ip6_output.c revision 284570
1289177Speter/*-
2289177Speter * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3289177Speter * All rights reserved.
4289177Speter *
5289177Speter * Redistribution and use in source and binary forms, with or without
6289177Speter * modification, are permitted provided that the following conditions
7289177Speter * are met:
8289177Speter * 1. Redistributions of source code must retain the above copyright
9289177Speter *    notice, this list of conditions and the following disclaimer.
10289177Speter * 2. Redistributions in binary form must reproduce the above copyright
11289177Speter *    notice, this list of conditions and the following disclaimer in the
12289177Speter *    documentation and/or other materials provided with the distribution.
13289177Speter * 3. Neither the name of the project nor the names of its contributors
14289177Speter *    may be used to endorse or promote products derived from this software
15289177Speter *    without specific prior written permission.
16289177Speter *
17289177Speter * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18289177Speter * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19289177Speter * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20289177Speter * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21289177Speter * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22289177Speter * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23289177Speter * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24289177Speter * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25289177Speter * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26289177Speter * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27289177Speter * SUCH DAMAGE.
28289177Speter *
29289177Speter *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30289177Speter */
31289177Speter
32289177Speter/*-
33289177Speter * Copyright (c) 1982, 1986, 1988, 1990, 1993
34289177Speter *	The Regents of the University of California.  All rights reserved.
35289177Speter *
36289177Speter * Redistribution and use in source and binary forms, with or without
37289177Speter * modification, are permitted provided that the following conditions
38289177Speter * are met:
39289177Speter * 1. Redistributions of source code must retain the above copyright
40289177Speter *    notice, this list of conditions and the following disclaimer.
41289177Speter * 2. Redistributions in binary form must reproduce the above copyright
42289177Speter *    notice, this list of conditions and the following disclaimer in the
43289177Speter *    documentation and/or other materials provided with the distribution.
44289177Speter * 4. Neither the name of the University nor the names of its contributors
45289177Speter *    may be used to endorse or promote products derived from this software
46289177Speter *    without specific prior written permission.
47289177Speter *
48289177Speter * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49289177Speter * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50289177Speter * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51289177Speter * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52289177Speter * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53289177Speter * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54289177Speter * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55289177Speter * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56289177Speter * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57289177Speter * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58289177Speter * SUCH DAMAGE.
59289177Speter *
60289177Speter *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61289177Speter */
62289177Speter
63289177Speter#include <sys/cdefs.h>
64289177Speter__FBSDID("$FreeBSD: stable/10/sys/netinet6/ip6_output.c 284570 2015-06-18 20:32:53Z kp $");
65289177Speter
66289177Speter#include "opt_inet.h"
67289177Speter#include "opt_inet6.h"
68289177Speter#include "opt_ipfw.h"
69289177Speter#include "opt_ipsec.h"
70289177Speter#include "opt_sctp.h"
71289177Speter#include "opt_route.h"
72289177Speter
73289177Speter#include <sys/param.h>
74289177Speter#include <sys/kernel.h>
75289177Speter#include <sys/malloc.h>
76289177Speter#include <sys/mbuf.h>
77289177Speter#include <sys/errno.h>
78289177Speter#include <sys/priv.h>
79289177Speter#include <sys/proc.h>
80289177Speter#include <sys/protosw.h>
81289177Speter#include <sys/socket.h>
82289177Speter#include <sys/socketvar.h>
83289177Speter#include <sys/syslog.h>
84289177Speter#include <sys/ucred.h>
85289177Speter
86289177Speter#include <machine/in_cksum.h>
87289177Speter
88289177Speter#include <net/if.h>
89289177Speter#include <net/netisr.h>
90289177Speter#include <net/route.h>
91289177Speter#include <net/pfil.h>
92289177Speter#include <net/vnet.h>
93
94#include <netinet/in.h>
95#include <netinet/in_var.h>
96#include <netinet/ip_var.h>
97#include <netinet6/in6_var.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/ip6_var.h>
101#include <netinet/in_pcb.h>
102#include <netinet/tcp_var.h>
103#include <netinet6/nd6.h>
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/ipsec6.h>
108#include <netipsec/key.h>
109#include <netinet6/ip6_ipsec.h>
110#endif /* IPSEC */
111#ifdef SCTP
112#include <netinet/sctp.h>
113#include <netinet/sctp_crc32.h>
114#endif
115
116#include <netinet6/ip6protosw.h>
117#include <netinet6/scope6_var.h>
118
119#ifdef FLOWTABLE
120#include <net/flowtable.h>
121#endif
122
123extern int in6_mcast_loop;
124
125struct ip6_exthdrs {
126	struct mbuf *ip6e_ip6;
127	struct mbuf *ip6e_hbh;
128	struct mbuf *ip6e_dest1;
129	struct mbuf *ip6e_rthdr;
130	struct mbuf *ip6e_dest2;
131};
132
133static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
134			   struct ucred *, int);
135static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
136	struct socket *, struct sockopt *);
137static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
138static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
139	struct ucred *, int, int, int);
140
141static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
142static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
143	struct ip6_frag **);
144static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
145static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
146static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
147	struct ifnet *, struct in6_addr *, u_long *, int *, u_int);
148static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
149
150
151/*
152 * Make an extension header from option data.  hp is the source, and
153 * mp is the destination.
154 */
155#define MAKE_EXTHDR(hp, mp)						\
156    do {								\
157	if (hp) {							\
158		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
159		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
160		    ((eh)->ip6e_len + 1) << 3);				\
161		if (error)						\
162			goto freehdrs;					\
163	}								\
164    } while (/*CONSTCOND*/ 0)
165
166/*
167 * Form a chain of extension headers.
168 * m is the extension header mbuf
169 * mp is the previous mbuf in the chain
170 * p is the next header
171 * i is the type of option.
172 */
173#define MAKE_CHAIN(m, mp, p, i)\
174    do {\
175	if (m) {\
176		if (!hdrsplit) \
177			panic("assumption failed: hdr not split"); \
178		*mtod((m), u_char *) = *(p);\
179		*(p) = (i);\
180		p = mtod((m), u_char *);\
181		(m)->m_next = (mp)->m_next;\
182		(mp)->m_next = (m);\
183		(mp) = (m);\
184	}\
185    } while (/*CONSTCOND*/ 0)
186
187void
188in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
189{
190	u_short csum;
191
192	csum = in_cksum_skip(m, offset + plen, offset);
193	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
194		csum = 0xffff;
195	offset += m->m_pkthdr.csum_data;	/* checksum offset */
196
197	if (offset + sizeof(u_short) > m->m_len) {
198		printf("%s: delayed m_pullup, m->len: %d plen %u off %u "
199		    "csum_flags=%b\n", __func__, m->m_len, plen, offset,
200		    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
201		/*
202		 * XXX this should not happen, but if it does, the correct
203		 * behavior may be to insert the checksum in the appropriate
204		 * next mbuf in the chain.
205		 */
206		return;
207	}
208	*(u_short *)(m->m_data + offset) = csum;
209}
210
211int
212ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
213    int mtu)
214{
215	struct mbuf *m, **mnext, *m_frgpart;
216	struct ip6_hdr *ip6, *mhip6;
217	struct ip6_frag *ip6f;
218	int off;
219	int error;
220	int tlen = m0->m_pkthdr.len;
221	uint32_t id = htonl(ip6_randomid());
222
223	m = m0;
224	ip6 = mtod(m, struct ip6_hdr *);
225	mnext = &m->m_nextpkt;
226
227	for (off = hlen; off < tlen; off += mtu) {
228		m = m_gethdr(M_NOWAIT, MT_DATA);
229		if (!m) {
230			IP6STAT_INC(ip6s_odropped);
231			return (ENOBUFS);
232		}
233		m->m_flags = m0->m_flags & M_COPYFLAGS;
234		*mnext = m;
235		mnext = &m->m_nextpkt;
236		m->m_data += max_linkhdr;
237		mhip6 = mtod(m, struct ip6_hdr *);
238		*mhip6 = *ip6;
239		m->m_len = sizeof(*mhip6);
240		error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
241		if (error) {
242			IP6STAT_INC(ip6s_odropped);
243			return (error);
244		}
245		ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
246		if (off + mtu >= tlen)
247			mtu = tlen - off;
248		else
249			ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
250		mhip6->ip6_plen = htons((u_short)(mtu + hlen +
251		    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
252		if ((m_frgpart = m_copy(m0, off, mtu)) == 0) {
253			IP6STAT_INC(ip6s_odropped);
254			return (ENOBUFS);
255		}
256		m_cat(m, m_frgpart);
257		m->m_pkthdr.len = mtu + hlen + sizeof(*ip6f);
258		m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum;
259		m->m_pkthdr.rcvif = NULL;
260		ip6f->ip6f_reserved = 0;
261		ip6f->ip6f_ident = id;
262		ip6f->ip6f_nxt = nextproto;
263		IP6STAT_INC(ip6s_ofragments);
264		in6_ifstat_inc(ifp, ifs6_out_fragcreat);
265	}
266
267	return (0);
268}
269
270/*
271 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
272 * header (with pri, len, nxt, hlim, src, dst).
273 * This function may modify ver and hlim only.
274 * The mbuf chain containing the packet will be freed.
275 * The mbuf opt, if present, will not be freed.
276 * If route_in6 ro is present and has ro_rt initialized, route lookup would be
277 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
278 * then result of route lookup is stored in ro->ro_rt.
279 *
280 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and
281 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
282 * which is rt_mtu.
283 *
284 * ifpp - XXX: just for statistics
285 */
286int
287ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
288    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
289    struct ifnet **ifpp, struct inpcb *inp)
290{
291	struct ip6_hdr *ip6;
292	struct ifnet *ifp, *origifp;
293	struct mbuf *m = m0;
294	struct mbuf *mprev = NULL;
295	int hlen, tlen, len;
296	struct route_in6 ip6route;
297	struct rtentry *rt = NULL;
298	struct sockaddr_in6 *dst, src_sa, dst_sa;
299	struct in6_addr odst;
300	int error = 0;
301	struct in6_ifaddr *ia = NULL;
302	u_long mtu;
303	int alwaysfrag, dontfrag;
304	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
305	struct ip6_exthdrs exthdrs;
306	struct in6_addr finaldst, src0, dst0;
307	u_int32_t zone;
308	struct route_in6 *ro_pmtu = NULL;
309	int hdrsplit = 0;
310	int sw_csum, tso;
311	struct m_tag *fwd_tag = NULL;
312
313	ip6 = mtod(m, struct ip6_hdr *);
314	if (ip6 == NULL) {
315		printf ("ip6 is NULL");
316		goto bad;
317	}
318
319	if (inp != NULL)
320		M_SETFIB(m, inp->inp_inc.inc_fibnum);
321
322	finaldst = ip6->ip6_dst;
323	bzero(&exthdrs, sizeof(exthdrs));
324	if (opt) {
325		/* Hop-by-Hop options header */
326		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
327		/* Destination options header(1st part) */
328		if (opt->ip6po_rthdr) {
329			/*
330			 * Destination options header(1st part)
331			 * This only makes sense with a routing header.
332			 * See Section 9.2 of RFC 3542.
333			 * Disabling this part just for MIP6 convenience is
334			 * a bad idea.  We need to think carefully about a
335			 * way to make the advanced API coexist with MIP6
336			 * options, which might automatically be inserted in
337			 * the kernel.
338			 */
339			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
340		}
341		/* Routing header */
342		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
343		/* Destination options header(2nd part) */
344		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
345	}
346
347#ifdef IPSEC
348	/*
349	 * IPSec checking which handles several cases.
350	 * FAST IPSEC: We re-injected the packet.
351	 */
352	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp))
353	{
354	case 1:                 /* Bad packet */
355		goto freehdrs;
356	case -1:                /* IPSec done */
357		goto done;
358	case 0:                 /* No IPSec */
359	default:
360		break;
361	}
362#endif /* IPSEC */
363
364	/*
365	 * Calculate the total length of the extension header chain.
366	 * Keep the length of the unfragmentable part for fragmentation.
367	 */
368	optlen = 0;
369	if (exthdrs.ip6e_hbh)
370		optlen += exthdrs.ip6e_hbh->m_len;
371	if (exthdrs.ip6e_dest1)
372		optlen += exthdrs.ip6e_dest1->m_len;
373	if (exthdrs.ip6e_rthdr)
374		optlen += exthdrs.ip6e_rthdr->m_len;
375	unfragpartlen = optlen + sizeof(struct ip6_hdr);
376
377	/* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */
378	if (exthdrs.ip6e_dest2)
379		optlen += exthdrs.ip6e_dest2->m_len;
380
381	/*
382	 * If there is at least one extension header,
383	 * separate IP6 header from the payload.
384	 */
385	if (optlen && !hdrsplit) {
386		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
387			m = NULL;
388			goto freehdrs;
389		}
390		m = exthdrs.ip6e_ip6;
391		hdrsplit++;
392	}
393
394	/* adjust pointer */
395	ip6 = mtod(m, struct ip6_hdr *);
396
397	/* adjust mbuf packet header length */
398	m->m_pkthdr.len += optlen;
399	plen = m->m_pkthdr.len - sizeof(*ip6);
400
401	/* If this is a jumbo payload, insert a jumbo payload option. */
402	if (plen > IPV6_MAXPACKET) {
403		if (!hdrsplit) {
404			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
405				m = NULL;
406				goto freehdrs;
407			}
408			m = exthdrs.ip6e_ip6;
409			hdrsplit++;
410		}
411		/* adjust pointer */
412		ip6 = mtod(m, struct ip6_hdr *);
413		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
414			goto freehdrs;
415		ip6->ip6_plen = 0;
416	} else
417		ip6->ip6_plen = htons(plen);
418
419	/*
420	 * Concatenate headers and fill in next header fields.
421	 * Here we have, on "m"
422	 *	IPv6 payload
423	 * and we insert headers accordingly.  Finally, we should be getting:
424	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
425	 *
426	 * during the header composing process, "m" points to IPv6 header.
427	 * "mprev" points to an extension header prior to esp.
428	 */
429	u_char *nexthdrp = &ip6->ip6_nxt;
430	mprev = m;
431
432	/*
433	 * we treat dest2 specially.  this makes IPsec processing
434	 * much easier.  the goal here is to make mprev point the
435	 * mbuf prior to dest2.
436	 *
437	 * result: IPv6 dest2 payload
438	 * m and mprev will point to IPv6 header.
439	 */
440	if (exthdrs.ip6e_dest2) {
441		if (!hdrsplit)
442			panic("assumption failed: hdr not split");
443		exthdrs.ip6e_dest2->m_next = m->m_next;
444		m->m_next = exthdrs.ip6e_dest2;
445		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
446		ip6->ip6_nxt = IPPROTO_DSTOPTS;
447	}
448
449	/*
450	 * result: IPv6 hbh dest1 rthdr dest2 payload
451	 * m will point to IPv6 header.  mprev will point to the
452	 * extension header prior to dest2 (rthdr in the above case).
453	 */
454	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
455	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
456		   IPPROTO_DSTOPTS);
457	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
458		   IPPROTO_ROUTING);
459
460	/*
461	 * If there is a routing header, discard the packet.
462	 */
463	if (exthdrs.ip6e_rthdr) {
464		 error = EINVAL;
465		 goto bad;
466	}
467
468	/* Source address validation */
469	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470	    (flags & IPV6_UNSPECSRC) == 0) {
471		error = EOPNOTSUPP;
472		IP6STAT_INC(ip6s_badscope);
473		goto bad;
474	}
475	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476		error = EOPNOTSUPP;
477		IP6STAT_INC(ip6s_badscope);
478		goto bad;
479	}
480
481	IP6STAT_INC(ip6s_localout);
482
483	/*
484	 * Route packet.
485	 */
486	if (ro == 0) {
487		ro = &ip6route;
488		bzero((caddr_t)ro, sizeof(*ro));
489	}
490	ro_pmtu = ro;
491	if (opt && opt->ip6po_rthdr)
492		ro = &opt->ip6po_route;
493	dst = (struct sockaddr_in6 *)&ro->ro_dst;
494#ifdef FLOWTABLE
495	if (ro->ro_rt == NULL)
496		(void )flowtable_lookup(AF_INET6, m, (struct route *)ro);
497#endif
498again:
499	/*
500	 * if specified, try to fill in the traffic class field.
501	 * do not override if a non-zero value is already set.
502	 * we check the diffserv field and the ecn field separately.
503	 */
504	if (opt && opt->ip6po_tclass >= 0) {
505		int mask = 0;
506
507		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
508			mask |= 0xfc;
509		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
510			mask |= 0x03;
511		if (mask != 0)
512			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
513	}
514
515	/* fill in or override the hop limit field, if necessary. */
516	if (opt && opt->ip6po_hlim != -1)
517		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
518	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
519		if (im6o != NULL)
520			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
521		else
522			ip6->ip6_hlim = V_ip6_defmcasthlim;
523	}
524
525	/* adjust pointer */
526	ip6 = mtod(m, struct ip6_hdr *);
527
528	if (ro->ro_rt && fwd_tag == NULL) {
529		rt = ro->ro_rt;
530		ifp = ro->ro_rt->rt_ifp;
531	} else {
532		if (fwd_tag == NULL) {
533			bzero(&dst_sa, sizeof(dst_sa));
534			dst_sa.sin6_family = AF_INET6;
535			dst_sa.sin6_len = sizeof(dst_sa);
536			dst_sa.sin6_addr = ip6->ip6_dst;
537		}
538		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
539		    &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
540		if (error != 0) {
541			if (ifp != NULL)
542				in6_ifstat_inc(ifp, ifs6_out_discard);
543			goto bad;
544		}
545	}
546	if (rt == NULL) {
547		/*
548		 * If in6_selectroute() does not return a route entry,
549		 * dst may not have been updated.
550		 */
551		*dst = dst_sa;	/* XXX */
552	}
553
554	/*
555	 * then rt (for unicast) and ifp must be non-NULL valid values.
556	 */
557	if ((flags & IPV6_FORWARDING) == 0) {
558		/* XXX: the FORWARDING flag can be set for mrouting. */
559		in6_ifstat_inc(ifp, ifs6_out_request);
560	}
561	if (rt != NULL) {
562		ia = (struct in6_ifaddr *)(rt->rt_ifa);
563		counter_u64_add(rt->rt_pksent, 1);
564	}
565
566
567	/*
568	 * The outgoing interface must be in the zone of source and
569	 * destination addresses.
570	 */
571	origifp = ifp;
572
573	src0 = ip6->ip6_src;
574	if (in6_setscope(&src0, origifp, &zone))
575		goto badscope;
576	bzero(&src_sa, sizeof(src_sa));
577	src_sa.sin6_family = AF_INET6;
578	src_sa.sin6_len = sizeof(src_sa);
579	src_sa.sin6_addr = ip6->ip6_src;
580	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
581		goto badscope;
582
583	dst0 = ip6->ip6_dst;
584	if (in6_setscope(&dst0, origifp, &zone))
585		goto badscope;
586	/* re-initialize to be sure */
587	bzero(&dst_sa, sizeof(dst_sa));
588	dst_sa.sin6_family = AF_INET6;
589	dst_sa.sin6_len = sizeof(dst_sa);
590	dst_sa.sin6_addr = ip6->ip6_dst;
591	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
592		goto badscope;
593	}
594
595	/* We should use ia_ifp to support the case of
596	 * sending packets to an address of our own.
597	 */
598	if (ia != NULL && ia->ia_ifp)
599		ifp = ia->ia_ifp;
600
601	/* scope check is done. */
602	goto routefound;
603
604  badscope:
605	IP6STAT_INC(ip6s_badscope);
606	in6_ifstat_inc(origifp, ifs6_out_discard);
607	if (error == 0)
608		error = EHOSTUNREACH; /* XXX */
609	goto bad;
610
611  routefound:
612	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
613		if (opt && opt->ip6po_nextroute.ro_rt) {
614			/*
615			 * The nexthop is explicitly specified by the
616			 * application.  We assume the next hop is an IPv6
617			 * address.
618			 */
619			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
620		}
621		else if ((rt->rt_flags & RTF_GATEWAY))
622			dst = (struct sockaddr_in6 *)rt->rt_gateway;
623	}
624
625	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
626		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
627	} else {
628		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
629		in6_ifstat_inc(ifp, ifs6_out_mcast);
630		/*
631		 * Confirm that the outgoing interface supports multicast.
632		 */
633		if (!(ifp->if_flags & IFF_MULTICAST)) {
634			IP6STAT_INC(ip6s_noroute);
635			in6_ifstat_inc(ifp, ifs6_out_discard);
636			error = ENETUNREACH;
637			goto bad;
638		}
639		if ((im6o == NULL && in6_mcast_loop) ||
640		    (im6o && im6o->im6o_multicast_loop)) {
641			/*
642			 * Loop back multicast datagram if not expressly
643			 * forbidden to do so, even if we have not joined
644			 * the address; protocols will filter it later,
645			 * thus deferring a hash lookup and lock acquisition
646			 * at the expense of an m_copym().
647			 */
648			ip6_mloopback(ifp, m, dst);
649		} else {
650			/*
651			 * If we are acting as a multicast router, perform
652			 * multicast forwarding as if the packet had just
653			 * arrived on the interface to which we are about
654			 * to send.  The multicast forwarding function
655			 * recursively calls this function, using the
656			 * IPV6_FORWARDING flag to prevent infinite recursion.
657			 *
658			 * Multicasts that are looped back by ip6_mloopback(),
659			 * above, will be forwarded by the ip6_input() routine,
660			 * if necessary.
661			 */
662			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
663				/*
664				 * XXX: ip6_mforward expects that rcvif is NULL
665				 * when it is called from the originating path.
666				 * However, it may not always be the case.
667				 */
668				m->m_pkthdr.rcvif = NULL;
669				if (ip6_mforward(ip6, ifp, m) != 0) {
670					m_freem(m);
671					goto done;
672				}
673			}
674		}
675		/*
676		 * Multicasts with a hoplimit of zero may be looped back,
677		 * above, but must not be transmitted on a network.
678		 * Also, multicasts addressed to the loopback interface
679		 * are not sent -- the above call to ip6_mloopback() will
680		 * loop back a copy if this host actually belongs to the
681		 * destination group on the loopback interface.
682		 */
683		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
684		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
685			m_freem(m);
686			goto done;
687		}
688	}
689
690	/*
691	 * Fill the outgoing inteface to tell the upper layer
692	 * to increment per-interface statistics.
693	 */
694	if (ifpp)
695		*ifpp = ifp;
696
697	/* Determine path MTU. */
698	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
699	    &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
700		goto bad;
701
702	/*
703	 * The caller of this function may specify to use the minimum MTU
704	 * in some cases.
705	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
706	 * setting.  The logic is a bit complicated; by default, unicast
707	 * packets will follow path MTU while multicast packets will be sent at
708	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
709	 * including unicast ones will be sent at the minimum MTU.  Multicast
710	 * packets will always be sent at the minimum MTU unless
711	 * IP6PO_MINMTU_DISABLE is explicitly specified.
712	 * See RFC 3542 for more details.
713	 */
714	if (mtu > IPV6_MMTU) {
715		if ((flags & IPV6_MINMTU))
716			mtu = IPV6_MMTU;
717		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
718			mtu = IPV6_MMTU;
719		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
720			 (opt == NULL ||
721			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
722			mtu = IPV6_MMTU;
723		}
724	}
725
726	/*
727	 * clear embedded scope identifiers if necessary.
728	 * in6_clearscope will touch the addresses only when necessary.
729	 */
730	in6_clearscope(&ip6->ip6_src);
731	in6_clearscope(&ip6->ip6_dst);
732
733	/*
734	 * If the outgoing packet contains a hop-by-hop options header,
735	 * it must be examined and processed even by the source node.
736	 * (RFC 2460, section 4.)
737	 */
738	if (exthdrs.ip6e_hbh) {
739		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
740		u_int32_t dummy; /* XXX unused */
741		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
742
743#ifdef DIAGNOSTIC
744		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
745			panic("ip6e_hbh is not contiguous");
746#endif
747		/*
748		 *  XXX: if we have to send an ICMPv6 error to the sender,
749		 *       we need the M_LOOP flag since icmp6_error() expects
750		 *       the IPv6 and the hop-by-hop options header are
751		 *       contiguous unless the flag is set.
752		 */
753		m->m_flags |= M_LOOP;
754		m->m_pkthdr.rcvif = ifp;
755		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
756		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
757		    &dummy, &plen) < 0) {
758			/* m was already freed at this point */
759			error = EINVAL;/* better error? */
760			goto done;
761		}
762		m->m_flags &= ~M_LOOP; /* XXX */
763		m->m_pkthdr.rcvif = NULL;
764	}
765
766	/* Jump over all PFIL processing if hooks are not active. */
767	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
768		goto passout;
769
770	odst = ip6->ip6_dst;
771	/* Run through list of hooks for output packets. */
772	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
773	if (error != 0 || m == NULL)
774		goto done;
775	ip6 = mtod(m, struct ip6_hdr *);
776
777	/* See if destination IP address was changed by packet filter. */
778	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
779		m->m_flags |= M_SKIP_FIREWALL;
780		/* If destination is now ourself drop to ip6_input(). */
781		if (in6_localip(&ip6->ip6_dst)) {
782			m->m_flags |= M_FASTFWD_OURS;
783			if (m->m_pkthdr.rcvif == NULL)
784				m->m_pkthdr.rcvif = V_loif;
785			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
786				m->m_pkthdr.csum_flags |=
787				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
788				m->m_pkthdr.csum_data = 0xffff;
789			}
790#ifdef SCTP
791			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
792				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
793#endif
794			error = netisr_queue(NETISR_IPV6, m);
795			goto done;
796		} else
797			goto again;	/* Redo the routing table lookup. */
798	}
799
800	/* See if local, if yes, send it to netisr. */
801	if (m->m_flags & M_FASTFWD_OURS) {
802		if (m->m_pkthdr.rcvif == NULL)
803			m->m_pkthdr.rcvif = V_loif;
804		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
805			m->m_pkthdr.csum_flags |=
806			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
807			m->m_pkthdr.csum_data = 0xffff;
808		}
809#ifdef SCTP
810		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
811			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
812#endif
813		error = netisr_queue(NETISR_IPV6, m);
814		goto done;
815	}
816	/* Or forward to some other address? */
817	if ((m->m_flags & M_IP6_NEXTHOP) &&
818	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
819		dst = (struct sockaddr_in6 *)&ro->ro_dst;
820		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
821		m->m_flags |= M_SKIP_FIREWALL;
822		m->m_flags &= ~M_IP6_NEXTHOP;
823		m_tag_delete(m, fwd_tag);
824		goto again;
825	}
826
827passout:
828	/*
829	 * Send the packet to the outgoing interface.
830	 * If necessary, do IPv6 fragmentation before sending.
831	 *
832	 * the logic here is rather complex:
833	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
834	 * 1-a:	send as is if tlen <= path mtu
835	 * 1-b:	fragment if tlen > path mtu
836	 *
837	 * 2: if user asks us not to fragment (dontfrag == 1)
838	 * 2-a:	send as is if tlen <= interface mtu
839	 * 2-b:	error if tlen > interface mtu
840	 *
841	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
842	 *	always fragment
843	 *
844	 * 4: if dontfrag == 1 && alwaysfrag == 1
845	 *	error, as we cannot handle this conflicting request
846	 */
847	sw_csum = m->m_pkthdr.csum_flags;
848	if (!hdrsplit) {
849		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
850		sw_csum &= ~ifp->if_hwassist;
851	} else
852		tso = 0;
853	/*
854	 * If we added extension headers, we will not do TSO and calculate the
855	 * checksums ourselves for now.
856	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
857	 * with ext. hdrs.
858	 */
859	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
860		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
861		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
862	}
863#ifdef SCTP
864	if (sw_csum & CSUM_SCTP_IPV6) {
865		sw_csum &= ~CSUM_SCTP_IPV6;
866		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
867	}
868#endif
869	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
870	tlen = m->m_pkthdr.len;
871
872	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
873		dontfrag = 1;
874	else
875		dontfrag = 0;
876	if (dontfrag && alwaysfrag) {	/* case 4 */
877		/* conflicting request - can't transmit */
878		error = EMSGSIZE;
879		goto bad;
880	}
881	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
882		/*
883		 * Even if the DONTFRAG option is specified, we cannot send the
884		 * packet when the data length is larger than the MTU of the
885		 * outgoing interface.
886		 * Notify the error by sending IPV6_PATHMTU ancillary data if
887		 * application wanted to know the MTU value. Also return an
888		 * error code (this is not described in the API spec).
889		 */
890		if (inp != NULL)
891			ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
892		error = EMSGSIZE;
893		goto bad;
894	}
895
896	/*
897	 * transmit packet without fragmentation
898	 */
899	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
900		struct in6_ifaddr *ia6;
901
902		ip6 = mtod(m, struct ip6_hdr *);
903		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
904		if (ia6) {
905			/* Record statistics for this interface address. */
906			ia6->ia_ifa.if_opackets++;
907			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
908			ifa_free(&ia6->ia_ifa);
909		}
910		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
911		goto done;
912	}
913
914	/*
915	 * try to fragment the packet.  case 1-b and 3
916	 */
917	if (mtu < IPV6_MMTU) {
918		/* path MTU cannot be less than IPV6_MMTU */
919		error = EMSGSIZE;
920		in6_ifstat_inc(ifp, ifs6_out_fragfail);
921		goto bad;
922	} else if (ip6->ip6_plen == 0) {
923		/* jumbo payload cannot be fragmented */
924		error = EMSGSIZE;
925		in6_ifstat_inc(ifp, ifs6_out_fragfail);
926		goto bad;
927	} else {
928		u_char nextproto;
929
930		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
931
932		/*
933		 * Too large for the destination or interface;
934		 * fragment if possible.
935		 * Must be able to put at least 8 bytes per fragment.
936		 */
937		hlen = unfragpartlen;
938		if (mtu > IPV6_MAXPACKET)
939			mtu = IPV6_MAXPACKET;
940
941		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
942		if (len < 8) {
943			error = EMSGSIZE;
944			in6_ifstat_inc(ifp, ifs6_out_fragfail);
945			goto bad;
946		}
947
948		/*
949		 * Verify that we have any chance at all of being able to queue
950		 *      the packet or packet fragments
951		 */
952		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
953		    < tlen  /* - hlen */)) {
954			error = ENOBUFS;
955			IP6STAT_INC(ip6s_odropped);
956			goto bad;
957		}
958
959
960		/*
961		 * If the interface will not calculate checksums on
962		 * fragmented packets, then do it here.
963		 * XXX-BZ handle the hw offloading case.  Need flags.
964		 */
965		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
966			in6_delayed_cksum(m, plen, hlen);
967			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
968		}
969#ifdef SCTP
970		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
971			sctp_delayed_cksum(m, hlen);
972			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
973		}
974#endif
975		/*
976		 * Change the next header field of the last header in the
977		 * unfragmentable part.
978		 */
979		if (exthdrs.ip6e_rthdr) {
980			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
981			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
982		} else if (exthdrs.ip6e_dest1) {
983			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
984			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
985		} else if (exthdrs.ip6e_hbh) {
986			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
987			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
988		} else {
989			nextproto = ip6->ip6_nxt;
990			ip6->ip6_nxt = IPPROTO_FRAGMENT;
991		}
992
993		/*
994		 * Loop through length of segment after first fragment,
995		 * make new header and copy data of each part and link onto
996		 * chain.
997		 */
998		m0 = m;
999		if ((error = ip6_fragment(ifp, m, hlen, nextproto, len)))
1000			goto sendorfree;
1001
1002		in6_ifstat_inc(ifp, ifs6_out_fragok);
1003	}
1004
1005	/*
1006	 * Remove leading garbages.
1007	 */
1008sendorfree:
1009	m = m0->m_nextpkt;
1010	m0->m_nextpkt = 0;
1011	m_freem(m0);
1012	for (m0 = m; m; m = m0) {
1013		m0 = m->m_nextpkt;
1014		m->m_nextpkt = 0;
1015		if (error == 0) {
1016			/* Record statistics for this interface address. */
1017			if (ia) {
1018				ia->ia_ifa.if_opackets++;
1019				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1020			}
1021			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1022		} else
1023			m_freem(m);
1024	}
1025
1026	if (error == 0)
1027		IP6STAT_INC(ip6s_fragmented);
1028
1029done:
1030	if (ro == &ip6route)
1031		RO_RTFREE(ro);
1032	if (ro_pmtu == &ip6route)
1033		RO_RTFREE(ro_pmtu);
1034	return (error);
1035
1036freehdrs:
1037	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1038	m_freem(exthdrs.ip6e_dest1);
1039	m_freem(exthdrs.ip6e_rthdr);
1040	m_freem(exthdrs.ip6e_dest2);
1041	/* FALLTHROUGH */
1042bad:
1043	if (m)
1044		m_freem(m);
1045	goto done;
1046}
1047
1048static int
1049ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1050{
1051	struct mbuf *m;
1052
1053	if (hlen > MCLBYTES)
1054		return (ENOBUFS); /* XXX */
1055
1056	if (hlen > MLEN)
1057		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1058	else
1059		m = m_get(M_NOWAIT, MT_DATA);
1060	if (m == NULL)
1061		return (ENOBUFS);
1062	m->m_len = hlen;
1063	if (hdr)
1064		bcopy(hdr, mtod(m, caddr_t), hlen);
1065
1066	*mp = m;
1067	return (0);
1068}
1069
1070/*
1071 * Insert jumbo payload option.
1072 */
1073static int
1074ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1075{
1076	struct mbuf *mopt;
1077	u_char *optbuf;
1078	u_int32_t v;
1079
1080#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1081
1082	/*
1083	 * If there is no hop-by-hop options header, allocate new one.
1084	 * If there is one but it doesn't have enough space to store the
1085	 * jumbo payload option, allocate a cluster to store the whole options.
1086	 * Otherwise, use it to store the options.
1087	 */
1088	if (exthdrs->ip6e_hbh == 0) {
1089		mopt = m_get(M_NOWAIT, MT_DATA);
1090		if (mopt == NULL)
1091			return (ENOBUFS);
1092		mopt->m_len = JUMBOOPTLEN;
1093		optbuf = mtod(mopt, u_char *);
1094		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1095		exthdrs->ip6e_hbh = mopt;
1096	} else {
1097		struct ip6_hbh *hbh;
1098
1099		mopt = exthdrs->ip6e_hbh;
1100		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1101			/*
1102			 * XXX assumption:
1103			 * - exthdrs->ip6e_hbh is not referenced from places
1104			 *   other than exthdrs.
1105			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1106			 */
1107			int oldoptlen = mopt->m_len;
1108			struct mbuf *n;
1109
1110			/*
1111			 * XXX: give up if the whole (new) hbh header does
1112			 * not fit even in an mbuf cluster.
1113			 */
1114			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1115				return (ENOBUFS);
1116
1117			/*
1118			 * As a consequence, we must always prepare a cluster
1119			 * at this point.
1120			 */
1121			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1122			if (n == NULL)
1123				return (ENOBUFS);
1124			n->m_len = oldoptlen + JUMBOOPTLEN;
1125			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1126			    oldoptlen);
1127			optbuf = mtod(n, caddr_t) + oldoptlen;
1128			m_freem(mopt);
1129			mopt = exthdrs->ip6e_hbh = n;
1130		} else {
1131			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1132			mopt->m_len += JUMBOOPTLEN;
1133		}
1134		optbuf[0] = IP6OPT_PADN;
1135		optbuf[1] = 1;
1136
1137		/*
1138		 * Adjust the header length according to the pad and
1139		 * the jumbo payload option.
1140		 */
1141		hbh = mtod(mopt, struct ip6_hbh *);
1142		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1143	}
1144
1145	/* fill in the option. */
1146	optbuf[2] = IP6OPT_JUMBO;
1147	optbuf[3] = 4;
1148	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1149	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1150
1151	/* finally, adjust the packet header length */
1152	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1153
1154	return (0);
1155#undef JUMBOOPTLEN
1156}
1157
1158/*
1159 * Insert fragment header and copy unfragmentable header portions.
1160 */
1161static int
1162ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1163    struct ip6_frag **frghdrp)
1164{
1165	struct mbuf *n, *mlast;
1166
1167	if (hlen > sizeof(struct ip6_hdr)) {
1168		n = m_copym(m0, sizeof(struct ip6_hdr),
1169		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1170		if (n == 0)
1171			return (ENOBUFS);
1172		m->m_next = n;
1173	} else
1174		n = m;
1175
1176	/* Search for the last mbuf of unfragmentable part. */
1177	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1178		;
1179
1180	if ((mlast->m_flags & M_EXT) == 0 &&
1181	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1182		/* use the trailing space of the last mbuf for the fragment hdr */
1183		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1184		    mlast->m_len);
1185		mlast->m_len += sizeof(struct ip6_frag);
1186		m->m_pkthdr.len += sizeof(struct ip6_frag);
1187	} else {
1188		/* allocate a new mbuf for the fragment header */
1189		struct mbuf *mfrg;
1190
1191		mfrg = m_get(M_NOWAIT, MT_DATA);
1192		if (mfrg == NULL)
1193			return (ENOBUFS);
1194		mfrg->m_len = sizeof(struct ip6_frag);
1195		*frghdrp = mtod(mfrg, struct ip6_frag *);
1196		mlast->m_next = mfrg;
1197	}
1198
1199	return (0);
1200}
1201
1202static int
1203ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1204    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1205    int *alwaysfragp, u_int fibnum)
1206{
1207	u_int32_t mtu = 0;
1208	int alwaysfrag = 0;
1209	int error = 0;
1210
1211	if (ro_pmtu != ro) {
1212		/* The first hop and the final destination may differ. */
1213		struct sockaddr_in6 *sa6_dst =
1214		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1215		if (ro_pmtu->ro_rt &&
1216		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1217		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1218			RTFREE(ro_pmtu->ro_rt);
1219			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1220		}
1221		if (ro_pmtu->ro_rt == NULL) {
1222			bzero(sa6_dst, sizeof(*sa6_dst));
1223			sa6_dst->sin6_family = AF_INET6;
1224			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1225			sa6_dst->sin6_addr = *dst;
1226
1227			in6_rtalloc(ro_pmtu, fibnum);
1228		}
1229	}
1230	if (ro_pmtu->ro_rt) {
1231		u_int32_t ifmtu;
1232		struct in_conninfo inc;
1233
1234		bzero(&inc, sizeof(inc));
1235		inc.inc_flags |= INC_ISIPV6;
1236		inc.inc6_faddr = *dst;
1237
1238		if (ifp == NULL)
1239			ifp = ro_pmtu->ro_rt->rt_ifp;
1240		ifmtu = IN6_LINKMTU(ifp);
1241		mtu = tcp_hc_getmtu(&inc);
1242		if (mtu)
1243			mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu);
1244		else
1245			mtu = ro_pmtu->ro_rt->rt_mtu;
1246		if (mtu == 0)
1247			mtu = ifmtu;
1248		else if (mtu < IPV6_MMTU) {
1249			/*
1250			 * RFC2460 section 5, last paragraph:
1251			 * if we record ICMPv6 too big message with
1252			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1253			 * or smaller, with framgent header attached.
1254			 * (fragment header is needed regardless from the
1255			 * packet size, for translators to identify packets)
1256			 */
1257			alwaysfrag = 1;
1258			mtu = IPV6_MMTU;
1259		} else if (mtu > ifmtu) {
1260			/*
1261			 * The MTU on the route is larger than the MTU on
1262			 * the interface!  This shouldn't happen, unless the
1263			 * MTU of the interface has been changed after the
1264			 * interface was brought up.  Change the MTU in the
1265			 * route to match the interface MTU (as long as the
1266			 * field isn't locked).
1267			 */
1268			mtu = ifmtu;
1269			ro_pmtu->ro_rt->rt_mtu = mtu;
1270		}
1271	} else if (ifp) {
1272		mtu = IN6_LINKMTU(ifp);
1273	} else
1274		error = EHOSTUNREACH; /* XXX */
1275
1276	*mtup = mtu;
1277	if (alwaysfragp)
1278		*alwaysfragp = alwaysfrag;
1279	return (error);
1280}
1281
1282/*
1283 * IP6 socket option processing.
1284 */
1285int
1286ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1287{
1288	int optdatalen, uproto;
1289	void *optdata;
1290	struct inpcb *in6p = sotoinpcb(so);
1291	int error, optval;
1292	int level, op, optname;
1293	int optlen;
1294	struct thread *td;
1295
1296	level = sopt->sopt_level;
1297	op = sopt->sopt_dir;
1298	optname = sopt->sopt_name;
1299	optlen = sopt->sopt_valsize;
1300	td = sopt->sopt_td;
1301	error = 0;
1302	optval = 0;
1303	uproto = (int)so->so_proto->pr_protocol;
1304
1305	if (level != IPPROTO_IPV6) {
1306		error = EINVAL;
1307
1308		if (sopt->sopt_level == SOL_SOCKET &&
1309		    sopt->sopt_dir == SOPT_SET) {
1310			switch (sopt->sopt_name) {
1311			case SO_REUSEADDR:
1312				INP_WLOCK(in6p);
1313				if ((so->so_options & SO_REUSEADDR) != 0)
1314					in6p->inp_flags2 |= INP_REUSEADDR;
1315				else
1316					in6p->inp_flags2 &= ~INP_REUSEADDR;
1317				INP_WUNLOCK(in6p);
1318				error = 0;
1319				break;
1320			case SO_REUSEPORT:
1321				INP_WLOCK(in6p);
1322				if ((so->so_options & SO_REUSEPORT) != 0)
1323					in6p->inp_flags2 |= INP_REUSEPORT;
1324				else
1325					in6p->inp_flags2 &= ~INP_REUSEPORT;
1326				INP_WUNLOCK(in6p);
1327				error = 0;
1328				break;
1329			case SO_SETFIB:
1330				INP_WLOCK(in6p);
1331				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1332				INP_WUNLOCK(in6p);
1333				error = 0;
1334				break;
1335			default:
1336				break;
1337			}
1338		}
1339	} else {		/* level == IPPROTO_IPV6 */
1340		switch (op) {
1341
1342		case SOPT_SET:
1343			switch (optname) {
1344			case IPV6_2292PKTOPTIONS:
1345#ifdef IPV6_PKTOPTIONS
1346			case IPV6_PKTOPTIONS:
1347#endif
1348			{
1349				struct mbuf *m;
1350
1351				error = soopt_getm(sopt, &m); /* XXX */
1352				if (error != 0)
1353					break;
1354				error = soopt_mcopyin(sopt, m); /* XXX */
1355				if (error != 0)
1356					break;
1357				error = ip6_pcbopts(&in6p->in6p_outputopts,
1358						    m, so, sopt);
1359				m_freem(m); /* XXX */
1360				break;
1361			}
1362
1363			/*
1364			 * Use of some Hop-by-Hop options or some
1365			 * Destination options, might require special
1366			 * privilege.  That is, normal applications
1367			 * (without special privilege) might be forbidden
1368			 * from setting certain options in outgoing packets,
1369			 * and might never see certain options in received
1370			 * packets. [RFC 2292 Section 6]
1371			 * KAME specific note:
1372			 *  KAME prevents non-privileged users from sending or
1373			 *  receiving ANY hbh/dst options in order to avoid
1374			 *  overhead of parsing options in the kernel.
1375			 */
1376			case IPV6_RECVHOPOPTS:
1377			case IPV6_RECVDSTOPTS:
1378			case IPV6_RECVRTHDRDSTOPTS:
1379				if (td != NULL) {
1380					error = priv_check(td,
1381					    PRIV_NETINET_SETHDROPTS);
1382					if (error)
1383						break;
1384				}
1385				/* FALLTHROUGH */
1386			case IPV6_UNICAST_HOPS:
1387			case IPV6_HOPLIMIT:
1388			case IPV6_FAITH:
1389
1390			case IPV6_RECVPKTINFO:
1391			case IPV6_RECVHOPLIMIT:
1392			case IPV6_RECVRTHDR:
1393			case IPV6_RECVPATHMTU:
1394			case IPV6_RECVTCLASS:
1395			case IPV6_V6ONLY:
1396			case IPV6_AUTOFLOWLABEL:
1397			case IPV6_BINDANY:
1398				if (optname == IPV6_BINDANY && td != NULL) {
1399					error = priv_check(td,
1400					    PRIV_NETINET_BINDANY);
1401					if (error)
1402						break;
1403				}
1404
1405				if (optlen != sizeof(int)) {
1406					error = EINVAL;
1407					break;
1408				}
1409				error = sooptcopyin(sopt, &optval,
1410					sizeof optval, sizeof optval);
1411				if (error)
1412					break;
1413				switch (optname) {
1414
1415				case IPV6_UNICAST_HOPS:
1416					if (optval < -1 || optval >= 256)
1417						error = EINVAL;
1418					else {
1419						/* -1 = kernel default */
1420						in6p->in6p_hops = optval;
1421						if ((in6p->inp_vflag &
1422						     INP_IPV4) != 0)
1423							in6p->inp_ip_ttl = optval;
1424					}
1425					break;
1426#define OPTSET(bit) \
1427do { \
1428	INP_WLOCK(in6p); \
1429	if (optval) \
1430		in6p->inp_flags |= (bit); \
1431	else \
1432		in6p->inp_flags &= ~(bit); \
1433	INP_WUNLOCK(in6p); \
1434} while (/*CONSTCOND*/ 0)
1435#define OPTSET2292(bit) \
1436do { \
1437	INP_WLOCK(in6p); \
1438	in6p->inp_flags |= IN6P_RFC2292; \
1439	if (optval) \
1440		in6p->inp_flags |= (bit); \
1441	else \
1442		in6p->inp_flags &= ~(bit); \
1443	INP_WUNLOCK(in6p); \
1444} while (/*CONSTCOND*/ 0)
1445#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1446
1447				case IPV6_RECVPKTINFO:
1448					/* cannot mix with RFC2292 */
1449					if (OPTBIT(IN6P_RFC2292)) {
1450						error = EINVAL;
1451						break;
1452					}
1453					OPTSET(IN6P_PKTINFO);
1454					break;
1455
1456				case IPV6_HOPLIMIT:
1457				{
1458					struct ip6_pktopts **optp;
1459
1460					/* cannot mix with RFC2292 */
1461					if (OPTBIT(IN6P_RFC2292)) {
1462						error = EINVAL;
1463						break;
1464					}
1465					optp = &in6p->in6p_outputopts;
1466					error = ip6_pcbopt(IPV6_HOPLIMIT,
1467					    (u_char *)&optval, sizeof(optval),
1468					    optp, (td != NULL) ? td->td_ucred :
1469					    NULL, uproto);
1470					break;
1471				}
1472
1473				case IPV6_RECVHOPLIMIT:
1474					/* cannot mix with RFC2292 */
1475					if (OPTBIT(IN6P_RFC2292)) {
1476						error = EINVAL;
1477						break;
1478					}
1479					OPTSET(IN6P_HOPLIMIT);
1480					break;
1481
1482				case IPV6_RECVHOPOPTS:
1483					/* cannot mix with RFC2292 */
1484					if (OPTBIT(IN6P_RFC2292)) {
1485						error = EINVAL;
1486						break;
1487					}
1488					OPTSET(IN6P_HOPOPTS);
1489					break;
1490
1491				case IPV6_RECVDSTOPTS:
1492					/* cannot mix with RFC2292 */
1493					if (OPTBIT(IN6P_RFC2292)) {
1494						error = EINVAL;
1495						break;
1496					}
1497					OPTSET(IN6P_DSTOPTS);
1498					break;
1499
1500				case IPV6_RECVRTHDRDSTOPTS:
1501					/* cannot mix with RFC2292 */
1502					if (OPTBIT(IN6P_RFC2292)) {
1503						error = EINVAL;
1504						break;
1505					}
1506					OPTSET(IN6P_RTHDRDSTOPTS);
1507					break;
1508
1509				case IPV6_RECVRTHDR:
1510					/* cannot mix with RFC2292 */
1511					if (OPTBIT(IN6P_RFC2292)) {
1512						error = EINVAL;
1513						break;
1514					}
1515					OPTSET(IN6P_RTHDR);
1516					break;
1517
1518				case IPV6_FAITH:
1519					OPTSET(INP_FAITH);
1520					break;
1521
1522				case IPV6_RECVPATHMTU:
1523					/*
1524					 * We ignore this option for TCP
1525					 * sockets.
1526					 * (RFC3542 leaves this case
1527					 * unspecified.)
1528					 */
1529					if (uproto != IPPROTO_TCP)
1530						OPTSET(IN6P_MTU);
1531					break;
1532
1533				case IPV6_V6ONLY:
1534					/*
1535					 * make setsockopt(IPV6_V6ONLY)
1536					 * available only prior to bind(2).
1537					 * see ipng mailing list, Jun 22 2001.
1538					 */
1539					if (in6p->inp_lport ||
1540					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1541						error = EINVAL;
1542						break;
1543					}
1544					OPTSET(IN6P_IPV6_V6ONLY);
1545					if (optval)
1546						in6p->inp_vflag &= ~INP_IPV4;
1547					else
1548						in6p->inp_vflag |= INP_IPV4;
1549					break;
1550				case IPV6_RECVTCLASS:
1551					/* cannot mix with RFC2292 XXX */
1552					if (OPTBIT(IN6P_RFC2292)) {
1553						error = EINVAL;
1554						break;
1555					}
1556					OPTSET(IN6P_TCLASS);
1557					break;
1558				case IPV6_AUTOFLOWLABEL:
1559					OPTSET(IN6P_AUTOFLOWLABEL);
1560					break;
1561
1562				case IPV6_BINDANY:
1563					OPTSET(INP_BINDANY);
1564					break;
1565				}
1566				break;
1567
1568			case IPV6_TCLASS:
1569			case IPV6_DONTFRAG:
1570			case IPV6_USE_MIN_MTU:
1571			case IPV6_PREFER_TEMPADDR:
1572				if (optlen != sizeof(optval)) {
1573					error = EINVAL;
1574					break;
1575				}
1576				error = sooptcopyin(sopt, &optval,
1577					sizeof optval, sizeof optval);
1578				if (error)
1579					break;
1580				{
1581					struct ip6_pktopts **optp;
1582					optp = &in6p->in6p_outputopts;
1583					error = ip6_pcbopt(optname,
1584					    (u_char *)&optval, sizeof(optval),
1585					    optp, (td != NULL) ? td->td_ucred :
1586					    NULL, uproto);
1587					break;
1588				}
1589
1590			case IPV6_2292PKTINFO:
1591			case IPV6_2292HOPLIMIT:
1592			case IPV6_2292HOPOPTS:
1593			case IPV6_2292DSTOPTS:
1594			case IPV6_2292RTHDR:
1595				/* RFC 2292 */
1596				if (optlen != sizeof(int)) {
1597					error = EINVAL;
1598					break;
1599				}
1600				error = sooptcopyin(sopt, &optval,
1601					sizeof optval, sizeof optval);
1602				if (error)
1603					break;
1604				switch (optname) {
1605				case IPV6_2292PKTINFO:
1606					OPTSET2292(IN6P_PKTINFO);
1607					break;
1608				case IPV6_2292HOPLIMIT:
1609					OPTSET2292(IN6P_HOPLIMIT);
1610					break;
1611				case IPV6_2292HOPOPTS:
1612					/*
1613					 * Check super-user privilege.
1614					 * See comments for IPV6_RECVHOPOPTS.
1615					 */
1616					if (td != NULL) {
1617						error = priv_check(td,
1618						    PRIV_NETINET_SETHDROPTS);
1619						if (error)
1620							return (error);
1621					}
1622					OPTSET2292(IN6P_HOPOPTS);
1623					break;
1624				case IPV6_2292DSTOPTS:
1625					if (td != NULL) {
1626						error = priv_check(td,
1627						    PRIV_NETINET_SETHDROPTS);
1628						if (error)
1629							return (error);
1630					}
1631					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1632					break;
1633				case IPV6_2292RTHDR:
1634					OPTSET2292(IN6P_RTHDR);
1635					break;
1636				}
1637				break;
1638			case IPV6_PKTINFO:
1639			case IPV6_HOPOPTS:
1640			case IPV6_RTHDR:
1641			case IPV6_DSTOPTS:
1642			case IPV6_RTHDRDSTOPTS:
1643			case IPV6_NEXTHOP:
1644			{
1645				/* new advanced API (RFC3542) */
1646				u_char *optbuf;
1647				u_char optbuf_storage[MCLBYTES];
1648				int optlen;
1649				struct ip6_pktopts **optp;
1650
1651				/* cannot mix with RFC2292 */
1652				if (OPTBIT(IN6P_RFC2292)) {
1653					error = EINVAL;
1654					break;
1655				}
1656
1657				/*
1658				 * We only ensure valsize is not too large
1659				 * here.  Further validation will be done
1660				 * later.
1661				 */
1662				error = sooptcopyin(sopt, optbuf_storage,
1663				    sizeof(optbuf_storage), 0);
1664				if (error)
1665					break;
1666				optlen = sopt->sopt_valsize;
1667				optbuf = optbuf_storage;
1668				optp = &in6p->in6p_outputopts;
1669				error = ip6_pcbopt(optname, optbuf, optlen,
1670				    optp, (td != NULL) ? td->td_ucred : NULL,
1671				    uproto);
1672				break;
1673			}
1674#undef OPTSET
1675
1676			case IPV6_MULTICAST_IF:
1677			case IPV6_MULTICAST_HOPS:
1678			case IPV6_MULTICAST_LOOP:
1679			case IPV6_JOIN_GROUP:
1680			case IPV6_LEAVE_GROUP:
1681			case IPV6_MSFILTER:
1682			case MCAST_BLOCK_SOURCE:
1683			case MCAST_UNBLOCK_SOURCE:
1684			case MCAST_JOIN_GROUP:
1685			case MCAST_LEAVE_GROUP:
1686			case MCAST_JOIN_SOURCE_GROUP:
1687			case MCAST_LEAVE_SOURCE_GROUP:
1688				error = ip6_setmoptions(in6p, sopt);
1689				break;
1690
1691			case IPV6_PORTRANGE:
1692				error = sooptcopyin(sopt, &optval,
1693				    sizeof optval, sizeof optval);
1694				if (error)
1695					break;
1696
1697				INP_WLOCK(in6p);
1698				switch (optval) {
1699				case IPV6_PORTRANGE_DEFAULT:
1700					in6p->inp_flags &= ~(INP_LOWPORT);
1701					in6p->inp_flags &= ~(INP_HIGHPORT);
1702					break;
1703
1704				case IPV6_PORTRANGE_HIGH:
1705					in6p->inp_flags &= ~(INP_LOWPORT);
1706					in6p->inp_flags |= INP_HIGHPORT;
1707					break;
1708
1709				case IPV6_PORTRANGE_LOW:
1710					in6p->inp_flags &= ~(INP_HIGHPORT);
1711					in6p->inp_flags |= INP_LOWPORT;
1712					break;
1713
1714				default:
1715					error = EINVAL;
1716					break;
1717				}
1718				INP_WUNLOCK(in6p);
1719				break;
1720
1721#ifdef IPSEC
1722			case IPV6_IPSEC_POLICY:
1723			{
1724				caddr_t req;
1725				struct mbuf *m;
1726
1727				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1728					break;
1729				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1730					break;
1731				req = mtod(m, caddr_t);
1732				error = ipsec_set_policy(in6p, optname, req,
1733				    m->m_len, (sopt->sopt_td != NULL) ?
1734				    sopt->sopt_td->td_ucred : NULL);
1735				m_freem(m);
1736				break;
1737			}
1738#endif /* IPSEC */
1739
1740			default:
1741				error = ENOPROTOOPT;
1742				break;
1743			}
1744			break;
1745
1746		case SOPT_GET:
1747			switch (optname) {
1748
1749			case IPV6_2292PKTOPTIONS:
1750#ifdef IPV6_PKTOPTIONS
1751			case IPV6_PKTOPTIONS:
1752#endif
1753				/*
1754				 * RFC3542 (effectively) deprecated the
1755				 * semantics of the 2292-style pktoptions.
1756				 * Since it was not reliable in nature (i.e.,
1757				 * applications had to expect the lack of some
1758				 * information after all), it would make sense
1759				 * to simplify this part by always returning
1760				 * empty data.
1761				 */
1762				sopt->sopt_valsize = 0;
1763				break;
1764
1765			case IPV6_RECVHOPOPTS:
1766			case IPV6_RECVDSTOPTS:
1767			case IPV6_RECVRTHDRDSTOPTS:
1768			case IPV6_UNICAST_HOPS:
1769			case IPV6_RECVPKTINFO:
1770			case IPV6_RECVHOPLIMIT:
1771			case IPV6_RECVRTHDR:
1772			case IPV6_RECVPATHMTU:
1773
1774			case IPV6_FAITH:
1775			case IPV6_V6ONLY:
1776			case IPV6_PORTRANGE:
1777			case IPV6_RECVTCLASS:
1778			case IPV6_AUTOFLOWLABEL:
1779			case IPV6_BINDANY:
1780				switch (optname) {
1781
1782				case IPV6_RECVHOPOPTS:
1783					optval = OPTBIT(IN6P_HOPOPTS);
1784					break;
1785
1786				case IPV6_RECVDSTOPTS:
1787					optval = OPTBIT(IN6P_DSTOPTS);
1788					break;
1789
1790				case IPV6_RECVRTHDRDSTOPTS:
1791					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1792					break;
1793
1794				case IPV6_UNICAST_HOPS:
1795					optval = in6p->in6p_hops;
1796					break;
1797
1798				case IPV6_RECVPKTINFO:
1799					optval = OPTBIT(IN6P_PKTINFO);
1800					break;
1801
1802				case IPV6_RECVHOPLIMIT:
1803					optval = OPTBIT(IN6P_HOPLIMIT);
1804					break;
1805
1806				case IPV6_RECVRTHDR:
1807					optval = OPTBIT(IN6P_RTHDR);
1808					break;
1809
1810				case IPV6_RECVPATHMTU:
1811					optval = OPTBIT(IN6P_MTU);
1812					break;
1813
1814				case IPV6_FAITH:
1815					optval = OPTBIT(INP_FAITH);
1816					break;
1817
1818				case IPV6_V6ONLY:
1819					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1820					break;
1821
1822				case IPV6_PORTRANGE:
1823				    {
1824					int flags;
1825					flags = in6p->inp_flags;
1826					if (flags & INP_HIGHPORT)
1827						optval = IPV6_PORTRANGE_HIGH;
1828					else if (flags & INP_LOWPORT)
1829						optval = IPV6_PORTRANGE_LOW;
1830					else
1831						optval = 0;
1832					break;
1833				    }
1834				case IPV6_RECVTCLASS:
1835					optval = OPTBIT(IN6P_TCLASS);
1836					break;
1837
1838				case IPV6_AUTOFLOWLABEL:
1839					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1840					break;
1841
1842				case IPV6_BINDANY:
1843					optval = OPTBIT(INP_BINDANY);
1844					break;
1845				}
1846				if (error)
1847					break;
1848				error = sooptcopyout(sopt, &optval,
1849					sizeof optval);
1850				break;
1851
1852			case IPV6_PATHMTU:
1853			{
1854				u_long pmtu = 0;
1855				struct ip6_mtuinfo mtuinfo;
1856				struct route_in6 sro;
1857
1858				bzero(&sro, sizeof(sro));
1859
1860				if (!(so->so_state & SS_ISCONNECTED))
1861					return (ENOTCONN);
1862				/*
1863				 * XXX: we dot not consider the case of source
1864				 * routing, or optional information to specify
1865				 * the outgoing interface.
1866				 */
1867				error = ip6_getpmtu(&sro, NULL, NULL,
1868				    &in6p->in6p_faddr, &pmtu, NULL,
1869				    so->so_fibnum);
1870				if (sro.ro_rt)
1871					RTFREE(sro.ro_rt);
1872				if (error)
1873					break;
1874				if (pmtu > IPV6_MAXPACKET)
1875					pmtu = IPV6_MAXPACKET;
1876
1877				bzero(&mtuinfo, sizeof(mtuinfo));
1878				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1879				optdata = (void *)&mtuinfo;
1880				optdatalen = sizeof(mtuinfo);
1881				error = sooptcopyout(sopt, optdata,
1882				    optdatalen);
1883				break;
1884			}
1885
1886			case IPV6_2292PKTINFO:
1887			case IPV6_2292HOPLIMIT:
1888			case IPV6_2292HOPOPTS:
1889			case IPV6_2292RTHDR:
1890			case IPV6_2292DSTOPTS:
1891				switch (optname) {
1892				case IPV6_2292PKTINFO:
1893					optval = OPTBIT(IN6P_PKTINFO);
1894					break;
1895				case IPV6_2292HOPLIMIT:
1896					optval = OPTBIT(IN6P_HOPLIMIT);
1897					break;
1898				case IPV6_2292HOPOPTS:
1899					optval = OPTBIT(IN6P_HOPOPTS);
1900					break;
1901				case IPV6_2292RTHDR:
1902					optval = OPTBIT(IN6P_RTHDR);
1903					break;
1904				case IPV6_2292DSTOPTS:
1905					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1906					break;
1907				}
1908				error = sooptcopyout(sopt, &optval,
1909				    sizeof optval);
1910				break;
1911			case IPV6_PKTINFO:
1912			case IPV6_HOPOPTS:
1913			case IPV6_RTHDR:
1914			case IPV6_DSTOPTS:
1915			case IPV6_RTHDRDSTOPTS:
1916			case IPV6_NEXTHOP:
1917			case IPV6_TCLASS:
1918			case IPV6_DONTFRAG:
1919			case IPV6_USE_MIN_MTU:
1920			case IPV6_PREFER_TEMPADDR:
1921				error = ip6_getpcbopt(in6p->in6p_outputopts,
1922				    optname, sopt);
1923				break;
1924
1925			case IPV6_MULTICAST_IF:
1926			case IPV6_MULTICAST_HOPS:
1927			case IPV6_MULTICAST_LOOP:
1928			case IPV6_MSFILTER:
1929				error = ip6_getmoptions(in6p, sopt);
1930				break;
1931
1932#ifdef IPSEC
1933			case IPV6_IPSEC_POLICY:
1934			  {
1935				caddr_t req = NULL;
1936				size_t len = 0;
1937				struct mbuf *m = NULL;
1938				struct mbuf **mp = &m;
1939				size_t ovalsize = sopt->sopt_valsize;
1940				caddr_t oval = (caddr_t)sopt->sopt_val;
1941
1942				error = soopt_getm(sopt, &m); /* XXX */
1943				if (error != 0)
1944					break;
1945				error = soopt_mcopyin(sopt, m); /* XXX */
1946				if (error != 0)
1947					break;
1948				sopt->sopt_valsize = ovalsize;
1949				sopt->sopt_val = oval;
1950				if (m) {
1951					req = mtod(m, caddr_t);
1952					len = m->m_len;
1953				}
1954				error = ipsec_get_policy(in6p, req, len, mp);
1955				if (error == 0)
1956					error = soopt_mcopyout(sopt, m); /* XXX */
1957				if (error == 0 && m)
1958					m_freem(m);
1959				break;
1960			  }
1961#endif /* IPSEC */
1962
1963			default:
1964				error = ENOPROTOOPT;
1965				break;
1966			}
1967			break;
1968		}
1969	}
1970	return (error);
1971}
1972
1973int
1974ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1975{
1976	int error = 0, optval, optlen;
1977	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1978	struct inpcb *in6p = sotoinpcb(so);
1979	int level, op, optname;
1980
1981	level = sopt->sopt_level;
1982	op = sopt->sopt_dir;
1983	optname = sopt->sopt_name;
1984	optlen = sopt->sopt_valsize;
1985
1986	if (level != IPPROTO_IPV6) {
1987		return (EINVAL);
1988	}
1989
1990	switch (optname) {
1991	case IPV6_CHECKSUM:
1992		/*
1993		 * For ICMPv6 sockets, no modification allowed for checksum
1994		 * offset, permit "no change" values to help existing apps.
1995		 *
1996		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1997		 * for an ICMPv6 socket will fail."
1998		 * The current behavior does not meet RFC3542.
1999		 */
2000		switch (op) {
2001		case SOPT_SET:
2002			if (optlen != sizeof(int)) {
2003				error = EINVAL;
2004				break;
2005			}
2006			error = sooptcopyin(sopt, &optval, sizeof(optval),
2007					    sizeof(optval));
2008			if (error)
2009				break;
2010			if ((optval % 2) != 0) {
2011				/* the API assumes even offset values */
2012				error = EINVAL;
2013			} else if (so->so_proto->pr_protocol ==
2014			    IPPROTO_ICMPV6) {
2015				if (optval != icmp6off)
2016					error = EINVAL;
2017			} else
2018				in6p->in6p_cksum = optval;
2019			break;
2020
2021		case SOPT_GET:
2022			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2023				optval = icmp6off;
2024			else
2025				optval = in6p->in6p_cksum;
2026
2027			error = sooptcopyout(sopt, &optval, sizeof(optval));
2028			break;
2029
2030		default:
2031			error = EINVAL;
2032			break;
2033		}
2034		break;
2035
2036	default:
2037		error = ENOPROTOOPT;
2038		break;
2039	}
2040
2041	return (error);
2042}
2043
2044/*
2045 * Set up IP6 options in pcb for insertion in output packets or
2046 * specifying behavior of outgoing packets.
2047 */
2048static int
2049ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2050    struct socket *so, struct sockopt *sopt)
2051{
2052	struct ip6_pktopts *opt = *pktopt;
2053	int error = 0;
2054	struct thread *td = sopt->sopt_td;
2055
2056	/* turn off any old options. */
2057	if (opt) {
2058#ifdef DIAGNOSTIC
2059		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2060		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2061		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2062			printf("ip6_pcbopts: all specified options are cleared.\n");
2063#endif
2064		ip6_clearpktopts(opt, -1);
2065	} else
2066		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2067	*pktopt = NULL;
2068
2069	if (!m || m->m_len == 0) {
2070		/*
2071		 * Only turning off any previous options, regardless of
2072		 * whether the opt is just created or given.
2073		 */
2074		free(opt, M_IP6OPT);
2075		return (0);
2076	}
2077
2078	/*  set options specified by user. */
2079	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2080	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2081		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2082		free(opt, M_IP6OPT);
2083		return (error);
2084	}
2085	*pktopt = opt;
2086	return (0);
2087}
2088
2089/*
2090 * initialize ip6_pktopts.  beware that there are non-zero default values in
2091 * the struct.
2092 */
2093void
2094ip6_initpktopts(struct ip6_pktopts *opt)
2095{
2096
2097	bzero(opt, sizeof(*opt));
2098	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2099	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2100	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2101	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2102}
2103
2104static int
2105ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2106    struct ucred *cred, int uproto)
2107{
2108	struct ip6_pktopts *opt;
2109
2110	if (*pktopt == NULL) {
2111		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2112		    M_WAITOK);
2113		ip6_initpktopts(*pktopt);
2114	}
2115	opt = *pktopt;
2116
2117	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2118}
2119
2120static int
2121ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2122{
2123	void *optdata = NULL;
2124	int optdatalen = 0;
2125	struct ip6_ext *ip6e;
2126	int error = 0;
2127	struct in6_pktinfo null_pktinfo;
2128	int deftclass = 0, on;
2129	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2130	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2131
2132	switch (optname) {
2133	case IPV6_PKTINFO:
2134		if (pktopt && pktopt->ip6po_pktinfo)
2135			optdata = (void *)pktopt->ip6po_pktinfo;
2136		else {
2137			/* XXX: we don't have to do this every time... */
2138			bzero(&null_pktinfo, sizeof(null_pktinfo));
2139			optdata = (void *)&null_pktinfo;
2140		}
2141		optdatalen = sizeof(struct in6_pktinfo);
2142		break;
2143	case IPV6_TCLASS:
2144		if (pktopt && pktopt->ip6po_tclass >= 0)
2145			optdata = (void *)&pktopt->ip6po_tclass;
2146		else
2147			optdata = (void *)&deftclass;
2148		optdatalen = sizeof(int);
2149		break;
2150	case IPV6_HOPOPTS:
2151		if (pktopt && pktopt->ip6po_hbh) {
2152			optdata = (void *)pktopt->ip6po_hbh;
2153			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2154			optdatalen = (ip6e->ip6e_len + 1) << 3;
2155		}
2156		break;
2157	case IPV6_RTHDR:
2158		if (pktopt && pktopt->ip6po_rthdr) {
2159			optdata = (void *)pktopt->ip6po_rthdr;
2160			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2161			optdatalen = (ip6e->ip6e_len + 1) << 3;
2162		}
2163		break;
2164	case IPV6_RTHDRDSTOPTS:
2165		if (pktopt && pktopt->ip6po_dest1) {
2166			optdata = (void *)pktopt->ip6po_dest1;
2167			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2168			optdatalen = (ip6e->ip6e_len + 1) << 3;
2169		}
2170		break;
2171	case IPV6_DSTOPTS:
2172		if (pktopt && pktopt->ip6po_dest2) {
2173			optdata = (void *)pktopt->ip6po_dest2;
2174			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2175			optdatalen = (ip6e->ip6e_len + 1) << 3;
2176		}
2177		break;
2178	case IPV6_NEXTHOP:
2179		if (pktopt && pktopt->ip6po_nexthop) {
2180			optdata = (void *)pktopt->ip6po_nexthop;
2181			optdatalen = pktopt->ip6po_nexthop->sa_len;
2182		}
2183		break;
2184	case IPV6_USE_MIN_MTU:
2185		if (pktopt)
2186			optdata = (void *)&pktopt->ip6po_minmtu;
2187		else
2188			optdata = (void *)&defminmtu;
2189		optdatalen = sizeof(int);
2190		break;
2191	case IPV6_DONTFRAG:
2192		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2193			on = 1;
2194		else
2195			on = 0;
2196		optdata = (void *)&on;
2197		optdatalen = sizeof(on);
2198		break;
2199	case IPV6_PREFER_TEMPADDR:
2200		if (pktopt)
2201			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2202		else
2203			optdata = (void *)&defpreftemp;
2204		optdatalen = sizeof(int);
2205		break;
2206	default:		/* should not happen */
2207#ifdef DIAGNOSTIC
2208		panic("ip6_getpcbopt: unexpected option\n");
2209#endif
2210		return (ENOPROTOOPT);
2211	}
2212
2213	error = sooptcopyout(sopt, optdata, optdatalen);
2214
2215	return (error);
2216}
2217
2218void
2219ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2220{
2221	if (pktopt == NULL)
2222		return;
2223
2224	if (optname == -1 || optname == IPV6_PKTINFO) {
2225		if (pktopt->ip6po_pktinfo)
2226			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2227		pktopt->ip6po_pktinfo = NULL;
2228	}
2229	if (optname == -1 || optname == IPV6_HOPLIMIT)
2230		pktopt->ip6po_hlim = -1;
2231	if (optname == -1 || optname == IPV6_TCLASS)
2232		pktopt->ip6po_tclass = -1;
2233	if (optname == -1 || optname == IPV6_NEXTHOP) {
2234		if (pktopt->ip6po_nextroute.ro_rt) {
2235			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2236			pktopt->ip6po_nextroute.ro_rt = NULL;
2237		}
2238		if (pktopt->ip6po_nexthop)
2239			free(pktopt->ip6po_nexthop, M_IP6OPT);
2240		pktopt->ip6po_nexthop = NULL;
2241	}
2242	if (optname == -1 || optname == IPV6_HOPOPTS) {
2243		if (pktopt->ip6po_hbh)
2244			free(pktopt->ip6po_hbh, M_IP6OPT);
2245		pktopt->ip6po_hbh = NULL;
2246	}
2247	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2248		if (pktopt->ip6po_dest1)
2249			free(pktopt->ip6po_dest1, M_IP6OPT);
2250		pktopt->ip6po_dest1 = NULL;
2251	}
2252	if (optname == -1 || optname == IPV6_RTHDR) {
2253		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2254			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2255		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2256		if (pktopt->ip6po_route.ro_rt) {
2257			RTFREE(pktopt->ip6po_route.ro_rt);
2258			pktopt->ip6po_route.ro_rt = NULL;
2259		}
2260	}
2261	if (optname == -1 || optname == IPV6_DSTOPTS) {
2262		if (pktopt->ip6po_dest2)
2263			free(pktopt->ip6po_dest2, M_IP6OPT);
2264		pktopt->ip6po_dest2 = NULL;
2265	}
2266}
2267
2268#define PKTOPT_EXTHDRCPY(type) \
2269do {\
2270	if (src->type) {\
2271		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2272		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2273		if (dst->type == NULL && canwait == M_NOWAIT)\
2274			goto bad;\
2275		bcopy(src->type, dst->type, hlen);\
2276	}\
2277} while (/*CONSTCOND*/ 0)
2278
2279static int
2280copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2281{
2282	if (dst == NULL || src == NULL)  {
2283		printf("ip6_clearpktopts: invalid argument\n");
2284		return (EINVAL);
2285	}
2286
2287	dst->ip6po_hlim = src->ip6po_hlim;
2288	dst->ip6po_tclass = src->ip6po_tclass;
2289	dst->ip6po_flags = src->ip6po_flags;
2290	dst->ip6po_minmtu = src->ip6po_minmtu;
2291	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2292	if (src->ip6po_pktinfo) {
2293		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2294		    M_IP6OPT, canwait);
2295		if (dst->ip6po_pktinfo == NULL)
2296			goto bad;
2297		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2298	}
2299	if (src->ip6po_nexthop) {
2300		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2301		    M_IP6OPT, canwait);
2302		if (dst->ip6po_nexthop == NULL)
2303			goto bad;
2304		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2305		    src->ip6po_nexthop->sa_len);
2306	}
2307	PKTOPT_EXTHDRCPY(ip6po_hbh);
2308	PKTOPT_EXTHDRCPY(ip6po_dest1);
2309	PKTOPT_EXTHDRCPY(ip6po_dest2);
2310	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2311	return (0);
2312
2313  bad:
2314	ip6_clearpktopts(dst, -1);
2315	return (ENOBUFS);
2316}
2317#undef PKTOPT_EXTHDRCPY
2318
2319struct ip6_pktopts *
2320ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2321{
2322	int error;
2323	struct ip6_pktopts *dst;
2324
2325	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2326	if (dst == NULL)
2327		return (NULL);
2328	ip6_initpktopts(dst);
2329
2330	if ((error = copypktopts(dst, src, canwait)) != 0) {
2331		free(dst, M_IP6OPT);
2332		return (NULL);
2333	}
2334
2335	return (dst);
2336}
2337
2338void
2339ip6_freepcbopts(struct ip6_pktopts *pktopt)
2340{
2341	if (pktopt == NULL)
2342		return;
2343
2344	ip6_clearpktopts(pktopt, -1);
2345
2346	free(pktopt, M_IP6OPT);
2347}
2348
2349/*
2350 * Set IPv6 outgoing packet options based on advanced API.
2351 */
2352int
2353ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2354    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2355{
2356	struct cmsghdr *cm = 0;
2357
2358	if (control == NULL || opt == NULL)
2359		return (EINVAL);
2360
2361	ip6_initpktopts(opt);
2362	if (stickyopt) {
2363		int error;
2364
2365		/*
2366		 * If stickyopt is provided, make a local copy of the options
2367		 * for this particular packet, then override them by ancillary
2368		 * objects.
2369		 * XXX: copypktopts() does not copy the cached route to a next
2370		 * hop (if any).  This is not very good in terms of efficiency,
2371		 * but we can allow this since this option should be rarely
2372		 * used.
2373		 */
2374		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2375			return (error);
2376	}
2377
2378	/*
2379	 * XXX: Currently, we assume all the optional information is stored
2380	 * in a single mbuf.
2381	 */
2382	if (control->m_next)
2383		return (EINVAL);
2384
2385	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2386	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2387		int error;
2388
2389		if (control->m_len < CMSG_LEN(0))
2390			return (EINVAL);
2391
2392		cm = mtod(control, struct cmsghdr *);
2393		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2394			return (EINVAL);
2395		if (cm->cmsg_level != IPPROTO_IPV6)
2396			continue;
2397
2398		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2399		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2400		if (error)
2401			return (error);
2402	}
2403
2404	return (0);
2405}
2406
2407/*
2408 * Set a particular packet option, as a sticky option or an ancillary data
2409 * item.  "len" can be 0 only when it's a sticky option.
2410 * We have 4 cases of combination of "sticky" and "cmsg":
2411 * "sticky=0, cmsg=0": impossible
2412 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2413 * "sticky=1, cmsg=0": RFC3542 socket option
2414 * "sticky=1, cmsg=1": RFC2292 socket option
2415 */
2416static int
2417ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2418    struct ucred *cred, int sticky, int cmsg, int uproto)
2419{
2420	int minmtupolicy, preftemp;
2421	int error;
2422
2423	if (!sticky && !cmsg) {
2424#ifdef DIAGNOSTIC
2425		printf("ip6_setpktopt: impossible case\n");
2426#endif
2427		return (EINVAL);
2428	}
2429
2430	/*
2431	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2432	 * not be specified in the context of RFC3542.  Conversely,
2433	 * RFC3542 types should not be specified in the context of RFC2292.
2434	 */
2435	if (!cmsg) {
2436		switch (optname) {
2437		case IPV6_2292PKTINFO:
2438		case IPV6_2292HOPLIMIT:
2439		case IPV6_2292NEXTHOP:
2440		case IPV6_2292HOPOPTS:
2441		case IPV6_2292DSTOPTS:
2442		case IPV6_2292RTHDR:
2443		case IPV6_2292PKTOPTIONS:
2444			return (ENOPROTOOPT);
2445		}
2446	}
2447	if (sticky && cmsg) {
2448		switch (optname) {
2449		case IPV6_PKTINFO:
2450		case IPV6_HOPLIMIT:
2451		case IPV6_NEXTHOP:
2452		case IPV6_HOPOPTS:
2453		case IPV6_DSTOPTS:
2454		case IPV6_RTHDRDSTOPTS:
2455		case IPV6_RTHDR:
2456		case IPV6_USE_MIN_MTU:
2457		case IPV6_DONTFRAG:
2458		case IPV6_TCLASS:
2459		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2460			return (ENOPROTOOPT);
2461		}
2462	}
2463
2464	switch (optname) {
2465	case IPV6_2292PKTINFO:
2466	case IPV6_PKTINFO:
2467	{
2468		struct ifnet *ifp = NULL;
2469		struct in6_pktinfo *pktinfo;
2470
2471		if (len != sizeof(struct in6_pktinfo))
2472			return (EINVAL);
2473
2474		pktinfo = (struct in6_pktinfo *)buf;
2475
2476		/*
2477		 * An application can clear any sticky IPV6_PKTINFO option by
2478		 * doing a "regular" setsockopt with ipi6_addr being
2479		 * in6addr_any and ipi6_ifindex being zero.
2480		 * [RFC 3542, Section 6]
2481		 */
2482		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2483		    pktinfo->ipi6_ifindex == 0 &&
2484		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2485			ip6_clearpktopts(opt, optname);
2486			break;
2487		}
2488
2489		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2490		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2491			return (EINVAL);
2492		}
2493
2494		/* validate the interface index if specified. */
2495		if (pktinfo->ipi6_ifindex > V_if_index ||
2496		    pktinfo->ipi6_ifindex < 0) {
2497			 return (ENXIO);
2498		}
2499		if (pktinfo->ipi6_ifindex) {
2500			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2501			if (ifp == NULL)
2502				return (ENXIO);
2503		}
2504
2505		/*
2506		 * We store the address anyway, and let in6_selectsrc()
2507		 * validate the specified address.  This is because ipi6_addr
2508		 * may not have enough information about its scope zone, and
2509		 * we may need additional information (such as outgoing
2510		 * interface or the scope zone of a destination address) to
2511		 * disambiguate the scope.
2512		 * XXX: the delay of the validation may confuse the
2513		 * application when it is used as a sticky option.
2514		 */
2515		if (opt->ip6po_pktinfo == NULL) {
2516			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2517			    M_IP6OPT, M_NOWAIT);
2518			if (opt->ip6po_pktinfo == NULL)
2519				return (ENOBUFS);
2520		}
2521		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2522		break;
2523	}
2524
2525	case IPV6_2292HOPLIMIT:
2526	case IPV6_HOPLIMIT:
2527	{
2528		int *hlimp;
2529
2530		/*
2531		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2532		 * to simplify the ordering among hoplimit options.
2533		 */
2534		if (optname == IPV6_HOPLIMIT && sticky)
2535			return (ENOPROTOOPT);
2536
2537		if (len != sizeof(int))
2538			return (EINVAL);
2539		hlimp = (int *)buf;
2540		if (*hlimp < -1 || *hlimp > 255)
2541			return (EINVAL);
2542
2543		opt->ip6po_hlim = *hlimp;
2544		break;
2545	}
2546
2547	case IPV6_TCLASS:
2548	{
2549		int tclass;
2550
2551		if (len != sizeof(int))
2552			return (EINVAL);
2553		tclass = *(int *)buf;
2554		if (tclass < -1 || tclass > 255)
2555			return (EINVAL);
2556
2557		opt->ip6po_tclass = tclass;
2558		break;
2559	}
2560
2561	case IPV6_2292NEXTHOP:
2562	case IPV6_NEXTHOP:
2563		if (cred != NULL) {
2564			error = priv_check_cred(cred,
2565			    PRIV_NETINET_SETHDROPTS, 0);
2566			if (error)
2567				return (error);
2568		}
2569
2570		if (len == 0) {	/* just remove the option */
2571			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2572			break;
2573		}
2574
2575		/* check if cmsg_len is large enough for sa_len */
2576		if (len < sizeof(struct sockaddr) || len < *buf)
2577			return (EINVAL);
2578
2579		switch (((struct sockaddr *)buf)->sa_family) {
2580		case AF_INET6:
2581		{
2582			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2583			int error;
2584
2585			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2586				return (EINVAL);
2587
2588			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2589			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2590				return (EINVAL);
2591			}
2592			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2593			    != 0) {
2594				return (error);
2595			}
2596			break;
2597		}
2598		case AF_LINK:	/* should eventually be supported */
2599		default:
2600			return (EAFNOSUPPORT);
2601		}
2602
2603		/* turn off the previous option, then set the new option. */
2604		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2605		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2606		if (opt->ip6po_nexthop == NULL)
2607			return (ENOBUFS);
2608		bcopy(buf, opt->ip6po_nexthop, *buf);
2609		break;
2610
2611	case IPV6_2292HOPOPTS:
2612	case IPV6_HOPOPTS:
2613	{
2614		struct ip6_hbh *hbh;
2615		int hbhlen;
2616
2617		/*
2618		 * XXX: We don't allow a non-privileged user to set ANY HbH
2619		 * options, since per-option restriction has too much
2620		 * overhead.
2621		 */
2622		if (cred != NULL) {
2623			error = priv_check_cred(cred,
2624			    PRIV_NETINET_SETHDROPTS, 0);
2625			if (error)
2626				return (error);
2627		}
2628
2629		if (len == 0) {
2630			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2631			break;	/* just remove the option */
2632		}
2633
2634		/* message length validation */
2635		if (len < sizeof(struct ip6_hbh))
2636			return (EINVAL);
2637		hbh = (struct ip6_hbh *)buf;
2638		hbhlen = (hbh->ip6h_len + 1) << 3;
2639		if (len != hbhlen)
2640			return (EINVAL);
2641
2642		/* turn off the previous option, then set the new option. */
2643		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2644		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2645		if (opt->ip6po_hbh == NULL)
2646			return (ENOBUFS);
2647		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2648
2649		break;
2650	}
2651
2652	case IPV6_2292DSTOPTS:
2653	case IPV6_DSTOPTS:
2654	case IPV6_RTHDRDSTOPTS:
2655	{
2656		struct ip6_dest *dest, **newdest = NULL;
2657		int destlen;
2658
2659		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2660			error = priv_check_cred(cred,
2661			    PRIV_NETINET_SETHDROPTS, 0);
2662			if (error)
2663				return (error);
2664		}
2665
2666		if (len == 0) {
2667			ip6_clearpktopts(opt, optname);
2668			break;	/* just remove the option */
2669		}
2670
2671		/* message length validation */
2672		if (len < sizeof(struct ip6_dest))
2673			return (EINVAL);
2674		dest = (struct ip6_dest *)buf;
2675		destlen = (dest->ip6d_len + 1) << 3;
2676		if (len != destlen)
2677			return (EINVAL);
2678
2679		/*
2680		 * Determine the position that the destination options header
2681		 * should be inserted; before or after the routing header.
2682		 */
2683		switch (optname) {
2684		case IPV6_2292DSTOPTS:
2685			/*
2686			 * The old advacned API is ambiguous on this point.
2687			 * Our approach is to determine the position based
2688			 * according to the existence of a routing header.
2689			 * Note, however, that this depends on the order of the
2690			 * extension headers in the ancillary data; the 1st
2691			 * part of the destination options header must appear
2692			 * before the routing header in the ancillary data,
2693			 * too.
2694			 * RFC3542 solved the ambiguity by introducing
2695			 * separate ancillary data or option types.
2696			 */
2697			if (opt->ip6po_rthdr == NULL)
2698				newdest = &opt->ip6po_dest1;
2699			else
2700				newdest = &opt->ip6po_dest2;
2701			break;
2702		case IPV6_RTHDRDSTOPTS:
2703			newdest = &opt->ip6po_dest1;
2704			break;
2705		case IPV6_DSTOPTS:
2706			newdest = &opt->ip6po_dest2;
2707			break;
2708		}
2709
2710		/* turn off the previous option, then set the new option. */
2711		ip6_clearpktopts(opt, optname);
2712		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2713		if (*newdest == NULL)
2714			return (ENOBUFS);
2715		bcopy(dest, *newdest, destlen);
2716
2717		break;
2718	}
2719
2720	case IPV6_2292RTHDR:
2721	case IPV6_RTHDR:
2722	{
2723		struct ip6_rthdr *rth;
2724		int rthlen;
2725
2726		if (len == 0) {
2727			ip6_clearpktopts(opt, IPV6_RTHDR);
2728			break;	/* just remove the option */
2729		}
2730
2731		/* message length validation */
2732		if (len < sizeof(struct ip6_rthdr))
2733			return (EINVAL);
2734		rth = (struct ip6_rthdr *)buf;
2735		rthlen = (rth->ip6r_len + 1) << 3;
2736		if (len != rthlen)
2737			return (EINVAL);
2738
2739		switch (rth->ip6r_type) {
2740		case IPV6_RTHDR_TYPE_0:
2741			if (rth->ip6r_len == 0)	/* must contain one addr */
2742				return (EINVAL);
2743			if (rth->ip6r_len % 2) /* length must be even */
2744				return (EINVAL);
2745			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2746				return (EINVAL);
2747			break;
2748		default:
2749			return (EINVAL);	/* not supported */
2750		}
2751
2752		/* turn off the previous option */
2753		ip6_clearpktopts(opt, IPV6_RTHDR);
2754		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2755		if (opt->ip6po_rthdr == NULL)
2756			return (ENOBUFS);
2757		bcopy(rth, opt->ip6po_rthdr, rthlen);
2758
2759		break;
2760	}
2761
2762	case IPV6_USE_MIN_MTU:
2763		if (len != sizeof(int))
2764			return (EINVAL);
2765		minmtupolicy = *(int *)buf;
2766		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2767		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2768		    minmtupolicy != IP6PO_MINMTU_ALL) {
2769			return (EINVAL);
2770		}
2771		opt->ip6po_minmtu = minmtupolicy;
2772		break;
2773
2774	case IPV6_DONTFRAG:
2775		if (len != sizeof(int))
2776			return (EINVAL);
2777
2778		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2779			/*
2780			 * we ignore this option for TCP sockets.
2781			 * (RFC3542 leaves this case unspecified.)
2782			 */
2783			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2784		} else
2785			opt->ip6po_flags |= IP6PO_DONTFRAG;
2786		break;
2787
2788	case IPV6_PREFER_TEMPADDR:
2789		if (len != sizeof(int))
2790			return (EINVAL);
2791		preftemp = *(int *)buf;
2792		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2793		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2794		    preftemp != IP6PO_TEMPADDR_PREFER) {
2795			return (EINVAL);
2796		}
2797		opt->ip6po_prefer_tempaddr = preftemp;
2798		break;
2799
2800	default:
2801		return (ENOPROTOOPT);
2802	} /* end of switch */
2803
2804	return (0);
2805}
2806
2807/*
2808 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2809 * packet to the input queue of a specified interface.  Note that this
2810 * calls the output routine of the loopback "driver", but with an interface
2811 * pointer that might NOT be &loif -- easier than replicating that code here.
2812 */
2813void
2814ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2815{
2816	struct mbuf *copym;
2817	struct ip6_hdr *ip6;
2818
2819	copym = m_copy(m, 0, M_COPYALL);
2820	if (copym == NULL)
2821		return;
2822
2823	/*
2824	 * Make sure to deep-copy IPv6 header portion in case the data
2825	 * is in an mbuf cluster, so that we can safely override the IPv6
2826	 * header portion later.
2827	 */
2828	if ((copym->m_flags & M_EXT) != 0 ||
2829	    copym->m_len < sizeof(struct ip6_hdr)) {
2830		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2831		if (copym == NULL)
2832			return;
2833	}
2834	ip6 = mtod(copym, struct ip6_hdr *);
2835	/*
2836	 * clear embedded scope identifiers if necessary.
2837	 * in6_clearscope will touch the addresses only when necessary.
2838	 */
2839	in6_clearscope(&ip6->ip6_src);
2840	in6_clearscope(&ip6->ip6_dst);
2841	if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
2842		copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
2843		    CSUM_PSEUDO_HDR;
2844		copym->m_pkthdr.csum_data = 0xffff;
2845	}
2846	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2847}
2848
2849/*
2850 * Chop IPv6 header off from the payload.
2851 */
2852static int
2853ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2854{
2855	struct mbuf *mh;
2856	struct ip6_hdr *ip6;
2857
2858	ip6 = mtod(m, struct ip6_hdr *);
2859	if (m->m_len > sizeof(*ip6)) {
2860		mh = m_gethdr(M_NOWAIT, MT_DATA);
2861		if (mh == NULL) {
2862			m_freem(m);
2863			return ENOBUFS;
2864		}
2865		m_move_pkthdr(mh, m);
2866		MH_ALIGN(mh, sizeof(*ip6));
2867		m->m_len -= sizeof(*ip6);
2868		m->m_data += sizeof(*ip6);
2869		mh->m_next = m;
2870		m = mh;
2871		m->m_len = sizeof(*ip6);
2872		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2873	}
2874	exthdrs->ip6e_ip6 = m;
2875	return 0;
2876}
2877
2878/*
2879 * Compute IPv6 extension header length.
2880 */
2881int
2882ip6_optlen(struct inpcb *in6p)
2883{
2884	int len;
2885
2886	if (!in6p->in6p_outputopts)
2887		return 0;
2888
2889	len = 0;
2890#define elen(x) \
2891    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2892
2893	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2894	if (in6p->in6p_outputopts->ip6po_rthdr)
2895		/* dest1 is valid with rthdr only */
2896		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2897	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2898	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2899	return len;
2900#undef elen
2901}
2902