;
7677	}
7678
7679	return 0;
7680}
7681
7682static int
7683key_validate_ext(ext, len)
7684	const struct sadb_ext *ext;
7685	int len;
7686{
7687	const struct sockaddr *sa;
7688	enum { NONE, ADDR } checktype = NONE;
7689	int baselen = 0;
7690	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7691
7692	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7693		return EINVAL;
7694
7695	/* if it does not match minimum/maximum length, bail */
7696	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7697	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7698		return EINVAL;
7699	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7700		return EINVAL;
7701	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7702		return EINVAL;
7703
7704	/* more checks based on sadb_ext_type XXX need more */
7705	switch (ext->sadb_ext_type) {
7706	case SADB_EXT_ADDRESS_SRC:
7707	case SADB_EXT_ADDRESS_DST:
7708	case SADB_EXT_ADDRESS_PROXY:
7709		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7710		checktype = ADDR;
7711		break;
7712	case SADB_EXT_IDENTITY_SRC:
7713	case SADB_EXT_IDENTITY_DST:
7714		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7715		    SADB_X_IDENTTYPE_ADDR) {
7716			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7717			checktype = ADDR;
7718		} else
7719			checktype = NONE;
7720		break;
7721	default:
7722		checktype = NONE;
7723		break;
7724	}
7725
7726	switch (checktype) {
7727	case NONE:
7728		break;
7729	case ADDR:
7730		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7731		if (len < baselen + sal)
7732			return EINVAL;
7733		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7734			return EINVAL;
7735		break;
7736	}
7737
7738	return 0;
7739}
7740
7741void
7742key_init(void)
7743{
7744	int i;
7745
7746	for (i = 0; i < IPSEC_DIR_MAX; i++)
7747		LIST_INIT(&V_sptree[i]);
7748
7749	LIST_INIT(&V_sahtree);
7750
7751	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7752		LIST_INIT(&V_regtree[i]);
7753
7754	LIST_INIT(&V_acqtree);
7755	LIST_INIT(&V_spacqtree);
7756
7757	/* system default */
7758	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7759	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7760
7761	if (!IS_DEFAULT_VNET(curvnet))
7762		return;
7763
7764	SPTREE_LOCK_INIT();
7765	REGTREE_LOCK_INIT();
7766	SAHTREE_LOCK_INIT();
7767	ACQ_LOCK_INIT();
7768	SPACQ_LOCK_INIT();
7769
7770#ifndef IPSEC_DEBUG2
7771	timeout((void *)key_timehandler, (void *)0, hz);
7772#endif /*IPSEC_DEBUG2*/
7773
7774	/* initialize key statistics */
7775	keystat.getspi_count = 1;
7776
7777	printf("IPsec: Initialized Security Association Processing.\n");
7778}
7779
7780#ifdef VIMAGE
7781void
7782key_destroy(void)
7783{
7784	struct secpolicy *sp, *nextsp;
7785	struct secacq *acq, *nextacq;
7786	struct secspacq *spacq, *nextspacq;
7787	struct secashead *sah, *nextsah;
7788	struct secreg *reg;
7789	int i;
7790
7791	SPTREE_LOCK();
7792	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7793		for (sp = LIST_FIRST(&V_sptree[i]);
7794		    sp != NULL; sp = nextsp) {
7795			nextsp = LIST_NEXT(sp, chain);
7796			if (__LIST_CHAINED(sp)) {
7797				LIST_REMOVE(sp, chain);
7798				free(sp, M_IPSEC_SP);
7799			}
7800		}
7801	}
7802	SPTREE_UNLOCK();
7803
7804	SAHTREE_LOCK();
7805	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7806		nextsah = LIST_NEXT(sah, chain);
7807		if (__LIST_CHAINED(sah)) {
7808			LIST_REMOVE(sah, chain);
7809			free(sah, M_IPSEC_SAH);
7810		}
7811	}
7812	SAHTREE_UNLOCK();
7813
7814	REGTREE_LOCK();
7815	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7816		LIST_FOREACH(reg, &V_regtree[i], chain) {
7817			if (__LIST_CHAINED(reg)) {
7818				LIST_REMOVE(reg, chain);
7819				free(reg, M_IPSEC_SAR);
7820				break;
7821			}
7822		}
7823	}
7824	REGTREE_UNLOCK();
7825
7826	ACQ_LOCK();
7827	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7828		nextacq = LIST_NEXT(acq, chain);
7829		if (__LIST_CHAINED(acq)) {
7830			LIST_REMOVE(acq, chain);
7831			free(acq, M_IPSEC_SAQ);
7832		}
7833	}
7834	ACQ_UNLOCK();
7835
7836	SPACQ_LOCK();
7837	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7838	    spacq = nextspacq) {
7839		nextspacq = LIST_NEXT(spacq, chain);
7840		if (__LIST_CHAINED(spacq)) {
7841			LIST_REMOVE(spacq, chain);
7842			free(spacq, M_IPSEC_SAQ);
7843		}
7844	}
7845	SPACQ_UNLOCK();
7846}
7847#endif
7848
7849/*
7850 * XXX: maybe This function is called after INBOUND IPsec processing.
7851 *
7852 * Special check for tunnel-mode packets.
7853 * We must make some checks for consistency between inner and outer IP header.
7854 *
7855 * xxx more checks to be provided
7856 */
7857int
7858key_checktunnelsanity(sav, family, src, dst)
7859	struct secasvar *sav;
7860	u_int family;
7861	caddr_t src;
7862	caddr_t dst;
7863{
7864	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7865
7866	/* XXX: check inner IP header */
7867
7868	return 1;
7869}
7870
7871/* record data transfer on SA, and update timestamps */
7872void
7873key_sa_recordxfer(sav, m)
7874	struct secasvar *sav;
7875	struct mbuf *m;
7876{
7877	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7878	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7879	if (!sav->lft_c)
7880		return;
7881
7882	/*
7883	 * XXX Currently, there is a difference of bytes size
7884	 * between inbound and outbound processing.
7885	 */
7886	sav->lft_c->bytes += m->m_pkthdr.len;
7887	/* to check bytes lifetime is done in key_timehandler(). */
7888
7889	/*
7890	 * We use the number of packets as the unit of
7891	 * allocations.  We increment the variable
7892	 * whenever {esp,ah}_{in,out}put is called.
7893	 */
7894	sav->lft_c->allocations++;
7895	/* XXX check for expires? */
7896
7897	/*
7898	 * NOTE: We record CURRENT usetime by using wall clock,
7899	 * in seconds.  HARD and SOFT lifetime are measured by the time
7900	 * difference (again in seconds) from usetime.
7901	 *
7902	 *	usetime
7903	 *	v     expire   expire
7904	 * -----+-----+--------+---> t
7905	 *	<--------------> HARD
7906	 *	<-----> SOFT
7907	 */
7908	sav->lft_c->usetime = time_second;
7909	/* XXX check for expires? */
7910
7911	return;
7912}
7913
7914/* dumb version */
7915void
7916key_sa_routechange(dst)
7917	struct sockaddr *dst;
7918{
7919	struct secashead *sah;
7920	struct route *ro;
7921
7922	SAHTREE_LOCK();
7923	LIST_FOREACH(sah, &V_sahtree, chain) {
7924		ro = &sah->route_cache.sa_route;
7925		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7926		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7927			RTFREE(ro->ro_rt);
7928			ro->ro_rt = (struct rtentry *)NULL;
7929		}
7930	}
7931	SAHTREE_UNLOCK();
7932}
7933
7934static void
7935key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7936{
7937	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7938	SAHTREE_LOCK_ASSERT();
7939
7940	if (sav->state != state) {
7941		if (__LIST_CHAINED(sav))
7942			LIST_REMOVE(sav, chain);
7943		sav->state = state;
7944		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7945	}
7946}
7947
7948void
7949key_sa_stir_iv(sav)
7950	struct secasvar *sav;
7951{
7952
7953	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7954	key_randomfill(sav->iv, sav->ivlen);
7955}
7956
7957/*
7958 * Take one of the kernel's security keys and convert it into a PF_KEY
7959 * structure within an mbuf, suitable for sending up to a waiting
7960 * application in user land.
7961 *
7962 * IN:
7963 *    src: A pointer to a kernel security key.
7964 *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7965 * OUT:
7966 *    a valid mbuf or NULL indicating an error
7967 *
7968 */
7969
7970static struct mbuf *
7971key_setkey(struct seckey *src, u_int16_t exttype)
7972{
7973	struct mbuf *m;
7974	struct sadb_key *p;
7975	int len;
7976
7977	if (src == NULL)
7978		return NULL;
7979
7980	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7981	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7982	if (m == NULL)
7983		return NULL;
7984	m_align(m, len);
7985	m->m_len = len;
7986	p = mtod(m, struct sadb_key *);
7987	bzero(p, len);
7988	p->sadb_key_len = PFKEY_UNIT64(len);
7989	p->sadb_key_exttype = exttype;
7990	p->sadb_key_bits = src->bits;
7991	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7992
7993	return m;
7994}
7995
7996/*
7997 * Take one of the kernel's lifetime data structures and convert it
7998 * into a PF_KEY structure within an mbuf, suitable for sending up to
7999 * a waiting application in user land.
8000 *
8001 * IN:
8002 *    src: A pointer to a kernel lifetime structure.
8003 *    exttype: Which type of lifetime this is. Refer to the PF_KEY
8004 *             data structures for more information.
8005 * OUT:
8006 *    a valid mbuf or NULL indicating an error
8007 *
8008 */
8009
8010static struct mbuf *
8011key_setlifetime(struct seclifetime *src, u_int16_t exttype)
8012{
8013	struct mbuf *m = NULL;
8014	struct sadb_lifetime *p;
8015	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8016
8017	if (src == NULL)
8018		return NULL;
8019
8020	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8021	if (m == NULL)
8022		return m;
8023	m_align(m, len);
8024	m->m_len = len;
8025	p = mtod(m, struct sadb_lifetime *);
8026
8027	bzero(p, len);
8028	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8029	p->sadb_lifetime_exttype = exttype;
8030	p->sadb_lifetime_allocations = src->allocations;
8031	p->sadb_lifetime_bytes = src->bytes;
8032	p->sadb_lifetime_addtime = src->addtime;
8033	p->sadb_lifetime_usetime = src->usetime;
8034
8035	return m;
8036
8037}
8038