udp_usrreq.c revision 272661
1132332Smarcel/*-
2132332Smarcel * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3132332Smarcel *	The Regents of the University of California.
4132332Smarcel * Copyright (c) 2008 Robert N. M. Watson
5132332Smarcel * Copyright (c) 2010-2011 Juniper Networks, Inc.
6132332Smarcel * Copyright (c) 2014 Kevin Lo
7132332Smarcel * All rights reserved.
8132332Smarcel *
9132332Smarcel * Portions of this software were developed by Robert N. M. Watson under
10132332Smarcel * contract to Juniper Networks, Inc.
11132332Smarcel *
12132332Smarcel * Redistribution and use in source and binary forms, with or without
13132332Smarcel * modification, are permitted provided that the following conditions
14132332Smarcel * are met:
15132332Smarcel * 1. Redistributions of source code must retain the above copyright
16132332Smarcel *    notice, this list of conditions and the following disclaimer.
17132332Smarcel * 2. Redistributions in binary form must reproduce the above copyright
18132332Smarcel *    notice, this list of conditions and the following disclaimer in the
19132332Smarcel *    documentation and/or other materials provided with the distribution.
20132332Smarcel * 4. Neither the name of the University nor the names of its contributors
21132332Smarcel *    may be used to endorse or promote products derived from this software
22132332Smarcel *    without specific prior written permission.
23132332Smarcel *
24132332Smarcel * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25132332Smarcel * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26132332Smarcel * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27132332Smarcel * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28132332Smarcel * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29132332Smarcel * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30132332Smarcel * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31132332Smarcel * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32132332Smarcel * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33132332Smarcel * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34132332Smarcel * SUCH DAMAGE.
35132332Smarcel *
36132332Smarcel *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37181059Smarcel */
38181059Smarcel
39181059Smarcel#include <sys/cdefs.h>
40181059Smarcel__FBSDID("$FreeBSD: stable/10/sys/netinet/udp_usrreq.c 272661 2014-10-06 17:04:26Z tuexen $");
41181059Smarcel
42181059Smarcel#include "opt_ipfw.h"
43132332Smarcel#include "opt_inet.h"
44181059Smarcel#include "opt_inet6.h"
45132332Smarcel#include "opt_ipsec.h"
46132332Smarcel#include "opt_kdtrace.h"
47132332Smarcel
48132332Smarcel#include <sys/param.h>
49132332Smarcel#include <sys/domain.h>
50132332Smarcel#include <sys/eventhandler.h>
51132332Smarcel#include <sys/jail.h>
52132332Smarcel#include <sys/kernel.h>
53132332Smarcel#include <sys/lock.h>
54132332Smarcel#include <sys/malloc.h>
55132332Smarcel#include <sys/mbuf.h>
56132332Smarcel#include <sys/priv.h>
57132332Smarcel#include <sys/proc.h>
58132332Smarcel#include <sys/protosw.h>
59132332Smarcel#include <sys/sdt.h>
60133802Sdavidxu#include <sys/signalvar.h>
61133802Sdavidxu#include <sys/socket.h>
62133802Sdavidxu#include <sys/socketvar.h>
63133802Sdavidxu#include <sys/sx.h>
64133802Sdavidxu#include <sys/sysctl.h>
65133802Sdavidxu#include <sys/syslog.h>
66133802Sdavidxu#include <sys/systm.h>
67133802Sdavidxu
68133802Sdavidxu#include <vm/uma.h>
69133802Sdavidxu
70133802Sdavidxu#include <net/if.h>
71133802Sdavidxu#include <net/route.h>
72133802Sdavidxu
73133802Sdavidxu#include <netinet/in.h>
74133802Sdavidxu#include <netinet/in_kdtrace.h>
75133802Sdavidxu#include <netinet/in_pcb.h>
76133802Sdavidxu#include <netinet/in_systm.h>
77158680Sdavidxu#include <netinet/in_var.h>
78158680Sdavidxu#include <netinet/ip.h>
79132332Smarcel#ifdef INET6
80132332Smarcel#include <netinet/ip6.h>
81132332Smarcel#endif
82132332Smarcel#include <netinet/ip_icmp.h>
83132332Smarcel#include <netinet/icmp_var.h>
84132332Smarcel#include <netinet/ip_var.h>
85132332Smarcel#include <netinet/ip_options.h>
86132332Smarcel#ifdef INET6
87132332Smarcel#include <netinet6/ip6_var.h>
88146818Sdfr#endif
89146818Sdfr#include <netinet/udp.h>
90146818Sdfr#include <netinet/udp_var.h>
91146818Sdfr#include <netinet/udplite.h>
92132332Smarcel
93132332Smarcel#ifdef IPSEC
94132332Smarcel#include <netipsec/ipsec.h>
95#include <netipsec/esp.h>
96#endif
97
98#include <machine/in_cksum.h>
99
100#include <security/mac/mac_framework.h>
101
102/*
103 * UDP and UDP-Lite protocols implementation.
104 * Per RFC 768, August, 1980.
105 * Per RFC 3828, July, 2004.
106 */
107
108/*
109 * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
110 * removes the only data integrity mechanism for packets and malformed
111 * packets that would otherwise be discarded due to bad checksums, and may
112 * cause problems (especially for NFS data blocks).
113 */
114VNET_DEFINE(int, udp_cksum) = 1;
115SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
116    &VNET_NAME(udp_cksum), 0, "compute udp checksum");
117
118int	udp_log_in_vain = 0;
119SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
120    &udp_log_in_vain, 0, "Log all incoming UDP packets");
121
122VNET_DEFINE(int, udp_blackhole) = 0;
123SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
124    &VNET_NAME(udp_blackhole), 0,
125    "Do not send port unreachables for refused connects");
126
127u_long	udp_sendspace = 9216;		/* really max datagram size */
128					/* 40 1K datagrams */
129SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130    &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131
132u_long	udp_recvspace = 40 * (1024 +
133#ifdef INET6
134				      sizeof(struct sockaddr_in6)
135#else
136				      sizeof(struct sockaddr_in)
137#endif
138				      );
139
140SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141    &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142
143VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144VNET_DEFINE(struct inpcbinfo, udbinfo);
145VNET_DEFINE(struct inpcbhead, ulitecb);
146VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147static VNET_DEFINE(uma_zone_t, udpcb_zone);
148#define	V_udpcb_zone			VNET(udpcb_zone)
149
150#ifndef UDBHASHSIZE
151#define	UDBHASHSIZE	128
152#endif
153
154VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155VNET_PCPUSTAT_SYSINIT(udpstat);
156SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157    udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158
159#ifdef VIMAGE
160VNET_PCPUSTAT_SYSUNINIT(udpstat);
161#endif /* VIMAGE */
162#ifdef INET
163static void	udp_detach(struct socket *so);
164static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165		    struct mbuf *, struct thread *);
166#endif
167
168#ifdef IPSEC
169#ifdef IPSEC_NAT_T
170#define	UF_ESPINUDP_ALL	(UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
171#ifdef INET
172static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
173#endif
174#endif /* IPSEC_NAT_T */
175#endif /* IPSEC */
176
177static void
178udp_zone_change(void *tag)
179{
180
181	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
182	uma_zone_set_max(V_udpcb_zone, maxsockets);
183}
184
185static int
186udp_inpcb_init(void *mem, int size, int flags)
187{
188	struct inpcb *inp;
189
190	inp = mem;
191	INP_LOCK_INIT(inp, "inp", "udpinp");
192	return (0);
193}
194
195static int
196udplite_inpcb_init(void *mem, int size, int flags)
197{
198	struct inpcb *inp;
199
200	inp = mem;
201	INP_LOCK_INIT(inp, "inp", "udpliteinp");
202	return (0);
203}
204
205void
206udp_init(void)
207{
208
209	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
210	    "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
211	    IPI_HASHFIELDS_2TUPLE);
212	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214	uma_zone_set_max(V_udpcb_zone, maxsockets);
215	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
216	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
217	    EVENTHANDLER_PRI_ANY);
218}
219
220void
221udplite_init(void)
222{
223
224	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
225	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
226	    UMA_ZONE_NOFREE, IPI_HASHFIELDS_2TUPLE);
227}
228
229/*
230 * Kernel module interface for updating udpstat.  The argument is an index
231 * into udpstat treated as an array of u_long.  While this encodes the
232 * general layout of udpstat into the caller, it doesn't encode its location,
233 * so that future changes to add, for example, per-CPU stats support won't
234 * cause binary compatibility problems for kernel modules.
235 */
236void
237kmod_udpstat_inc(int statnum)
238{
239
240	counter_u64_add(VNET(udpstat)[statnum], 1);
241}
242
243int
244udp_newudpcb(struct inpcb *inp)
245{
246	struct udpcb *up;
247
248	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
249	if (up == NULL)
250		return (ENOBUFS);
251	inp->inp_ppcb = up;
252	return (0);
253}
254
255void
256udp_discardcb(struct udpcb *up)
257{
258
259	uma_zfree(V_udpcb_zone, up);
260}
261
262#ifdef VIMAGE
263void
264udp_destroy(void)
265{
266
267	in_pcbinfo_destroy(&V_udbinfo);
268	uma_zdestroy(V_udpcb_zone);
269}
270
271void
272udplite_destroy(void)
273{
274
275	in_pcbinfo_destroy(&V_ulitecbinfo);
276}
277#endif
278
279#ifdef INET
280/*
281 * Subroutine of udp_input(), which appends the provided mbuf chain to the
282 * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283 * contains the source address.  If the socket ends up being an IPv6 socket,
284 * udp_append() will convert to a sockaddr_in6 before passing the address
285 * into the socket code.
286 */
287static void
288udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
289    struct sockaddr_in *udp_in)
290{
291	struct sockaddr *append_sa;
292	struct socket *so;
293	struct mbuf *opts = 0;
294#ifdef INET6
295	struct sockaddr_in6 udp_in6;
296#endif
297	struct udpcb *up;
298
299	INP_LOCK_ASSERT(inp);
300
301	/*
302	 * Engage the tunneling protocol.
303	 */
304	up = intoudpcb(inp);
305	if (up->u_tun_func != NULL) {
306		(*up->u_tun_func)(n, off, inp);
307		return;
308	}
309
310	if (n == NULL)
311		return;
312
313	off += sizeof(struct udphdr);
314
315#ifdef IPSEC
316	/* Check AH/ESP integrity. */
317	if (ipsec4_in_reject(n, inp)) {
318		m_freem(n);
319		IPSECSTAT_INC(ips_in_polvio);
320		return;
321	}
322#ifdef IPSEC_NAT_T
323	up = intoudpcb(inp);
324	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
325	if (up->u_flags & UF_ESPINUDP_ALL) {	/* IPSec UDP encaps. */
326		n = udp4_espdecap(inp, n, off);
327		if (n == NULL)				/* Consumed. */
328			return;
329	}
330#endif /* IPSEC_NAT_T */
331#endif /* IPSEC */
332#ifdef MAC
333	if (mac_inpcb_check_deliver(inp, n) != 0) {
334		m_freem(n);
335		return;
336	}
337#endif /* MAC */
338	if (inp->inp_flags & INP_CONTROLOPTS ||
339	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
340#ifdef INET6
341		if (inp->inp_vflag & INP_IPV6)
342			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
343		else
344#endif /* INET6 */
345			ip_savecontrol(inp, &opts, ip, n);
346	}
347#ifdef INET6
348	if (inp->inp_vflag & INP_IPV6) {
349		bzero(&udp_in6, sizeof(udp_in6));
350		udp_in6.sin6_len = sizeof(udp_in6);
351		udp_in6.sin6_family = AF_INET6;
352		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
353		append_sa = (struct sockaddr *)&udp_in6;
354	} else
355#endif /* INET6 */
356		append_sa = (struct sockaddr *)udp_in;
357	m_adj(n, off);
358
359	so = inp->inp_socket;
360	SOCKBUF_LOCK(&so->so_rcv);
361	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
362		SOCKBUF_UNLOCK(&so->so_rcv);
363		m_freem(n);
364		if (opts)
365			m_freem(opts);
366		UDPSTAT_INC(udps_fullsock);
367	} else
368		sorwakeup_locked(so);
369}
370
371void
372udp_input(struct mbuf *m, int off)
373{
374	int iphlen = off;
375	struct ip *ip;
376	struct udphdr *uh;
377	struct ifnet *ifp;
378	struct inpcb *inp;
379	uint16_t len, ip_len;
380	struct inpcbinfo *pcbinfo;
381	struct ip save_ip;
382	struct sockaddr_in udp_in;
383	struct m_tag *fwd_tag;
384	int cscov_partial;
385	uint8_t pr;
386
387	ifp = m->m_pkthdr.rcvif;
388	UDPSTAT_INC(udps_ipackets);
389
390	/*
391	 * Strip IP options, if any; should skip this, make available to
392	 * user, and use on returned packets, but we don't yet have a way to
393	 * check the checksum with options still present.
394	 */
395	if (iphlen > sizeof (struct ip)) {
396		ip_stripoptions(m);
397		iphlen = sizeof(struct ip);
398	}
399
400	/*
401	 * Get IP and UDP header together in first mbuf.
402	 */
403	ip = mtod(m, struct ip *);
404	if (m->m_len < iphlen + sizeof(struct udphdr)) {
405		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
406			UDPSTAT_INC(udps_hdrops);
407			return;
408		}
409		ip = mtod(m, struct ip *);
410	}
411	uh = (struct udphdr *)((caddr_t)ip + iphlen);
412	pr = ip->ip_p;
413	cscov_partial = (pr == IPPROTO_UDPLITE) ? 1 : 0;
414
415	/*
416	 * Destination port of 0 is illegal, based on RFC768.
417	 */
418	if (uh->uh_dport == 0)
419		goto badunlocked;
420
421	/*
422	 * Construct sockaddr format source address.  Stuff source address
423	 * and datagram in user buffer.
424	 */
425	bzero(&udp_in, sizeof(udp_in));
426	udp_in.sin_len = sizeof(udp_in);
427	udp_in.sin_family = AF_INET;
428	udp_in.sin_port = uh->uh_sport;
429	udp_in.sin_addr = ip->ip_src;
430
431	/*
432	 * Make mbuf data length reflect UDP length.  If not enough data to
433	 * reflect UDP length, drop.
434	 */
435	len = ntohs((u_short)uh->uh_ulen);
436	ip_len = ntohs(ip->ip_len) - iphlen;
437	if (pr == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
438		/* Zero means checksum over the complete packet. */
439		if (len == 0)
440			len = ip_len;
441		cscov_partial = 0;
442	}
443	if (ip_len != len) {
444		if (len > ip_len || len < sizeof(struct udphdr)) {
445			UDPSTAT_INC(udps_badlen);
446			goto badunlocked;
447		}
448		if (pr == IPPROTO_UDP)
449			m_adj(m, len - ip_len);
450	}
451
452	/*
453	 * Save a copy of the IP header in case we want restore it for
454	 * sending an ICMP error message in response.
455	 */
456	if (!V_udp_blackhole)
457		save_ip = *ip;
458	else
459		memset(&save_ip, 0, sizeof(save_ip));
460
461	/*
462	 * Checksum extended UDP header and data.
463	 */
464	if (uh->uh_sum) {
465		u_short uh_sum;
466
467		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
468		    !cscov_partial) {
469			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
470				uh_sum = m->m_pkthdr.csum_data;
471			else
472				uh_sum = in_pseudo(ip->ip_src.s_addr,
473				    ip->ip_dst.s_addr, htonl((u_short)len +
474				    m->m_pkthdr.csum_data + pr));
475			uh_sum ^= 0xffff;
476		} else {
477			char b[9];
478
479			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
480			bzero(((struct ipovly *)ip)->ih_x1, 9);
481			((struct ipovly *)ip)->ih_len = (pr == IPPROTO_UDP) ?
482			    uh->uh_ulen : htons(ip_len);
483			uh_sum = in_cksum(m, len + sizeof (struct ip));
484			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
485		}
486		if (uh_sum) {
487			UDPSTAT_INC(udps_badsum);
488			m_freem(m);
489			return;
490		}
491	} else {
492		if (pr == IPPROTO_UDP) {
493			UDPSTAT_INC(udps_nosum);
494		} else {
495			/* UDPLite requires a checksum */
496			/* XXX: What is the right UDPLite MIB counter here? */
497			m_freem(m);
498			return;
499		}
500	}
501
502	pcbinfo = get_inpcbinfo(pr);
503	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
504	    in_broadcast(ip->ip_dst, ifp)) {
505		struct inpcb *last;
506		struct inpcbhead *pcblist;
507		struct ip_moptions *imo;
508
509		INP_INFO_RLOCK(pcbinfo);
510		pcblist = get_pcblist(pr);
511		last = NULL;
512		LIST_FOREACH(inp, pcblist, inp_list) {
513			if (inp->inp_lport != uh->uh_dport)
514				continue;
515#ifdef INET6
516			if ((inp->inp_vflag & INP_IPV4) == 0)
517				continue;
518#endif
519			if (inp->inp_laddr.s_addr != INADDR_ANY &&
520			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
521				continue;
522			if (inp->inp_faddr.s_addr != INADDR_ANY &&
523			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
524				continue;
525			if (inp->inp_fport != 0 &&
526			    inp->inp_fport != uh->uh_sport)
527				continue;
528
529			INP_RLOCK(inp);
530
531			/*
532			 * XXXRW: Because we weren't holding either the inpcb
533			 * or the hash lock when we checked for a match
534			 * before, we should probably recheck now that the
535			 * inpcb lock is held.
536			 */
537
538			/*
539			 * Handle socket delivery policy for any-source
540			 * and source-specific multicast. [RFC3678]
541			 */
542			imo = inp->inp_moptions;
543			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
544				struct sockaddr_in	 group;
545				int			 blocked;
546				if (imo == NULL) {
547					INP_RUNLOCK(inp);
548					continue;
549				}
550				bzero(&group, sizeof(struct sockaddr_in));
551				group.sin_len = sizeof(struct sockaddr_in);
552				group.sin_family = AF_INET;
553				group.sin_addr = ip->ip_dst;
554
555				blocked = imo_multi_filter(imo, ifp,
556					(struct sockaddr *)&group,
557					(struct sockaddr *)&udp_in);
558				if (blocked != MCAST_PASS) {
559					if (blocked == MCAST_NOTGMEMBER)
560						IPSTAT_INC(ips_notmember);
561					if (blocked == MCAST_NOTSMEMBER ||
562					    blocked == MCAST_MUTED)
563						UDPSTAT_INC(udps_filtermcast);
564					INP_RUNLOCK(inp);
565					continue;
566				}
567			}
568			if (last != NULL) {
569				struct mbuf *n;
570
571				n = m_copy(m, 0, M_COPYALL);
572				udp_append(last, ip, n, iphlen, &udp_in);
573				INP_RUNLOCK(last);
574			}
575			last = inp;
576			/*
577			 * Don't look for additional matches if this one does
578			 * not have either the SO_REUSEPORT or SO_REUSEADDR
579			 * socket options set.  This heuristic avoids
580			 * searching through all pcbs in the common case of a
581			 * non-shared port.  It assumes that an application
582			 * will never clear these options after setting them.
583			 */
584			if ((last->inp_socket->so_options &
585			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
586				break;
587		}
588
589		if (last == NULL) {
590			/*
591			 * No matching pcb found; discard datagram.  (No need
592			 * to send an ICMP Port Unreachable for a broadcast
593			 * or multicast datgram.)
594			 */
595			UDPSTAT_INC(udps_noportbcast);
596			if (inp)
597				INP_RUNLOCK(inp);
598			INP_INFO_RUNLOCK(pcbinfo);
599			goto badunlocked;
600		}
601		udp_append(last, ip, m, iphlen, &udp_in);
602		INP_RUNLOCK(last);
603		INP_INFO_RUNLOCK(pcbinfo);
604		return;
605	}
606
607	/*
608	 * Locate pcb for datagram.
609	 */
610
611	/*
612	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
613	 */
614	if ((m->m_flags & M_IP_NEXTHOP) &&
615	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
616		struct sockaddr_in *next_hop;
617
618		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
619
620		/*
621		 * Transparently forwarded. Pretend to be the destination.
622		 * Already got one like this?
623		 */
624		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
625		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
626		if (!inp) {
627			/*
628			 * It's new.  Try to find the ambushing socket.
629			 * Because we've rewritten the destination address,
630			 * any hardware-generated hash is ignored.
631			 */
632			inp = in_pcblookup(pcbinfo, ip->ip_src,
633			    uh->uh_sport, next_hop->sin_addr,
634			    next_hop->sin_port ? htons(next_hop->sin_port) :
635			    uh->uh_dport, INPLOOKUP_WILDCARD |
636			    INPLOOKUP_RLOCKPCB, ifp);
637		}
638		/* Remove the tag from the packet. We don't need it anymore. */
639		m_tag_delete(m, fwd_tag);
640		m->m_flags &= ~M_IP_NEXTHOP;
641	} else
642		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
643		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
644		    INPLOOKUP_RLOCKPCB, ifp, m);
645	if (inp == NULL) {
646		if (udp_log_in_vain) {
647			char buf[4*sizeof "123"];
648
649			strcpy(buf, inet_ntoa(ip->ip_dst));
650			log(LOG_INFO,
651			    "Connection attempt to UDP %s:%d from %s:%d\n",
652			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
653			    ntohs(uh->uh_sport));
654		}
655		UDPSTAT_INC(udps_noport);
656		if (m->m_flags & (M_BCAST | M_MCAST)) {
657			UDPSTAT_INC(udps_noportbcast);
658			goto badunlocked;
659		}
660		if (V_udp_blackhole)
661			goto badunlocked;
662		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
663			goto badunlocked;
664		*ip = save_ip;
665		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
666		return;
667	}
668
669	/*
670	 * Check the minimum TTL for socket.
671	 */
672	INP_RLOCK_ASSERT(inp);
673	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
674		INP_RUNLOCK(inp);
675		m_freem(m);
676		return;
677	}
678	if (cscov_partial) {
679		struct udpcb *up;
680
681		up = intoudpcb(inp);
682		if (up->u_rxcslen == 0 || up->u_rxcslen > len) {
683			INP_RUNLOCK(inp);
684			m_freem(m);
685			return;
686		}
687	}
688
689	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
690	udp_append(inp, ip, m, iphlen, &udp_in);
691	INP_RUNLOCK(inp);
692	return;
693
694badunlocked:
695	m_freem(m);
696}
697#endif /* INET */
698
699/*
700 * Notify a udp user of an asynchronous error; just wake up so that they can
701 * collect error status.
702 */
703struct inpcb *
704udp_notify(struct inpcb *inp, int errno)
705{
706
707	/*
708	 * While udp_ctlinput() always calls udp_notify() with a read lock
709	 * when invoking it directly, in_pcbnotifyall() currently uses write
710	 * locks due to sharing code with TCP.  For now, accept either a read
711	 * or a write lock, but a read lock is sufficient.
712	 */
713	INP_LOCK_ASSERT(inp);
714
715	inp->inp_socket->so_error = errno;
716	sorwakeup(inp->inp_socket);
717	sowwakeup(inp->inp_socket);
718	return (inp);
719}
720
721#ifdef INET
722static void
723udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
724    struct inpcbinfo *pcbinfo)
725{
726	struct ip *ip = vip;
727	struct udphdr *uh;
728	struct in_addr faddr;
729	struct inpcb *inp;
730
731	faddr = ((struct sockaddr_in *)sa)->sin_addr;
732	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
733		return;
734
735	/*
736	 * Redirects don't need to be handled up here.
737	 */
738	if (PRC_IS_REDIRECT(cmd))
739		return;
740
741	/*
742	 * Hostdead is ugly because it goes linearly through all PCBs.
743	 *
744	 * XXX: We never get this from ICMP, otherwise it makes an excellent
745	 * DoS attack on machines with many connections.
746	 */
747	if (cmd == PRC_HOSTDEAD)
748		ip = NULL;
749	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
750		return;
751	if (ip != NULL) {
752		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
753		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
754		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
755		if (inp != NULL) {
756			INP_RLOCK_ASSERT(inp);
757			if (inp->inp_socket != NULL) {
758				udp_notify(inp, inetctlerrmap[cmd]);
759			}
760			INP_RUNLOCK(inp);
761		}
762	} else
763		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
764		    udp_notify);
765}
766void
767udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
768{
769
770	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
771}
772
773void
774udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
775{
776
777	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
778}
779#endif /* INET */
780
781static int
782udp_pcblist(SYSCTL_HANDLER_ARGS)
783{
784	int error, i, n;
785	struct inpcb *inp, **inp_list;
786	inp_gen_t gencnt;
787	struct xinpgen xig;
788
789	/*
790	 * The process of preparing the PCB list is too time-consuming and
791	 * resource-intensive to repeat twice on every request.
792	 */
793	if (req->oldptr == 0) {
794		n = V_udbinfo.ipi_count;
795		n += imax(n / 8, 10);
796		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
797		return (0);
798	}
799
800	if (req->newptr != 0)
801		return (EPERM);
802
803	/*
804	 * OK, now we're committed to doing something.
805	 */
806	INP_INFO_RLOCK(&V_udbinfo);
807	gencnt = V_udbinfo.ipi_gencnt;
808	n = V_udbinfo.ipi_count;
809	INP_INFO_RUNLOCK(&V_udbinfo);
810
811	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
812		+ n * sizeof(struct xinpcb));
813	if (error != 0)
814		return (error);
815
816	xig.xig_len = sizeof xig;
817	xig.xig_count = n;
818	xig.xig_gen = gencnt;
819	xig.xig_sogen = so_gencnt;
820	error = SYSCTL_OUT(req, &xig, sizeof xig);
821	if (error)
822		return (error);
823
824	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
825	if (inp_list == 0)
826		return (ENOMEM);
827
828	INP_INFO_RLOCK(&V_udbinfo);
829	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
830	     inp = LIST_NEXT(inp, inp_list)) {
831		INP_WLOCK(inp);
832		if (inp->inp_gencnt <= gencnt &&
833		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
834			in_pcbref(inp);
835			inp_list[i++] = inp;
836		}
837		INP_WUNLOCK(inp);
838	}
839	INP_INFO_RUNLOCK(&V_udbinfo);
840	n = i;
841
842	error = 0;
843	for (i = 0; i < n; i++) {
844		inp = inp_list[i];
845		INP_RLOCK(inp);
846		if (inp->inp_gencnt <= gencnt) {
847			struct xinpcb xi;
848
849			bzero(&xi, sizeof(xi));
850			xi.xi_len = sizeof xi;
851			/* XXX should avoid extra copy */
852			bcopy(inp, &xi.xi_inp, sizeof *inp);
853			if (inp->inp_socket)
854				sotoxsocket(inp->inp_socket, &xi.xi_socket);
855			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
856			INP_RUNLOCK(inp);
857			error = SYSCTL_OUT(req, &xi, sizeof xi);
858		} else
859			INP_RUNLOCK(inp);
860	}
861	INP_INFO_WLOCK(&V_udbinfo);
862	for (i = 0; i < n; i++) {
863		inp = inp_list[i];
864		INP_RLOCK(inp);
865		if (!in_pcbrele_rlocked(inp))
866			INP_RUNLOCK(inp);
867	}
868	INP_INFO_WUNLOCK(&V_udbinfo);
869
870	if (!error) {
871		/*
872		 * Give the user an updated idea of our state.  If the
873		 * generation differs from what we told her before, she knows
874		 * that something happened while we were processing this
875		 * request, and it might be necessary to retry.
876		 */
877		INP_INFO_RLOCK(&V_udbinfo);
878		xig.xig_gen = V_udbinfo.ipi_gencnt;
879		xig.xig_sogen = so_gencnt;
880		xig.xig_count = V_udbinfo.ipi_count;
881		INP_INFO_RUNLOCK(&V_udbinfo);
882		error = SYSCTL_OUT(req, &xig, sizeof xig);
883	}
884	free(inp_list, M_TEMP);
885	return (error);
886}
887
888SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
889    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
890    udp_pcblist, "S,xinpcb", "List of active UDP sockets");
891
892#ifdef INET
893static int
894udp_getcred(SYSCTL_HANDLER_ARGS)
895{
896	struct xucred xuc;
897	struct sockaddr_in addrs[2];
898	struct inpcb *inp;
899	int error;
900
901	error = priv_check(req->td, PRIV_NETINET_GETCRED);
902	if (error)
903		return (error);
904	error = SYSCTL_IN(req, addrs, sizeof(addrs));
905	if (error)
906		return (error);
907	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
908	    addrs[0].sin_addr, addrs[0].sin_port,
909	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
910	if (inp != NULL) {
911		INP_RLOCK_ASSERT(inp);
912		if (inp->inp_socket == NULL)
913			error = ENOENT;
914		if (error == 0)
915			error = cr_canseeinpcb(req->td->td_ucred, inp);
916		if (error == 0)
917			cru2x(inp->inp_cred, &xuc);
918		INP_RUNLOCK(inp);
919	} else
920		error = ENOENT;
921	if (error == 0)
922		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
923	return (error);
924}
925
926SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
927    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
928    udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
929#endif /* INET */
930
931int
932udp_ctloutput(struct socket *so, struct sockopt *sopt)
933{
934	struct inpcb *inp;
935	struct udpcb *up;
936	int isudplite, error, optval;
937
938	error = 0;
939	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
940	inp = sotoinpcb(so);
941	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
942	INP_WLOCK(inp);
943	if (sopt->sopt_level != so->so_proto->pr_protocol) {
944#ifdef INET6
945		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
946			INP_WUNLOCK(inp);
947			error = ip6_ctloutput(so, sopt);
948		}
949#endif
950#if defined(INET) && defined(INET6)
951		else
952#endif
953#ifdef INET
954		{
955			INP_WUNLOCK(inp);
956			error = ip_ctloutput(so, sopt);
957		}
958#endif
959		return (error);
960	}
961
962	switch (sopt->sopt_dir) {
963	case SOPT_SET:
964		switch (sopt->sopt_name) {
965		case UDP_ENCAP:
966			INP_WUNLOCK(inp);
967			error = sooptcopyin(sopt, &optval, sizeof optval,
968					    sizeof optval);
969			if (error)
970				break;
971			inp = sotoinpcb(so);
972			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
973			INP_WLOCK(inp);
974#ifdef IPSEC_NAT_T
975			up = intoudpcb(inp);
976			KASSERT(up != NULL, ("%s: up == NULL", __func__));
977#endif
978			switch (optval) {
979			case 0:
980				/* Clear all UDP encap. */
981#ifdef IPSEC_NAT_T
982				up->u_flags &= ~UF_ESPINUDP_ALL;
983#endif
984				break;
985#ifdef IPSEC_NAT_T
986			case UDP_ENCAP_ESPINUDP:
987			case UDP_ENCAP_ESPINUDP_NON_IKE:
988				up->u_flags &= ~UF_ESPINUDP_ALL;
989				if (optval == UDP_ENCAP_ESPINUDP)
990					up->u_flags |= UF_ESPINUDP;
991				else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
992					up->u_flags |= UF_ESPINUDP_NON_IKE;
993				break;
994#endif
995			default:
996				error = EINVAL;
997				break;
998			}
999			INP_WUNLOCK(inp);
1000			break;
1001		case UDPLITE_SEND_CSCOV:
1002		case UDPLITE_RECV_CSCOV:
1003			if (!isudplite) {
1004				INP_WUNLOCK(inp);
1005				error = ENOPROTOOPT;
1006				break;
1007			}
1008			INP_WUNLOCK(inp);
1009			error = sooptcopyin(sopt, &optval, sizeof(optval),
1010			    sizeof(optval));
1011			if (error != 0)
1012				break;
1013			inp = sotoinpcb(so);
1014			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1015			INP_WLOCK(inp);
1016			up = intoudpcb(inp);
1017			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1018			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1019				INP_WUNLOCK(inp);
1020				error = EINVAL;
1021				break;
1022			}
1023			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1024				up->u_txcslen = optval;
1025			else
1026				up->u_rxcslen = optval;
1027			INP_WUNLOCK(inp);
1028			break;
1029		default:
1030			INP_WUNLOCK(inp);
1031			error = ENOPROTOOPT;
1032			break;
1033		}
1034		break;
1035	case SOPT_GET:
1036		switch (sopt->sopt_name) {
1037#ifdef IPSEC_NAT_T
1038		case UDP_ENCAP:
1039			up = intoudpcb(inp);
1040			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1041			optval = up->u_flags & UF_ESPINUDP_ALL;
1042			INP_WUNLOCK(inp);
1043			error = sooptcopyout(sopt, &optval, sizeof optval);
1044			break;
1045#endif
1046		case UDPLITE_SEND_CSCOV:
1047		case UDPLITE_RECV_CSCOV:
1048			if (!isudplite) {
1049				INP_WUNLOCK(inp);
1050				error = ENOPROTOOPT;
1051				break;
1052			}
1053			up = intoudpcb(inp);
1054			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1055			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1056				optval = up->u_txcslen;
1057			else
1058				optval = up->u_rxcslen;
1059			INP_WUNLOCK(inp);
1060			error = sooptcopyout(sopt, &optval, sizeof(optval));
1061			break;
1062		default:
1063			INP_WUNLOCK(inp);
1064			error = ENOPROTOOPT;
1065			break;
1066		}
1067		break;
1068	}
1069	return (error);
1070}
1071
1072#ifdef INET
1073#define	UH_WLOCKED	2
1074#define	UH_RLOCKED	1
1075#define	UH_UNLOCKED	0
1076static int
1077udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1078    struct mbuf *control, struct thread *td)
1079{
1080	struct udpiphdr *ui;
1081	int len = m->m_pkthdr.len;
1082	struct in_addr faddr, laddr;
1083	struct cmsghdr *cm;
1084	struct inpcbinfo *pcbinfo;
1085	struct sockaddr_in *sin, src;
1086	int cscov_partial = 0;
1087	int error = 0;
1088	int ipflags;
1089	u_short fport, lport;
1090	int unlock_udbinfo;
1091	u_char tos;
1092	uint8_t pr;
1093	uint16_t cscov = 0;
1094
1095	/*
1096	 * udp_output() may need to temporarily bind or connect the current
1097	 * inpcb.  As such, we don't know up front whether we will need the
1098	 * pcbinfo lock or not.  Do any work to decide what is needed up
1099	 * front before acquiring any locks.
1100	 */
1101	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1102		if (control)
1103			m_freem(control);
1104		m_freem(m);
1105		return (EMSGSIZE);
1106	}
1107
1108	src.sin_family = 0;
1109	INP_RLOCK(inp);
1110	tos = inp->inp_ip_tos;
1111	if (control != NULL) {
1112		/*
1113		 * XXX: Currently, we assume all the optional information is
1114		 * stored in a single mbuf.
1115		 */
1116		if (control->m_next) {
1117			INP_RUNLOCK(inp);
1118			m_freem(control);
1119			m_freem(m);
1120			return (EINVAL);
1121		}
1122		for (; control->m_len > 0;
1123		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1124		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1125			cm = mtod(control, struct cmsghdr *);
1126			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1127			    || cm->cmsg_len > control->m_len) {
1128				error = EINVAL;
1129				break;
1130			}
1131			if (cm->cmsg_level != IPPROTO_IP)
1132				continue;
1133
1134			switch (cm->cmsg_type) {
1135			case IP_SENDSRCADDR:
1136				if (cm->cmsg_len !=
1137				    CMSG_LEN(sizeof(struct in_addr))) {
1138					error = EINVAL;
1139					break;
1140				}
1141				bzero(&src, sizeof(src));
1142				src.sin_family = AF_INET;
1143				src.sin_len = sizeof(src);
1144				src.sin_port = inp->inp_lport;
1145				src.sin_addr =
1146				    *(struct in_addr *)CMSG_DATA(cm);
1147				break;
1148
1149			case IP_TOS:
1150				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1151					error = EINVAL;
1152					break;
1153				}
1154				tos = *(u_char *)CMSG_DATA(cm);
1155				break;
1156
1157			default:
1158				error = ENOPROTOOPT;
1159				break;
1160			}
1161			if (error)
1162				break;
1163		}
1164		m_freem(control);
1165	}
1166	if (error) {
1167		INP_RUNLOCK(inp);
1168		m_freem(m);
1169		return (error);
1170	}
1171
1172	/*
1173	 * Depending on whether or not the application has bound or connected
1174	 * the socket, we may have to do varying levels of work.  The optimal
1175	 * case is for a connected UDP socket, as a global lock isn't
1176	 * required at all.
1177	 *
1178	 * In order to decide which we need, we require stability of the
1179	 * inpcb binding, which we ensure by acquiring a read lock on the
1180	 * inpcb.  This doesn't strictly follow the lock order, so we play
1181	 * the trylock and retry game; note that we may end up with more
1182	 * conservative locks than required the second time around, so later
1183	 * assertions have to accept that.  Further analysis of the number of
1184	 * misses under contention is required.
1185	 *
1186	 * XXXRW: Check that hash locking update here is correct.
1187	 */
1188	pr = inp->inp_socket->so_proto->pr_protocol;
1189	pcbinfo = get_inpcbinfo(pr);
1190	sin = (struct sockaddr_in *)addr;
1191	if (sin != NULL &&
1192	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1193		INP_RUNLOCK(inp);
1194		INP_WLOCK(inp);
1195		INP_HASH_WLOCK(pcbinfo);
1196		unlock_udbinfo = UH_WLOCKED;
1197	} else if ((sin != NULL && (
1198	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1199	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1200	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1201	    (inp->inp_lport == 0))) ||
1202	    (src.sin_family == AF_INET)) {
1203		INP_HASH_RLOCK(pcbinfo);
1204		unlock_udbinfo = UH_RLOCKED;
1205	} else
1206		unlock_udbinfo = UH_UNLOCKED;
1207
1208	/*
1209	 * If the IP_SENDSRCADDR control message was specified, override the
1210	 * source address for this datagram.  Its use is invalidated if the
1211	 * address thus specified is incomplete or clobbers other inpcbs.
1212	 */
1213	laddr = inp->inp_laddr;
1214	lport = inp->inp_lport;
1215	if (src.sin_family == AF_INET) {
1216		INP_HASH_LOCK_ASSERT(pcbinfo);
1217		if ((lport == 0) ||
1218		    (laddr.s_addr == INADDR_ANY &&
1219		     src.sin_addr.s_addr == INADDR_ANY)) {
1220			error = EINVAL;
1221			goto release;
1222		}
1223		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1224		    &laddr.s_addr, &lport, td->td_ucred);
1225		if (error)
1226			goto release;
1227	}
1228
1229	/*
1230	 * If a UDP socket has been connected, then a local address/port will
1231	 * have been selected and bound.
1232	 *
1233	 * If a UDP socket has not been connected to, then an explicit
1234	 * destination address must be used, in which case a local
1235	 * address/port may not have been selected and bound.
1236	 */
1237	if (sin != NULL) {
1238		INP_LOCK_ASSERT(inp);
1239		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1240			error = EISCONN;
1241			goto release;
1242		}
1243
1244		/*
1245		 * Jail may rewrite the destination address, so let it do
1246		 * that before we use it.
1247		 */
1248		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1249		if (error)
1250			goto release;
1251
1252		/*
1253		 * If a local address or port hasn't yet been selected, or if
1254		 * the destination address needs to be rewritten due to using
1255		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1256		 * to do the heavy lifting.  Once a port is selected, we
1257		 * commit the binding back to the socket; we also commit the
1258		 * binding of the address if in jail.
1259		 *
1260		 * If we already have a valid binding and we're not
1261		 * requesting a destination address rewrite, use a fast path.
1262		 */
1263		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1264		    inp->inp_lport == 0 ||
1265		    sin->sin_addr.s_addr == INADDR_ANY ||
1266		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1267			INP_HASH_LOCK_ASSERT(pcbinfo);
1268			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1269			    &lport, &faddr.s_addr, &fport, NULL,
1270			    td->td_ucred);
1271			if (error)
1272				goto release;
1273
1274			/*
1275			 * XXXRW: Why not commit the port if the address is
1276			 * !INADDR_ANY?
1277			 */
1278			/* Commit the local port if newly assigned. */
1279			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1280			    inp->inp_lport == 0) {
1281				INP_WLOCK_ASSERT(inp);
1282				INP_HASH_WLOCK_ASSERT(pcbinfo);
1283				/*
1284				 * Remember addr if jailed, to prevent
1285				 * rebinding.
1286				 */
1287				if (prison_flag(td->td_ucred, PR_IP4))
1288					inp->inp_laddr = laddr;
1289				inp->inp_lport = lport;
1290				if (in_pcbinshash(inp) != 0) {
1291					inp->inp_lport = 0;
1292					error = EAGAIN;
1293					goto release;
1294				}
1295				inp->inp_flags |= INP_ANONPORT;
1296			}
1297		} else {
1298			faddr = sin->sin_addr;
1299			fport = sin->sin_port;
1300		}
1301	} else {
1302		INP_LOCK_ASSERT(inp);
1303		faddr = inp->inp_faddr;
1304		fport = inp->inp_fport;
1305		if (faddr.s_addr == INADDR_ANY) {
1306			error = ENOTCONN;
1307			goto release;
1308		}
1309	}
1310
1311	/*
1312	 * Calculate data length and get a mbuf for UDP, IP, and possible
1313	 * link-layer headers.  Immediate slide the data pointer back forward
1314	 * since we won't use that space at this layer.
1315	 */
1316	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1317	if (m == NULL) {
1318		error = ENOBUFS;
1319		goto release;
1320	}
1321	m->m_data += max_linkhdr;
1322	m->m_len -= max_linkhdr;
1323	m->m_pkthdr.len -= max_linkhdr;
1324
1325	/*
1326	 * Fill in mbuf with extended UDP header and addresses and length put
1327	 * into network format.
1328	 */
1329	ui = mtod(m, struct udpiphdr *);
1330	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1331	ui->ui_pr = pr;
1332	ui->ui_src = laddr;
1333	ui->ui_dst = faddr;
1334	ui->ui_sport = lport;
1335	ui->ui_dport = fport;
1336	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1337	if (pr == IPPROTO_UDPLITE) {
1338		struct udpcb *up;
1339		uint16_t plen;
1340
1341		up = intoudpcb(inp);
1342		cscov = up->u_txcslen;
1343		plen = (u_short)len + sizeof(struct udphdr);
1344		if (cscov >= plen)
1345			cscov = 0;
1346		ui->ui_len = htons(plen);
1347		ui->ui_ulen = htons(cscov);
1348		/*
1349		 * For UDP-Lite, checksum coverage length of zero means
1350		 * the entire UDPLite packet is covered by the checksum.
1351		 */
1352		cscov_partial = (cscov == 0) ? 0 : 1;
1353	} else
1354		ui->ui_v = IPVERSION << 4;
1355
1356	/*
1357	 * Set the Don't Fragment bit in the IP header.
1358	 */
1359	if (inp->inp_flags & INP_DONTFRAG) {
1360		struct ip *ip;
1361
1362		ip = (struct ip *)&ui->ui_i;
1363		ip->ip_off |= htons(IP_DF);
1364	}
1365
1366	ipflags = 0;
1367	if (inp->inp_socket->so_options & SO_DONTROUTE)
1368		ipflags |= IP_ROUTETOIF;
1369	if (inp->inp_socket->so_options & SO_BROADCAST)
1370		ipflags |= IP_ALLOWBROADCAST;
1371	if (inp->inp_flags & INP_ONESBCAST)
1372		ipflags |= IP_SENDONES;
1373
1374#ifdef MAC
1375	mac_inpcb_create_mbuf(inp, m);
1376#endif
1377
1378	/*
1379	 * Set up checksum and output datagram.
1380	 */
1381	ui->ui_sum = 0;
1382	if (pr == IPPROTO_UDPLITE) {
1383		if (inp->inp_flags & INP_ONESBCAST)
1384			faddr.s_addr = INADDR_BROADCAST;
1385		if (cscov_partial) {
1386			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1387				ui->ui_sum = 0xffff;
1388		} else {
1389			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1390				ui->ui_sum = 0xffff;
1391		}
1392	} else if (V_udp_cksum) {
1393		if (inp->inp_flags & INP_ONESBCAST)
1394			faddr.s_addr = INADDR_BROADCAST;
1395		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1396		    htons((u_short)len + sizeof(struct udphdr) + pr));
1397		m->m_pkthdr.csum_flags = CSUM_UDP;
1398		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1399	}
1400	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1401	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1402	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1403	UDPSTAT_INC(udps_opackets);
1404
1405	if (unlock_udbinfo == UH_WLOCKED)
1406		INP_HASH_WUNLOCK(pcbinfo);
1407	else if (unlock_udbinfo == UH_RLOCKED)
1408		INP_HASH_RUNLOCK(pcbinfo);
1409	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1410	error = ip_output(m, inp->inp_options, NULL, ipflags,
1411	    inp->inp_moptions, inp);
1412	if (unlock_udbinfo == UH_WLOCKED)
1413		INP_WUNLOCK(inp);
1414	else
1415		INP_RUNLOCK(inp);
1416	return (error);
1417
1418release:
1419	if (unlock_udbinfo == UH_WLOCKED) {
1420		INP_HASH_WUNLOCK(pcbinfo);
1421		INP_WUNLOCK(inp);
1422	} else if (unlock_udbinfo == UH_RLOCKED) {
1423		INP_HASH_RUNLOCK(pcbinfo);
1424		INP_RUNLOCK(inp);
1425	} else
1426		INP_RUNLOCK(inp);
1427	m_freem(m);
1428	return (error);
1429}
1430
1431
1432#if defined(IPSEC) && defined(IPSEC_NAT_T)
1433/*
1434 * Potentially decap ESP in UDP frame.  Check for an ESP header
1435 * and optional marker; if present, strip the UDP header and
1436 * push the result through IPSec.
1437 *
1438 * Returns mbuf to be processed (potentially re-allocated) or
1439 * NULL if consumed and/or processed.
1440 */
1441static struct mbuf *
1442udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1443{
1444	size_t minlen, payload, skip, iphlen;
1445	caddr_t data;
1446	struct udpcb *up;
1447	struct m_tag *tag;
1448	struct udphdr *udphdr;
1449	struct ip *ip;
1450
1451	INP_RLOCK_ASSERT(inp);
1452
1453	/*
1454	 * Pull up data so the longest case is contiguous:
1455	 *    IP/UDP hdr + non ESP marker + ESP hdr.
1456	 */
1457	minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1458	if (minlen > m->m_pkthdr.len)
1459		minlen = m->m_pkthdr.len;
1460	if ((m = m_pullup(m, minlen)) == NULL) {
1461		IPSECSTAT_INC(ips_in_inval);
1462		return (NULL);		/* Bypass caller processing. */
1463	}
1464	data = mtod(m, caddr_t);	/* Points to ip header. */
1465	payload = m->m_len - off;	/* Size of payload. */
1466
1467	if (payload == 1 && data[off] == '\xff')
1468		return (m);		/* NB: keepalive packet, no decap. */
1469
1470	up = intoudpcb(inp);
1471	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1472	KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1473	    ("u_flags 0x%x", up->u_flags));
1474
1475	/*
1476	 * Check that the payload is large enough to hold an
1477	 * ESP header and compute the amount of data to remove.
1478	 *
1479	 * NB: the caller has already done a pullup for us.
1480	 * XXX can we assume alignment and eliminate bcopys?
1481	 */
1482	if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1483		/*
1484		 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1485		 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1486		 * possible AH mode non-IKE marker+non-ESP marker
1487		 * from draft-ietf-ipsec-udp-encaps-00.txt.
1488		 */
1489		uint64_t marker;
1490
1491		if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1492			return (m);	/* NB: no decap. */
1493		bcopy(data + off, &marker, sizeof(uint64_t));
1494		if (marker != 0)	/* Non-IKE marker. */
1495			return (m);	/* NB: no decap. */
1496		skip = sizeof(uint64_t) + sizeof(struct udphdr);
1497	} else {
1498		uint32_t spi;
1499
1500		if (payload <= sizeof(struct esp)) {
1501			IPSECSTAT_INC(ips_in_inval);
1502			m_freem(m);
1503			return (NULL);	/* Discard. */
1504		}
1505		bcopy(data + off, &spi, sizeof(uint32_t));
1506		if (spi == 0)		/* Non-ESP marker. */
1507			return (m);	/* NB: no decap. */
1508		skip = sizeof(struct udphdr);
1509	}
1510
1511	/*
1512	 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1513	 * the UDP ports. This is required if we want to select
1514	 * the right SPD for multiple hosts behind same NAT.
1515	 *
1516	 * NB: ports are maintained in network byte order everywhere
1517	 *     in the NAT-T code.
1518	 */
1519	tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1520		2 * sizeof(uint16_t), M_NOWAIT);
1521	if (tag == NULL) {
1522		IPSECSTAT_INC(ips_in_nomem);
1523		m_freem(m);
1524		return (NULL);		/* Discard. */
1525	}
1526	iphlen = off - sizeof(struct udphdr);
1527	udphdr = (struct udphdr *)(data + iphlen);
1528	((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1529	((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1530	m_tag_prepend(m, tag);
1531
1532	/*
1533	 * Remove the UDP header (and possibly the non ESP marker)
1534	 * IP header length is iphlen
1535	 * Before:
1536	 *   <--- off --->
1537	 *   +----+------+-----+
1538	 *   | IP |  UDP | ESP |
1539	 *   +----+------+-----+
1540	 *        <-skip->
1541	 * After:
1542	 *          +----+-----+
1543	 *          | IP | ESP |
1544	 *          +----+-----+
1545	 *   <-skip->
1546	 */
1547	ovbcopy(data, data + skip, iphlen);
1548	m_adj(m, skip);
1549
1550	ip = mtod(m, struct ip *);
1551	ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1552	ip->ip_p = IPPROTO_ESP;
1553
1554	/*
1555	 * We cannot yet update the cksums so clear any
1556	 * h/w cksum flags as they are no longer valid.
1557	 */
1558	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1559		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1560
1561	(void) ipsec4_common_input(m, iphlen, ip->ip_p);
1562	return (NULL);			/* NB: consumed, bypass processing. */
1563}
1564#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1565
1566static void
1567udp_abort(struct socket *so)
1568{
1569	struct inpcb *inp;
1570	struct inpcbinfo *pcbinfo;
1571
1572	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1573	inp = sotoinpcb(so);
1574	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1575	INP_WLOCK(inp);
1576	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1577		INP_HASH_WLOCK(pcbinfo);
1578		in_pcbdisconnect(inp);
1579		inp->inp_laddr.s_addr = INADDR_ANY;
1580		INP_HASH_WUNLOCK(pcbinfo);
1581		soisdisconnected(so);
1582	}
1583	INP_WUNLOCK(inp);
1584}
1585
1586static int
1587udp_attach(struct socket *so, int proto, struct thread *td)
1588{
1589	struct inpcb *inp;
1590	struct inpcbinfo *pcbinfo;
1591	int error;
1592
1593	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1594	inp = sotoinpcb(so);
1595	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1596	error = soreserve(so, udp_sendspace, udp_recvspace);
1597	if (error)
1598		return (error);
1599	INP_INFO_WLOCK(pcbinfo);
1600	error = in_pcballoc(so, pcbinfo);
1601	if (error) {
1602		INP_INFO_WUNLOCK(pcbinfo);
1603		return (error);
1604	}
1605
1606	inp = sotoinpcb(so);
1607	inp->inp_vflag |= INP_IPV4;
1608	inp->inp_ip_ttl = V_ip_defttl;
1609
1610	error = udp_newudpcb(inp);
1611	if (error) {
1612		in_pcbdetach(inp);
1613		in_pcbfree(inp);
1614		INP_INFO_WUNLOCK(pcbinfo);
1615		return (error);
1616	}
1617
1618	INP_WUNLOCK(inp);
1619	INP_INFO_WUNLOCK(pcbinfo);
1620	return (0);
1621}
1622#endif /* INET */
1623
1624int
1625udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1626{
1627	struct inpcb *inp;
1628	struct udpcb *up;
1629
1630	KASSERT(so->so_type == SOCK_DGRAM,
1631	    ("udp_set_kernel_tunneling: !dgram"));
1632	inp = sotoinpcb(so);
1633	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1634	INP_WLOCK(inp);
1635	up = intoudpcb(inp);
1636	if (up->u_tun_func != NULL) {
1637		INP_WUNLOCK(inp);
1638		return (EBUSY);
1639	}
1640	up->u_tun_func = f;
1641	INP_WUNLOCK(inp);
1642	return (0);
1643}
1644
1645#ifdef INET
1646static int
1647udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1648{
1649	struct inpcb *inp;
1650	struct inpcbinfo *pcbinfo;
1651	int error;
1652
1653	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1654	inp = sotoinpcb(so);
1655	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1656	INP_WLOCK(inp);
1657	INP_HASH_WLOCK(pcbinfo);
1658	error = in_pcbbind(inp, nam, td->td_ucred);
1659	INP_HASH_WUNLOCK(pcbinfo);
1660	INP_WUNLOCK(inp);
1661	return (error);
1662}
1663
1664static void
1665udp_close(struct socket *so)
1666{
1667	struct inpcb *inp;
1668	struct inpcbinfo *pcbinfo;
1669
1670	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1671	inp = sotoinpcb(so);
1672	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1673	INP_WLOCK(inp);
1674	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1675		INP_HASH_WLOCK(pcbinfo);
1676		in_pcbdisconnect(inp);
1677		inp->inp_laddr.s_addr = INADDR_ANY;
1678		INP_HASH_WUNLOCK(pcbinfo);
1679		soisdisconnected(so);
1680	}
1681	INP_WUNLOCK(inp);
1682}
1683
1684static int
1685udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1686{
1687	struct inpcb *inp;
1688	struct inpcbinfo *pcbinfo;
1689	struct sockaddr_in *sin;
1690	int error;
1691
1692	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1693	inp = sotoinpcb(so);
1694	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1695	INP_WLOCK(inp);
1696	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1697		INP_WUNLOCK(inp);
1698		return (EISCONN);
1699	}
1700	sin = (struct sockaddr_in *)nam;
1701	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1702	if (error != 0) {
1703		INP_WUNLOCK(inp);
1704		return (error);
1705	}
1706	INP_HASH_WLOCK(pcbinfo);
1707	error = in_pcbconnect(inp, nam, td->td_ucred);
1708	INP_HASH_WUNLOCK(pcbinfo);
1709	if (error == 0)
1710		soisconnected(so);
1711	INP_WUNLOCK(inp);
1712	return (error);
1713}
1714
1715static void
1716udp_detach(struct socket *so)
1717{
1718	struct inpcb *inp;
1719	struct inpcbinfo *pcbinfo;
1720	struct udpcb *up;
1721
1722	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1723	inp = sotoinpcb(so);
1724	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1725	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1726	    ("udp_detach: not disconnected"));
1727	INP_INFO_WLOCK(pcbinfo);
1728	INP_WLOCK(inp);
1729	up = intoudpcb(inp);
1730	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1731	inp->inp_ppcb = NULL;
1732	in_pcbdetach(inp);
1733	in_pcbfree(inp);
1734	INP_INFO_WUNLOCK(pcbinfo);
1735	udp_discardcb(up);
1736}
1737
1738static int
1739udp_disconnect(struct socket *so)
1740{
1741	struct inpcb *inp;
1742	struct inpcbinfo *pcbinfo;
1743
1744	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1745	inp = sotoinpcb(so);
1746	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1747	INP_WLOCK(inp);
1748	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1749		INP_WUNLOCK(inp);
1750		return (ENOTCONN);
1751	}
1752	INP_HASH_WLOCK(pcbinfo);
1753	in_pcbdisconnect(inp);
1754	inp->inp_laddr.s_addr = INADDR_ANY;
1755	INP_HASH_WUNLOCK(pcbinfo);
1756	SOCK_LOCK(so);
1757	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1758	SOCK_UNLOCK(so);
1759	INP_WUNLOCK(inp);
1760	return (0);
1761}
1762
1763static int
1764udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1765    struct mbuf *control, struct thread *td)
1766{
1767	struct inpcb *inp;
1768
1769	inp = sotoinpcb(so);
1770	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1771	return (udp_output(inp, m, addr, control, td));
1772}
1773#endif /* INET */
1774
1775int
1776udp_shutdown(struct socket *so)
1777{
1778	struct inpcb *inp;
1779
1780	inp = sotoinpcb(so);
1781	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1782	INP_WLOCK(inp);
1783	socantsendmore(so);
1784	INP_WUNLOCK(inp);
1785	return (0);
1786}
1787
1788#ifdef INET
1789struct pr_usrreqs udp_usrreqs = {
1790	.pru_abort =		udp_abort,
1791	.pru_attach =		udp_attach,
1792	.pru_bind =		udp_bind,
1793	.pru_connect =		udp_connect,
1794	.pru_control =		in_control,
1795	.pru_detach =		udp_detach,
1796	.pru_disconnect =	udp_disconnect,
1797	.pru_peeraddr =		in_getpeeraddr,
1798	.pru_send =		udp_send,
1799	.pru_soreceive =	soreceive_dgram,
1800	.pru_sosend =		sosend_dgram,
1801	.pru_shutdown =		udp_shutdown,
1802	.pru_sockaddr =		in_getsockaddr,
1803	.pru_sosetlabel =	in_pcbsosetlabel,
1804	.pru_close =		udp_close,
1805};
1806#endif /* INET */
1807