udp_usrreq.c revision 274266
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.
4 * Copyright (c) 2008 Robert N. M. Watson
5 * Copyright (c) 2010-2011 Juniper Networks, Inc.
6 * Copyright (c) 2014 Kevin Lo
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Robert N. M. Watson under
10 * contract to Juniper Networks, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/10/sys/netinet/udp_usrreq.c 274266 2014-11-08 02:53:55Z bryanv $");
41
42#include "opt_ipfw.h"
43#include "opt_inet.h"
44#include "opt_inet6.h"
45#include "opt_ipsec.h"
46#include "opt_kdtrace.h"
47
48#include <sys/param.h>
49#include <sys/domain.h>
50#include <sys/eventhandler.h>
51#include <sys/jail.h>
52#include <sys/kernel.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mbuf.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/protosw.h>
59#include <sys/sdt.h>
60#include <sys/signalvar.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sx.h>
64#include <sys/sysctl.h>
65#include <sys/syslog.h>
66#include <sys/systm.h>
67
68#include <vm/uma.h>
69
70#include <net/if.h>
71#include <net/route.h>
72
73#include <netinet/in.h>
74#include <netinet/in_kdtrace.h>
75#include <netinet/in_pcb.h>
76#include <netinet/in_systm.h>
77#include <netinet/in_var.h>
78#include <netinet/ip.h>
79#ifdef INET6
80#include <netinet/ip6.h>
81#endif
82#include <netinet/ip_icmp.h>
83#include <netinet/icmp_var.h>
84#include <netinet/ip_var.h>
85#include <netinet/ip_options.h>
86#ifdef INET6
87#include <netinet6/ip6_var.h>
88#endif
89#include <netinet/udp.h>
90#include <netinet/udp_var.h>
91#include <netinet/udplite.h>
92
93#ifdef IPSEC
94#include <netipsec/ipsec.h>
95#include <netipsec/esp.h>
96#endif
97
98#include <machine/in_cksum.h>
99
100#include <security/mac/mac_framework.h>
101
102/*
103 * UDP and UDP-Lite protocols implementation.
104 * Per RFC 768, August, 1980.
105 * Per RFC 3828, July, 2004.
106 */
107
108/*
109 * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
110 * removes the only data integrity mechanism for packets and malformed
111 * packets that would otherwise be discarded due to bad checksums, and may
112 * cause problems (especially for NFS data blocks).
113 */
114VNET_DEFINE(int, udp_cksum) = 1;
115SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
116    &VNET_NAME(udp_cksum), 0, "compute udp checksum");
117
118int	udp_log_in_vain = 0;
119SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
120    &udp_log_in_vain, 0, "Log all incoming UDP packets");
121
122VNET_DEFINE(int, udp_blackhole) = 0;
123SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
124    &VNET_NAME(udp_blackhole), 0,
125    "Do not send port unreachables for refused connects");
126
127u_long	udp_sendspace = 9216;		/* really max datagram size */
128					/* 40 1K datagrams */
129SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130    &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131
132u_long	udp_recvspace = 40 * (1024 +
133#ifdef INET6
134				      sizeof(struct sockaddr_in6)
135#else
136				      sizeof(struct sockaddr_in)
137#endif
138				      );
139
140SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141    &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142
143VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144VNET_DEFINE(struct inpcbinfo, udbinfo);
145VNET_DEFINE(struct inpcbhead, ulitecb);
146VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147static VNET_DEFINE(uma_zone_t, udpcb_zone);
148#define	V_udpcb_zone			VNET(udpcb_zone)
149
150#ifndef UDBHASHSIZE
151#define	UDBHASHSIZE	128
152#endif
153
154VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155VNET_PCPUSTAT_SYSINIT(udpstat);
156SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157    udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158
159#ifdef VIMAGE
160VNET_PCPUSTAT_SYSUNINIT(udpstat);
161#endif /* VIMAGE */
162#ifdef INET
163static void	udp_detach(struct socket *so);
164static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165		    struct mbuf *, struct thread *);
166#endif
167
168#ifdef IPSEC
169#ifdef IPSEC_NAT_T
170#define	UF_ESPINUDP_ALL	(UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
171#ifdef INET
172static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
173#endif
174#endif /* IPSEC_NAT_T */
175#endif /* IPSEC */
176
177static void
178udp_zone_change(void *tag)
179{
180
181	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
182	uma_zone_set_max(V_udpcb_zone, maxsockets);
183}
184
185static int
186udp_inpcb_init(void *mem, int size, int flags)
187{
188	struct inpcb *inp;
189
190	inp = mem;
191	INP_LOCK_INIT(inp, "inp", "udpinp");
192	return (0);
193}
194
195static int
196udplite_inpcb_init(void *mem, int size, int flags)
197{
198	struct inpcb *inp;
199
200	inp = mem;
201	INP_LOCK_INIT(inp, "inp", "udpliteinp");
202	return (0);
203}
204
205void
206udp_init(void)
207{
208
209	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
210	    "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
211	    IPI_HASHFIELDS_2TUPLE);
212	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214	uma_zone_set_max(V_udpcb_zone, maxsockets);
215	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
216	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
217	    EVENTHANDLER_PRI_ANY);
218}
219
220void
221udplite_init(void)
222{
223
224	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
225	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
226	    UMA_ZONE_NOFREE, IPI_HASHFIELDS_2TUPLE);
227}
228
229/*
230 * Kernel module interface for updating udpstat.  The argument is an index
231 * into udpstat treated as an array of u_long.  While this encodes the
232 * general layout of udpstat into the caller, it doesn't encode its location,
233 * so that future changes to add, for example, per-CPU stats support won't
234 * cause binary compatibility problems for kernel modules.
235 */
236void
237kmod_udpstat_inc(int statnum)
238{
239
240	counter_u64_add(VNET(udpstat)[statnum], 1);
241}
242
243int
244udp_newudpcb(struct inpcb *inp)
245{
246	struct udpcb *up;
247
248	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
249	if (up == NULL)
250		return (ENOBUFS);
251	inp->inp_ppcb = up;
252	return (0);
253}
254
255void
256udp_discardcb(struct udpcb *up)
257{
258
259	uma_zfree(V_udpcb_zone, up);
260}
261
262#ifdef VIMAGE
263void
264udp_destroy(void)
265{
266
267	in_pcbinfo_destroy(&V_udbinfo);
268	uma_zdestroy(V_udpcb_zone);
269}
270
271void
272udplite_destroy(void)
273{
274
275	in_pcbinfo_destroy(&V_ulitecbinfo);
276}
277#endif
278
279#ifdef INET
280/*
281 * Subroutine of udp_input(), which appends the provided mbuf chain to the
282 * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283 * contains the source address.  If the socket ends up being an IPv6 socket,
284 * udp_append() will convert to a sockaddr_in6 before passing the address
285 * into the socket code.
286 */
287static void
288udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
289    struct sockaddr_in *udp_in)
290{
291	struct sockaddr *append_sa;
292	struct socket *so;
293	struct mbuf *opts = 0;
294#ifdef INET6
295	struct sockaddr_in6 udp_in6;
296#endif
297	struct udpcb *up;
298
299	INP_LOCK_ASSERT(inp);
300
301	/*
302	 * Engage the tunneling protocol.
303	 */
304	up = intoudpcb(inp);
305	if (up->u_tun_func != NULL) {
306		(*up->u_tun_func)(n, off, inp);
307		return;
308	}
309
310	off += sizeof(struct udphdr);
311
312#ifdef IPSEC
313	/* Check AH/ESP integrity. */
314	if (ipsec4_in_reject(n, inp)) {
315		m_freem(n);
316		IPSECSTAT_INC(ips_in_polvio);
317		return;
318	}
319#ifdef IPSEC_NAT_T
320	up = intoudpcb(inp);
321	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
322	if (up->u_flags & UF_ESPINUDP_ALL) {	/* IPSec UDP encaps. */
323		n = udp4_espdecap(inp, n, off);
324		if (n == NULL)				/* Consumed. */
325			return;
326	}
327#endif /* IPSEC_NAT_T */
328#endif /* IPSEC */
329#ifdef MAC
330	if (mac_inpcb_check_deliver(inp, n) != 0) {
331		m_freem(n);
332		return;
333	}
334#endif /* MAC */
335	if (inp->inp_flags & INP_CONTROLOPTS ||
336	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
337#ifdef INET6
338		if (inp->inp_vflag & INP_IPV6)
339			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
340		else
341#endif /* INET6 */
342			ip_savecontrol(inp, &opts, ip, n);
343	}
344#ifdef INET6
345	if (inp->inp_vflag & INP_IPV6) {
346		bzero(&udp_in6, sizeof(udp_in6));
347		udp_in6.sin6_len = sizeof(udp_in6);
348		udp_in6.sin6_family = AF_INET6;
349		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
350		append_sa = (struct sockaddr *)&udp_in6;
351	} else
352#endif /* INET6 */
353		append_sa = (struct sockaddr *)udp_in;
354	m_adj(n, off);
355
356	so = inp->inp_socket;
357	SOCKBUF_LOCK(&so->so_rcv);
358	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
359		SOCKBUF_UNLOCK(&so->so_rcv);
360		m_freem(n);
361		if (opts)
362			m_freem(opts);
363		UDPSTAT_INC(udps_fullsock);
364	} else
365		sorwakeup_locked(so);
366}
367
368void
369udp_input(struct mbuf *m, int off)
370{
371	int iphlen = off;
372	struct ip *ip;
373	struct udphdr *uh;
374	struct ifnet *ifp;
375	struct inpcb *inp;
376	uint16_t len, ip_len;
377	struct inpcbinfo *pcbinfo;
378	struct ip save_ip;
379	struct sockaddr_in udp_in;
380	struct m_tag *fwd_tag;
381	int cscov_partial;
382	uint8_t pr;
383
384	ifp = m->m_pkthdr.rcvif;
385	UDPSTAT_INC(udps_ipackets);
386
387	/*
388	 * Strip IP options, if any; should skip this, make available to
389	 * user, and use on returned packets, but we don't yet have a way to
390	 * check the checksum with options still present.
391	 */
392	if (iphlen > sizeof (struct ip)) {
393		ip_stripoptions(m);
394		iphlen = sizeof(struct ip);
395	}
396
397	/*
398	 * Get IP and UDP header together in first mbuf.
399	 */
400	ip = mtod(m, struct ip *);
401	if (m->m_len < iphlen + sizeof(struct udphdr)) {
402		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
403			UDPSTAT_INC(udps_hdrops);
404			return;
405		}
406		ip = mtod(m, struct ip *);
407	}
408	uh = (struct udphdr *)((caddr_t)ip + iphlen);
409	pr = ip->ip_p;
410	cscov_partial = (pr == IPPROTO_UDPLITE) ? 1 : 0;
411
412	/*
413	 * Destination port of 0 is illegal, based on RFC768.
414	 */
415	if (uh->uh_dport == 0)
416		goto badunlocked;
417
418	/*
419	 * Construct sockaddr format source address.  Stuff source address
420	 * and datagram in user buffer.
421	 */
422	bzero(&udp_in, sizeof(udp_in));
423	udp_in.sin_len = sizeof(udp_in);
424	udp_in.sin_family = AF_INET;
425	udp_in.sin_port = uh->uh_sport;
426	udp_in.sin_addr = ip->ip_src;
427
428	/*
429	 * Make mbuf data length reflect UDP length.  If not enough data to
430	 * reflect UDP length, drop.
431	 */
432	len = ntohs((u_short)uh->uh_ulen);
433	ip_len = ntohs(ip->ip_len) - iphlen;
434	if (pr == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
435		/* Zero means checksum over the complete packet. */
436		if (len == 0)
437			len = ip_len;
438		cscov_partial = 0;
439	}
440	if (ip_len != len) {
441		if (len > ip_len || len < sizeof(struct udphdr)) {
442			UDPSTAT_INC(udps_badlen);
443			goto badunlocked;
444		}
445		if (pr == IPPROTO_UDP)
446			m_adj(m, len - ip_len);
447	}
448
449	/*
450	 * Save a copy of the IP header in case we want restore it for
451	 * sending an ICMP error message in response.
452	 */
453	if (!V_udp_blackhole)
454		save_ip = *ip;
455	else
456		memset(&save_ip, 0, sizeof(save_ip));
457
458	/*
459	 * Checksum extended UDP header and data.
460	 */
461	if (uh->uh_sum) {
462		u_short uh_sum;
463
464		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
465		    !cscov_partial) {
466			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
467				uh_sum = m->m_pkthdr.csum_data;
468			else
469				uh_sum = in_pseudo(ip->ip_src.s_addr,
470				    ip->ip_dst.s_addr, htonl((u_short)len +
471				    m->m_pkthdr.csum_data + pr));
472			uh_sum ^= 0xffff;
473		} else {
474			char b[9];
475
476			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
477			bzero(((struct ipovly *)ip)->ih_x1, 9);
478			((struct ipovly *)ip)->ih_len = (pr == IPPROTO_UDP) ?
479			    uh->uh_ulen : htons(ip_len);
480			uh_sum = in_cksum(m, len + sizeof (struct ip));
481			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
482		}
483		if (uh_sum) {
484			UDPSTAT_INC(udps_badsum);
485			m_freem(m);
486			return;
487		}
488	} else {
489		if (pr == IPPROTO_UDP) {
490			UDPSTAT_INC(udps_nosum);
491		} else {
492			/* UDPLite requires a checksum */
493			/* XXX: What is the right UDPLite MIB counter here? */
494			m_freem(m);
495			return;
496		}
497	}
498
499	pcbinfo = get_inpcbinfo(pr);
500	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
501	    in_broadcast(ip->ip_dst, ifp)) {
502		struct inpcb *last;
503		struct inpcbhead *pcblist;
504		struct ip_moptions *imo;
505
506		INP_INFO_RLOCK(pcbinfo);
507		pcblist = get_pcblist(pr);
508		last = NULL;
509		LIST_FOREACH(inp, pcblist, inp_list) {
510			if (inp->inp_lport != uh->uh_dport)
511				continue;
512#ifdef INET6
513			if ((inp->inp_vflag & INP_IPV4) == 0)
514				continue;
515#endif
516			if (inp->inp_laddr.s_addr != INADDR_ANY &&
517			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
518				continue;
519			if (inp->inp_faddr.s_addr != INADDR_ANY &&
520			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
521				continue;
522			if (inp->inp_fport != 0 &&
523			    inp->inp_fport != uh->uh_sport)
524				continue;
525
526			INP_RLOCK(inp);
527
528			/*
529			 * XXXRW: Because we weren't holding either the inpcb
530			 * or the hash lock when we checked for a match
531			 * before, we should probably recheck now that the
532			 * inpcb lock is held.
533			 */
534
535			/*
536			 * Handle socket delivery policy for any-source
537			 * and source-specific multicast. [RFC3678]
538			 */
539			imo = inp->inp_moptions;
540			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
541				struct sockaddr_in	 group;
542				int			 blocked;
543				if (imo == NULL) {
544					INP_RUNLOCK(inp);
545					continue;
546				}
547				bzero(&group, sizeof(struct sockaddr_in));
548				group.sin_len = sizeof(struct sockaddr_in);
549				group.sin_family = AF_INET;
550				group.sin_addr = ip->ip_dst;
551
552				blocked = imo_multi_filter(imo, ifp,
553					(struct sockaddr *)&group,
554					(struct sockaddr *)&udp_in);
555				if (blocked != MCAST_PASS) {
556					if (blocked == MCAST_NOTGMEMBER)
557						IPSTAT_INC(ips_notmember);
558					if (blocked == MCAST_NOTSMEMBER ||
559					    blocked == MCAST_MUTED)
560						UDPSTAT_INC(udps_filtermcast);
561					INP_RUNLOCK(inp);
562					continue;
563				}
564			}
565			if (last != NULL) {
566				struct mbuf *n;
567
568				if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
569					UDP_PROBE(receive, NULL, last, ip,
570					    last, uh);
571					udp_append(last, ip, n, iphlen,
572					    &udp_in);
573				}
574				INP_RUNLOCK(last);
575			}
576			last = inp;
577			/*
578			 * Don't look for additional matches if this one does
579			 * not have either the SO_REUSEPORT or SO_REUSEADDR
580			 * socket options set.  This heuristic avoids
581			 * searching through all pcbs in the common case of a
582			 * non-shared port.  It assumes that an application
583			 * will never clear these options after setting them.
584			 */
585			if ((last->inp_socket->so_options &
586			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
587				break;
588		}
589
590		if (last == NULL) {
591			/*
592			 * No matching pcb found; discard datagram.  (No need
593			 * to send an ICMP Port Unreachable for a broadcast
594			 * or multicast datgram.)
595			 */
596			UDPSTAT_INC(udps_noportbcast);
597			if (inp)
598				INP_RUNLOCK(inp);
599			INP_INFO_RUNLOCK(pcbinfo);
600			goto badunlocked;
601		}
602		UDP_PROBE(receive, NULL, last, ip, last, uh);
603		udp_append(last, ip, m, iphlen, &udp_in);
604		INP_RUNLOCK(last);
605		INP_INFO_RUNLOCK(pcbinfo);
606		return;
607	}
608
609	/*
610	 * Locate pcb for datagram.
611	 */
612
613	/*
614	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
615	 */
616	if ((m->m_flags & M_IP_NEXTHOP) &&
617	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
618		struct sockaddr_in *next_hop;
619
620		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
621
622		/*
623		 * Transparently forwarded. Pretend to be the destination.
624		 * Already got one like this?
625		 */
626		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
627		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
628		if (!inp) {
629			/*
630			 * It's new.  Try to find the ambushing socket.
631			 * Because we've rewritten the destination address,
632			 * any hardware-generated hash is ignored.
633			 */
634			inp = in_pcblookup(pcbinfo, ip->ip_src,
635			    uh->uh_sport, next_hop->sin_addr,
636			    next_hop->sin_port ? htons(next_hop->sin_port) :
637			    uh->uh_dport, INPLOOKUP_WILDCARD |
638			    INPLOOKUP_RLOCKPCB, ifp);
639		}
640		/* Remove the tag from the packet. We don't need it anymore. */
641		m_tag_delete(m, fwd_tag);
642		m->m_flags &= ~M_IP_NEXTHOP;
643	} else
644		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
645		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
646		    INPLOOKUP_RLOCKPCB, ifp, m);
647	if (inp == NULL) {
648		if (udp_log_in_vain) {
649			char buf[4*sizeof "123"];
650
651			strcpy(buf, inet_ntoa(ip->ip_dst));
652			log(LOG_INFO,
653			    "Connection attempt to UDP %s:%d from %s:%d\n",
654			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
655			    ntohs(uh->uh_sport));
656		}
657		UDPSTAT_INC(udps_noport);
658		if (m->m_flags & (M_BCAST | M_MCAST)) {
659			UDPSTAT_INC(udps_noportbcast);
660			goto badunlocked;
661		}
662		if (V_udp_blackhole)
663			goto badunlocked;
664		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
665			goto badunlocked;
666		*ip = save_ip;
667		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
668		return;
669	}
670
671	/*
672	 * Check the minimum TTL for socket.
673	 */
674	INP_RLOCK_ASSERT(inp);
675	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
676		INP_RUNLOCK(inp);
677		m_freem(m);
678		return;
679	}
680	if (cscov_partial) {
681		struct udpcb *up;
682
683		up = intoudpcb(inp);
684		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
685			INP_RUNLOCK(inp);
686			m_freem(m);
687			return;
688		}
689	}
690
691	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
692	udp_append(inp, ip, m, iphlen, &udp_in);
693	INP_RUNLOCK(inp);
694	return;
695
696badunlocked:
697	m_freem(m);
698}
699#endif /* INET */
700
701/*
702 * Notify a udp user of an asynchronous error; just wake up so that they can
703 * collect error status.
704 */
705struct inpcb *
706udp_notify(struct inpcb *inp, int errno)
707{
708
709	/*
710	 * While udp_ctlinput() always calls udp_notify() with a read lock
711	 * when invoking it directly, in_pcbnotifyall() currently uses write
712	 * locks due to sharing code with TCP.  For now, accept either a read
713	 * or a write lock, but a read lock is sufficient.
714	 */
715	INP_LOCK_ASSERT(inp);
716
717	inp->inp_socket->so_error = errno;
718	sorwakeup(inp->inp_socket);
719	sowwakeup(inp->inp_socket);
720	return (inp);
721}
722
723#ifdef INET
724static void
725udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
726    struct inpcbinfo *pcbinfo)
727{
728	struct ip *ip = vip;
729	struct udphdr *uh;
730	struct in_addr faddr;
731	struct inpcb *inp;
732
733	faddr = ((struct sockaddr_in *)sa)->sin_addr;
734	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
735		return;
736
737	/*
738	 * Redirects don't need to be handled up here.
739	 */
740	if (PRC_IS_REDIRECT(cmd))
741		return;
742
743	/*
744	 * Hostdead is ugly because it goes linearly through all PCBs.
745	 *
746	 * XXX: We never get this from ICMP, otherwise it makes an excellent
747	 * DoS attack on machines with many connections.
748	 */
749	if (cmd == PRC_HOSTDEAD)
750		ip = NULL;
751	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
752		return;
753	if (ip != NULL) {
754		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
755		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
756		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
757		if (inp != NULL) {
758			INP_RLOCK_ASSERT(inp);
759			if (inp->inp_socket != NULL) {
760				udp_notify(inp, inetctlerrmap[cmd]);
761			}
762			INP_RUNLOCK(inp);
763		}
764	} else
765		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
766		    udp_notify);
767}
768void
769udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
770{
771
772	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
773}
774
775void
776udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
777{
778
779	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
780}
781#endif /* INET */
782
783static int
784udp_pcblist(SYSCTL_HANDLER_ARGS)
785{
786	int error, i, n;
787	struct inpcb *inp, **inp_list;
788	inp_gen_t gencnt;
789	struct xinpgen xig;
790
791	/*
792	 * The process of preparing the PCB list is too time-consuming and
793	 * resource-intensive to repeat twice on every request.
794	 */
795	if (req->oldptr == 0) {
796		n = V_udbinfo.ipi_count;
797		n += imax(n / 8, 10);
798		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
799		return (0);
800	}
801
802	if (req->newptr != 0)
803		return (EPERM);
804
805	/*
806	 * OK, now we're committed to doing something.
807	 */
808	INP_INFO_RLOCK(&V_udbinfo);
809	gencnt = V_udbinfo.ipi_gencnt;
810	n = V_udbinfo.ipi_count;
811	INP_INFO_RUNLOCK(&V_udbinfo);
812
813	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
814		+ n * sizeof(struct xinpcb));
815	if (error != 0)
816		return (error);
817
818	xig.xig_len = sizeof xig;
819	xig.xig_count = n;
820	xig.xig_gen = gencnt;
821	xig.xig_sogen = so_gencnt;
822	error = SYSCTL_OUT(req, &xig, sizeof xig);
823	if (error)
824		return (error);
825
826	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
827	if (inp_list == 0)
828		return (ENOMEM);
829
830	INP_INFO_RLOCK(&V_udbinfo);
831	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
832	     inp = LIST_NEXT(inp, inp_list)) {
833		INP_WLOCK(inp);
834		if (inp->inp_gencnt <= gencnt &&
835		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
836			in_pcbref(inp);
837			inp_list[i++] = inp;
838		}
839		INP_WUNLOCK(inp);
840	}
841	INP_INFO_RUNLOCK(&V_udbinfo);
842	n = i;
843
844	error = 0;
845	for (i = 0; i < n; i++) {
846		inp = inp_list[i];
847		INP_RLOCK(inp);
848		if (inp->inp_gencnt <= gencnt) {
849			struct xinpcb xi;
850
851			bzero(&xi, sizeof(xi));
852			xi.xi_len = sizeof xi;
853			/* XXX should avoid extra copy */
854			bcopy(inp, &xi.xi_inp, sizeof *inp);
855			if (inp->inp_socket)
856				sotoxsocket(inp->inp_socket, &xi.xi_socket);
857			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
858			INP_RUNLOCK(inp);
859			error = SYSCTL_OUT(req, &xi, sizeof xi);
860		} else
861			INP_RUNLOCK(inp);
862	}
863	INP_INFO_WLOCK(&V_udbinfo);
864	for (i = 0; i < n; i++) {
865		inp = inp_list[i];
866		INP_RLOCK(inp);
867		if (!in_pcbrele_rlocked(inp))
868			INP_RUNLOCK(inp);
869	}
870	INP_INFO_WUNLOCK(&V_udbinfo);
871
872	if (!error) {
873		/*
874		 * Give the user an updated idea of our state.  If the
875		 * generation differs from what we told her before, she knows
876		 * that something happened while we were processing this
877		 * request, and it might be necessary to retry.
878		 */
879		INP_INFO_RLOCK(&V_udbinfo);
880		xig.xig_gen = V_udbinfo.ipi_gencnt;
881		xig.xig_sogen = so_gencnt;
882		xig.xig_count = V_udbinfo.ipi_count;
883		INP_INFO_RUNLOCK(&V_udbinfo);
884		error = SYSCTL_OUT(req, &xig, sizeof xig);
885	}
886	free(inp_list, M_TEMP);
887	return (error);
888}
889
890SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
891    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
892    udp_pcblist, "S,xinpcb", "List of active UDP sockets");
893
894#ifdef INET
895static int
896udp_getcred(SYSCTL_HANDLER_ARGS)
897{
898	struct xucred xuc;
899	struct sockaddr_in addrs[2];
900	struct inpcb *inp;
901	int error;
902
903	error = priv_check(req->td, PRIV_NETINET_GETCRED);
904	if (error)
905		return (error);
906	error = SYSCTL_IN(req, addrs, sizeof(addrs));
907	if (error)
908		return (error);
909	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
910	    addrs[0].sin_addr, addrs[0].sin_port,
911	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
912	if (inp != NULL) {
913		INP_RLOCK_ASSERT(inp);
914		if (inp->inp_socket == NULL)
915			error = ENOENT;
916		if (error == 0)
917			error = cr_canseeinpcb(req->td->td_ucred, inp);
918		if (error == 0)
919			cru2x(inp->inp_cred, &xuc);
920		INP_RUNLOCK(inp);
921	} else
922		error = ENOENT;
923	if (error == 0)
924		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
925	return (error);
926}
927
928SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
929    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
930    udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
931#endif /* INET */
932
933int
934udp_ctloutput(struct socket *so, struct sockopt *sopt)
935{
936	struct inpcb *inp;
937	struct udpcb *up;
938	int isudplite, error, optval;
939
940	error = 0;
941	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
942	inp = sotoinpcb(so);
943	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
944	INP_WLOCK(inp);
945	if (sopt->sopt_level != so->so_proto->pr_protocol) {
946#ifdef INET6
947		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
948			INP_WUNLOCK(inp);
949			error = ip6_ctloutput(so, sopt);
950		}
951#endif
952#if defined(INET) && defined(INET6)
953		else
954#endif
955#ifdef INET
956		{
957			INP_WUNLOCK(inp);
958			error = ip_ctloutput(so, sopt);
959		}
960#endif
961		return (error);
962	}
963
964	switch (sopt->sopt_dir) {
965	case SOPT_SET:
966		switch (sopt->sopt_name) {
967		case UDP_ENCAP:
968			INP_WUNLOCK(inp);
969			error = sooptcopyin(sopt, &optval, sizeof optval,
970					    sizeof optval);
971			if (error)
972				break;
973			inp = sotoinpcb(so);
974			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
975			INP_WLOCK(inp);
976#ifdef IPSEC_NAT_T
977			up = intoudpcb(inp);
978			KASSERT(up != NULL, ("%s: up == NULL", __func__));
979#endif
980			switch (optval) {
981			case 0:
982				/* Clear all UDP encap. */
983#ifdef IPSEC_NAT_T
984				up->u_flags &= ~UF_ESPINUDP_ALL;
985#endif
986				break;
987#ifdef IPSEC_NAT_T
988			case UDP_ENCAP_ESPINUDP:
989			case UDP_ENCAP_ESPINUDP_NON_IKE:
990				up->u_flags &= ~UF_ESPINUDP_ALL;
991				if (optval == UDP_ENCAP_ESPINUDP)
992					up->u_flags |= UF_ESPINUDP;
993				else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
994					up->u_flags |= UF_ESPINUDP_NON_IKE;
995				break;
996#endif
997			default:
998				error = EINVAL;
999				break;
1000			}
1001			INP_WUNLOCK(inp);
1002			break;
1003		case UDPLITE_SEND_CSCOV:
1004		case UDPLITE_RECV_CSCOV:
1005			if (!isudplite) {
1006				INP_WUNLOCK(inp);
1007				error = ENOPROTOOPT;
1008				break;
1009			}
1010			INP_WUNLOCK(inp);
1011			error = sooptcopyin(sopt, &optval, sizeof(optval),
1012			    sizeof(optval));
1013			if (error != 0)
1014				break;
1015			inp = sotoinpcb(so);
1016			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1017			INP_WLOCK(inp);
1018			up = intoudpcb(inp);
1019			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1020			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1021				INP_WUNLOCK(inp);
1022				error = EINVAL;
1023				break;
1024			}
1025			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1026				up->u_txcslen = optval;
1027			else
1028				up->u_rxcslen = optval;
1029			INP_WUNLOCK(inp);
1030			break;
1031		default:
1032			INP_WUNLOCK(inp);
1033			error = ENOPROTOOPT;
1034			break;
1035		}
1036		break;
1037	case SOPT_GET:
1038		switch (sopt->sopt_name) {
1039#ifdef IPSEC_NAT_T
1040		case UDP_ENCAP:
1041			up = intoudpcb(inp);
1042			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1043			optval = up->u_flags & UF_ESPINUDP_ALL;
1044			INP_WUNLOCK(inp);
1045			error = sooptcopyout(sopt, &optval, sizeof optval);
1046			break;
1047#endif
1048		case UDPLITE_SEND_CSCOV:
1049		case UDPLITE_RECV_CSCOV:
1050			if (!isudplite) {
1051				INP_WUNLOCK(inp);
1052				error = ENOPROTOOPT;
1053				break;
1054			}
1055			up = intoudpcb(inp);
1056			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1057			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1058				optval = up->u_txcslen;
1059			else
1060				optval = up->u_rxcslen;
1061			INP_WUNLOCK(inp);
1062			error = sooptcopyout(sopt, &optval, sizeof(optval));
1063			break;
1064		default:
1065			INP_WUNLOCK(inp);
1066			error = ENOPROTOOPT;
1067			break;
1068		}
1069		break;
1070	}
1071	return (error);
1072}
1073
1074#ifdef INET
1075#define	UH_WLOCKED	2
1076#define	UH_RLOCKED	1
1077#define	UH_UNLOCKED	0
1078static int
1079udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1080    struct mbuf *control, struct thread *td)
1081{
1082	struct udpiphdr *ui;
1083	int len = m->m_pkthdr.len;
1084	struct in_addr faddr, laddr;
1085	struct cmsghdr *cm;
1086	struct inpcbinfo *pcbinfo;
1087	struct sockaddr_in *sin, src;
1088	int cscov_partial = 0;
1089	int error = 0;
1090	int ipflags;
1091	u_short fport, lport;
1092	int unlock_udbinfo;
1093	u_char tos;
1094	uint8_t pr;
1095	uint16_t cscov = 0;
1096
1097	/*
1098	 * udp_output() may need to temporarily bind or connect the current
1099	 * inpcb.  As such, we don't know up front whether we will need the
1100	 * pcbinfo lock or not.  Do any work to decide what is needed up
1101	 * front before acquiring any locks.
1102	 */
1103	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1104		if (control)
1105			m_freem(control);
1106		m_freem(m);
1107		return (EMSGSIZE);
1108	}
1109
1110	src.sin_family = 0;
1111	INP_RLOCK(inp);
1112	tos = inp->inp_ip_tos;
1113	if (control != NULL) {
1114		/*
1115		 * XXX: Currently, we assume all the optional information is
1116		 * stored in a single mbuf.
1117		 */
1118		if (control->m_next) {
1119			INP_RUNLOCK(inp);
1120			m_freem(control);
1121			m_freem(m);
1122			return (EINVAL);
1123		}
1124		for (; control->m_len > 0;
1125		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1126		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1127			cm = mtod(control, struct cmsghdr *);
1128			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1129			    || cm->cmsg_len > control->m_len) {
1130				error = EINVAL;
1131				break;
1132			}
1133			if (cm->cmsg_level != IPPROTO_IP)
1134				continue;
1135
1136			switch (cm->cmsg_type) {
1137			case IP_SENDSRCADDR:
1138				if (cm->cmsg_len !=
1139				    CMSG_LEN(sizeof(struct in_addr))) {
1140					error = EINVAL;
1141					break;
1142				}
1143				bzero(&src, sizeof(src));
1144				src.sin_family = AF_INET;
1145				src.sin_len = sizeof(src);
1146				src.sin_port = inp->inp_lport;
1147				src.sin_addr =
1148				    *(struct in_addr *)CMSG_DATA(cm);
1149				break;
1150
1151			case IP_TOS:
1152				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1153					error = EINVAL;
1154					break;
1155				}
1156				tos = *(u_char *)CMSG_DATA(cm);
1157				break;
1158
1159			default:
1160				error = ENOPROTOOPT;
1161				break;
1162			}
1163			if (error)
1164				break;
1165		}
1166		m_freem(control);
1167	}
1168	if (error) {
1169		INP_RUNLOCK(inp);
1170		m_freem(m);
1171		return (error);
1172	}
1173
1174	/*
1175	 * Depending on whether or not the application has bound or connected
1176	 * the socket, we may have to do varying levels of work.  The optimal
1177	 * case is for a connected UDP socket, as a global lock isn't
1178	 * required at all.
1179	 *
1180	 * In order to decide which we need, we require stability of the
1181	 * inpcb binding, which we ensure by acquiring a read lock on the
1182	 * inpcb.  This doesn't strictly follow the lock order, so we play
1183	 * the trylock and retry game; note that we may end up with more
1184	 * conservative locks than required the second time around, so later
1185	 * assertions have to accept that.  Further analysis of the number of
1186	 * misses under contention is required.
1187	 *
1188	 * XXXRW: Check that hash locking update here is correct.
1189	 */
1190	pr = inp->inp_socket->so_proto->pr_protocol;
1191	pcbinfo = get_inpcbinfo(pr);
1192	sin = (struct sockaddr_in *)addr;
1193	if (sin != NULL &&
1194	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1195		INP_RUNLOCK(inp);
1196		INP_WLOCK(inp);
1197		INP_HASH_WLOCK(pcbinfo);
1198		unlock_udbinfo = UH_WLOCKED;
1199	} else if ((sin != NULL && (
1200	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1201	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1202	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1203	    (inp->inp_lport == 0))) ||
1204	    (src.sin_family == AF_INET)) {
1205		INP_HASH_RLOCK(pcbinfo);
1206		unlock_udbinfo = UH_RLOCKED;
1207	} else
1208		unlock_udbinfo = UH_UNLOCKED;
1209
1210	/*
1211	 * If the IP_SENDSRCADDR control message was specified, override the
1212	 * source address for this datagram.  Its use is invalidated if the
1213	 * address thus specified is incomplete or clobbers other inpcbs.
1214	 */
1215	laddr = inp->inp_laddr;
1216	lport = inp->inp_lport;
1217	if (src.sin_family == AF_INET) {
1218		INP_HASH_LOCK_ASSERT(pcbinfo);
1219		if ((lport == 0) ||
1220		    (laddr.s_addr == INADDR_ANY &&
1221		     src.sin_addr.s_addr == INADDR_ANY)) {
1222			error = EINVAL;
1223			goto release;
1224		}
1225		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1226		    &laddr.s_addr, &lport, td->td_ucred);
1227		if (error)
1228			goto release;
1229	}
1230
1231	/*
1232	 * If a UDP socket has been connected, then a local address/port will
1233	 * have been selected and bound.
1234	 *
1235	 * If a UDP socket has not been connected to, then an explicit
1236	 * destination address must be used, in which case a local
1237	 * address/port may not have been selected and bound.
1238	 */
1239	if (sin != NULL) {
1240		INP_LOCK_ASSERT(inp);
1241		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1242			error = EISCONN;
1243			goto release;
1244		}
1245
1246		/*
1247		 * Jail may rewrite the destination address, so let it do
1248		 * that before we use it.
1249		 */
1250		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1251		if (error)
1252			goto release;
1253
1254		/*
1255		 * If a local address or port hasn't yet been selected, or if
1256		 * the destination address needs to be rewritten due to using
1257		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1258		 * to do the heavy lifting.  Once a port is selected, we
1259		 * commit the binding back to the socket; we also commit the
1260		 * binding of the address if in jail.
1261		 *
1262		 * If we already have a valid binding and we're not
1263		 * requesting a destination address rewrite, use a fast path.
1264		 */
1265		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1266		    inp->inp_lport == 0 ||
1267		    sin->sin_addr.s_addr == INADDR_ANY ||
1268		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1269			INP_HASH_LOCK_ASSERT(pcbinfo);
1270			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1271			    &lport, &faddr.s_addr, &fport, NULL,
1272			    td->td_ucred);
1273			if (error)
1274				goto release;
1275
1276			/*
1277			 * XXXRW: Why not commit the port if the address is
1278			 * !INADDR_ANY?
1279			 */
1280			/* Commit the local port if newly assigned. */
1281			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1282			    inp->inp_lport == 0) {
1283				INP_WLOCK_ASSERT(inp);
1284				INP_HASH_WLOCK_ASSERT(pcbinfo);
1285				/*
1286				 * Remember addr if jailed, to prevent
1287				 * rebinding.
1288				 */
1289				if (prison_flag(td->td_ucred, PR_IP4))
1290					inp->inp_laddr = laddr;
1291				inp->inp_lport = lport;
1292				if (in_pcbinshash(inp) != 0) {
1293					inp->inp_lport = 0;
1294					error = EAGAIN;
1295					goto release;
1296				}
1297				inp->inp_flags |= INP_ANONPORT;
1298			}
1299		} else {
1300			faddr = sin->sin_addr;
1301			fport = sin->sin_port;
1302		}
1303	} else {
1304		INP_LOCK_ASSERT(inp);
1305		faddr = inp->inp_faddr;
1306		fport = inp->inp_fport;
1307		if (faddr.s_addr == INADDR_ANY) {
1308			error = ENOTCONN;
1309			goto release;
1310		}
1311	}
1312
1313	/*
1314	 * Calculate data length and get a mbuf for UDP, IP, and possible
1315	 * link-layer headers.  Immediate slide the data pointer back forward
1316	 * since we won't use that space at this layer.
1317	 */
1318	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1319	if (m == NULL) {
1320		error = ENOBUFS;
1321		goto release;
1322	}
1323	m->m_data += max_linkhdr;
1324	m->m_len -= max_linkhdr;
1325	m->m_pkthdr.len -= max_linkhdr;
1326
1327	/*
1328	 * Fill in mbuf with extended UDP header and addresses and length put
1329	 * into network format.
1330	 */
1331	ui = mtod(m, struct udpiphdr *);
1332	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1333	ui->ui_pr = pr;
1334	ui->ui_src = laddr;
1335	ui->ui_dst = faddr;
1336	ui->ui_sport = lport;
1337	ui->ui_dport = fport;
1338	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1339	if (pr == IPPROTO_UDPLITE) {
1340		struct udpcb *up;
1341		uint16_t plen;
1342
1343		up = intoudpcb(inp);
1344		cscov = up->u_txcslen;
1345		plen = (u_short)len + sizeof(struct udphdr);
1346		if (cscov >= plen)
1347			cscov = 0;
1348		ui->ui_len = htons(plen);
1349		ui->ui_ulen = htons(cscov);
1350		/*
1351		 * For UDP-Lite, checksum coverage length of zero means
1352		 * the entire UDPLite packet is covered by the checksum.
1353		 */
1354		cscov_partial = (cscov == 0) ? 0 : 1;
1355	} else
1356		ui->ui_v = IPVERSION << 4;
1357
1358	/*
1359	 * Set the Don't Fragment bit in the IP header.
1360	 */
1361	if (inp->inp_flags & INP_DONTFRAG) {
1362		struct ip *ip;
1363
1364		ip = (struct ip *)&ui->ui_i;
1365		ip->ip_off |= htons(IP_DF);
1366	}
1367
1368	ipflags = 0;
1369	if (inp->inp_socket->so_options & SO_DONTROUTE)
1370		ipflags |= IP_ROUTETOIF;
1371	if (inp->inp_socket->so_options & SO_BROADCAST)
1372		ipflags |= IP_ALLOWBROADCAST;
1373	if (inp->inp_flags & INP_ONESBCAST)
1374		ipflags |= IP_SENDONES;
1375
1376#ifdef MAC
1377	mac_inpcb_create_mbuf(inp, m);
1378#endif
1379
1380	/*
1381	 * Set up checksum and output datagram.
1382	 */
1383	ui->ui_sum = 0;
1384	if (pr == IPPROTO_UDPLITE) {
1385		if (inp->inp_flags & INP_ONESBCAST)
1386			faddr.s_addr = INADDR_BROADCAST;
1387		if (cscov_partial) {
1388			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1389				ui->ui_sum = 0xffff;
1390		} else {
1391			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1392				ui->ui_sum = 0xffff;
1393		}
1394	} else if (V_udp_cksum) {
1395		if (inp->inp_flags & INP_ONESBCAST)
1396			faddr.s_addr = INADDR_BROADCAST;
1397		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1398		    htons((u_short)len + sizeof(struct udphdr) + pr));
1399		m->m_pkthdr.csum_flags = CSUM_UDP;
1400		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1401	}
1402	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1403	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1404	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1405	UDPSTAT_INC(udps_opackets);
1406
1407	if (unlock_udbinfo == UH_WLOCKED)
1408		INP_HASH_WUNLOCK(pcbinfo);
1409	else if (unlock_udbinfo == UH_RLOCKED)
1410		INP_HASH_RUNLOCK(pcbinfo);
1411	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1412	error = ip_output(m, inp->inp_options, NULL, ipflags,
1413	    inp->inp_moptions, inp);
1414	if (unlock_udbinfo == UH_WLOCKED)
1415		INP_WUNLOCK(inp);
1416	else
1417		INP_RUNLOCK(inp);
1418	return (error);
1419
1420release:
1421	if (unlock_udbinfo == UH_WLOCKED) {
1422		INP_HASH_WUNLOCK(pcbinfo);
1423		INP_WUNLOCK(inp);
1424	} else if (unlock_udbinfo == UH_RLOCKED) {
1425		INP_HASH_RUNLOCK(pcbinfo);
1426		INP_RUNLOCK(inp);
1427	} else
1428		INP_RUNLOCK(inp);
1429	m_freem(m);
1430	return (error);
1431}
1432
1433
1434#if defined(IPSEC) && defined(IPSEC_NAT_T)
1435/*
1436 * Potentially decap ESP in UDP frame.  Check for an ESP header
1437 * and optional marker; if present, strip the UDP header and
1438 * push the result through IPSec.
1439 *
1440 * Returns mbuf to be processed (potentially re-allocated) or
1441 * NULL if consumed and/or processed.
1442 */
1443static struct mbuf *
1444udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1445{
1446	size_t minlen, payload, skip, iphlen;
1447	caddr_t data;
1448	struct udpcb *up;
1449	struct m_tag *tag;
1450	struct udphdr *udphdr;
1451	struct ip *ip;
1452
1453	INP_RLOCK_ASSERT(inp);
1454
1455	/*
1456	 * Pull up data so the longest case is contiguous:
1457	 *    IP/UDP hdr + non ESP marker + ESP hdr.
1458	 */
1459	minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1460	if (minlen > m->m_pkthdr.len)
1461		minlen = m->m_pkthdr.len;
1462	if ((m = m_pullup(m, minlen)) == NULL) {
1463		IPSECSTAT_INC(ips_in_inval);
1464		return (NULL);		/* Bypass caller processing. */
1465	}
1466	data = mtod(m, caddr_t);	/* Points to ip header. */
1467	payload = m->m_len - off;	/* Size of payload. */
1468
1469	if (payload == 1 && data[off] == '\xff')
1470		return (m);		/* NB: keepalive packet, no decap. */
1471
1472	up = intoudpcb(inp);
1473	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1474	KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1475	    ("u_flags 0x%x", up->u_flags));
1476
1477	/*
1478	 * Check that the payload is large enough to hold an
1479	 * ESP header and compute the amount of data to remove.
1480	 *
1481	 * NB: the caller has already done a pullup for us.
1482	 * XXX can we assume alignment and eliminate bcopys?
1483	 */
1484	if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1485		/*
1486		 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1487		 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1488		 * possible AH mode non-IKE marker+non-ESP marker
1489		 * from draft-ietf-ipsec-udp-encaps-00.txt.
1490		 */
1491		uint64_t marker;
1492
1493		if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1494			return (m);	/* NB: no decap. */
1495		bcopy(data + off, &marker, sizeof(uint64_t));
1496		if (marker != 0)	/* Non-IKE marker. */
1497			return (m);	/* NB: no decap. */
1498		skip = sizeof(uint64_t) + sizeof(struct udphdr);
1499	} else {
1500		uint32_t spi;
1501
1502		if (payload <= sizeof(struct esp)) {
1503			IPSECSTAT_INC(ips_in_inval);
1504			m_freem(m);
1505			return (NULL);	/* Discard. */
1506		}
1507		bcopy(data + off, &spi, sizeof(uint32_t));
1508		if (spi == 0)		/* Non-ESP marker. */
1509			return (m);	/* NB: no decap. */
1510		skip = sizeof(struct udphdr);
1511	}
1512
1513	/*
1514	 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1515	 * the UDP ports. This is required if we want to select
1516	 * the right SPD for multiple hosts behind same NAT.
1517	 *
1518	 * NB: ports are maintained in network byte order everywhere
1519	 *     in the NAT-T code.
1520	 */
1521	tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1522		2 * sizeof(uint16_t), M_NOWAIT);
1523	if (tag == NULL) {
1524		IPSECSTAT_INC(ips_in_nomem);
1525		m_freem(m);
1526		return (NULL);		/* Discard. */
1527	}
1528	iphlen = off - sizeof(struct udphdr);
1529	udphdr = (struct udphdr *)(data + iphlen);
1530	((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1531	((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1532	m_tag_prepend(m, tag);
1533
1534	/*
1535	 * Remove the UDP header (and possibly the non ESP marker)
1536	 * IP header length is iphlen
1537	 * Before:
1538	 *   <--- off --->
1539	 *   +----+------+-----+
1540	 *   | IP |  UDP | ESP |
1541	 *   +----+------+-----+
1542	 *        <-skip->
1543	 * After:
1544	 *          +----+-----+
1545	 *          | IP | ESP |
1546	 *          +----+-----+
1547	 *   <-skip->
1548	 */
1549	ovbcopy(data, data + skip, iphlen);
1550	m_adj(m, skip);
1551
1552	ip = mtod(m, struct ip *);
1553	ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1554	ip->ip_p = IPPROTO_ESP;
1555
1556	/*
1557	 * We cannot yet update the cksums so clear any
1558	 * h/w cksum flags as they are no longer valid.
1559	 */
1560	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1561		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1562
1563	(void) ipsec4_common_input(m, iphlen, ip->ip_p);
1564	return (NULL);			/* NB: consumed, bypass processing. */
1565}
1566#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1567
1568static void
1569udp_abort(struct socket *so)
1570{
1571	struct inpcb *inp;
1572	struct inpcbinfo *pcbinfo;
1573
1574	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1575	inp = sotoinpcb(so);
1576	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1577	INP_WLOCK(inp);
1578	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1579		INP_HASH_WLOCK(pcbinfo);
1580		in_pcbdisconnect(inp);
1581		inp->inp_laddr.s_addr = INADDR_ANY;
1582		INP_HASH_WUNLOCK(pcbinfo);
1583		soisdisconnected(so);
1584	}
1585	INP_WUNLOCK(inp);
1586}
1587
1588static int
1589udp_attach(struct socket *so, int proto, struct thread *td)
1590{
1591	struct inpcb *inp;
1592	struct inpcbinfo *pcbinfo;
1593	int error;
1594
1595	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1596	inp = sotoinpcb(so);
1597	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1598	error = soreserve(so, udp_sendspace, udp_recvspace);
1599	if (error)
1600		return (error);
1601	INP_INFO_WLOCK(pcbinfo);
1602	error = in_pcballoc(so, pcbinfo);
1603	if (error) {
1604		INP_INFO_WUNLOCK(pcbinfo);
1605		return (error);
1606	}
1607
1608	inp = sotoinpcb(so);
1609	inp->inp_vflag |= INP_IPV4;
1610	inp->inp_ip_ttl = V_ip_defttl;
1611
1612	error = udp_newudpcb(inp);
1613	if (error) {
1614		in_pcbdetach(inp);
1615		in_pcbfree(inp);
1616		INP_INFO_WUNLOCK(pcbinfo);
1617		return (error);
1618	}
1619
1620	INP_WUNLOCK(inp);
1621	INP_INFO_WUNLOCK(pcbinfo);
1622	return (0);
1623}
1624#endif /* INET */
1625
1626int
1627udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1628{
1629	struct inpcb *inp;
1630	struct udpcb *up;
1631
1632	KASSERT(so->so_type == SOCK_DGRAM,
1633	    ("udp_set_kernel_tunneling: !dgram"));
1634	inp = sotoinpcb(so);
1635	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1636	INP_WLOCK(inp);
1637	up = intoudpcb(inp);
1638	if (up->u_tun_func != NULL) {
1639		INP_WUNLOCK(inp);
1640		return (EBUSY);
1641	}
1642	up->u_tun_func = f;
1643	INP_WUNLOCK(inp);
1644	return (0);
1645}
1646
1647#ifdef INET
1648static int
1649udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1650{
1651	struct inpcb *inp;
1652	struct inpcbinfo *pcbinfo;
1653	int error;
1654
1655	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1656	inp = sotoinpcb(so);
1657	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1658	INP_WLOCK(inp);
1659	INP_HASH_WLOCK(pcbinfo);
1660	error = in_pcbbind(inp, nam, td->td_ucred);
1661	INP_HASH_WUNLOCK(pcbinfo);
1662	INP_WUNLOCK(inp);
1663	return (error);
1664}
1665
1666static void
1667udp_close(struct socket *so)
1668{
1669	struct inpcb *inp;
1670	struct inpcbinfo *pcbinfo;
1671
1672	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1673	inp = sotoinpcb(so);
1674	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1675	INP_WLOCK(inp);
1676	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1677		INP_HASH_WLOCK(pcbinfo);
1678		in_pcbdisconnect(inp);
1679		inp->inp_laddr.s_addr = INADDR_ANY;
1680		INP_HASH_WUNLOCK(pcbinfo);
1681		soisdisconnected(so);
1682	}
1683	INP_WUNLOCK(inp);
1684}
1685
1686static int
1687udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1688{
1689	struct inpcb *inp;
1690	struct inpcbinfo *pcbinfo;
1691	struct sockaddr_in *sin;
1692	int error;
1693
1694	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1695	inp = sotoinpcb(so);
1696	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1697	INP_WLOCK(inp);
1698	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1699		INP_WUNLOCK(inp);
1700		return (EISCONN);
1701	}
1702	sin = (struct sockaddr_in *)nam;
1703	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1704	if (error != 0) {
1705		INP_WUNLOCK(inp);
1706		return (error);
1707	}
1708	INP_HASH_WLOCK(pcbinfo);
1709	error = in_pcbconnect(inp, nam, td->td_ucred);
1710	INP_HASH_WUNLOCK(pcbinfo);
1711	if (error == 0)
1712		soisconnected(so);
1713	INP_WUNLOCK(inp);
1714	return (error);
1715}
1716
1717static void
1718udp_detach(struct socket *so)
1719{
1720	struct inpcb *inp;
1721	struct inpcbinfo *pcbinfo;
1722	struct udpcb *up;
1723
1724	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1725	inp = sotoinpcb(so);
1726	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1727	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1728	    ("udp_detach: not disconnected"));
1729	INP_INFO_WLOCK(pcbinfo);
1730	INP_WLOCK(inp);
1731	up = intoudpcb(inp);
1732	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1733	inp->inp_ppcb = NULL;
1734	in_pcbdetach(inp);
1735	in_pcbfree(inp);
1736	INP_INFO_WUNLOCK(pcbinfo);
1737	udp_discardcb(up);
1738}
1739
1740static int
1741udp_disconnect(struct socket *so)
1742{
1743	struct inpcb *inp;
1744	struct inpcbinfo *pcbinfo;
1745
1746	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1747	inp = sotoinpcb(so);
1748	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1749	INP_WLOCK(inp);
1750	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1751		INP_WUNLOCK(inp);
1752		return (ENOTCONN);
1753	}
1754	INP_HASH_WLOCK(pcbinfo);
1755	in_pcbdisconnect(inp);
1756	inp->inp_laddr.s_addr = INADDR_ANY;
1757	INP_HASH_WUNLOCK(pcbinfo);
1758	SOCK_LOCK(so);
1759	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1760	SOCK_UNLOCK(so);
1761	INP_WUNLOCK(inp);
1762	return (0);
1763}
1764
1765static int
1766udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1767    struct mbuf *control, struct thread *td)
1768{
1769	struct inpcb *inp;
1770
1771	inp = sotoinpcb(so);
1772	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1773	return (udp_output(inp, m, addr, control, td));
1774}
1775#endif /* INET */
1776
1777int
1778udp_shutdown(struct socket *so)
1779{
1780	struct inpcb *inp;
1781
1782	inp = sotoinpcb(so);
1783	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1784	INP_WLOCK(inp);
1785	socantsendmore(so);
1786	INP_WUNLOCK(inp);
1787	return (0);
1788}
1789
1790#ifdef INET
1791struct pr_usrreqs udp_usrreqs = {
1792	.pru_abort =		udp_abort,
1793	.pru_attach =		udp_attach,
1794	.pru_bind =		udp_bind,
1795	.pru_connect =		udp_connect,
1796	.pru_control =		in_control,
1797	.pru_detach =		udp_detach,
1798	.pru_disconnect =	udp_disconnect,
1799	.pru_peeraddr =		in_getpeeraddr,
1800	.pru_send =		udp_send,
1801	.pru_soreceive =	soreceive_dgram,
1802	.pru_sosend =		sosend_dgram,
1803	.pru_shutdown =		udp_shutdown,
1804	.pru_sockaddr =		in_getsockaddr,
1805	.pru_sosetlabel =	in_pcbsosetlabel,
1806	.pru_close =		udp_close,
1807};
1808#endif /* INET */
1809