ip6_output.c revision 274132
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: stable/10/sys/netinet6/ip6_output.c 274132 2014-11-05 09:23:29Z ae $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipfw.h"
69#include "opt_ipsec.h"
70#include "opt_sctp.h"
71#include "opt_route.h"
72
73#include <sys/param.h>
74#include <sys/kernel.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/errno.h>
78#include <sys/priv.h>
79#include <sys/proc.h>
80#include <sys/protosw.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/syslog.h>
84#include <sys/ucred.h>
85
86#include <machine/in_cksum.h>
87
88#include <net/if.h>
89#include <net/netisr.h>
90#include <net/route.h>
91#include <net/pfil.h>
92#include <net/vnet.h>
93
94#include <netinet/in.h>
95#include <netinet/in_var.h>
96#include <netinet/ip_var.h>
97#include <netinet6/in6_var.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/ip6_var.h>
101#include <netinet/in_pcb.h>
102#include <netinet/tcp_var.h>
103#include <netinet6/nd6.h>
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/ipsec6.h>
108#include <netipsec/key.h>
109#include <netinet6/ip6_ipsec.h>
110#endif /* IPSEC */
111#ifdef SCTP
112#include <netinet/sctp.h>
113#include <netinet/sctp_crc32.h>
114#endif
115
116#include <netinet6/ip6protosw.h>
117#include <netinet6/scope6_var.h>
118
119#ifdef FLOWTABLE
120#include <net/flowtable.h>
121#endif
122
123extern int in6_mcast_loop;
124
125struct ip6_exthdrs {
126	struct mbuf *ip6e_ip6;
127	struct mbuf *ip6e_hbh;
128	struct mbuf *ip6e_dest1;
129	struct mbuf *ip6e_rthdr;
130	struct mbuf *ip6e_dest2;
131};
132
133static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
134			   struct ucred *, int);
135static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
136	struct socket *, struct sockopt *);
137static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
138static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
139	struct ucred *, int, int, int);
140
141static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
142static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
143	struct ip6_frag **);
144static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
145static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
146static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
147	struct ifnet *, struct in6_addr *, u_long *, int *, u_int);
148static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
149
150
151/*
152 * Make an extension header from option data.  hp is the source, and
153 * mp is the destination.
154 */
155#define MAKE_EXTHDR(hp, mp)						\
156    do {								\
157	if (hp) {							\
158		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
159		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
160		    ((eh)->ip6e_len + 1) << 3);				\
161		if (error)						\
162			goto freehdrs;					\
163	}								\
164    } while (/*CONSTCOND*/ 0)
165
166/*
167 * Form a chain of extension headers.
168 * m is the extension header mbuf
169 * mp is the previous mbuf in the chain
170 * p is the next header
171 * i is the type of option.
172 */
173#define MAKE_CHAIN(m, mp, p, i)\
174    do {\
175	if (m) {\
176		if (!hdrsplit) \
177			panic("assumption failed: hdr not split"); \
178		*mtod((m), u_char *) = *(p);\
179		*(p) = (i);\
180		p = mtod((m), u_char *);\
181		(m)->m_next = (mp)->m_next;\
182		(mp)->m_next = (m);\
183		(mp) = (m);\
184	}\
185    } while (/*CONSTCOND*/ 0)
186
187void
188in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
189{
190	u_short csum;
191
192	csum = in_cksum_skip(m, offset + plen, offset);
193	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
194		csum = 0xffff;
195	offset += m->m_pkthdr.csum_data;	/* checksum offset */
196
197	if (offset + sizeof(u_short) > m->m_len) {
198		printf("%s: delayed m_pullup, m->len: %d plen %u off %u "
199		    "csum_flags=%b\n", __func__, m->m_len, plen, offset,
200		    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
201		/*
202		 * XXX this should not happen, but if it does, the correct
203		 * behavior may be to insert the checksum in the appropriate
204		 * next mbuf in the chain.
205		 */
206		return;
207	}
208	*(u_short *)(m->m_data + offset) = csum;
209}
210
211/*
212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
213 * header (with pri, len, nxt, hlim, src, dst).
214 * This function may modify ver and hlim only.
215 * The mbuf chain containing the packet will be freed.
216 * The mbuf opt, if present, will not be freed.
217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be
218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
219 * then result of route lookup is stored in ro->ro_rt.
220 *
221 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and
222 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
223 * which is rt_mtu.
224 *
225 * ifpp - XXX: just for statistics
226 */
227int
228ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
229    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
230    struct ifnet **ifpp, struct inpcb *inp)
231{
232	struct ip6_hdr *ip6, *mhip6;
233	struct ifnet *ifp, *origifp;
234	struct mbuf *m = m0;
235	struct mbuf *mprev = NULL;
236	int hlen, tlen, len, off;
237	struct route_in6 ip6route;
238	struct rtentry *rt = NULL;
239	struct sockaddr_in6 *dst, src_sa, dst_sa;
240	struct in6_addr odst;
241	int error = 0;
242	struct in6_ifaddr *ia = NULL;
243	u_long mtu;
244	int alwaysfrag, dontfrag;
245	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
246	struct ip6_exthdrs exthdrs;
247	struct in6_addr finaldst, src0, dst0;
248	u_int32_t zone;
249	struct route_in6 *ro_pmtu = NULL;
250	int hdrsplit = 0;
251	int sw_csum, tso;
252	struct m_tag *fwd_tag = NULL;
253
254	ip6 = mtod(m, struct ip6_hdr *);
255	if (ip6 == NULL) {
256		printf ("ip6 is NULL");
257		goto bad;
258	}
259
260	if (inp != NULL)
261		M_SETFIB(m, inp->inp_inc.inc_fibnum);
262
263	finaldst = ip6->ip6_dst;
264	bzero(&exthdrs, sizeof(exthdrs));
265	if (opt) {
266		/* Hop-by-Hop options header */
267		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
268		/* Destination options header(1st part) */
269		if (opt->ip6po_rthdr) {
270			/*
271			 * Destination options header(1st part)
272			 * This only makes sense with a routing header.
273			 * See Section 9.2 of RFC 3542.
274			 * Disabling this part just for MIP6 convenience is
275			 * a bad idea.  We need to think carefully about a
276			 * way to make the advanced API coexist with MIP6
277			 * options, which might automatically be inserted in
278			 * the kernel.
279			 */
280			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
281		}
282		/* Routing header */
283		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
284		/* Destination options header(2nd part) */
285		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
286	}
287
288#ifdef IPSEC
289	/*
290	 * IPSec checking which handles several cases.
291	 * FAST IPSEC: We re-injected the packet.
292	 */
293	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp))
294	{
295	case 1:                 /* Bad packet */
296		goto freehdrs;
297	case -1:                /* IPSec done */
298		goto done;
299	case 0:                 /* No IPSec */
300	default:
301		break;
302	}
303#endif /* IPSEC */
304
305	/*
306	 * Calculate the total length of the extension header chain.
307	 * Keep the length of the unfragmentable part for fragmentation.
308	 */
309	optlen = 0;
310	if (exthdrs.ip6e_hbh)
311		optlen += exthdrs.ip6e_hbh->m_len;
312	if (exthdrs.ip6e_dest1)
313		optlen += exthdrs.ip6e_dest1->m_len;
314	if (exthdrs.ip6e_rthdr)
315		optlen += exthdrs.ip6e_rthdr->m_len;
316	unfragpartlen = optlen + sizeof(struct ip6_hdr);
317
318	/* NOTE: we don't add AH/ESP length here (done in ip6_ipsec_output) */
319	if (exthdrs.ip6e_dest2)
320		optlen += exthdrs.ip6e_dest2->m_len;
321
322	/*
323	 * If there is at least one extension header,
324	 * separate IP6 header from the payload.
325	 */
326	if (optlen && !hdrsplit) {
327		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
328			m = NULL;
329			goto freehdrs;
330		}
331		m = exthdrs.ip6e_ip6;
332		hdrsplit++;
333	}
334
335	/* adjust pointer */
336	ip6 = mtod(m, struct ip6_hdr *);
337
338	/* adjust mbuf packet header length */
339	m->m_pkthdr.len += optlen;
340	plen = m->m_pkthdr.len - sizeof(*ip6);
341
342	/* If this is a jumbo payload, insert a jumbo payload option. */
343	if (plen > IPV6_MAXPACKET) {
344		if (!hdrsplit) {
345			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
346				m = NULL;
347				goto freehdrs;
348			}
349			m = exthdrs.ip6e_ip6;
350			hdrsplit++;
351		}
352		/* adjust pointer */
353		ip6 = mtod(m, struct ip6_hdr *);
354		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
355			goto freehdrs;
356		ip6->ip6_plen = 0;
357	} else
358		ip6->ip6_plen = htons(plen);
359
360	/*
361	 * Concatenate headers and fill in next header fields.
362	 * Here we have, on "m"
363	 *	IPv6 payload
364	 * and we insert headers accordingly.  Finally, we should be getting:
365	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
366	 *
367	 * during the header composing process, "m" points to IPv6 header.
368	 * "mprev" points to an extension header prior to esp.
369	 */
370	u_char *nexthdrp = &ip6->ip6_nxt;
371	mprev = m;
372
373	/*
374	 * we treat dest2 specially.  this makes IPsec processing
375	 * much easier.  the goal here is to make mprev point the
376	 * mbuf prior to dest2.
377	 *
378	 * result: IPv6 dest2 payload
379	 * m and mprev will point to IPv6 header.
380	 */
381	if (exthdrs.ip6e_dest2) {
382		if (!hdrsplit)
383			panic("assumption failed: hdr not split");
384		exthdrs.ip6e_dest2->m_next = m->m_next;
385		m->m_next = exthdrs.ip6e_dest2;
386		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
387		ip6->ip6_nxt = IPPROTO_DSTOPTS;
388	}
389
390	/*
391	 * result: IPv6 hbh dest1 rthdr dest2 payload
392	 * m will point to IPv6 header.  mprev will point to the
393	 * extension header prior to dest2 (rthdr in the above case).
394	 */
395	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
396	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
397		   IPPROTO_DSTOPTS);
398	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
399		   IPPROTO_ROUTING);
400
401	/*
402	 * If there is a routing header, discard the packet.
403	 */
404	if (exthdrs.ip6e_rthdr) {
405		 error = EINVAL;
406		 goto bad;
407	}
408
409	/* Source address validation */
410	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
411	    (flags & IPV6_UNSPECSRC) == 0) {
412		error = EOPNOTSUPP;
413		IP6STAT_INC(ip6s_badscope);
414		goto bad;
415	}
416	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
417		error = EOPNOTSUPP;
418		IP6STAT_INC(ip6s_badscope);
419		goto bad;
420	}
421
422	IP6STAT_INC(ip6s_localout);
423
424	/*
425	 * Route packet.
426	 */
427	if (ro == 0) {
428		ro = &ip6route;
429		bzero((caddr_t)ro, sizeof(*ro));
430	}
431	ro_pmtu = ro;
432	if (opt && opt->ip6po_rthdr)
433		ro = &opt->ip6po_route;
434	dst = (struct sockaddr_in6 *)&ro->ro_dst;
435#ifdef FLOWTABLE
436	if (ro->ro_rt == NULL)
437		(void )flowtable_lookup(AF_INET6, m, (struct route *)ro);
438#endif
439again:
440	/*
441	 * if specified, try to fill in the traffic class field.
442	 * do not override if a non-zero value is already set.
443	 * we check the diffserv field and the ecn field separately.
444	 */
445	if (opt && opt->ip6po_tclass >= 0) {
446		int mask = 0;
447
448		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
449			mask |= 0xfc;
450		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
451			mask |= 0x03;
452		if (mask != 0)
453			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
454	}
455
456	/* fill in or override the hop limit field, if necessary. */
457	if (opt && opt->ip6po_hlim != -1)
458		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
459	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
460		if (im6o != NULL)
461			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
462		else
463			ip6->ip6_hlim = V_ip6_defmcasthlim;
464	}
465
466	/* adjust pointer */
467	ip6 = mtod(m, struct ip6_hdr *);
468
469	if (ro->ro_rt && fwd_tag == NULL) {
470		rt = ro->ro_rt;
471		ifp = ro->ro_rt->rt_ifp;
472	} else {
473		if (fwd_tag == NULL) {
474			bzero(&dst_sa, sizeof(dst_sa));
475			dst_sa.sin6_family = AF_INET6;
476			dst_sa.sin6_len = sizeof(dst_sa);
477			dst_sa.sin6_addr = ip6->ip6_dst;
478		}
479		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
480		    &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
481		if (error != 0) {
482			if (ifp != NULL)
483				in6_ifstat_inc(ifp, ifs6_out_discard);
484			goto bad;
485		}
486	}
487	if (rt == NULL) {
488		/*
489		 * If in6_selectroute() does not return a route entry,
490		 * dst may not have been updated.
491		 */
492		*dst = dst_sa;	/* XXX */
493	}
494
495	/*
496	 * then rt (for unicast) and ifp must be non-NULL valid values.
497	 */
498	if ((flags & IPV6_FORWARDING) == 0) {
499		/* XXX: the FORWARDING flag can be set for mrouting. */
500		in6_ifstat_inc(ifp, ifs6_out_request);
501	}
502	if (rt != NULL) {
503		ia = (struct in6_ifaddr *)(rt->rt_ifa);
504		counter_u64_add(rt->rt_pksent, 1);
505	}
506
507
508	/*
509	 * The outgoing interface must be in the zone of source and
510	 * destination addresses.
511	 */
512	origifp = ifp;
513
514	src0 = ip6->ip6_src;
515	if (in6_setscope(&src0, origifp, &zone))
516		goto badscope;
517	bzero(&src_sa, sizeof(src_sa));
518	src_sa.sin6_family = AF_INET6;
519	src_sa.sin6_len = sizeof(src_sa);
520	src_sa.sin6_addr = ip6->ip6_src;
521	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
522		goto badscope;
523
524	dst0 = ip6->ip6_dst;
525	if (in6_setscope(&dst0, origifp, &zone))
526		goto badscope;
527	/* re-initialize to be sure */
528	bzero(&dst_sa, sizeof(dst_sa));
529	dst_sa.sin6_family = AF_INET6;
530	dst_sa.sin6_len = sizeof(dst_sa);
531	dst_sa.sin6_addr = ip6->ip6_dst;
532	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
533		goto badscope;
534	}
535
536	/* We should use ia_ifp to support the case of
537	 * sending packets to an address of our own.
538	 */
539	if (ia != NULL && ia->ia_ifp)
540		ifp = ia->ia_ifp;
541
542	/* scope check is done. */
543	goto routefound;
544
545  badscope:
546	IP6STAT_INC(ip6s_badscope);
547	in6_ifstat_inc(origifp, ifs6_out_discard);
548	if (error == 0)
549		error = EHOSTUNREACH; /* XXX */
550	goto bad;
551
552  routefound:
553	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
554		if (opt && opt->ip6po_nextroute.ro_rt) {
555			/*
556			 * The nexthop is explicitly specified by the
557			 * application.  We assume the next hop is an IPv6
558			 * address.
559			 */
560			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
561		}
562		else if ((rt->rt_flags & RTF_GATEWAY))
563			dst = (struct sockaddr_in6 *)rt->rt_gateway;
564	}
565
566	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
567		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
568	} else {
569		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
570		in6_ifstat_inc(ifp, ifs6_out_mcast);
571		/*
572		 * Confirm that the outgoing interface supports multicast.
573		 */
574		if (!(ifp->if_flags & IFF_MULTICAST)) {
575			IP6STAT_INC(ip6s_noroute);
576			in6_ifstat_inc(ifp, ifs6_out_discard);
577			error = ENETUNREACH;
578			goto bad;
579		}
580		if ((im6o == NULL && in6_mcast_loop) ||
581		    (im6o && im6o->im6o_multicast_loop)) {
582			/*
583			 * Loop back multicast datagram if not expressly
584			 * forbidden to do so, even if we have not joined
585			 * the address; protocols will filter it later,
586			 * thus deferring a hash lookup and lock acquisition
587			 * at the expense of an m_copym().
588			 */
589			ip6_mloopback(ifp, m, dst);
590		} else {
591			/*
592			 * If we are acting as a multicast router, perform
593			 * multicast forwarding as if the packet had just
594			 * arrived on the interface to which we are about
595			 * to send.  The multicast forwarding function
596			 * recursively calls this function, using the
597			 * IPV6_FORWARDING flag to prevent infinite recursion.
598			 *
599			 * Multicasts that are looped back by ip6_mloopback(),
600			 * above, will be forwarded by the ip6_input() routine,
601			 * if necessary.
602			 */
603			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
604				/*
605				 * XXX: ip6_mforward expects that rcvif is NULL
606				 * when it is called from the originating path.
607				 * However, it may not always be the case.
608				 */
609				m->m_pkthdr.rcvif = NULL;
610				if (ip6_mforward(ip6, ifp, m) != 0) {
611					m_freem(m);
612					goto done;
613				}
614			}
615		}
616		/*
617		 * Multicasts with a hoplimit of zero may be looped back,
618		 * above, but must not be transmitted on a network.
619		 * Also, multicasts addressed to the loopback interface
620		 * are not sent -- the above call to ip6_mloopback() will
621		 * loop back a copy if this host actually belongs to the
622		 * destination group on the loopback interface.
623		 */
624		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
625		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
626			m_freem(m);
627			goto done;
628		}
629	}
630
631	/*
632	 * Fill the outgoing inteface to tell the upper layer
633	 * to increment per-interface statistics.
634	 */
635	if (ifpp)
636		*ifpp = ifp;
637
638	/* Determine path MTU. */
639	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
640	    &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
641		goto bad;
642
643	/*
644	 * The caller of this function may specify to use the minimum MTU
645	 * in some cases.
646	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
647	 * setting.  The logic is a bit complicated; by default, unicast
648	 * packets will follow path MTU while multicast packets will be sent at
649	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
650	 * including unicast ones will be sent at the minimum MTU.  Multicast
651	 * packets will always be sent at the minimum MTU unless
652	 * IP6PO_MINMTU_DISABLE is explicitly specified.
653	 * See RFC 3542 for more details.
654	 */
655	if (mtu > IPV6_MMTU) {
656		if ((flags & IPV6_MINMTU))
657			mtu = IPV6_MMTU;
658		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
659			mtu = IPV6_MMTU;
660		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
661			 (opt == NULL ||
662			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
663			mtu = IPV6_MMTU;
664		}
665	}
666
667	/*
668	 * clear embedded scope identifiers if necessary.
669	 * in6_clearscope will touch the addresses only when necessary.
670	 */
671	in6_clearscope(&ip6->ip6_src);
672	in6_clearscope(&ip6->ip6_dst);
673
674	/*
675	 * If the outgoing packet contains a hop-by-hop options header,
676	 * it must be examined and processed even by the source node.
677	 * (RFC 2460, section 4.)
678	 */
679	if (exthdrs.ip6e_hbh) {
680		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
681		u_int32_t dummy; /* XXX unused */
682		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
683
684#ifdef DIAGNOSTIC
685		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
686			panic("ip6e_hbh is not contiguous");
687#endif
688		/*
689		 *  XXX: if we have to send an ICMPv6 error to the sender,
690		 *       we need the M_LOOP flag since icmp6_error() expects
691		 *       the IPv6 and the hop-by-hop options header are
692		 *       contiguous unless the flag is set.
693		 */
694		m->m_flags |= M_LOOP;
695		m->m_pkthdr.rcvif = ifp;
696		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
697		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
698		    &dummy, &plen) < 0) {
699			/* m was already freed at this point */
700			error = EINVAL;/* better error? */
701			goto done;
702		}
703		m->m_flags &= ~M_LOOP; /* XXX */
704		m->m_pkthdr.rcvif = NULL;
705	}
706
707	/* Jump over all PFIL processing if hooks are not active. */
708	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
709		goto passout;
710
711	odst = ip6->ip6_dst;
712	/* Run through list of hooks for output packets. */
713	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
714	if (error != 0 || m == NULL)
715		goto done;
716	ip6 = mtod(m, struct ip6_hdr *);
717
718	/* See if destination IP address was changed by packet filter. */
719	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
720		m->m_flags |= M_SKIP_FIREWALL;
721		/* If destination is now ourself drop to ip6_input(). */
722		if (in6_localip(&ip6->ip6_dst)) {
723			m->m_flags |= M_FASTFWD_OURS;
724			if (m->m_pkthdr.rcvif == NULL)
725				m->m_pkthdr.rcvif = V_loif;
726			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
727				m->m_pkthdr.csum_flags |=
728				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
729				m->m_pkthdr.csum_data = 0xffff;
730			}
731#ifdef SCTP
732			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
733				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
734#endif
735			error = netisr_queue(NETISR_IPV6, m);
736			goto done;
737		} else
738			goto again;	/* Redo the routing table lookup. */
739	}
740
741	/* See if local, if yes, send it to netisr. */
742	if (m->m_flags & M_FASTFWD_OURS) {
743		if (m->m_pkthdr.rcvif == NULL)
744			m->m_pkthdr.rcvif = V_loif;
745		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
746			m->m_pkthdr.csum_flags |=
747			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
748			m->m_pkthdr.csum_data = 0xffff;
749		}
750#ifdef SCTP
751		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
752			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
753#endif
754		error = netisr_queue(NETISR_IPV6, m);
755		goto done;
756	}
757	/* Or forward to some other address? */
758	if ((m->m_flags & M_IP6_NEXTHOP) &&
759	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
760		dst = (struct sockaddr_in6 *)&ro->ro_dst;
761		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
762		m->m_flags |= M_SKIP_FIREWALL;
763		m->m_flags &= ~M_IP6_NEXTHOP;
764		m_tag_delete(m, fwd_tag);
765		goto again;
766	}
767
768passout:
769	/*
770	 * Send the packet to the outgoing interface.
771	 * If necessary, do IPv6 fragmentation before sending.
772	 *
773	 * the logic here is rather complex:
774	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
775	 * 1-a:	send as is if tlen <= path mtu
776	 * 1-b:	fragment if tlen > path mtu
777	 *
778	 * 2: if user asks us not to fragment (dontfrag == 1)
779	 * 2-a:	send as is if tlen <= interface mtu
780	 * 2-b:	error if tlen > interface mtu
781	 *
782	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
783	 *	always fragment
784	 *
785	 * 4: if dontfrag == 1 && alwaysfrag == 1
786	 *	error, as we cannot handle this conflicting request
787	 */
788	sw_csum = m->m_pkthdr.csum_flags;
789	if (!hdrsplit) {
790		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
791		sw_csum &= ~ifp->if_hwassist;
792	} else
793		tso = 0;
794	/*
795	 * If we added extension headers, we will not do TSO and calculate the
796	 * checksums ourselves for now.
797	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
798	 * with ext. hdrs.
799	 */
800	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
801		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
802		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
803	}
804#ifdef SCTP
805	if (sw_csum & CSUM_SCTP_IPV6) {
806		sw_csum &= ~CSUM_SCTP_IPV6;
807		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
808	}
809#endif
810	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
811	tlen = m->m_pkthdr.len;
812
813	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
814		dontfrag = 1;
815	else
816		dontfrag = 0;
817	if (dontfrag && alwaysfrag) {	/* case 4 */
818		/* conflicting request - can't transmit */
819		error = EMSGSIZE;
820		goto bad;
821	}
822	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
823		/*
824		 * Even if the DONTFRAG option is specified, we cannot send the
825		 * packet when the data length is larger than the MTU of the
826		 * outgoing interface.
827		 * Notify the error by sending IPV6_PATHMTU ancillary data as
828		 * well as returning an error code (the latter is not described
829		 * in the API spec.)
830		 */
831		u_int32_t mtu32;
832		struct ip6ctlparam ip6cp;
833
834		mtu32 = (u_int32_t)mtu;
835		bzero(&ip6cp, sizeof(ip6cp));
836		ip6cp.ip6c_cmdarg = (void *)&mtu32;
837		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
838		    (void *)&ip6cp);
839
840		error = EMSGSIZE;
841		goto bad;
842	}
843
844	/*
845	 * transmit packet without fragmentation
846	 */
847	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
848		struct in6_ifaddr *ia6;
849
850		ip6 = mtod(m, struct ip6_hdr *);
851		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
852		if (ia6) {
853			/* Record statistics for this interface address. */
854			ia6->ia_ifa.if_opackets++;
855			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
856			ifa_free(&ia6->ia_ifa);
857		}
858		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
859		goto done;
860	}
861
862	/*
863	 * try to fragment the packet.  case 1-b and 3
864	 */
865	if (mtu < IPV6_MMTU) {
866		/* path MTU cannot be less than IPV6_MMTU */
867		error = EMSGSIZE;
868		in6_ifstat_inc(ifp, ifs6_out_fragfail);
869		goto bad;
870	} else if (ip6->ip6_plen == 0) {
871		/* jumbo payload cannot be fragmented */
872		error = EMSGSIZE;
873		in6_ifstat_inc(ifp, ifs6_out_fragfail);
874		goto bad;
875	} else {
876		struct mbuf **mnext, *m_frgpart;
877		struct ip6_frag *ip6f;
878		u_int32_t id = htonl(ip6_randomid());
879		u_char nextproto;
880
881		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
882
883		/*
884		 * Too large for the destination or interface;
885		 * fragment if possible.
886		 * Must be able to put at least 8 bytes per fragment.
887		 */
888		hlen = unfragpartlen;
889		if (mtu > IPV6_MAXPACKET)
890			mtu = IPV6_MAXPACKET;
891
892		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
893		if (len < 8) {
894			error = EMSGSIZE;
895			in6_ifstat_inc(ifp, ifs6_out_fragfail);
896			goto bad;
897		}
898
899		/*
900		 * Verify that we have any chance at all of being able to queue
901		 *      the packet or packet fragments
902		 */
903		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
904		    < tlen  /* - hlen */)) {
905			error = ENOBUFS;
906			IP6STAT_INC(ip6s_odropped);
907			goto bad;
908		}
909
910
911		/*
912		 * If the interface will not calculate checksums on
913		 * fragmented packets, then do it here.
914		 * XXX-BZ handle the hw offloading case.  Need flags.
915		 */
916		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
917			in6_delayed_cksum(m, plen, hlen);
918			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
919		}
920#ifdef SCTP
921		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
922			sctp_delayed_cksum(m, hlen);
923			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
924		}
925#endif
926		mnext = &m->m_nextpkt;
927
928		/*
929		 * Change the next header field of the last header in the
930		 * unfragmentable part.
931		 */
932		if (exthdrs.ip6e_rthdr) {
933			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
934			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
935		} else if (exthdrs.ip6e_dest1) {
936			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
937			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
938		} else if (exthdrs.ip6e_hbh) {
939			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
940			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
941		} else {
942			nextproto = ip6->ip6_nxt;
943			ip6->ip6_nxt = IPPROTO_FRAGMENT;
944		}
945
946		/*
947		 * Loop through length of segment after first fragment,
948		 * make new header and copy data of each part and link onto
949		 * chain.
950		 */
951		m0 = m;
952		for (off = hlen; off < tlen; off += len) {
953			m = m_gethdr(M_NOWAIT, MT_DATA);
954			if (!m) {
955				error = ENOBUFS;
956				IP6STAT_INC(ip6s_odropped);
957				goto sendorfree;
958			}
959			m->m_flags = m0->m_flags & M_COPYFLAGS;
960			*mnext = m;
961			mnext = &m->m_nextpkt;
962			m->m_data += max_linkhdr;
963			mhip6 = mtod(m, struct ip6_hdr *);
964			*mhip6 = *ip6;
965			m->m_len = sizeof(*mhip6);
966			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
967			if (error) {
968				IP6STAT_INC(ip6s_odropped);
969				goto sendorfree;
970			}
971			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
972			if (off + len >= tlen)
973				len = tlen - off;
974			else
975				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
976			mhip6->ip6_plen = htons((u_short)(len + hlen +
977			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
978			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
979				error = ENOBUFS;
980				IP6STAT_INC(ip6s_odropped);
981				goto sendorfree;
982			}
983			m_cat(m, m_frgpart);
984			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
985			m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum;
986			m->m_pkthdr.rcvif = NULL;
987			ip6f->ip6f_reserved = 0;
988			ip6f->ip6f_ident = id;
989			ip6f->ip6f_nxt = nextproto;
990			IP6STAT_INC(ip6s_ofragments);
991			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
992		}
993
994		in6_ifstat_inc(ifp, ifs6_out_fragok);
995	}
996
997	/*
998	 * Remove leading garbages.
999	 */
1000sendorfree:
1001	m = m0->m_nextpkt;
1002	m0->m_nextpkt = 0;
1003	m_freem(m0);
1004	for (m0 = m; m; m = m0) {
1005		m0 = m->m_nextpkt;
1006		m->m_nextpkt = 0;
1007		if (error == 0) {
1008			/* Record statistics for this interface address. */
1009			if (ia) {
1010				ia->ia_ifa.if_opackets++;
1011				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1012			}
1013			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1014		} else
1015			m_freem(m);
1016	}
1017
1018	if (error == 0)
1019		IP6STAT_INC(ip6s_fragmented);
1020
1021done:
1022	if (ro == &ip6route)
1023		RO_RTFREE(ro);
1024	if (ro_pmtu == &ip6route)
1025		RO_RTFREE(ro_pmtu);
1026	return (error);
1027
1028freehdrs:
1029	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1030	m_freem(exthdrs.ip6e_dest1);
1031	m_freem(exthdrs.ip6e_rthdr);
1032	m_freem(exthdrs.ip6e_dest2);
1033	/* FALLTHROUGH */
1034bad:
1035	if (m)
1036		m_freem(m);
1037	goto done;
1038}
1039
1040static int
1041ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1042{
1043	struct mbuf *m;
1044
1045	if (hlen > MCLBYTES)
1046		return (ENOBUFS); /* XXX */
1047
1048	if (hlen > MLEN)
1049		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1050	else
1051		m = m_get(M_NOWAIT, MT_DATA);
1052	if (m == NULL)
1053		return (ENOBUFS);
1054	m->m_len = hlen;
1055	if (hdr)
1056		bcopy(hdr, mtod(m, caddr_t), hlen);
1057
1058	*mp = m;
1059	return (0);
1060}
1061
1062/*
1063 * Insert jumbo payload option.
1064 */
1065static int
1066ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1067{
1068	struct mbuf *mopt;
1069	u_char *optbuf;
1070	u_int32_t v;
1071
1072#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1073
1074	/*
1075	 * If there is no hop-by-hop options header, allocate new one.
1076	 * If there is one but it doesn't have enough space to store the
1077	 * jumbo payload option, allocate a cluster to store the whole options.
1078	 * Otherwise, use it to store the options.
1079	 */
1080	if (exthdrs->ip6e_hbh == 0) {
1081		mopt = m_get(M_NOWAIT, MT_DATA);
1082		if (mopt == NULL)
1083			return (ENOBUFS);
1084		mopt->m_len = JUMBOOPTLEN;
1085		optbuf = mtod(mopt, u_char *);
1086		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1087		exthdrs->ip6e_hbh = mopt;
1088	} else {
1089		struct ip6_hbh *hbh;
1090
1091		mopt = exthdrs->ip6e_hbh;
1092		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1093			/*
1094			 * XXX assumption:
1095			 * - exthdrs->ip6e_hbh is not referenced from places
1096			 *   other than exthdrs.
1097			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1098			 */
1099			int oldoptlen = mopt->m_len;
1100			struct mbuf *n;
1101
1102			/*
1103			 * XXX: give up if the whole (new) hbh header does
1104			 * not fit even in an mbuf cluster.
1105			 */
1106			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1107				return (ENOBUFS);
1108
1109			/*
1110			 * As a consequence, we must always prepare a cluster
1111			 * at this point.
1112			 */
1113			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1114			if (n == NULL)
1115				return (ENOBUFS);
1116			n->m_len = oldoptlen + JUMBOOPTLEN;
1117			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1118			    oldoptlen);
1119			optbuf = mtod(n, caddr_t) + oldoptlen;
1120			m_freem(mopt);
1121			mopt = exthdrs->ip6e_hbh = n;
1122		} else {
1123			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1124			mopt->m_len += JUMBOOPTLEN;
1125		}
1126		optbuf[0] = IP6OPT_PADN;
1127		optbuf[1] = 1;
1128
1129		/*
1130		 * Adjust the header length according to the pad and
1131		 * the jumbo payload option.
1132		 */
1133		hbh = mtod(mopt, struct ip6_hbh *);
1134		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1135	}
1136
1137	/* fill in the option. */
1138	optbuf[2] = IP6OPT_JUMBO;
1139	optbuf[3] = 4;
1140	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1141	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1142
1143	/* finally, adjust the packet header length */
1144	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1145
1146	return (0);
1147#undef JUMBOOPTLEN
1148}
1149
1150/*
1151 * Insert fragment header and copy unfragmentable header portions.
1152 */
1153static int
1154ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1155    struct ip6_frag **frghdrp)
1156{
1157	struct mbuf *n, *mlast;
1158
1159	if (hlen > sizeof(struct ip6_hdr)) {
1160		n = m_copym(m0, sizeof(struct ip6_hdr),
1161		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1162		if (n == 0)
1163			return (ENOBUFS);
1164		m->m_next = n;
1165	} else
1166		n = m;
1167
1168	/* Search for the last mbuf of unfragmentable part. */
1169	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1170		;
1171
1172	if ((mlast->m_flags & M_EXT) == 0 &&
1173	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1174		/* use the trailing space of the last mbuf for the fragment hdr */
1175		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1176		    mlast->m_len);
1177		mlast->m_len += sizeof(struct ip6_frag);
1178		m->m_pkthdr.len += sizeof(struct ip6_frag);
1179	} else {
1180		/* allocate a new mbuf for the fragment header */
1181		struct mbuf *mfrg;
1182
1183		mfrg = m_get(M_NOWAIT, MT_DATA);
1184		if (mfrg == NULL)
1185			return (ENOBUFS);
1186		mfrg->m_len = sizeof(struct ip6_frag);
1187		*frghdrp = mtod(mfrg, struct ip6_frag *);
1188		mlast->m_next = mfrg;
1189	}
1190
1191	return (0);
1192}
1193
1194static int
1195ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1196    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1197    int *alwaysfragp, u_int fibnum)
1198{
1199	u_int32_t mtu = 0;
1200	int alwaysfrag = 0;
1201	int error = 0;
1202
1203	if (ro_pmtu != ro) {
1204		/* The first hop and the final destination may differ. */
1205		struct sockaddr_in6 *sa6_dst =
1206		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1207		if (ro_pmtu->ro_rt &&
1208		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1209		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1210			RTFREE(ro_pmtu->ro_rt);
1211			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1212		}
1213		if (ro_pmtu->ro_rt == NULL) {
1214			bzero(sa6_dst, sizeof(*sa6_dst));
1215			sa6_dst->sin6_family = AF_INET6;
1216			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1217			sa6_dst->sin6_addr = *dst;
1218
1219			in6_rtalloc(ro_pmtu, fibnum);
1220		}
1221	}
1222	if (ro_pmtu->ro_rt) {
1223		u_int32_t ifmtu;
1224		struct in_conninfo inc;
1225
1226		bzero(&inc, sizeof(inc));
1227		inc.inc_flags |= INC_ISIPV6;
1228		inc.inc6_faddr = *dst;
1229
1230		if (ifp == NULL)
1231			ifp = ro_pmtu->ro_rt->rt_ifp;
1232		ifmtu = IN6_LINKMTU(ifp);
1233		mtu = tcp_hc_getmtu(&inc);
1234		if (mtu)
1235			mtu = min(mtu, ro_pmtu->ro_rt->rt_mtu);
1236		else
1237			mtu = ro_pmtu->ro_rt->rt_mtu;
1238		if (mtu == 0)
1239			mtu = ifmtu;
1240		else if (mtu < IPV6_MMTU) {
1241			/*
1242			 * RFC2460 section 5, last paragraph:
1243			 * if we record ICMPv6 too big message with
1244			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1245			 * or smaller, with framgent header attached.
1246			 * (fragment header is needed regardless from the
1247			 * packet size, for translators to identify packets)
1248			 */
1249			alwaysfrag = 1;
1250			mtu = IPV6_MMTU;
1251		} else if (mtu > ifmtu) {
1252			/*
1253			 * The MTU on the route is larger than the MTU on
1254			 * the interface!  This shouldn't happen, unless the
1255			 * MTU of the interface has been changed after the
1256			 * interface was brought up.  Change the MTU in the
1257			 * route to match the interface MTU (as long as the
1258			 * field isn't locked).
1259			 */
1260			mtu = ifmtu;
1261			ro_pmtu->ro_rt->rt_mtu = mtu;
1262		}
1263	} else if (ifp) {
1264		mtu = IN6_LINKMTU(ifp);
1265	} else
1266		error = EHOSTUNREACH; /* XXX */
1267
1268	*mtup = mtu;
1269	if (alwaysfragp)
1270		*alwaysfragp = alwaysfrag;
1271	return (error);
1272}
1273
1274/*
1275 * IP6 socket option processing.
1276 */
1277int
1278ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1279{
1280	int optdatalen, uproto;
1281	void *optdata;
1282	struct inpcb *in6p = sotoinpcb(so);
1283	int error, optval;
1284	int level, op, optname;
1285	int optlen;
1286	struct thread *td;
1287
1288	level = sopt->sopt_level;
1289	op = sopt->sopt_dir;
1290	optname = sopt->sopt_name;
1291	optlen = sopt->sopt_valsize;
1292	td = sopt->sopt_td;
1293	error = 0;
1294	optval = 0;
1295	uproto = (int)so->so_proto->pr_protocol;
1296
1297	if (level != IPPROTO_IPV6) {
1298		error = EINVAL;
1299
1300		if (sopt->sopt_level == SOL_SOCKET &&
1301		    sopt->sopt_dir == SOPT_SET) {
1302			switch (sopt->sopt_name) {
1303			case SO_REUSEADDR:
1304				INP_WLOCK(in6p);
1305				if ((so->so_options & SO_REUSEADDR) != 0)
1306					in6p->inp_flags2 |= INP_REUSEADDR;
1307				else
1308					in6p->inp_flags2 &= ~INP_REUSEADDR;
1309				INP_WUNLOCK(in6p);
1310				error = 0;
1311				break;
1312			case SO_REUSEPORT:
1313				INP_WLOCK(in6p);
1314				if ((so->so_options & SO_REUSEPORT) != 0)
1315					in6p->inp_flags2 |= INP_REUSEPORT;
1316				else
1317					in6p->inp_flags2 &= ~INP_REUSEPORT;
1318				INP_WUNLOCK(in6p);
1319				error = 0;
1320				break;
1321			case SO_SETFIB:
1322				INP_WLOCK(in6p);
1323				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1324				INP_WUNLOCK(in6p);
1325				error = 0;
1326				break;
1327			default:
1328				break;
1329			}
1330		}
1331	} else {		/* level == IPPROTO_IPV6 */
1332		switch (op) {
1333
1334		case SOPT_SET:
1335			switch (optname) {
1336			case IPV6_2292PKTOPTIONS:
1337#ifdef IPV6_PKTOPTIONS
1338			case IPV6_PKTOPTIONS:
1339#endif
1340			{
1341				struct mbuf *m;
1342
1343				error = soopt_getm(sopt, &m); /* XXX */
1344				if (error != 0)
1345					break;
1346				error = soopt_mcopyin(sopt, m); /* XXX */
1347				if (error != 0)
1348					break;
1349				error = ip6_pcbopts(&in6p->in6p_outputopts,
1350						    m, so, sopt);
1351				m_freem(m); /* XXX */
1352				break;
1353			}
1354
1355			/*
1356			 * Use of some Hop-by-Hop options or some
1357			 * Destination options, might require special
1358			 * privilege.  That is, normal applications
1359			 * (without special privilege) might be forbidden
1360			 * from setting certain options in outgoing packets,
1361			 * and might never see certain options in received
1362			 * packets. [RFC 2292 Section 6]
1363			 * KAME specific note:
1364			 *  KAME prevents non-privileged users from sending or
1365			 *  receiving ANY hbh/dst options in order to avoid
1366			 *  overhead of parsing options in the kernel.
1367			 */
1368			case IPV6_RECVHOPOPTS:
1369			case IPV6_RECVDSTOPTS:
1370			case IPV6_RECVRTHDRDSTOPTS:
1371				if (td != NULL) {
1372					error = priv_check(td,
1373					    PRIV_NETINET_SETHDROPTS);
1374					if (error)
1375						break;
1376				}
1377				/* FALLTHROUGH */
1378			case IPV6_UNICAST_HOPS:
1379			case IPV6_HOPLIMIT:
1380			case IPV6_FAITH:
1381
1382			case IPV6_RECVPKTINFO:
1383			case IPV6_RECVHOPLIMIT:
1384			case IPV6_RECVRTHDR:
1385			case IPV6_RECVPATHMTU:
1386			case IPV6_RECVTCLASS:
1387			case IPV6_V6ONLY:
1388			case IPV6_AUTOFLOWLABEL:
1389			case IPV6_BINDANY:
1390				if (optname == IPV6_BINDANY && td != NULL) {
1391					error = priv_check(td,
1392					    PRIV_NETINET_BINDANY);
1393					if (error)
1394						break;
1395				}
1396
1397				if (optlen != sizeof(int)) {
1398					error = EINVAL;
1399					break;
1400				}
1401				error = sooptcopyin(sopt, &optval,
1402					sizeof optval, sizeof optval);
1403				if (error)
1404					break;
1405				switch (optname) {
1406
1407				case IPV6_UNICAST_HOPS:
1408					if (optval < -1 || optval >= 256)
1409						error = EINVAL;
1410					else {
1411						/* -1 = kernel default */
1412						in6p->in6p_hops = optval;
1413						if ((in6p->inp_vflag &
1414						     INP_IPV4) != 0)
1415							in6p->inp_ip_ttl = optval;
1416					}
1417					break;
1418#define OPTSET(bit) \
1419do { \
1420	INP_WLOCK(in6p); \
1421	if (optval) \
1422		in6p->inp_flags |= (bit); \
1423	else \
1424		in6p->inp_flags &= ~(bit); \
1425	INP_WUNLOCK(in6p); \
1426} while (/*CONSTCOND*/ 0)
1427#define OPTSET2292(bit) \
1428do { \
1429	INP_WLOCK(in6p); \
1430	in6p->inp_flags |= IN6P_RFC2292; \
1431	if (optval) \
1432		in6p->inp_flags |= (bit); \
1433	else \
1434		in6p->inp_flags &= ~(bit); \
1435	INP_WUNLOCK(in6p); \
1436} while (/*CONSTCOND*/ 0)
1437#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1438
1439				case IPV6_RECVPKTINFO:
1440					/* cannot mix with RFC2292 */
1441					if (OPTBIT(IN6P_RFC2292)) {
1442						error = EINVAL;
1443						break;
1444					}
1445					OPTSET(IN6P_PKTINFO);
1446					break;
1447
1448				case IPV6_HOPLIMIT:
1449				{
1450					struct ip6_pktopts **optp;
1451
1452					/* cannot mix with RFC2292 */
1453					if (OPTBIT(IN6P_RFC2292)) {
1454						error = EINVAL;
1455						break;
1456					}
1457					optp = &in6p->in6p_outputopts;
1458					error = ip6_pcbopt(IPV6_HOPLIMIT,
1459					    (u_char *)&optval, sizeof(optval),
1460					    optp, (td != NULL) ? td->td_ucred :
1461					    NULL, uproto);
1462					break;
1463				}
1464
1465				case IPV6_RECVHOPLIMIT:
1466					/* cannot mix with RFC2292 */
1467					if (OPTBIT(IN6P_RFC2292)) {
1468						error = EINVAL;
1469						break;
1470					}
1471					OPTSET(IN6P_HOPLIMIT);
1472					break;
1473
1474				case IPV6_RECVHOPOPTS:
1475					/* cannot mix with RFC2292 */
1476					if (OPTBIT(IN6P_RFC2292)) {
1477						error = EINVAL;
1478						break;
1479					}
1480					OPTSET(IN6P_HOPOPTS);
1481					break;
1482
1483				case IPV6_RECVDSTOPTS:
1484					/* cannot mix with RFC2292 */
1485					if (OPTBIT(IN6P_RFC2292)) {
1486						error = EINVAL;
1487						break;
1488					}
1489					OPTSET(IN6P_DSTOPTS);
1490					break;
1491
1492				case IPV6_RECVRTHDRDSTOPTS:
1493					/* cannot mix with RFC2292 */
1494					if (OPTBIT(IN6P_RFC2292)) {
1495						error = EINVAL;
1496						break;
1497					}
1498					OPTSET(IN6P_RTHDRDSTOPTS);
1499					break;
1500
1501				case IPV6_RECVRTHDR:
1502					/* cannot mix with RFC2292 */
1503					if (OPTBIT(IN6P_RFC2292)) {
1504						error = EINVAL;
1505						break;
1506					}
1507					OPTSET(IN6P_RTHDR);
1508					break;
1509
1510				case IPV6_FAITH:
1511					OPTSET(INP_FAITH);
1512					break;
1513
1514				case IPV6_RECVPATHMTU:
1515					/*
1516					 * We ignore this option for TCP
1517					 * sockets.
1518					 * (RFC3542 leaves this case
1519					 * unspecified.)
1520					 */
1521					if (uproto != IPPROTO_TCP)
1522						OPTSET(IN6P_MTU);
1523					break;
1524
1525				case IPV6_V6ONLY:
1526					/*
1527					 * make setsockopt(IPV6_V6ONLY)
1528					 * available only prior to bind(2).
1529					 * see ipng mailing list, Jun 22 2001.
1530					 */
1531					if (in6p->inp_lport ||
1532					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1533						error = EINVAL;
1534						break;
1535					}
1536					OPTSET(IN6P_IPV6_V6ONLY);
1537					if (optval)
1538						in6p->inp_vflag &= ~INP_IPV4;
1539					else
1540						in6p->inp_vflag |= INP_IPV4;
1541					break;
1542				case IPV6_RECVTCLASS:
1543					/* cannot mix with RFC2292 XXX */
1544					if (OPTBIT(IN6P_RFC2292)) {
1545						error = EINVAL;
1546						break;
1547					}
1548					OPTSET(IN6P_TCLASS);
1549					break;
1550				case IPV6_AUTOFLOWLABEL:
1551					OPTSET(IN6P_AUTOFLOWLABEL);
1552					break;
1553
1554				case IPV6_BINDANY:
1555					OPTSET(INP_BINDANY);
1556					break;
1557				}
1558				break;
1559
1560			case IPV6_TCLASS:
1561			case IPV6_DONTFRAG:
1562			case IPV6_USE_MIN_MTU:
1563			case IPV6_PREFER_TEMPADDR:
1564				if (optlen != sizeof(optval)) {
1565					error = EINVAL;
1566					break;
1567				}
1568				error = sooptcopyin(sopt, &optval,
1569					sizeof optval, sizeof optval);
1570				if (error)
1571					break;
1572				{
1573					struct ip6_pktopts **optp;
1574					optp = &in6p->in6p_outputopts;
1575					error = ip6_pcbopt(optname,
1576					    (u_char *)&optval, sizeof(optval),
1577					    optp, (td != NULL) ? td->td_ucred :
1578					    NULL, uproto);
1579					break;
1580				}
1581
1582			case IPV6_2292PKTINFO:
1583			case IPV6_2292HOPLIMIT:
1584			case IPV6_2292HOPOPTS:
1585			case IPV6_2292DSTOPTS:
1586			case IPV6_2292RTHDR:
1587				/* RFC 2292 */
1588				if (optlen != sizeof(int)) {
1589					error = EINVAL;
1590					break;
1591				}
1592				error = sooptcopyin(sopt, &optval,
1593					sizeof optval, sizeof optval);
1594				if (error)
1595					break;
1596				switch (optname) {
1597				case IPV6_2292PKTINFO:
1598					OPTSET2292(IN6P_PKTINFO);
1599					break;
1600				case IPV6_2292HOPLIMIT:
1601					OPTSET2292(IN6P_HOPLIMIT);
1602					break;
1603				case IPV6_2292HOPOPTS:
1604					/*
1605					 * Check super-user privilege.
1606					 * See comments for IPV6_RECVHOPOPTS.
1607					 */
1608					if (td != NULL) {
1609						error = priv_check(td,
1610						    PRIV_NETINET_SETHDROPTS);
1611						if (error)
1612							return (error);
1613					}
1614					OPTSET2292(IN6P_HOPOPTS);
1615					break;
1616				case IPV6_2292DSTOPTS:
1617					if (td != NULL) {
1618						error = priv_check(td,
1619						    PRIV_NETINET_SETHDROPTS);
1620						if (error)
1621							return (error);
1622					}
1623					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1624					break;
1625				case IPV6_2292RTHDR:
1626					OPTSET2292(IN6P_RTHDR);
1627					break;
1628				}
1629				break;
1630			case IPV6_PKTINFO:
1631			case IPV6_HOPOPTS:
1632			case IPV6_RTHDR:
1633			case IPV6_DSTOPTS:
1634			case IPV6_RTHDRDSTOPTS:
1635			case IPV6_NEXTHOP:
1636			{
1637				/* new advanced API (RFC3542) */
1638				u_char *optbuf;
1639				u_char optbuf_storage[MCLBYTES];
1640				int optlen;
1641				struct ip6_pktopts **optp;
1642
1643				/* cannot mix with RFC2292 */
1644				if (OPTBIT(IN6P_RFC2292)) {
1645					error = EINVAL;
1646					break;
1647				}
1648
1649				/*
1650				 * We only ensure valsize is not too large
1651				 * here.  Further validation will be done
1652				 * later.
1653				 */
1654				error = sooptcopyin(sopt, optbuf_storage,
1655				    sizeof(optbuf_storage), 0);
1656				if (error)
1657					break;
1658				optlen = sopt->sopt_valsize;
1659				optbuf = optbuf_storage;
1660				optp = &in6p->in6p_outputopts;
1661				error = ip6_pcbopt(optname, optbuf, optlen,
1662				    optp, (td != NULL) ? td->td_ucred : NULL,
1663				    uproto);
1664				break;
1665			}
1666#undef OPTSET
1667
1668			case IPV6_MULTICAST_IF:
1669			case IPV6_MULTICAST_HOPS:
1670			case IPV6_MULTICAST_LOOP:
1671			case IPV6_JOIN_GROUP:
1672			case IPV6_LEAVE_GROUP:
1673			case IPV6_MSFILTER:
1674			case MCAST_BLOCK_SOURCE:
1675			case MCAST_UNBLOCK_SOURCE:
1676			case MCAST_JOIN_GROUP:
1677			case MCAST_LEAVE_GROUP:
1678			case MCAST_JOIN_SOURCE_GROUP:
1679			case MCAST_LEAVE_SOURCE_GROUP:
1680				error = ip6_setmoptions(in6p, sopt);
1681				break;
1682
1683			case IPV6_PORTRANGE:
1684				error = sooptcopyin(sopt, &optval,
1685				    sizeof optval, sizeof optval);
1686				if (error)
1687					break;
1688
1689				INP_WLOCK(in6p);
1690				switch (optval) {
1691				case IPV6_PORTRANGE_DEFAULT:
1692					in6p->inp_flags &= ~(INP_LOWPORT);
1693					in6p->inp_flags &= ~(INP_HIGHPORT);
1694					break;
1695
1696				case IPV6_PORTRANGE_HIGH:
1697					in6p->inp_flags &= ~(INP_LOWPORT);
1698					in6p->inp_flags |= INP_HIGHPORT;
1699					break;
1700
1701				case IPV6_PORTRANGE_LOW:
1702					in6p->inp_flags &= ~(INP_HIGHPORT);
1703					in6p->inp_flags |= INP_LOWPORT;
1704					break;
1705
1706				default:
1707					error = EINVAL;
1708					break;
1709				}
1710				INP_WUNLOCK(in6p);
1711				break;
1712
1713#ifdef IPSEC
1714			case IPV6_IPSEC_POLICY:
1715			{
1716				caddr_t req;
1717				struct mbuf *m;
1718
1719				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1720					break;
1721				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1722					break;
1723				req = mtod(m, caddr_t);
1724				error = ipsec_set_policy(in6p, optname, req,
1725				    m->m_len, (sopt->sopt_td != NULL) ?
1726				    sopt->sopt_td->td_ucred : NULL);
1727				m_freem(m);
1728				break;
1729			}
1730#endif /* IPSEC */
1731
1732			default:
1733				error = ENOPROTOOPT;
1734				break;
1735			}
1736			break;
1737
1738		case SOPT_GET:
1739			switch (optname) {
1740
1741			case IPV6_2292PKTOPTIONS:
1742#ifdef IPV6_PKTOPTIONS
1743			case IPV6_PKTOPTIONS:
1744#endif
1745				/*
1746				 * RFC3542 (effectively) deprecated the
1747				 * semantics of the 2292-style pktoptions.
1748				 * Since it was not reliable in nature (i.e.,
1749				 * applications had to expect the lack of some
1750				 * information after all), it would make sense
1751				 * to simplify this part by always returning
1752				 * empty data.
1753				 */
1754				sopt->sopt_valsize = 0;
1755				break;
1756
1757			case IPV6_RECVHOPOPTS:
1758			case IPV6_RECVDSTOPTS:
1759			case IPV6_RECVRTHDRDSTOPTS:
1760			case IPV6_UNICAST_HOPS:
1761			case IPV6_RECVPKTINFO:
1762			case IPV6_RECVHOPLIMIT:
1763			case IPV6_RECVRTHDR:
1764			case IPV6_RECVPATHMTU:
1765
1766			case IPV6_FAITH:
1767			case IPV6_V6ONLY:
1768			case IPV6_PORTRANGE:
1769			case IPV6_RECVTCLASS:
1770			case IPV6_AUTOFLOWLABEL:
1771			case IPV6_BINDANY:
1772				switch (optname) {
1773
1774				case IPV6_RECVHOPOPTS:
1775					optval = OPTBIT(IN6P_HOPOPTS);
1776					break;
1777
1778				case IPV6_RECVDSTOPTS:
1779					optval = OPTBIT(IN6P_DSTOPTS);
1780					break;
1781
1782				case IPV6_RECVRTHDRDSTOPTS:
1783					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1784					break;
1785
1786				case IPV6_UNICAST_HOPS:
1787					optval = in6p->in6p_hops;
1788					break;
1789
1790				case IPV6_RECVPKTINFO:
1791					optval = OPTBIT(IN6P_PKTINFO);
1792					break;
1793
1794				case IPV6_RECVHOPLIMIT:
1795					optval = OPTBIT(IN6P_HOPLIMIT);
1796					break;
1797
1798				case IPV6_RECVRTHDR:
1799					optval = OPTBIT(IN6P_RTHDR);
1800					break;
1801
1802				case IPV6_RECVPATHMTU:
1803					optval = OPTBIT(IN6P_MTU);
1804					break;
1805
1806				case IPV6_FAITH:
1807					optval = OPTBIT(INP_FAITH);
1808					break;
1809
1810				case IPV6_V6ONLY:
1811					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1812					break;
1813
1814				case IPV6_PORTRANGE:
1815				    {
1816					int flags;
1817					flags = in6p->inp_flags;
1818					if (flags & INP_HIGHPORT)
1819						optval = IPV6_PORTRANGE_HIGH;
1820					else if (flags & INP_LOWPORT)
1821						optval = IPV6_PORTRANGE_LOW;
1822					else
1823						optval = 0;
1824					break;
1825				    }
1826				case IPV6_RECVTCLASS:
1827					optval = OPTBIT(IN6P_TCLASS);
1828					break;
1829
1830				case IPV6_AUTOFLOWLABEL:
1831					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1832					break;
1833
1834				case IPV6_BINDANY:
1835					optval = OPTBIT(INP_BINDANY);
1836					break;
1837				}
1838				if (error)
1839					break;
1840				error = sooptcopyout(sopt, &optval,
1841					sizeof optval);
1842				break;
1843
1844			case IPV6_PATHMTU:
1845			{
1846				u_long pmtu = 0;
1847				struct ip6_mtuinfo mtuinfo;
1848				struct route_in6 sro;
1849
1850				bzero(&sro, sizeof(sro));
1851
1852				if (!(so->so_state & SS_ISCONNECTED))
1853					return (ENOTCONN);
1854				/*
1855				 * XXX: we dot not consider the case of source
1856				 * routing, or optional information to specify
1857				 * the outgoing interface.
1858				 */
1859				error = ip6_getpmtu(&sro, NULL, NULL,
1860				    &in6p->in6p_faddr, &pmtu, NULL,
1861				    so->so_fibnum);
1862				if (sro.ro_rt)
1863					RTFREE(sro.ro_rt);
1864				if (error)
1865					break;
1866				if (pmtu > IPV6_MAXPACKET)
1867					pmtu = IPV6_MAXPACKET;
1868
1869				bzero(&mtuinfo, sizeof(mtuinfo));
1870				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1871				optdata = (void *)&mtuinfo;
1872				optdatalen = sizeof(mtuinfo);
1873				error = sooptcopyout(sopt, optdata,
1874				    optdatalen);
1875				break;
1876			}
1877
1878			case IPV6_2292PKTINFO:
1879			case IPV6_2292HOPLIMIT:
1880			case IPV6_2292HOPOPTS:
1881			case IPV6_2292RTHDR:
1882			case IPV6_2292DSTOPTS:
1883				switch (optname) {
1884				case IPV6_2292PKTINFO:
1885					optval = OPTBIT(IN6P_PKTINFO);
1886					break;
1887				case IPV6_2292HOPLIMIT:
1888					optval = OPTBIT(IN6P_HOPLIMIT);
1889					break;
1890				case IPV6_2292HOPOPTS:
1891					optval = OPTBIT(IN6P_HOPOPTS);
1892					break;
1893				case IPV6_2292RTHDR:
1894					optval = OPTBIT(IN6P_RTHDR);
1895					break;
1896				case IPV6_2292DSTOPTS:
1897					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1898					break;
1899				}
1900				error = sooptcopyout(sopt, &optval,
1901				    sizeof optval);
1902				break;
1903			case IPV6_PKTINFO:
1904			case IPV6_HOPOPTS:
1905			case IPV6_RTHDR:
1906			case IPV6_DSTOPTS:
1907			case IPV6_RTHDRDSTOPTS:
1908			case IPV6_NEXTHOP:
1909			case IPV6_TCLASS:
1910			case IPV6_DONTFRAG:
1911			case IPV6_USE_MIN_MTU:
1912			case IPV6_PREFER_TEMPADDR:
1913				error = ip6_getpcbopt(in6p->in6p_outputopts,
1914				    optname, sopt);
1915				break;
1916
1917			case IPV6_MULTICAST_IF:
1918			case IPV6_MULTICAST_HOPS:
1919			case IPV6_MULTICAST_LOOP:
1920			case IPV6_MSFILTER:
1921				error = ip6_getmoptions(in6p, sopt);
1922				break;
1923
1924#ifdef IPSEC
1925			case IPV6_IPSEC_POLICY:
1926			  {
1927				caddr_t req = NULL;
1928				size_t len = 0;
1929				struct mbuf *m = NULL;
1930				struct mbuf **mp = &m;
1931				size_t ovalsize = sopt->sopt_valsize;
1932				caddr_t oval = (caddr_t)sopt->sopt_val;
1933
1934				error = soopt_getm(sopt, &m); /* XXX */
1935				if (error != 0)
1936					break;
1937				error = soopt_mcopyin(sopt, m); /* XXX */
1938				if (error != 0)
1939					break;
1940				sopt->sopt_valsize = ovalsize;
1941				sopt->sopt_val = oval;
1942				if (m) {
1943					req = mtod(m, caddr_t);
1944					len = m->m_len;
1945				}
1946				error = ipsec_get_policy(in6p, req, len, mp);
1947				if (error == 0)
1948					error = soopt_mcopyout(sopt, m); /* XXX */
1949				if (error == 0 && m)
1950					m_freem(m);
1951				break;
1952			  }
1953#endif /* IPSEC */
1954
1955			default:
1956				error = ENOPROTOOPT;
1957				break;
1958			}
1959			break;
1960		}
1961	}
1962	return (error);
1963}
1964
1965int
1966ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1967{
1968	int error = 0, optval, optlen;
1969	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1970	struct inpcb *in6p = sotoinpcb(so);
1971	int level, op, optname;
1972
1973	level = sopt->sopt_level;
1974	op = sopt->sopt_dir;
1975	optname = sopt->sopt_name;
1976	optlen = sopt->sopt_valsize;
1977
1978	if (level != IPPROTO_IPV6) {
1979		return (EINVAL);
1980	}
1981
1982	switch (optname) {
1983	case IPV6_CHECKSUM:
1984		/*
1985		 * For ICMPv6 sockets, no modification allowed for checksum
1986		 * offset, permit "no change" values to help existing apps.
1987		 *
1988		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1989		 * for an ICMPv6 socket will fail."
1990		 * The current behavior does not meet RFC3542.
1991		 */
1992		switch (op) {
1993		case SOPT_SET:
1994			if (optlen != sizeof(int)) {
1995				error = EINVAL;
1996				break;
1997			}
1998			error = sooptcopyin(sopt, &optval, sizeof(optval),
1999					    sizeof(optval));
2000			if (error)
2001				break;
2002			if ((optval % 2) != 0) {
2003				/* the API assumes even offset values */
2004				error = EINVAL;
2005			} else if (so->so_proto->pr_protocol ==
2006			    IPPROTO_ICMPV6) {
2007				if (optval != icmp6off)
2008					error = EINVAL;
2009			} else
2010				in6p->in6p_cksum = optval;
2011			break;
2012
2013		case SOPT_GET:
2014			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2015				optval = icmp6off;
2016			else
2017				optval = in6p->in6p_cksum;
2018
2019			error = sooptcopyout(sopt, &optval, sizeof(optval));
2020			break;
2021
2022		default:
2023			error = EINVAL;
2024			break;
2025		}
2026		break;
2027
2028	default:
2029		error = ENOPROTOOPT;
2030		break;
2031	}
2032
2033	return (error);
2034}
2035
2036/*
2037 * Set up IP6 options in pcb for insertion in output packets or
2038 * specifying behavior of outgoing packets.
2039 */
2040static int
2041ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2042    struct socket *so, struct sockopt *sopt)
2043{
2044	struct ip6_pktopts *opt = *pktopt;
2045	int error = 0;
2046	struct thread *td = sopt->sopt_td;
2047
2048	/* turn off any old options. */
2049	if (opt) {
2050#ifdef DIAGNOSTIC
2051		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2052		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2053		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2054			printf("ip6_pcbopts: all specified options are cleared.\n");
2055#endif
2056		ip6_clearpktopts(opt, -1);
2057	} else
2058		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2059	*pktopt = NULL;
2060
2061	if (!m || m->m_len == 0) {
2062		/*
2063		 * Only turning off any previous options, regardless of
2064		 * whether the opt is just created or given.
2065		 */
2066		free(opt, M_IP6OPT);
2067		return (0);
2068	}
2069
2070	/*  set options specified by user. */
2071	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2072	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2073		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2074		free(opt, M_IP6OPT);
2075		return (error);
2076	}
2077	*pktopt = opt;
2078	return (0);
2079}
2080
2081/*
2082 * initialize ip6_pktopts.  beware that there are non-zero default values in
2083 * the struct.
2084 */
2085void
2086ip6_initpktopts(struct ip6_pktopts *opt)
2087{
2088
2089	bzero(opt, sizeof(*opt));
2090	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2091	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2092	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2093	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2094}
2095
2096static int
2097ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2098    struct ucred *cred, int uproto)
2099{
2100	struct ip6_pktopts *opt;
2101
2102	if (*pktopt == NULL) {
2103		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2104		    M_WAITOK);
2105		ip6_initpktopts(*pktopt);
2106	}
2107	opt = *pktopt;
2108
2109	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2110}
2111
2112static int
2113ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2114{
2115	void *optdata = NULL;
2116	int optdatalen = 0;
2117	struct ip6_ext *ip6e;
2118	int error = 0;
2119	struct in6_pktinfo null_pktinfo;
2120	int deftclass = 0, on;
2121	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2122	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2123
2124	switch (optname) {
2125	case IPV6_PKTINFO:
2126		if (pktopt && pktopt->ip6po_pktinfo)
2127			optdata = (void *)pktopt->ip6po_pktinfo;
2128		else {
2129			/* XXX: we don't have to do this every time... */
2130			bzero(&null_pktinfo, sizeof(null_pktinfo));
2131			optdata = (void *)&null_pktinfo;
2132		}
2133		optdatalen = sizeof(struct in6_pktinfo);
2134		break;
2135	case IPV6_TCLASS:
2136		if (pktopt && pktopt->ip6po_tclass >= 0)
2137			optdata = (void *)&pktopt->ip6po_tclass;
2138		else
2139			optdata = (void *)&deftclass;
2140		optdatalen = sizeof(int);
2141		break;
2142	case IPV6_HOPOPTS:
2143		if (pktopt && pktopt->ip6po_hbh) {
2144			optdata = (void *)pktopt->ip6po_hbh;
2145			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2146			optdatalen = (ip6e->ip6e_len + 1) << 3;
2147		}
2148		break;
2149	case IPV6_RTHDR:
2150		if (pktopt && pktopt->ip6po_rthdr) {
2151			optdata = (void *)pktopt->ip6po_rthdr;
2152			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2153			optdatalen = (ip6e->ip6e_len + 1) << 3;
2154		}
2155		break;
2156	case IPV6_RTHDRDSTOPTS:
2157		if (pktopt && pktopt->ip6po_dest1) {
2158			optdata = (void *)pktopt->ip6po_dest1;
2159			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2160			optdatalen = (ip6e->ip6e_len + 1) << 3;
2161		}
2162		break;
2163	case IPV6_DSTOPTS:
2164		if (pktopt && pktopt->ip6po_dest2) {
2165			optdata = (void *)pktopt->ip6po_dest2;
2166			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2167			optdatalen = (ip6e->ip6e_len + 1) << 3;
2168		}
2169		break;
2170	case IPV6_NEXTHOP:
2171		if (pktopt && pktopt->ip6po_nexthop) {
2172			optdata = (void *)pktopt->ip6po_nexthop;
2173			optdatalen = pktopt->ip6po_nexthop->sa_len;
2174		}
2175		break;
2176	case IPV6_USE_MIN_MTU:
2177		if (pktopt)
2178			optdata = (void *)&pktopt->ip6po_minmtu;
2179		else
2180			optdata = (void *)&defminmtu;
2181		optdatalen = sizeof(int);
2182		break;
2183	case IPV6_DONTFRAG:
2184		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2185			on = 1;
2186		else
2187			on = 0;
2188		optdata = (void *)&on;
2189		optdatalen = sizeof(on);
2190		break;
2191	case IPV6_PREFER_TEMPADDR:
2192		if (pktopt)
2193			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2194		else
2195			optdata = (void *)&defpreftemp;
2196		optdatalen = sizeof(int);
2197		break;
2198	default:		/* should not happen */
2199#ifdef DIAGNOSTIC
2200		panic("ip6_getpcbopt: unexpected option\n");
2201#endif
2202		return (ENOPROTOOPT);
2203	}
2204
2205	error = sooptcopyout(sopt, optdata, optdatalen);
2206
2207	return (error);
2208}
2209
2210void
2211ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2212{
2213	if (pktopt == NULL)
2214		return;
2215
2216	if (optname == -1 || optname == IPV6_PKTINFO) {
2217		if (pktopt->ip6po_pktinfo)
2218			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2219		pktopt->ip6po_pktinfo = NULL;
2220	}
2221	if (optname == -1 || optname == IPV6_HOPLIMIT)
2222		pktopt->ip6po_hlim = -1;
2223	if (optname == -1 || optname == IPV6_TCLASS)
2224		pktopt->ip6po_tclass = -1;
2225	if (optname == -1 || optname == IPV6_NEXTHOP) {
2226		if (pktopt->ip6po_nextroute.ro_rt) {
2227			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2228			pktopt->ip6po_nextroute.ro_rt = NULL;
2229		}
2230		if (pktopt->ip6po_nexthop)
2231			free(pktopt->ip6po_nexthop, M_IP6OPT);
2232		pktopt->ip6po_nexthop = NULL;
2233	}
2234	if (optname == -1 || optname == IPV6_HOPOPTS) {
2235		if (pktopt->ip6po_hbh)
2236			free(pktopt->ip6po_hbh, M_IP6OPT);
2237		pktopt->ip6po_hbh = NULL;
2238	}
2239	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2240		if (pktopt->ip6po_dest1)
2241			free(pktopt->ip6po_dest1, M_IP6OPT);
2242		pktopt->ip6po_dest1 = NULL;
2243	}
2244	if (optname == -1 || optname == IPV6_RTHDR) {
2245		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2246			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2247		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2248		if (pktopt->ip6po_route.ro_rt) {
2249			RTFREE(pktopt->ip6po_route.ro_rt);
2250			pktopt->ip6po_route.ro_rt = NULL;
2251		}
2252	}
2253	if (optname == -1 || optname == IPV6_DSTOPTS) {
2254		if (pktopt->ip6po_dest2)
2255			free(pktopt->ip6po_dest2, M_IP6OPT);
2256		pktopt->ip6po_dest2 = NULL;
2257	}
2258}
2259
2260#define PKTOPT_EXTHDRCPY(type) \
2261do {\
2262	if (src->type) {\
2263		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2264		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2265		if (dst->type == NULL && canwait == M_NOWAIT)\
2266			goto bad;\
2267		bcopy(src->type, dst->type, hlen);\
2268	}\
2269} while (/*CONSTCOND*/ 0)
2270
2271static int
2272copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2273{
2274	if (dst == NULL || src == NULL)  {
2275		printf("ip6_clearpktopts: invalid argument\n");
2276		return (EINVAL);
2277	}
2278
2279	dst->ip6po_hlim = src->ip6po_hlim;
2280	dst->ip6po_tclass = src->ip6po_tclass;
2281	dst->ip6po_flags = src->ip6po_flags;
2282	dst->ip6po_minmtu = src->ip6po_minmtu;
2283	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2284	if (src->ip6po_pktinfo) {
2285		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2286		    M_IP6OPT, canwait);
2287		if (dst->ip6po_pktinfo == NULL)
2288			goto bad;
2289		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2290	}
2291	if (src->ip6po_nexthop) {
2292		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2293		    M_IP6OPT, canwait);
2294		if (dst->ip6po_nexthop == NULL)
2295			goto bad;
2296		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2297		    src->ip6po_nexthop->sa_len);
2298	}
2299	PKTOPT_EXTHDRCPY(ip6po_hbh);
2300	PKTOPT_EXTHDRCPY(ip6po_dest1);
2301	PKTOPT_EXTHDRCPY(ip6po_dest2);
2302	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2303	return (0);
2304
2305  bad:
2306	ip6_clearpktopts(dst, -1);
2307	return (ENOBUFS);
2308}
2309#undef PKTOPT_EXTHDRCPY
2310
2311struct ip6_pktopts *
2312ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2313{
2314	int error;
2315	struct ip6_pktopts *dst;
2316
2317	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2318	if (dst == NULL)
2319		return (NULL);
2320	ip6_initpktopts(dst);
2321
2322	if ((error = copypktopts(dst, src, canwait)) != 0) {
2323		free(dst, M_IP6OPT);
2324		return (NULL);
2325	}
2326
2327	return (dst);
2328}
2329
2330void
2331ip6_freepcbopts(struct ip6_pktopts *pktopt)
2332{
2333	if (pktopt == NULL)
2334		return;
2335
2336	ip6_clearpktopts(pktopt, -1);
2337
2338	free(pktopt, M_IP6OPT);
2339}
2340
2341/*
2342 * Set IPv6 outgoing packet options based on advanced API.
2343 */
2344int
2345ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2346    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2347{
2348	struct cmsghdr *cm = 0;
2349
2350	if (control == NULL || opt == NULL)
2351		return (EINVAL);
2352
2353	ip6_initpktopts(opt);
2354	if (stickyopt) {
2355		int error;
2356
2357		/*
2358		 * If stickyopt is provided, make a local copy of the options
2359		 * for this particular packet, then override them by ancillary
2360		 * objects.
2361		 * XXX: copypktopts() does not copy the cached route to a next
2362		 * hop (if any).  This is not very good in terms of efficiency,
2363		 * but we can allow this since this option should be rarely
2364		 * used.
2365		 */
2366		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2367			return (error);
2368	}
2369
2370	/*
2371	 * XXX: Currently, we assume all the optional information is stored
2372	 * in a single mbuf.
2373	 */
2374	if (control->m_next)
2375		return (EINVAL);
2376
2377	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2378	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2379		int error;
2380
2381		if (control->m_len < CMSG_LEN(0))
2382			return (EINVAL);
2383
2384		cm = mtod(control, struct cmsghdr *);
2385		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2386			return (EINVAL);
2387		if (cm->cmsg_level != IPPROTO_IPV6)
2388			continue;
2389
2390		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2391		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2392		if (error)
2393			return (error);
2394	}
2395
2396	return (0);
2397}
2398
2399/*
2400 * Set a particular packet option, as a sticky option or an ancillary data
2401 * item.  "len" can be 0 only when it's a sticky option.
2402 * We have 4 cases of combination of "sticky" and "cmsg":
2403 * "sticky=0, cmsg=0": impossible
2404 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2405 * "sticky=1, cmsg=0": RFC3542 socket option
2406 * "sticky=1, cmsg=1": RFC2292 socket option
2407 */
2408static int
2409ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2410    struct ucred *cred, int sticky, int cmsg, int uproto)
2411{
2412	int minmtupolicy, preftemp;
2413	int error;
2414
2415	if (!sticky && !cmsg) {
2416#ifdef DIAGNOSTIC
2417		printf("ip6_setpktopt: impossible case\n");
2418#endif
2419		return (EINVAL);
2420	}
2421
2422	/*
2423	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2424	 * not be specified in the context of RFC3542.  Conversely,
2425	 * RFC3542 types should not be specified in the context of RFC2292.
2426	 */
2427	if (!cmsg) {
2428		switch (optname) {
2429		case IPV6_2292PKTINFO:
2430		case IPV6_2292HOPLIMIT:
2431		case IPV6_2292NEXTHOP:
2432		case IPV6_2292HOPOPTS:
2433		case IPV6_2292DSTOPTS:
2434		case IPV6_2292RTHDR:
2435		case IPV6_2292PKTOPTIONS:
2436			return (ENOPROTOOPT);
2437		}
2438	}
2439	if (sticky && cmsg) {
2440		switch (optname) {
2441		case IPV6_PKTINFO:
2442		case IPV6_HOPLIMIT:
2443		case IPV6_NEXTHOP:
2444		case IPV6_HOPOPTS:
2445		case IPV6_DSTOPTS:
2446		case IPV6_RTHDRDSTOPTS:
2447		case IPV6_RTHDR:
2448		case IPV6_USE_MIN_MTU:
2449		case IPV6_DONTFRAG:
2450		case IPV6_TCLASS:
2451		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2452			return (ENOPROTOOPT);
2453		}
2454	}
2455
2456	switch (optname) {
2457	case IPV6_2292PKTINFO:
2458	case IPV6_PKTINFO:
2459	{
2460		struct ifnet *ifp = NULL;
2461		struct in6_pktinfo *pktinfo;
2462
2463		if (len != sizeof(struct in6_pktinfo))
2464			return (EINVAL);
2465
2466		pktinfo = (struct in6_pktinfo *)buf;
2467
2468		/*
2469		 * An application can clear any sticky IPV6_PKTINFO option by
2470		 * doing a "regular" setsockopt with ipi6_addr being
2471		 * in6addr_any and ipi6_ifindex being zero.
2472		 * [RFC 3542, Section 6]
2473		 */
2474		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2475		    pktinfo->ipi6_ifindex == 0 &&
2476		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2477			ip6_clearpktopts(opt, optname);
2478			break;
2479		}
2480
2481		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2482		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2483			return (EINVAL);
2484		}
2485
2486		/* validate the interface index if specified. */
2487		if (pktinfo->ipi6_ifindex > V_if_index ||
2488		    pktinfo->ipi6_ifindex < 0) {
2489			 return (ENXIO);
2490		}
2491		if (pktinfo->ipi6_ifindex) {
2492			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2493			if (ifp == NULL)
2494				return (ENXIO);
2495		}
2496
2497		/*
2498		 * We store the address anyway, and let in6_selectsrc()
2499		 * validate the specified address.  This is because ipi6_addr
2500		 * may not have enough information about its scope zone, and
2501		 * we may need additional information (such as outgoing
2502		 * interface or the scope zone of a destination address) to
2503		 * disambiguate the scope.
2504		 * XXX: the delay of the validation may confuse the
2505		 * application when it is used as a sticky option.
2506		 */
2507		if (opt->ip6po_pktinfo == NULL) {
2508			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2509			    M_IP6OPT, M_NOWAIT);
2510			if (opt->ip6po_pktinfo == NULL)
2511				return (ENOBUFS);
2512		}
2513		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2514		break;
2515	}
2516
2517	case IPV6_2292HOPLIMIT:
2518	case IPV6_HOPLIMIT:
2519	{
2520		int *hlimp;
2521
2522		/*
2523		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2524		 * to simplify the ordering among hoplimit options.
2525		 */
2526		if (optname == IPV6_HOPLIMIT && sticky)
2527			return (ENOPROTOOPT);
2528
2529		if (len != sizeof(int))
2530			return (EINVAL);
2531		hlimp = (int *)buf;
2532		if (*hlimp < -1 || *hlimp > 255)
2533			return (EINVAL);
2534
2535		opt->ip6po_hlim = *hlimp;
2536		break;
2537	}
2538
2539	case IPV6_TCLASS:
2540	{
2541		int tclass;
2542
2543		if (len != sizeof(int))
2544			return (EINVAL);
2545		tclass = *(int *)buf;
2546		if (tclass < -1 || tclass > 255)
2547			return (EINVAL);
2548
2549		opt->ip6po_tclass = tclass;
2550		break;
2551	}
2552
2553	case IPV6_2292NEXTHOP:
2554	case IPV6_NEXTHOP:
2555		if (cred != NULL) {
2556			error = priv_check_cred(cred,
2557			    PRIV_NETINET_SETHDROPTS, 0);
2558			if (error)
2559				return (error);
2560		}
2561
2562		if (len == 0) {	/* just remove the option */
2563			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2564			break;
2565		}
2566
2567		/* check if cmsg_len is large enough for sa_len */
2568		if (len < sizeof(struct sockaddr) || len < *buf)
2569			return (EINVAL);
2570
2571		switch (((struct sockaddr *)buf)->sa_family) {
2572		case AF_INET6:
2573		{
2574			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2575			int error;
2576
2577			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2578				return (EINVAL);
2579
2580			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2581			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2582				return (EINVAL);
2583			}
2584			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2585			    != 0) {
2586				return (error);
2587			}
2588			break;
2589		}
2590		case AF_LINK:	/* should eventually be supported */
2591		default:
2592			return (EAFNOSUPPORT);
2593		}
2594
2595		/* turn off the previous option, then set the new option. */
2596		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2597		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2598		if (opt->ip6po_nexthop == NULL)
2599			return (ENOBUFS);
2600		bcopy(buf, opt->ip6po_nexthop, *buf);
2601		break;
2602
2603	case IPV6_2292HOPOPTS:
2604	case IPV6_HOPOPTS:
2605	{
2606		struct ip6_hbh *hbh;
2607		int hbhlen;
2608
2609		/*
2610		 * XXX: We don't allow a non-privileged user to set ANY HbH
2611		 * options, since per-option restriction has too much
2612		 * overhead.
2613		 */
2614		if (cred != NULL) {
2615			error = priv_check_cred(cred,
2616			    PRIV_NETINET_SETHDROPTS, 0);
2617			if (error)
2618				return (error);
2619		}
2620
2621		if (len == 0) {
2622			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2623			break;	/* just remove the option */
2624		}
2625
2626		/* message length validation */
2627		if (len < sizeof(struct ip6_hbh))
2628			return (EINVAL);
2629		hbh = (struct ip6_hbh *)buf;
2630		hbhlen = (hbh->ip6h_len + 1) << 3;
2631		if (len != hbhlen)
2632			return (EINVAL);
2633
2634		/* turn off the previous option, then set the new option. */
2635		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2636		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2637		if (opt->ip6po_hbh == NULL)
2638			return (ENOBUFS);
2639		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2640
2641		break;
2642	}
2643
2644	case IPV6_2292DSTOPTS:
2645	case IPV6_DSTOPTS:
2646	case IPV6_RTHDRDSTOPTS:
2647	{
2648		struct ip6_dest *dest, **newdest = NULL;
2649		int destlen;
2650
2651		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2652			error = priv_check_cred(cred,
2653			    PRIV_NETINET_SETHDROPTS, 0);
2654			if (error)
2655				return (error);
2656		}
2657
2658		if (len == 0) {
2659			ip6_clearpktopts(opt, optname);
2660			break;	/* just remove the option */
2661		}
2662
2663		/* message length validation */
2664		if (len < sizeof(struct ip6_dest))
2665			return (EINVAL);
2666		dest = (struct ip6_dest *)buf;
2667		destlen = (dest->ip6d_len + 1) << 3;
2668		if (len != destlen)
2669			return (EINVAL);
2670
2671		/*
2672		 * Determine the position that the destination options header
2673		 * should be inserted; before or after the routing header.
2674		 */
2675		switch (optname) {
2676		case IPV6_2292DSTOPTS:
2677			/*
2678			 * The old advacned API is ambiguous on this point.
2679			 * Our approach is to determine the position based
2680			 * according to the existence of a routing header.
2681			 * Note, however, that this depends on the order of the
2682			 * extension headers in the ancillary data; the 1st
2683			 * part of the destination options header must appear
2684			 * before the routing header in the ancillary data,
2685			 * too.
2686			 * RFC3542 solved the ambiguity by introducing
2687			 * separate ancillary data or option types.
2688			 */
2689			if (opt->ip6po_rthdr == NULL)
2690				newdest = &opt->ip6po_dest1;
2691			else
2692				newdest = &opt->ip6po_dest2;
2693			break;
2694		case IPV6_RTHDRDSTOPTS:
2695			newdest = &opt->ip6po_dest1;
2696			break;
2697		case IPV6_DSTOPTS:
2698			newdest = &opt->ip6po_dest2;
2699			break;
2700		}
2701
2702		/* turn off the previous option, then set the new option. */
2703		ip6_clearpktopts(opt, optname);
2704		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2705		if (*newdest == NULL)
2706			return (ENOBUFS);
2707		bcopy(dest, *newdest, destlen);
2708
2709		break;
2710	}
2711
2712	case IPV6_2292RTHDR:
2713	case IPV6_RTHDR:
2714	{
2715		struct ip6_rthdr *rth;
2716		int rthlen;
2717
2718		if (len == 0) {
2719			ip6_clearpktopts(opt, IPV6_RTHDR);
2720			break;	/* just remove the option */
2721		}
2722
2723		/* message length validation */
2724		if (len < sizeof(struct ip6_rthdr))
2725			return (EINVAL);
2726		rth = (struct ip6_rthdr *)buf;
2727		rthlen = (rth->ip6r_len + 1) << 3;
2728		if (len != rthlen)
2729			return (EINVAL);
2730
2731		switch (rth->ip6r_type) {
2732		case IPV6_RTHDR_TYPE_0:
2733			if (rth->ip6r_len == 0)	/* must contain one addr */
2734				return (EINVAL);
2735			if (rth->ip6r_len % 2) /* length must be even */
2736				return (EINVAL);
2737			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2738				return (EINVAL);
2739			break;
2740		default:
2741			return (EINVAL);	/* not supported */
2742		}
2743
2744		/* turn off the previous option */
2745		ip6_clearpktopts(opt, IPV6_RTHDR);
2746		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2747		if (opt->ip6po_rthdr == NULL)
2748			return (ENOBUFS);
2749		bcopy(rth, opt->ip6po_rthdr, rthlen);
2750
2751		break;
2752	}
2753
2754	case IPV6_USE_MIN_MTU:
2755		if (len != sizeof(int))
2756			return (EINVAL);
2757		minmtupolicy = *(int *)buf;
2758		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2759		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2760		    minmtupolicy != IP6PO_MINMTU_ALL) {
2761			return (EINVAL);
2762		}
2763		opt->ip6po_minmtu = minmtupolicy;
2764		break;
2765
2766	case IPV6_DONTFRAG:
2767		if (len != sizeof(int))
2768			return (EINVAL);
2769
2770		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2771			/*
2772			 * we ignore this option for TCP sockets.
2773			 * (RFC3542 leaves this case unspecified.)
2774			 */
2775			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2776		} else
2777			opt->ip6po_flags |= IP6PO_DONTFRAG;
2778		break;
2779
2780	case IPV6_PREFER_TEMPADDR:
2781		if (len != sizeof(int))
2782			return (EINVAL);
2783		preftemp = *(int *)buf;
2784		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2785		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2786		    preftemp != IP6PO_TEMPADDR_PREFER) {
2787			return (EINVAL);
2788		}
2789		opt->ip6po_prefer_tempaddr = preftemp;
2790		break;
2791
2792	default:
2793		return (ENOPROTOOPT);
2794	} /* end of switch */
2795
2796	return (0);
2797}
2798
2799/*
2800 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2801 * packet to the input queue of a specified interface.  Note that this
2802 * calls the output routine of the loopback "driver", but with an interface
2803 * pointer that might NOT be &loif -- easier than replicating that code here.
2804 */
2805void
2806ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2807{
2808	struct mbuf *copym;
2809	struct ip6_hdr *ip6;
2810
2811	copym = m_copy(m, 0, M_COPYALL);
2812	if (copym == NULL)
2813		return;
2814
2815	/*
2816	 * Make sure to deep-copy IPv6 header portion in case the data
2817	 * is in an mbuf cluster, so that we can safely override the IPv6
2818	 * header portion later.
2819	 */
2820	if ((copym->m_flags & M_EXT) != 0 ||
2821	    copym->m_len < sizeof(struct ip6_hdr)) {
2822		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2823		if (copym == NULL)
2824			return;
2825	}
2826
2827#ifdef DIAGNOSTIC
2828	if (copym->m_len < sizeof(*ip6)) {
2829		m_freem(copym);
2830		return;
2831	}
2832#endif
2833
2834	ip6 = mtod(copym, struct ip6_hdr *);
2835	/*
2836	 * clear embedded scope identifiers if necessary.
2837	 * in6_clearscope will touch the addresses only when necessary.
2838	 */
2839	in6_clearscope(&ip6->ip6_src);
2840	in6_clearscope(&ip6->ip6_dst);
2841
2842	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2843}
2844
2845/*
2846 * Chop IPv6 header off from the payload.
2847 */
2848static int
2849ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2850{
2851	struct mbuf *mh;
2852	struct ip6_hdr *ip6;
2853
2854	ip6 = mtod(m, struct ip6_hdr *);
2855	if (m->m_len > sizeof(*ip6)) {
2856		mh = m_gethdr(M_NOWAIT, MT_DATA);
2857		if (mh == NULL) {
2858			m_freem(m);
2859			return ENOBUFS;
2860		}
2861		m_move_pkthdr(mh, m);
2862		MH_ALIGN(mh, sizeof(*ip6));
2863		m->m_len -= sizeof(*ip6);
2864		m->m_data += sizeof(*ip6);
2865		mh->m_next = m;
2866		m = mh;
2867		m->m_len = sizeof(*ip6);
2868		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2869	}
2870	exthdrs->ip6e_ip6 = m;
2871	return 0;
2872}
2873
2874/*
2875 * Compute IPv6 extension header length.
2876 */
2877int
2878ip6_optlen(struct inpcb *in6p)
2879{
2880	int len;
2881
2882	if (!in6p->in6p_outputopts)
2883		return 0;
2884
2885	len = 0;
2886#define elen(x) \
2887    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2888
2889	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2890	if (in6p->in6p_outputopts->ip6po_rthdr)
2891		/* dest1 is valid with rthdr only */
2892		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2893	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2894	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2895	return len;
2896#undef elen
2897}
2898