udp_usrreq.c revision 272645
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.
4 * Copyright (c) 2008 Robert N. M. Watson
5 * Copyright (c) 2010-2011 Juniper Networks, Inc.
6 * Copyright (c) 2014 Kevin Lo
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Robert N. M. Watson under
10 * contract to Juniper Networks, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	@(#)udp_usrreq.c	8.6 (Berkeley) 5/23/95
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/10/sys/netinet/udp_usrreq.c 272645 2014-10-06 13:32:30Z tuexen $");
41
42#include "opt_ipfw.h"
43#include "opt_inet.h"
44#include "opt_inet6.h"
45#include "opt_ipsec.h"
46#include "opt_kdtrace.h"
47
48#include <sys/param.h>
49#include <sys/domain.h>
50#include <sys/eventhandler.h>
51#include <sys/jail.h>
52#include <sys/kernel.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mbuf.h>
56#include <sys/priv.h>
57#include <sys/proc.h>
58#include <sys/protosw.h>
59#include <sys/sdt.h>
60#include <sys/signalvar.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sx.h>
64#include <sys/sysctl.h>
65#include <sys/syslog.h>
66#include <sys/systm.h>
67
68#include <vm/uma.h>
69
70#include <net/if.h>
71#include <net/route.h>
72
73#include <netinet/in.h>
74#include <netinet/in_kdtrace.h>
75#include <netinet/in_pcb.h>
76#include <netinet/in_systm.h>
77#include <netinet/in_var.h>
78#include <netinet/ip.h>
79#ifdef INET6
80#include <netinet/ip6.h>
81#endif
82#include <netinet/ip_icmp.h>
83#include <netinet/icmp_var.h>
84#include <netinet/ip_var.h>
85#include <netinet/ip_options.h>
86#ifdef INET6
87#include <netinet6/ip6_var.h>
88#endif
89#include <netinet/udp.h>
90#include <netinet/udp_var.h>
91#include <netinet/udplite.h>
92
93#ifdef IPSEC
94#include <netipsec/ipsec.h>
95#include <netipsec/esp.h>
96#endif
97
98#include <machine/in_cksum.h>
99
100#include <security/mac/mac_framework.h>
101
102/*
103 * UDP and UDP-Lite protocols implementation.
104 * Per RFC 768, August, 1980.
105 * Per RFC 3828, July, 2004.
106 */
107
108/*
109 * BSD 4.2 defaulted the udp checksum to be off.  Turning off udp checksums
110 * removes the only data integrity mechanism for packets and malformed
111 * packets that would otherwise be discarded due to bad checksums, and may
112 * cause problems (especially for NFS data blocks).
113 */
114VNET_DEFINE(int, udp_cksum) = 1;
115SYSCTL_VNET_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
116    &VNET_NAME(udp_cksum), 0, "compute udp checksum");
117
118int	udp_log_in_vain = 0;
119SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
120    &udp_log_in_vain, 0, "Log all incoming UDP packets");
121
122VNET_DEFINE(int, udp_blackhole) = 0;
123SYSCTL_VNET_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
124    &VNET_NAME(udp_blackhole), 0,
125    "Do not send port unreachables for refused connects");
126
127u_long	udp_sendspace = 9216;		/* really max datagram size */
128					/* 40 1K datagrams */
129SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
130    &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
131
132u_long	udp_recvspace = 40 * (1024 +
133#ifdef INET6
134				      sizeof(struct sockaddr_in6)
135#else
136				      sizeof(struct sockaddr_in)
137#endif
138				      );
139
140SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
141    &udp_recvspace, 0, "Maximum space for incoming UDP datagrams");
142
143VNET_DEFINE(struct inpcbhead, udb);		/* from udp_var.h */
144VNET_DEFINE(struct inpcbinfo, udbinfo);
145VNET_DEFINE(struct inpcbhead, ulitecb);
146VNET_DEFINE(struct inpcbinfo, ulitecbinfo);
147static VNET_DEFINE(uma_zone_t, udpcb_zone);
148#define	V_udpcb_zone			VNET(udpcb_zone)
149
150#ifndef UDBHASHSIZE
151#define	UDBHASHSIZE	128
152#endif
153
154VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat);		/* from udp_var.h */
155VNET_PCPUSTAT_SYSINIT(udpstat);
156SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat,
157    udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
158
159#ifdef VIMAGE
160VNET_PCPUSTAT_SYSUNINIT(udpstat);
161#endif /* VIMAGE */
162#ifdef INET
163static void	udp_detach(struct socket *so);
164static int	udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
165		    struct mbuf *, struct thread *);
166#endif
167
168#ifdef IPSEC
169#ifdef IPSEC_NAT_T
170#define	UF_ESPINUDP_ALL	(UF_ESPINUDP_NON_IKE|UF_ESPINUDP)
171#ifdef INET
172static struct mbuf *udp4_espdecap(struct inpcb *, struct mbuf *, int);
173#endif
174#endif /* IPSEC_NAT_T */
175#endif /* IPSEC */
176
177static void
178udp_zone_change(void *tag)
179{
180
181	uma_zone_set_max(V_udbinfo.ipi_zone, maxsockets);
182	uma_zone_set_max(V_udpcb_zone, maxsockets);
183}
184
185static int
186udp_inpcb_init(void *mem, int size, int flags)
187{
188	struct inpcb *inp;
189
190	inp = mem;
191	INP_LOCK_INIT(inp, "inp", "udpinp");
192	return (0);
193}
194
195static int
196udplite_inpcb_init(void *mem, int size, int flags)
197{
198	struct inpcb *inp;
199
200	inp = mem;
201	INP_LOCK_INIT(inp, "inp", "udpliteinp");
202	return (0);
203}
204
205void
206udp_init(void)
207{
208
209	in_pcbinfo_init(&V_udbinfo, "udp", &V_udb, UDBHASHSIZE, UDBHASHSIZE,
210	    "udp_inpcb", udp_inpcb_init, NULL, UMA_ZONE_NOFREE,
211	    IPI_HASHFIELDS_2TUPLE);
212	V_udpcb_zone = uma_zcreate("udpcb", sizeof(struct udpcb),
213	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
214	uma_zone_set_max(V_udpcb_zone, maxsockets);
215	uma_zone_set_warning(V_udpcb_zone, "kern.ipc.maxsockets limit reached");
216	EVENTHANDLER_REGISTER(maxsockets_change, udp_zone_change, NULL,
217	    EVENTHANDLER_PRI_ANY);
218}
219
220void
221udplite_init(void)
222{
223
224	in_pcbinfo_init(&V_ulitecbinfo, "udplite", &V_ulitecb, UDBHASHSIZE,
225	    UDBHASHSIZE, "udplite_inpcb", udplite_inpcb_init, NULL,
226	    UMA_ZONE_NOFREE, IPI_HASHFIELDS_2TUPLE);
227}
228
229/*
230 * Kernel module interface for updating udpstat.  The argument is an index
231 * into udpstat treated as an array of u_long.  While this encodes the
232 * general layout of udpstat into the caller, it doesn't encode its location,
233 * so that future changes to add, for example, per-CPU stats support won't
234 * cause binary compatibility problems for kernel modules.
235 */
236void
237kmod_udpstat_inc(int statnum)
238{
239
240	counter_u64_add(VNET(udpstat)[statnum], 1);
241}
242
243int
244udp_newudpcb(struct inpcb *inp)
245{
246	struct udpcb *up;
247
248	up = uma_zalloc(V_udpcb_zone, M_NOWAIT | M_ZERO);
249	if (up == NULL)
250		return (ENOBUFS);
251	inp->inp_ppcb = up;
252	return (0);
253}
254
255void
256udp_discardcb(struct udpcb *up)
257{
258
259	uma_zfree(V_udpcb_zone, up);
260}
261
262#ifdef VIMAGE
263void
264udp_destroy(void)
265{
266
267	in_pcbinfo_destroy(&V_udbinfo);
268	uma_zdestroy(V_udpcb_zone);
269}
270
271void
272udplite_destroy(void)
273{
274
275	in_pcbinfo_destroy(&V_ulitecbinfo);
276}
277#endif
278
279#ifdef INET
280/*
281 * Subroutine of udp_input(), which appends the provided mbuf chain to the
282 * passed pcb/socket.  The caller must provide a sockaddr_in via udp_in that
283 * contains the source address.  If the socket ends up being an IPv6 socket,
284 * udp_append() will convert to a sockaddr_in6 before passing the address
285 * into the socket code.
286 */
287static void
288udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off,
289    struct sockaddr_in *udp_in)
290{
291	struct sockaddr *append_sa;
292	struct socket *so;
293	struct mbuf *opts = 0;
294#ifdef INET6
295	struct sockaddr_in6 udp_in6;
296#endif
297	struct udpcb *up;
298
299	INP_LOCK_ASSERT(inp);
300
301	/*
302	 * Engage the tunneling protocol.
303	 */
304	up = intoudpcb(inp);
305	if (up->u_tun_func != NULL) {
306		(*up->u_tun_func)(n, off, inp);
307		return;
308	}
309
310	if (n == NULL)
311		return;
312
313	off += sizeof(struct udphdr);
314
315#ifdef IPSEC
316	/* Check AH/ESP integrity. */
317	if (ipsec4_in_reject(n, inp)) {
318		m_freem(n);
319		IPSECSTAT_INC(ips_in_polvio);
320		return;
321	}
322#ifdef IPSEC_NAT_T
323	up = intoudpcb(inp);
324	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
325	if (up->u_flags & UF_ESPINUDP_ALL) {	/* IPSec UDP encaps. */
326		n = udp4_espdecap(inp, n, off);
327		if (n == NULL)				/* Consumed. */
328			return;
329	}
330#endif /* IPSEC_NAT_T */
331#endif /* IPSEC */
332#ifdef MAC
333	if (mac_inpcb_check_deliver(inp, n) != 0) {
334		m_freem(n);
335		return;
336	}
337#endif /* MAC */
338	if (inp->inp_flags & INP_CONTROLOPTS ||
339	    inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) {
340#ifdef INET6
341		if (inp->inp_vflag & INP_IPV6)
342			(void)ip6_savecontrol_v4(inp, n, &opts, NULL);
343		else
344#endif /* INET6 */
345			ip_savecontrol(inp, &opts, ip, n);
346	}
347#ifdef INET6
348	if (inp->inp_vflag & INP_IPV6) {
349		bzero(&udp_in6, sizeof(udp_in6));
350		udp_in6.sin6_len = sizeof(udp_in6);
351		udp_in6.sin6_family = AF_INET6;
352		in6_sin_2_v4mapsin6(udp_in, &udp_in6);
353		append_sa = (struct sockaddr *)&udp_in6;
354	} else
355#endif /* INET6 */
356		append_sa = (struct sockaddr *)udp_in;
357	m_adj(n, off);
358
359	so = inp->inp_socket;
360	SOCKBUF_LOCK(&so->so_rcv);
361	if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) {
362		SOCKBUF_UNLOCK(&so->so_rcv);
363		m_freem(n);
364		if (opts)
365			m_freem(opts);
366		UDPSTAT_INC(udps_fullsock);
367	} else
368		sorwakeup_locked(so);
369}
370
371void
372udp_input(struct mbuf *m, int off)
373{
374	int iphlen = off;
375	struct ip *ip;
376	struct udphdr *uh;
377	struct ifnet *ifp;
378	struct inpcb *inp;
379	uint16_t len, ip_len;
380	struct inpcbinfo *pcbinfo;
381	struct ip save_ip;
382	struct sockaddr_in udp_in;
383	struct m_tag *fwd_tag;
384	int cscov_partial;
385	uint8_t pr;
386
387	ifp = m->m_pkthdr.rcvif;
388	UDPSTAT_INC(udps_ipackets);
389
390	/*
391	 * Strip IP options, if any; should skip this, make available to
392	 * user, and use on returned packets, but we don't yet have a way to
393	 * check the checksum with options still present.
394	 */
395	if (iphlen > sizeof (struct ip)) {
396		ip_stripoptions(m);
397		iphlen = sizeof(struct ip);
398	}
399
400	/*
401	 * Get IP and UDP header together in first mbuf.
402	 */
403	ip = mtod(m, struct ip *);
404	if (m->m_len < iphlen + sizeof(struct udphdr)) {
405		if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) {
406			UDPSTAT_INC(udps_hdrops);
407			return;
408		}
409		ip = mtod(m, struct ip *);
410	}
411	uh = (struct udphdr *)((caddr_t)ip + iphlen);
412	pr = ip->ip_p;
413	cscov_partial = (pr == IPPROTO_UDPLITE) ? 1 : 0;
414
415	/*
416	 * Destination port of 0 is illegal, based on RFC768.
417	 */
418	if (uh->uh_dport == 0)
419		goto badunlocked;
420
421	/*
422	 * Construct sockaddr format source address.  Stuff source address
423	 * and datagram in user buffer.
424	 */
425	bzero(&udp_in, sizeof(udp_in));
426	udp_in.sin_len = sizeof(udp_in);
427	udp_in.sin_family = AF_INET;
428	udp_in.sin_port = uh->uh_sport;
429	udp_in.sin_addr = ip->ip_src;
430
431	/*
432	 * Make mbuf data length reflect UDP length.  If not enough data to
433	 * reflect UDP length, drop.
434	 */
435	len = ntohs((u_short)uh->uh_ulen);
436	ip_len = ntohs(ip->ip_len) - iphlen;
437	if (pr == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) {
438		/* Zero means checksum over the complete packet. */
439		if (len == 0)
440			len = ip_len;
441		cscov_partial = 0;
442	}
443	if (ip_len != len) {
444		if (len > ip_len || len < sizeof(struct udphdr)) {
445			UDPSTAT_INC(udps_badlen);
446			goto badunlocked;
447		}
448		if (pr == IPPROTO_UDP)
449			m_adj(m, len - ip_len);
450	}
451
452	/*
453	 * Save a copy of the IP header in case we want restore it for
454	 * sending an ICMP error message in response.
455	 */
456	if (!V_udp_blackhole)
457		save_ip = *ip;
458	else
459		memset(&save_ip, 0, sizeof(save_ip));
460
461	/*
462	 * Checksum extended UDP header and data.
463	 */
464	if (uh->uh_sum) {
465		u_short uh_sum;
466
467		if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
468		    !cscov_partial) {
469			if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
470				uh_sum = m->m_pkthdr.csum_data;
471			else
472				uh_sum = in_pseudo(ip->ip_src.s_addr,
473				    ip->ip_dst.s_addr, htonl((u_short)len +
474				    m->m_pkthdr.csum_data + pr));
475			uh_sum ^= 0xffff;
476		} else {
477			char b[9];
478
479			bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
480			bzero(((struct ipovly *)ip)->ih_x1, 9);
481			((struct ipovly *)ip)->ih_len = (pr == IPPROTO_UDP) ?
482			    uh->uh_ulen : htons(ip_len);
483			uh_sum = in_cksum(m, len + sizeof (struct ip));
484			bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
485		}
486		if (uh_sum) {
487			UDPSTAT_INC(udps_badsum);
488			m_freem(m);
489			return;
490		}
491	} else
492		UDPSTAT_INC(udps_nosum);
493
494	pcbinfo = get_inpcbinfo(pr);
495	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
496	    in_broadcast(ip->ip_dst, ifp)) {
497		struct inpcb *last;
498		struct inpcbhead *pcblist;
499		struct ip_moptions *imo;
500
501		INP_INFO_RLOCK(pcbinfo);
502		pcblist = get_pcblist(pr);
503		last = NULL;
504		LIST_FOREACH(inp, pcblist, inp_list) {
505			if (inp->inp_lport != uh->uh_dport)
506				continue;
507#ifdef INET6
508			if ((inp->inp_vflag & INP_IPV4) == 0)
509				continue;
510#endif
511			if (inp->inp_laddr.s_addr != INADDR_ANY &&
512			    inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
513				continue;
514			if (inp->inp_faddr.s_addr != INADDR_ANY &&
515			    inp->inp_faddr.s_addr != ip->ip_src.s_addr)
516				continue;
517			if (inp->inp_fport != 0 &&
518			    inp->inp_fport != uh->uh_sport)
519				continue;
520
521			INP_RLOCK(inp);
522
523			/*
524			 * XXXRW: Because we weren't holding either the inpcb
525			 * or the hash lock when we checked for a match
526			 * before, we should probably recheck now that the
527			 * inpcb lock is held.
528			 */
529
530			/*
531			 * Handle socket delivery policy for any-source
532			 * and source-specific multicast. [RFC3678]
533			 */
534			imo = inp->inp_moptions;
535			if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
536				struct sockaddr_in	 group;
537				int			 blocked;
538				if (imo == NULL) {
539					INP_RUNLOCK(inp);
540					continue;
541				}
542				bzero(&group, sizeof(struct sockaddr_in));
543				group.sin_len = sizeof(struct sockaddr_in);
544				group.sin_family = AF_INET;
545				group.sin_addr = ip->ip_dst;
546
547				blocked = imo_multi_filter(imo, ifp,
548					(struct sockaddr *)&group,
549					(struct sockaddr *)&udp_in);
550				if (blocked != MCAST_PASS) {
551					if (blocked == MCAST_NOTGMEMBER)
552						IPSTAT_INC(ips_notmember);
553					if (blocked == MCAST_NOTSMEMBER ||
554					    blocked == MCAST_MUTED)
555						UDPSTAT_INC(udps_filtermcast);
556					INP_RUNLOCK(inp);
557					continue;
558				}
559			}
560			if (last != NULL) {
561				struct mbuf *n;
562
563				n = m_copy(m, 0, M_COPYALL);
564				udp_append(last, ip, n, iphlen, &udp_in);
565				INP_RUNLOCK(last);
566			}
567			last = inp;
568			/*
569			 * Don't look for additional matches if this one does
570			 * not have either the SO_REUSEPORT or SO_REUSEADDR
571			 * socket options set.  This heuristic avoids
572			 * searching through all pcbs in the common case of a
573			 * non-shared port.  It assumes that an application
574			 * will never clear these options after setting them.
575			 */
576			if ((last->inp_socket->so_options &
577			    (SO_REUSEPORT|SO_REUSEADDR)) == 0)
578				break;
579		}
580
581		if (last == NULL) {
582			/*
583			 * No matching pcb found; discard datagram.  (No need
584			 * to send an ICMP Port Unreachable for a broadcast
585			 * or multicast datgram.)
586			 */
587			UDPSTAT_INC(udps_noportbcast);
588			if (inp)
589				INP_RUNLOCK(inp);
590			INP_INFO_RUNLOCK(pcbinfo);
591			goto badunlocked;
592		}
593		udp_append(last, ip, m, iphlen, &udp_in);
594		INP_RUNLOCK(last);
595		INP_INFO_RUNLOCK(pcbinfo);
596		return;
597	}
598
599	/*
600	 * Locate pcb for datagram.
601	 */
602
603	/*
604	 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
605	 */
606	if ((m->m_flags & M_IP_NEXTHOP) &&
607	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
608		struct sockaddr_in *next_hop;
609
610		next_hop = (struct sockaddr_in *)(fwd_tag + 1);
611
612		/*
613		 * Transparently forwarded. Pretend to be the destination.
614		 * Already got one like this?
615		 */
616		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
617		    ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m);
618		if (!inp) {
619			/*
620			 * It's new.  Try to find the ambushing socket.
621			 * Because we've rewritten the destination address,
622			 * any hardware-generated hash is ignored.
623			 */
624			inp = in_pcblookup(pcbinfo, ip->ip_src,
625			    uh->uh_sport, next_hop->sin_addr,
626			    next_hop->sin_port ? htons(next_hop->sin_port) :
627			    uh->uh_dport, INPLOOKUP_WILDCARD |
628			    INPLOOKUP_RLOCKPCB, ifp);
629		}
630		/* Remove the tag from the packet. We don't need it anymore. */
631		m_tag_delete(m, fwd_tag);
632		m->m_flags &= ~M_IP_NEXTHOP;
633	} else
634		inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport,
635		    ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD |
636		    INPLOOKUP_RLOCKPCB, ifp, m);
637	if (inp == NULL) {
638		if (udp_log_in_vain) {
639			char buf[4*sizeof "123"];
640
641			strcpy(buf, inet_ntoa(ip->ip_dst));
642			log(LOG_INFO,
643			    "Connection attempt to UDP %s:%d from %s:%d\n",
644			    buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
645			    ntohs(uh->uh_sport));
646		}
647		UDPSTAT_INC(udps_noport);
648		if (m->m_flags & (M_BCAST | M_MCAST)) {
649			UDPSTAT_INC(udps_noportbcast);
650			goto badunlocked;
651		}
652		if (V_udp_blackhole)
653			goto badunlocked;
654		if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
655			goto badunlocked;
656		*ip = save_ip;
657		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
658		return;
659	}
660
661	/*
662	 * Check the minimum TTL for socket.
663	 */
664	INP_RLOCK_ASSERT(inp);
665	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) {
666		INP_RUNLOCK(inp);
667		m_freem(m);
668		return;
669	}
670	if (cscov_partial) {
671		struct udpcb *up;
672
673		up = intoudpcb(inp);
674		if (up->u_rxcslen > len) {
675			INP_RUNLOCK(inp);
676			m_freem(m);
677			return;
678		}
679	}
680
681	UDP_PROBE(receive, NULL, inp, ip, inp, uh);
682	udp_append(inp, ip, m, iphlen, &udp_in);
683	INP_RUNLOCK(inp);
684	return;
685
686badunlocked:
687	m_freem(m);
688}
689#endif /* INET */
690
691/*
692 * Notify a udp user of an asynchronous error; just wake up so that they can
693 * collect error status.
694 */
695struct inpcb *
696udp_notify(struct inpcb *inp, int errno)
697{
698
699	/*
700	 * While udp_ctlinput() always calls udp_notify() with a read lock
701	 * when invoking it directly, in_pcbnotifyall() currently uses write
702	 * locks due to sharing code with TCP.  For now, accept either a read
703	 * or a write lock, but a read lock is sufficient.
704	 */
705	INP_LOCK_ASSERT(inp);
706
707	inp->inp_socket->so_error = errno;
708	sorwakeup(inp->inp_socket);
709	sowwakeup(inp->inp_socket);
710	return (inp);
711}
712
713#ifdef INET
714static void
715udp_common_ctlinput(int cmd, struct sockaddr *sa, void *vip,
716    struct inpcbinfo *pcbinfo)
717{
718	struct ip *ip = vip;
719	struct udphdr *uh;
720	struct in_addr faddr;
721	struct inpcb *inp;
722
723	faddr = ((struct sockaddr_in *)sa)->sin_addr;
724	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
725		return;
726
727	/*
728	 * Redirects don't need to be handled up here.
729	 */
730	if (PRC_IS_REDIRECT(cmd))
731		return;
732
733	/*
734	 * Hostdead is ugly because it goes linearly through all PCBs.
735	 *
736	 * XXX: We never get this from ICMP, otherwise it makes an excellent
737	 * DoS attack on machines with many connections.
738	 */
739	if (cmd == PRC_HOSTDEAD)
740		ip = NULL;
741	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
742		return;
743	if (ip != NULL) {
744		uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
745		inp = in_pcblookup(pcbinfo, faddr, uh->uh_dport,
746		    ip->ip_src, uh->uh_sport, INPLOOKUP_RLOCKPCB, NULL);
747		if (inp != NULL) {
748			INP_RLOCK_ASSERT(inp);
749			if (inp->inp_socket != NULL) {
750				udp_notify(inp, inetctlerrmap[cmd]);
751			}
752			INP_RUNLOCK(inp);
753		}
754	} else
755		in_pcbnotifyall(pcbinfo, faddr, inetctlerrmap[cmd],
756		    udp_notify);
757}
758void
759udp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
760{
761
762	return (udp_common_ctlinput(cmd, sa, vip, &V_udbinfo));
763}
764
765void
766udplite_ctlinput(int cmd, struct sockaddr *sa, void *vip)
767{
768
769	return (udp_common_ctlinput(cmd, sa, vip, &V_ulitecbinfo));
770}
771#endif /* INET */
772
773static int
774udp_pcblist(SYSCTL_HANDLER_ARGS)
775{
776	int error, i, n;
777	struct inpcb *inp, **inp_list;
778	inp_gen_t gencnt;
779	struct xinpgen xig;
780
781	/*
782	 * The process of preparing the PCB list is too time-consuming and
783	 * resource-intensive to repeat twice on every request.
784	 */
785	if (req->oldptr == 0) {
786		n = V_udbinfo.ipi_count;
787		n += imax(n / 8, 10);
788		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
789		return (0);
790	}
791
792	if (req->newptr != 0)
793		return (EPERM);
794
795	/*
796	 * OK, now we're committed to doing something.
797	 */
798	INP_INFO_RLOCK(&V_udbinfo);
799	gencnt = V_udbinfo.ipi_gencnt;
800	n = V_udbinfo.ipi_count;
801	INP_INFO_RUNLOCK(&V_udbinfo);
802
803	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
804		+ n * sizeof(struct xinpcb));
805	if (error != 0)
806		return (error);
807
808	xig.xig_len = sizeof xig;
809	xig.xig_count = n;
810	xig.xig_gen = gencnt;
811	xig.xig_sogen = so_gencnt;
812	error = SYSCTL_OUT(req, &xig, sizeof xig);
813	if (error)
814		return (error);
815
816	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
817	if (inp_list == 0)
818		return (ENOMEM);
819
820	INP_INFO_RLOCK(&V_udbinfo);
821	for (inp = LIST_FIRST(V_udbinfo.ipi_listhead), i = 0; inp && i < n;
822	     inp = LIST_NEXT(inp, inp_list)) {
823		INP_WLOCK(inp);
824		if (inp->inp_gencnt <= gencnt &&
825		    cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
826			in_pcbref(inp);
827			inp_list[i++] = inp;
828		}
829		INP_WUNLOCK(inp);
830	}
831	INP_INFO_RUNLOCK(&V_udbinfo);
832	n = i;
833
834	error = 0;
835	for (i = 0; i < n; i++) {
836		inp = inp_list[i];
837		INP_RLOCK(inp);
838		if (inp->inp_gencnt <= gencnt) {
839			struct xinpcb xi;
840
841			bzero(&xi, sizeof(xi));
842			xi.xi_len = sizeof xi;
843			/* XXX should avoid extra copy */
844			bcopy(inp, &xi.xi_inp, sizeof *inp);
845			if (inp->inp_socket)
846				sotoxsocket(inp->inp_socket, &xi.xi_socket);
847			xi.xi_inp.inp_gencnt = inp->inp_gencnt;
848			INP_RUNLOCK(inp);
849			error = SYSCTL_OUT(req, &xi, sizeof xi);
850		} else
851			INP_RUNLOCK(inp);
852	}
853	INP_INFO_WLOCK(&V_udbinfo);
854	for (i = 0; i < n; i++) {
855		inp = inp_list[i];
856		INP_RLOCK(inp);
857		if (!in_pcbrele_rlocked(inp))
858			INP_RUNLOCK(inp);
859	}
860	INP_INFO_WUNLOCK(&V_udbinfo);
861
862	if (!error) {
863		/*
864		 * Give the user an updated idea of our state.  If the
865		 * generation differs from what we told her before, she knows
866		 * that something happened while we were processing this
867		 * request, and it might be necessary to retry.
868		 */
869		INP_INFO_RLOCK(&V_udbinfo);
870		xig.xig_gen = V_udbinfo.ipi_gencnt;
871		xig.xig_sogen = so_gencnt;
872		xig.xig_count = V_udbinfo.ipi_count;
873		INP_INFO_RUNLOCK(&V_udbinfo);
874		error = SYSCTL_OUT(req, &xig, sizeof xig);
875	}
876	free(inp_list, M_TEMP);
877	return (error);
878}
879
880SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist,
881    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
882    udp_pcblist, "S,xinpcb", "List of active UDP sockets");
883
884#ifdef INET
885static int
886udp_getcred(SYSCTL_HANDLER_ARGS)
887{
888	struct xucred xuc;
889	struct sockaddr_in addrs[2];
890	struct inpcb *inp;
891	int error;
892
893	error = priv_check(req->td, PRIV_NETINET_GETCRED);
894	if (error)
895		return (error);
896	error = SYSCTL_IN(req, addrs, sizeof(addrs));
897	if (error)
898		return (error);
899	inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
900	    addrs[0].sin_addr, addrs[0].sin_port,
901	    INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL);
902	if (inp != NULL) {
903		INP_RLOCK_ASSERT(inp);
904		if (inp->inp_socket == NULL)
905			error = ENOENT;
906		if (error == 0)
907			error = cr_canseeinpcb(req->td->td_ucred, inp);
908		if (error == 0)
909			cru2x(inp->inp_cred, &xuc);
910		INP_RUNLOCK(inp);
911	} else
912		error = ENOENT;
913	if (error == 0)
914		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
915	return (error);
916}
917
918SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
919    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
920    udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
921#endif /* INET */
922
923int
924udp_ctloutput(struct socket *so, struct sockopt *sopt)
925{
926	struct inpcb *inp;
927	struct udpcb *up;
928	int isudplite, error, optval;
929
930	error = 0;
931	isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0;
932	inp = sotoinpcb(so);
933	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
934	INP_WLOCK(inp);
935	if (sopt->sopt_level != so->so_proto->pr_protocol) {
936#ifdef INET6
937		if (INP_CHECK_SOCKAF(so, AF_INET6)) {
938			INP_WUNLOCK(inp);
939			error = ip6_ctloutput(so, sopt);
940		}
941#endif
942#if defined(INET) && defined(INET6)
943		else
944#endif
945#ifdef INET
946		{
947			INP_WUNLOCK(inp);
948			error = ip_ctloutput(so, sopt);
949		}
950#endif
951		return (error);
952	}
953
954	switch (sopt->sopt_dir) {
955	case SOPT_SET:
956		switch (sopt->sopt_name) {
957		case UDP_ENCAP:
958			INP_WUNLOCK(inp);
959			error = sooptcopyin(sopt, &optval, sizeof optval,
960					    sizeof optval);
961			if (error)
962				break;
963			inp = sotoinpcb(so);
964			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
965			INP_WLOCK(inp);
966#ifdef IPSEC_NAT_T
967			up = intoudpcb(inp);
968			KASSERT(up != NULL, ("%s: up == NULL", __func__));
969#endif
970			switch (optval) {
971			case 0:
972				/* Clear all UDP encap. */
973#ifdef IPSEC_NAT_T
974				up->u_flags &= ~UF_ESPINUDP_ALL;
975#endif
976				break;
977#ifdef IPSEC_NAT_T
978			case UDP_ENCAP_ESPINUDP:
979			case UDP_ENCAP_ESPINUDP_NON_IKE:
980				up->u_flags &= ~UF_ESPINUDP_ALL;
981				if (optval == UDP_ENCAP_ESPINUDP)
982					up->u_flags |= UF_ESPINUDP;
983				else if (optval == UDP_ENCAP_ESPINUDP_NON_IKE)
984					up->u_flags |= UF_ESPINUDP_NON_IKE;
985				break;
986#endif
987			default:
988				error = EINVAL;
989				break;
990			}
991			INP_WUNLOCK(inp);
992			break;
993		case UDPLITE_SEND_CSCOV:
994		case UDPLITE_RECV_CSCOV:
995			if (!isudplite) {
996				INP_WUNLOCK(inp);
997				error = ENOPROTOOPT;
998				break;
999			}
1000			INP_WUNLOCK(inp);
1001			error = sooptcopyin(sopt, &optval, sizeof(optval),
1002			    sizeof(optval));
1003			if (error != 0)
1004				break;
1005			inp = sotoinpcb(so);
1006			KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
1007			INP_WLOCK(inp);
1008			up = intoudpcb(inp);
1009			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1010			if ((optval != 0 && optval < 8) || (optval > 65535)) {
1011				INP_WUNLOCK(inp);
1012				error = EINVAL;
1013				break;
1014			}
1015			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1016				up->u_txcslen = optval;
1017			else
1018				up->u_rxcslen = optval;
1019			INP_WUNLOCK(inp);
1020			break;
1021		default:
1022			INP_WUNLOCK(inp);
1023			error = ENOPROTOOPT;
1024			break;
1025		}
1026		break;
1027	case SOPT_GET:
1028		switch (sopt->sopt_name) {
1029#ifdef IPSEC_NAT_T
1030		case UDP_ENCAP:
1031			up = intoudpcb(inp);
1032			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1033			optval = up->u_flags & UF_ESPINUDP_ALL;
1034			INP_WUNLOCK(inp);
1035			error = sooptcopyout(sopt, &optval, sizeof optval);
1036			break;
1037#endif
1038		case UDPLITE_SEND_CSCOV:
1039		case UDPLITE_RECV_CSCOV:
1040			if (!isudplite) {
1041				INP_WUNLOCK(inp);
1042				error = ENOPROTOOPT;
1043				break;
1044			}
1045			up = intoudpcb(inp);
1046			KASSERT(up != NULL, ("%s: up == NULL", __func__));
1047			if (sopt->sopt_name == UDPLITE_SEND_CSCOV)
1048				optval = up->u_txcslen;
1049			else
1050				optval = up->u_rxcslen;
1051			INP_WUNLOCK(inp);
1052			error = sooptcopyout(sopt, &optval, sizeof(optval));
1053			break;
1054		default:
1055			INP_WUNLOCK(inp);
1056			error = ENOPROTOOPT;
1057			break;
1058		}
1059		break;
1060	}
1061	return (error);
1062}
1063
1064#ifdef INET
1065#define	UH_WLOCKED	2
1066#define	UH_RLOCKED	1
1067#define	UH_UNLOCKED	0
1068static int
1069udp_output(struct inpcb *inp, struct mbuf *m, struct sockaddr *addr,
1070    struct mbuf *control, struct thread *td)
1071{
1072	struct udpiphdr *ui;
1073	int len = m->m_pkthdr.len;
1074	struct in_addr faddr, laddr;
1075	struct cmsghdr *cm;
1076	struct inpcbinfo *pcbinfo;
1077	struct sockaddr_in *sin, src;
1078	int cscov_partial = 0;
1079	int error = 0;
1080	int ipflags;
1081	u_short fport, lport;
1082	int unlock_udbinfo;
1083	u_char tos;
1084	uint8_t pr;
1085	uint16_t cscov = 0;
1086
1087	/*
1088	 * udp_output() may need to temporarily bind or connect the current
1089	 * inpcb.  As such, we don't know up front whether we will need the
1090	 * pcbinfo lock or not.  Do any work to decide what is needed up
1091	 * front before acquiring any locks.
1092	 */
1093	if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
1094		if (control)
1095			m_freem(control);
1096		m_freem(m);
1097		return (EMSGSIZE);
1098	}
1099
1100	src.sin_family = 0;
1101	INP_RLOCK(inp);
1102	tos = inp->inp_ip_tos;
1103	if (control != NULL) {
1104		/*
1105		 * XXX: Currently, we assume all the optional information is
1106		 * stored in a single mbuf.
1107		 */
1108		if (control->m_next) {
1109			INP_RUNLOCK(inp);
1110			m_freem(control);
1111			m_freem(m);
1112			return (EINVAL);
1113		}
1114		for (; control->m_len > 0;
1115		    control->m_data += CMSG_ALIGN(cm->cmsg_len),
1116		    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1117			cm = mtod(control, struct cmsghdr *);
1118			if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0
1119			    || cm->cmsg_len > control->m_len) {
1120				error = EINVAL;
1121				break;
1122			}
1123			if (cm->cmsg_level != IPPROTO_IP)
1124				continue;
1125
1126			switch (cm->cmsg_type) {
1127			case IP_SENDSRCADDR:
1128				if (cm->cmsg_len !=
1129				    CMSG_LEN(sizeof(struct in_addr))) {
1130					error = EINVAL;
1131					break;
1132				}
1133				bzero(&src, sizeof(src));
1134				src.sin_family = AF_INET;
1135				src.sin_len = sizeof(src);
1136				src.sin_port = inp->inp_lport;
1137				src.sin_addr =
1138				    *(struct in_addr *)CMSG_DATA(cm);
1139				break;
1140
1141			case IP_TOS:
1142				if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) {
1143					error = EINVAL;
1144					break;
1145				}
1146				tos = *(u_char *)CMSG_DATA(cm);
1147				break;
1148
1149			default:
1150				error = ENOPROTOOPT;
1151				break;
1152			}
1153			if (error)
1154				break;
1155		}
1156		m_freem(control);
1157	}
1158	if (error) {
1159		INP_RUNLOCK(inp);
1160		m_freem(m);
1161		return (error);
1162	}
1163
1164	/*
1165	 * Depending on whether or not the application has bound or connected
1166	 * the socket, we may have to do varying levels of work.  The optimal
1167	 * case is for a connected UDP socket, as a global lock isn't
1168	 * required at all.
1169	 *
1170	 * In order to decide which we need, we require stability of the
1171	 * inpcb binding, which we ensure by acquiring a read lock on the
1172	 * inpcb.  This doesn't strictly follow the lock order, so we play
1173	 * the trylock and retry game; note that we may end up with more
1174	 * conservative locks than required the second time around, so later
1175	 * assertions have to accept that.  Further analysis of the number of
1176	 * misses under contention is required.
1177	 *
1178	 * XXXRW: Check that hash locking update here is correct.
1179	 */
1180	pr = inp->inp_socket->so_proto->pr_protocol;
1181	pcbinfo = get_inpcbinfo(pr);
1182	sin = (struct sockaddr_in *)addr;
1183	if (sin != NULL &&
1184	    (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0)) {
1185		INP_RUNLOCK(inp);
1186		INP_WLOCK(inp);
1187		INP_HASH_WLOCK(pcbinfo);
1188		unlock_udbinfo = UH_WLOCKED;
1189	} else if ((sin != NULL && (
1190	    (sin->sin_addr.s_addr == INADDR_ANY) ||
1191	    (sin->sin_addr.s_addr == INADDR_BROADCAST) ||
1192	    (inp->inp_laddr.s_addr == INADDR_ANY) ||
1193	    (inp->inp_lport == 0))) ||
1194	    (src.sin_family == AF_INET)) {
1195		INP_HASH_RLOCK(pcbinfo);
1196		unlock_udbinfo = UH_RLOCKED;
1197	} else
1198		unlock_udbinfo = UH_UNLOCKED;
1199
1200	/*
1201	 * If the IP_SENDSRCADDR control message was specified, override the
1202	 * source address for this datagram.  Its use is invalidated if the
1203	 * address thus specified is incomplete or clobbers other inpcbs.
1204	 */
1205	laddr = inp->inp_laddr;
1206	lport = inp->inp_lport;
1207	if (src.sin_family == AF_INET) {
1208		INP_HASH_LOCK_ASSERT(pcbinfo);
1209		if ((lport == 0) ||
1210		    (laddr.s_addr == INADDR_ANY &&
1211		     src.sin_addr.s_addr == INADDR_ANY)) {
1212			error = EINVAL;
1213			goto release;
1214		}
1215		error = in_pcbbind_setup(inp, (struct sockaddr *)&src,
1216		    &laddr.s_addr, &lport, td->td_ucred);
1217		if (error)
1218			goto release;
1219	}
1220
1221	/*
1222	 * If a UDP socket has been connected, then a local address/port will
1223	 * have been selected and bound.
1224	 *
1225	 * If a UDP socket has not been connected to, then an explicit
1226	 * destination address must be used, in which case a local
1227	 * address/port may not have been selected and bound.
1228	 */
1229	if (sin != NULL) {
1230		INP_LOCK_ASSERT(inp);
1231		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1232			error = EISCONN;
1233			goto release;
1234		}
1235
1236		/*
1237		 * Jail may rewrite the destination address, so let it do
1238		 * that before we use it.
1239		 */
1240		error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1241		if (error)
1242			goto release;
1243
1244		/*
1245		 * If a local address or port hasn't yet been selected, or if
1246		 * the destination address needs to be rewritten due to using
1247		 * a special INADDR_ constant, invoke in_pcbconnect_setup()
1248		 * to do the heavy lifting.  Once a port is selected, we
1249		 * commit the binding back to the socket; we also commit the
1250		 * binding of the address if in jail.
1251		 *
1252		 * If we already have a valid binding and we're not
1253		 * requesting a destination address rewrite, use a fast path.
1254		 */
1255		if (inp->inp_laddr.s_addr == INADDR_ANY ||
1256		    inp->inp_lport == 0 ||
1257		    sin->sin_addr.s_addr == INADDR_ANY ||
1258		    sin->sin_addr.s_addr == INADDR_BROADCAST) {
1259			INP_HASH_LOCK_ASSERT(pcbinfo);
1260			error = in_pcbconnect_setup(inp, addr, &laddr.s_addr,
1261			    &lport, &faddr.s_addr, &fport, NULL,
1262			    td->td_ucred);
1263			if (error)
1264				goto release;
1265
1266			/*
1267			 * XXXRW: Why not commit the port if the address is
1268			 * !INADDR_ANY?
1269			 */
1270			/* Commit the local port if newly assigned. */
1271			if (inp->inp_laddr.s_addr == INADDR_ANY &&
1272			    inp->inp_lport == 0) {
1273				INP_WLOCK_ASSERT(inp);
1274				INP_HASH_WLOCK_ASSERT(pcbinfo);
1275				/*
1276				 * Remember addr if jailed, to prevent
1277				 * rebinding.
1278				 */
1279				if (prison_flag(td->td_ucred, PR_IP4))
1280					inp->inp_laddr = laddr;
1281				inp->inp_lport = lport;
1282				if (in_pcbinshash(inp) != 0) {
1283					inp->inp_lport = 0;
1284					error = EAGAIN;
1285					goto release;
1286				}
1287				inp->inp_flags |= INP_ANONPORT;
1288			}
1289		} else {
1290			faddr = sin->sin_addr;
1291			fport = sin->sin_port;
1292		}
1293	} else {
1294		INP_LOCK_ASSERT(inp);
1295		faddr = inp->inp_faddr;
1296		fport = inp->inp_fport;
1297		if (faddr.s_addr == INADDR_ANY) {
1298			error = ENOTCONN;
1299			goto release;
1300		}
1301	}
1302
1303	/*
1304	 * Calculate data length and get a mbuf for UDP, IP, and possible
1305	 * link-layer headers.  Immediate slide the data pointer back forward
1306	 * since we won't use that space at this layer.
1307	 */
1308	M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT);
1309	if (m == NULL) {
1310		error = ENOBUFS;
1311		goto release;
1312	}
1313	m->m_data += max_linkhdr;
1314	m->m_len -= max_linkhdr;
1315	m->m_pkthdr.len -= max_linkhdr;
1316
1317	/*
1318	 * Fill in mbuf with extended UDP header and addresses and length put
1319	 * into network format.
1320	 */
1321	ui = mtod(m, struct udpiphdr *);
1322	bzero(ui->ui_x1, sizeof(ui->ui_x1));	/* XXX still needed? */
1323	ui->ui_pr = pr;
1324	ui->ui_src = laddr;
1325	ui->ui_dst = faddr;
1326	ui->ui_sport = lport;
1327	ui->ui_dport = fport;
1328	ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1329	if (pr == IPPROTO_UDPLITE) {
1330		struct udpcb *up;
1331		uint16_t plen;
1332
1333		up = intoudpcb(inp);
1334		cscov = up->u_txcslen;
1335		plen = (u_short)len + sizeof(struct udphdr);
1336		if (cscov >= plen)
1337			cscov = 0;
1338		ui->ui_len = htons(plen);
1339		ui->ui_ulen = htons(cscov);
1340		/*
1341		 * For UDP-Lite, checksum coverage length of zero means
1342		 * the entire UDPLite packet is covered by the checksum.
1343		 */
1344		cscov_partial = (cscov == 0) ? 0 : 1;
1345	} else
1346		ui->ui_v = IPVERSION << 4;
1347
1348	/*
1349	 * Set the Don't Fragment bit in the IP header.
1350	 */
1351	if (inp->inp_flags & INP_DONTFRAG) {
1352		struct ip *ip;
1353
1354		ip = (struct ip *)&ui->ui_i;
1355		ip->ip_off |= htons(IP_DF);
1356	}
1357
1358	ipflags = 0;
1359	if (inp->inp_socket->so_options & SO_DONTROUTE)
1360		ipflags |= IP_ROUTETOIF;
1361	if (inp->inp_socket->so_options & SO_BROADCAST)
1362		ipflags |= IP_ALLOWBROADCAST;
1363	if (inp->inp_flags & INP_ONESBCAST)
1364		ipflags |= IP_SENDONES;
1365
1366#ifdef MAC
1367	mac_inpcb_create_mbuf(inp, m);
1368#endif
1369
1370	/*
1371	 * Set up checksum and output datagram.
1372	 */
1373	ui->ui_sum = 0;
1374	if (pr == IPPROTO_UDPLITE) {
1375		if (inp->inp_flags & INP_ONESBCAST)
1376			faddr.s_addr = INADDR_BROADCAST;
1377		if (cscov_partial) {
1378			if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0)
1379				ui->ui_sum = 0xffff;
1380		} else {
1381			if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0)
1382				ui->ui_sum = 0xffff;
1383		}
1384	} else if (V_udp_cksum) {
1385		if (inp->inp_flags & INP_ONESBCAST)
1386			faddr.s_addr = INADDR_BROADCAST;
1387		ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr,
1388		    htons((u_short)len + sizeof(struct udphdr) + pr));
1389		m->m_pkthdr.csum_flags = CSUM_UDP;
1390		m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1391	}
1392	((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
1393	((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl;	/* XXX */
1394	((struct ip *)ui)->ip_tos = tos;		/* XXX */
1395	UDPSTAT_INC(udps_opackets);
1396
1397	if (unlock_udbinfo == UH_WLOCKED)
1398		INP_HASH_WUNLOCK(pcbinfo);
1399	else if (unlock_udbinfo == UH_RLOCKED)
1400		INP_HASH_RUNLOCK(pcbinfo);
1401	UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u);
1402	error = ip_output(m, inp->inp_options, NULL, ipflags,
1403	    inp->inp_moptions, inp);
1404	if (unlock_udbinfo == UH_WLOCKED)
1405		INP_WUNLOCK(inp);
1406	else
1407		INP_RUNLOCK(inp);
1408	return (error);
1409
1410release:
1411	if (unlock_udbinfo == UH_WLOCKED) {
1412		INP_HASH_WUNLOCK(pcbinfo);
1413		INP_WUNLOCK(inp);
1414	} else if (unlock_udbinfo == UH_RLOCKED) {
1415		INP_HASH_RUNLOCK(pcbinfo);
1416		INP_RUNLOCK(inp);
1417	} else
1418		INP_RUNLOCK(inp);
1419	m_freem(m);
1420	return (error);
1421}
1422
1423
1424#if defined(IPSEC) && defined(IPSEC_NAT_T)
1425/*
1426 * Potentially decap ESP in UDP frame.  Check for an ESP header
1427 * and optional marker; if present, strip the UDP header and
1428 * push the result through IPSec.
1429 *
1430 * Returns mbuf to be processed (potentially re-allocated) or
1431 * NULL if consumed and/or processed.
1432 */
1433static struct mbuf *
1434udp4_espdecap(struct inpcb *inp, struct mbuf *m, int off)
1435{
1436	size_t minlen, payload, skip, iphlen;
1437	caddr_t data;
1438	struct udpcb *up;
1439	struct m_tag *tag;
1440	struct udphdr *udphdr;
1441	struct ip *ip;
1442
1443	INP_RLOCK_ASSERT(inp);
1444
1445	/*
1446	 * Pull up data so the longest case is contiguous:
1447	 *    IP/UDP hdr + non ESP marker + ESP hdr.
1448	 */
1449	minlen = off + sizeof(uint64_t) + sizeof(struct esp);
1450	if (minlen > m->m_pkthdr.len)
1451		minlen = m->m_pkthdr.len;
1452	if ((m = m_pullup(m, minlen)) == NULL) {
1453		IPSECSTAT_INC(ips_in_inval);
1454		return (NULL);		/* Bypass caller processing. */
1455	}
1456	data = mtod(m, caddr_t);	/* Points to ip header. */
1457	payload = m->m_len - off;	/* Size of payload. */
1458
1459	if (payload == 1 && data[off] == '\xff')
1460		return (m);		/* NB: keepalive packet, no decap. */
1461
1462	up = intoudpcb(inp);
1463	KASSERT(up != NULL, ("%s: udpcb NULL", __func__));
1464	KASSERT((up->u_flags & UF_ESPINUDP_ALL) != 0,
1465	    ("u_flags 0x%x", up->u_flags));
1466
1467	/*
1468	 * Check that the payload is large enough to hold an
1469	 * ESP header and compute the amount of data to remove.
1470	 *
1471	 * NB: the caller has already done a pullup for us.
1472	 * XXX can we assume alignment and eliminate bcopys?
1473	 */
1474	if (up->u_flags & UF_ESPINUDP_NON_IKE) {
1475		/*
1476		 * draft-ietf-ipsec-nat-t-ike-0[01].txt and
1477		 * draft-ietf-ipsec-udp-encaps-(00/)01.txt, ignoring
1478		 * possible AH mode non-IKE marker+non-ESP marker
1479		 * from draft-ietf-ipsec-udp-encaps-00.txt.
1480		 */
1481		uint64_t marker;
1482
1483		if (payload <= sizeof(uint64_t) + sizeof(struct esp))
1484			return (m);	/* NB: no decap. */
1485		bcopy(data + off, &marker, sizeof(uint64_t));
1486		if (marker != 0)	/* Non-IKE marker. */
1487			return (m);	/* NB: no decap. */
1488		skip = sizeof(uint64_t) + sizeof(struct udphdr);
1489	} else {
1490		uint32_t spi;
1491
1492		if (payload <= sizeof(struct esp)) {
1493			IPSECSTAT_INC(ips_in_inval);
1494			m_freem(m);
1495			return (NULL);	/* Discard. */
1496		}
1497		bcopy(data + off, &spi, sizeof(uint32_t));
1498		if (spi == 0)		/* Non-ESP marker. */
1499			return (m);	/* NB: no decap. */
1500		skip = sizeof(struct udphdr);
1501	}
1502
1503	/*
1504	 * Setup a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1505	 * the UDP ports. This is required if we want to select
1506	 * the right SPD for multiple hosts behind same NAT.
1507	 *
1508	 * NB: ports are maintained in network byte order everywhere
1509	 *     in the NAT-T code.
1510	 */
1511	tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1512		2 * sizeof(uint16_t), M_NOWAIT);
1513	if (tag == NULL) {
1514		IPSECSTAT_INC(ips_in_nomem);
1515		m_freem(m);
1516		return (NULL);		/* Discard. */
1517	}
1518	iphlen = off - sizeof(struct udphdr);
1519	udphdr = (struct udphdr *)(data + iphlen);
1520	((uint16_t *)(tag + 1))[0] = udphdr->uh_sport;
1521	((uint16_t *)(tag + 1))[1] = udphdr->uh_dport;
1522	m_tag_prepend(m, tag);
1523
1524	/*
1525	 * Remove the UDP header (and possibly the non ESP marker)
1526	 * IP header length is iphlen
1527	 * Before:
1528	 *   <--- off --->
1529	 *   +----+------+-----+
1530	 *   | IP |  UDP | ESP |
1531	 *   +----+------+-----+
1532	 *        <-skip->
1533	 * After:
1534	 *          +----+-----+
1535	 *          | IP | ESP |
1536	 *          +----+-----+
1537	 *   <-skip->
1538	 */
1539	ovbcopy(data, data + skip, iphlen);
1540	m_adj(m, skip);
1541
1542	ip = mtod(m, struct ip *);
1543	ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1544	ip->ip_p = IPPROTO_ESP;
1545
1546	/*
1547	 * We cannot yet update the cksums so clear any
1548	 * h/w cksum flags as they are no longer valid.
1549	 */
1550	if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)
1551		m->m_pkthdr.csum_flags &= ~(CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
1552
1553	(void) ipsec4_common_input(m, iphlen, ip->ip_p);
1554	return (NULL);			/* NB: consumed, bypass processing. */
1555}
1556#endif /* defined(IPSEC) && defined(IPSEC_NAT_T) */
1557
1558static void
1559udp_abort(struct socket *so)
1560{
1561	struct inpcb *inp;
1562	struct inpcbinfo *pcbinfo;
1563
1564	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1565	inp = sotoinpcb(so);
1566	KASSERT(inp != NULL, ("udp_abort: inp == NULL"));
1567	INP_WLOCK(inp);
1568	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1569		INP_HASH_WLOCK(pcbinfo);
1570		in_pcbdisconnect(inp);
1571		inp->inp_laddr.s_addr = INADDR_ANY;
1572		INP_HASH_WUNLOCK(pcbinfo);
1573		soisdisconnected(so);
1574	}
1575	INP_WUNLOCK(inp);
1576}
1577
1578static int
1579udp_attach(struct socket *so, int proto, struct thread *td)
1580{
1581	struct inpcb *inp;
1582	struct inpcbinfo *pcbinfo;
1583	int error;
1584
1585	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1586	inp = sotoinpcb(so);
1587	KASSERT(inp == NULL, ("udp_attach: inp != NULL"));
1588	error = soreserve(so, udp_sendspace, udp_recvspace);
1589	if (error)
1590		return (error);
1591	INP_INFO_WLOCK(pcbinfo);
1592	error = in_pcballoc(so, pcbinfo);
1593	if (error) {
1594		INP_INFO_WUNLOCK(pcbinfo);
1595		return (error);
1596	}
1597
1598	inp = sotoinpcb(so);
1599	inp->inp_vflag |= INP_IPV4;
1600	inp->inp_ip_ttl = V_ip_defttl;
1601
1602	error = udp_newudpcb(inp);
1603	if (error) {
1604		in_pcbdetach(inp);
1605		in_pcbfree(inp);
1606		INP_INFO_WUNLOCK(pcbinfo);
1607		return (error);
1608	}
1609
1610	INP_WUNLOCK(inp);
1611	INP_INFO_WUNLOCK(pcbinfo);
1612	return (0);
1613}
1614#endif /* INET */
1615
1616int
1617udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f)
1618{
1619	struct inpcb *inp;
1620	struct udpcb *up;
1621
1622	KASSERT(so->so_type == SOCK_DGRAM,
1623	    ("udp_set_kernel_tunneling: !dgram"));
1624	inp = sotoinpcb(so);
1625	KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL"));
1626	INP_WLOCK(inp);
1627	up = intoudpcb(inp);
1628	if (up->u_tun_func != NULL) {
1629		INP_WUNLOCK(inp);
1630		return (EBUSY);
1631	}
1632	up->u_tun_func = f;
1633	INP_WUNLOCK(inp);
1634	return (0);
1635}
1636
1637#ifdef INET
1638static int
1639udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
1640{
1641	struct inpcb *inp;
1642	struct inpcbinfo *pcbinfo;
1643	int error;
1644
1645	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1646	inp = sotoinpcb(so);
1647	KASSERT(inp != NULL, ("udp_bind: inp == NULL"));
1648	INP_WLOCK(inp);
1649	INP_HASH_WLOCK(pcbinfo);
1650	error = in_pcbbind(inp, nam, td->td_ucred);
1651	INP_HASH_WUNLOCK(pcbinfo);
1652	INP_WUNLOCK(inp);
1653	return (error);
1654}
1655
1656static void
1657udp_close(struct socket *so)
1658{
1659	struct inpcb *inp;
1660	struct inpcbinfo *pcbinfo;
1661
1662	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1663	inp = sotoinpcb(so);
1664	KASSERT(inp != NULL, ("udp_close: inp == NULL"));
1665	INP_WLOCK(inp);
1666	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1667		INP_HASH_WLOCK(pcbinfo);
1668		in_pcbdisconnect(inp);
1669		inp->inp_laddr.s_addr = INADDR_ANY;
1670		INP_HASH_WUNLOCK(pcbinfo);
1671		soisdisconnected(so);
1672	}
1673	INP_WUNLOCK(inp);
1674}
1675
1676static int
1677udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1678{
1679	struct inpcb *inp;
1680	struct inpcbinfo *pcbinfo;
1681	struct sockaddr_in *sin;
1682	int error;
1683
1684	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1685	inp = sotoinpcb(so);
1686	KASSERT(inp != NULL, ("udp_connect: inp == NULL"));
1687	INP_WLOCK(inp);
1688	if (inp->inp_faddr.s_addr != INADDR_ANY) {
1689		INP_WUNLOCK(inp);
1690		return (EISCONN);
1691	}
1692	sin = (struct sockaddr_in *)nam;
1693	error = prison_remote_ip4(td->td_ucred, &sin->sin_addr);
1694	if (error != 0) {
1695		INP_WUNLOCK(inp);
1696		return (error);
1697	}
1698	INP_HASH_WLOCK(pcbinfo);
1699	error = in_pcbconnect(inp, nam, td->td_ucred);
1700	INP_HASH_WUNLOCK(pcbinfo);
1701	if (error == 0)
1702		soisconnected(so);
1703	INP_WUNLOCK(inp);
1704	return (error);
1705}
1706
1707static void
1708udp_detach(struct socket *so)
1709{
1710	struct inpcb *inp;
1711	struct inpcbinfo *pcbinfo;
1712	struct udpcb *up;
1713
1714	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1715	inp = sotoinpcb(so);
1716	KASSERT(inp != NULL, ("udp_detach: inp == NULL"));
1717	KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
1718	    ("udp_detach: not disconnected"));
1719	INP_INFO_WLOCK(pcbinfo);
1720	INP_WLOCK(inp);
1721	up = intoudpcb(inp);
1722	KASSERT(up != NULL, ("%s: up == NULL", __func__));
1723	inp->inp_ppcb = NULL;
1724	in_pcbdetach(inp);
1725	in_pcbfree(inp);
1726	INP_INFO_WUNLOCK(pcbinfo);
1727	udp_discardcb(up);
1728}
1729
1730static int
1731udp_disconnect(struct socket *so)
1732{
1733	struct inpcb *inp;
1734	struct inpcbinfo *pcbinfo;
1735
1736	pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol);
1737	inp = sotoinpcb(so);
1738	KASSERT(inp != NULL, ("udp_disconnect: inp == NULL"));
1739	INP_WLOCK(inp);
1740	if (inp->inp_faddr.s_addr == INADDR_ANY) {
1741		INP_WUNLOCK(inp);
1742		return (ENOTCONN);
1743	}
1744	INP_HASH_WLOCK(pcbinfo);
1745	in_pcbdisconnect(inp);
1746	inp->inp_laddr.s_addr = INADDR_ANY;
1747	INP_HASH_WUNLOCK(pcbinfo);
1748	SOCK_LOCK(so);
1749	so->so_state &= ~SS_ISCONNECTED;		/* XXX */
1750	SOCK_UNLOCK(so);
1751	INP_WUNLOCK(inp);
1752	return (0);
1753}
1754
1755static int
1756udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1757    struct mbuf *control, struct thread *td)
1758{
1759	struct inpcb *inp;
1760
1761	inp = sotoinpcb(so);
1762	KASSERT(inp != NULL, ("udp_send: inp == NULL"));
1763	return (udp_output(inp, m, addr, control, td));
1764}
1765#endif /* INET */
1766
1767int
1768udp_shutdown(struct socket *so)
1769{
1770	struct inpcb *inp;
1771
1772	inp = sotoinpcb(so);
1773	KASSERT(inp != NULL, ("udp_shutdown: inp == NULL"));
1774	INP_WLOCK(inp);
1775	socantsendmore(so);
1776	INP_WUNLOCK(inp);
1777	return (0);
1778}
1779
1780#ifdef INET
1781struct pr_usrreqs udp_usrreqs = {
1782	.pru_abort =		udp_abort,
1783	.pru_attach =		udp_attach,
1784	.pru_bind =		udp_bind,
1785	.pru_connect =		udp_connect,
1786	.pru_control =		in_control,
1787	.pru_detach =		udp_detach,
1788	.pru_disconnect =	udp_disconnect,
1789	.pru_peeraddr =		in_getpeeraddr,
1790	.pru_send =		udp_send,
1791	.pru_soreceive =	soreceive_dgram,
1792	.pru_sosend =		sosend_dgram,
1793	.pru_shutdown =		udp_shutdown,
1794	.pru_sockaddr =		in_getsockaddr,
1795	.pru_sosetlabel =	in_pcbsosetlabel,
1796	.pru_close =		udp_close,
1797};
1798#endif /* INET */
1799