tcp_subr.c revision 302233
1232809Sjmallett/*-
2232809Sjmallett * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3232809Sjmallett *	The Regents of the University of California.  All rights reserved.
4232809Sjmallett *
5232809Sjmallett * Redistribution and use in source and binary forms, with or without
6232809Sjmallett * modification, are permitted provided that the following conditions
7232809Sjmallett * are met:
8232809Sjmallett * 1. Redistributions of source code must retain the above copyright
9232809Sjmallett *    notice, this list of conditions and the following disclaimer.
10232809Sjmallett * 2. Redistributions in binary form must reproduce the above copyright
11232809Sjmallett *    notice, this list of conditions and the following disclaimer in the
12232809Sjmallett *    documentation and/or other materials provided with the distribution.
13232809Sjmallett * 4. Neither the name of the University nor the names of its contributors
14232809Sjmallett *    may be used to endorse or promote products derived from this software
15232809Sjmallett *    without specific prior written permission.
16232809Sjmallett *
17232809Sjmallett * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18232809Sjmallett * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19232809Sjmallett * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20232809Sjmallett * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21232809Sjmallett * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22232809Sjmallett * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23232809Sjmallett * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24232809Sjmallett * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25232809Sjmallett * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26232809Sjmallett * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27232809Sjmallett * SUCH DAMAGE.
28232809Sjmallett *
29232809Sjmallett *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30232809Sjmallett */
31232809Sjmallett
32232809Sjmallett#include <sys/cdefs.h>
33232809Sjmallett__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_subr.c 302233 2016-06-27 21:44:27Z bdrewery $");
34232809Sjmallett
35232809Sjmallett#include "opt_compat.h"
36232809Sjmallett#include "opt_inet.h"
37232809Sjmallett#include "opt_inet6.h"
38232809Sjmallett#include "opt_ipsec.h"
39232809Sjmallett#include "opt_kdtrace.h"
40232809Sjmallett#include "opt_tcpdebug.h"
41232809Sjmallett
42232809Sjmallett#include <sys/param.h>
43232809Sjmallett#include <sys/systm.h>
44232809Sjmallett#include <sys/callout.h>
45232809Sjmallett#include <sys/hhook.h>
46232809Sjmallett#include <sys/kernel.h>
47232809Sjmallett#include <sys/khelp.h>
48232809Sjmallett#include <sys/sysctl.h>
49232809Sjmallett#include <sys/jail.h>
50232809Sjmallett#include <sys/malloc.h>
51232809Sjmallett#include <sys/mbuf.h>
52232809Sjmallett#ifdef INET6
53232809Sjmallett#include <sys/domain.h>
54232809Sjmallett#endif
55232809Sjmallett#include <sys/priv.h>
56232809Sjmallett#include <sys/proc.h>
57232809Sjmallett#include <sys/sdt.h>
58232809Sjmallett#include <sys/socket.h>
59232809Sjmallett#include <sys/socketvar.h>
60232809Sjmallett#include <sys/protosw.h>
61232809Sjmallett#include <sys/random.h>
62232812Sjmallett
63232809Sjmallett#include <vm/uma.h>
64232809Sjmallett
65232812Sjmallett#include <net/route.h>
66232809Sjmallett#include <net/if.h>
67232809Sjmallett#include <net/vnet.h>
68232809Sjmallett
69232809Sjmallett#include <netinet/cc.h>
70232809Sjmallett#include <netinet/in.h>
71232809Sjmallett#include <netinet/in_kdtrace.h>
72232809Sjmallett#include <netinet/in_pcb.h>
73232809Sjmallett#include <netinet/in_systm.h>
74232809Sjmallett#include <netinet/in_var.h>
75232809Sjmallett#include <netinet/ip.h>
76232809Sjmallett#include <netinet/ip_icmp.h>
77232809Sjmallett#include <netinet/ip_var.h>
78232809Sjmallett#ifdef INET6
79232809Sjmallett#include <netinet/ip6.h>
80232809Sjmallett#include <netinet6/in6_pcb.h>
81232809Sjmallett#include <netinet6/ip6_var.h>
82232809Sjmallett#include <netinet6/scope6_var.h>
83232809Sjmallett#include <netinet6/nd6.h>
84232809Sjmallett#endif
85232809Sjmallett
86232809Sjmallett#ifdef TCP_RFC7413
87232809Sjmallett#include <netinet/tcp_fastopen.h>
88232809Sjmallett#endif
89232809Sjmallett#include <netinet/tcp_fsm.h>
90232809Sjmallett#include <netinet/tcp_seq.h>
91232809Sjmallett#include <netinet/tcp_timer.h>
92232809Sjmallett#include <netinet/tcp_var.h>
93232809Sjmallett#include <netinet/tcp_syncache.h>
94232809Sjmallett#ifdef INET6
95232809Sjmallett#include <netinet6/tcp6_var.h>
96232809Sjmallett#endif
97232809Sjmallett#include <netinet/tcpip.h>
98232809Sjmallett#ifdef TCPDEBUG
99232809Sjmallett#include <netinet/tcp_debug.h>
100232809Sjmallett#endif
101232809Sjmallett#ifdef INET6
102232809Sjmallett#include <netinet6/ip6protosw.h>
103232809Sjmallett#endif
104232809Sjmallett#ifdef TCP_OFFLOAD
105232809Sjmallett#include <netinet/tcp_offload.h>
106232809Sjmallett#endif
107232809Sjmallett
108232809Sjmallett#ifdef IPSEC
109232809Sjmallett#include <netipsec/ipsec.h>
110232809Sjmallett#include <netipsec/xform.h>
111232809Sjmallett#ifdef INET6
112232809Sjmallett#include <netipsec/ipsec6.h>
113232809Sjmallett#endif
114232809Sjmallett#include <netipsec/key.h>
115232809Sjmallett#include <sys/syslog.h>
116232809Sjmallett#endif /*IPSEC*/
117232809Sjmallett
118232809Sjmallett#include <machine/in_cksum.h>
119232809Sjmallett#include <sys/md5.h>
120232809Sjmallett
121232809Sjmallett#include <security/mac/mac_framework.h>
122232809Sjmallett
123232809SjmallettVNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
124232809Sjmallett#ifdef INET6
125232809SjmallettVNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
126232809Sjmallett#endif
127232809Sjmallett
128232809Sjmallettstatic int
129232809Sjmallettsysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
130232809Sjmallett{
131232809Sjmallett	int error, new;
132232809Sjmallett
133232809Sjmallett	new = V_tcp_mssdflt;
134232809Sjmallett	error = sysctl_handle_int(oidp, &new, 0, req);
135232809Sjmallett	if (error == 0 && req->newptr) {
136232809Sjmallett		if (new < TCP_MINMSS)
137232809Sjmallett			error = EINVAL;
138232809Sjmallett		else
139232809Sjmallett			V_tcp_mssdflt = new;
140232809Sjmallett	}
141232809Sjmallett	return (error);
142232809Sjmallett}
143232809Sjmallett
144232809SjmallettSYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
145232809Sjmallett    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
146232809Sjmallett    &sysctl_net_inet_tcp_mss_check, "I",
147232809Sjmallett    "Default TCP Maximum Segment Size");
148232809Sjmallett
149232809Sjmallett#ifdef INET6
150232809Sjmallettstatic int
151232809Sjmallettsysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
152232809Sjmallett{
153232809Sjmallett	int error, new;
154232809Sjmallett
155232809Sjmallett	new = V_tcp_v6mssdflt;
156232809Sjmallett	error = sysctl_handle_int(oidp, &new, 0, req);
157232809Sjmallett	if (error == 0 && req->newptr) {
158232809Sjmallett		if (new < TCP_MINMSS)
159232809Sjmallett			error = EINVAL;
160232809Sjmallett		else
161232809Sjmallett			V_tcp_v6mssdflt = new;
162232809Sjmallett	}
163232809Sjmallett	return (error);
164232809Sjmallett}
165232809Sjmallett
166232809SjmallettSYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
167232809Sjmallett    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
168232809Sjmallett    &sysctl_net_inet_tcp_mss_v6_check, "I",
169232809Sjmallett   "Default TCP Maximum Segment Size for IPv6");
170232809Sjmallett#endif /* INET6 */
171232809Sjmallett
172232809Sjmallett/*
173232809Sjmallett * Minimum MSS we accept and use. This prevents DoS attacks where
174232809Sjmallett * we are forced to a ridiculous low MSS like 20 and send hundreds
175232809Sjmallett * of packets instead of one. The effect scales with the available
176232809Sjmallett * bandwidth and quickly saturates the CPU and network interface
177232809Sjmallett * with packet generation and sending. Set to zero to disable MINMSS
178232809Sjmallett * checking. This setting prevents us from sending too small packets.
179232809Sjmallett */
180232809SjmallettVNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
181232809SjmallettSYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
182232809Sjmallett     &VNET_NAME(tcp_minmss), 0,
183232809Sjmallett    "Minimum TCP Maximum Segment Size");
184232809Sjmallett
185232809SjmallettVNET_DEFINE(int, tcp_do_rfc1323) = 1;
186232809SjmallettSYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
187232809Sjmallett    &VNET_NAME(tcp_do_rfc1323), 0,
188232809Sjmallett    "Enable rfc1323 (high performance TCP) extensions");
189232809Sjmallett
190232809Sjmallettstatic int	tcp_log_debug = 0;
191232809SjmallettSYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
192232809Sjmallett    &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
193232809Sjmallett
194232809Sjmallettstatic int	tcp_tcbhashsize = 0;
195232809SjmallettSYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
196232809Sjmallett    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
197232809Sjmallett
198232809Sjmallettstatic int	do_tcpdrain = 1;
199232809SjmallettSYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
200232809Sjmallett    "Enable tcp_drain routine for extra help when low on mbufs");
201232809Sjmallett
202232809SjmallettSYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
203232809Sjmallett    &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
204232809Sjmallett
205232809Sjmallettstatic VNET_DEFINE(int, icmp_may_rst) = 1;
206232809Sjmallett#define	V_icmp_may_rst			VNET(icmp_may_rst)
207232809SjmallettSYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
208232809Sjmallett    &VNET_NAME(icmp_may_rst), 0,
209232809Sjmallett    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
210232809Sjmallett
211232809Sjmallettstatic VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
212232809Sjmallett#define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
213232809SjmallettSYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
214232809Sjmallett    &VNET_NAME(tcp_isn_reseed_interval), 0,
215232809Sjmallett    "Seconds between reseeding of ISN secret");
216232809Sjmallett
217232809Sjmallettstatic int	tcp_soreceive_stream = 0;
218232809SjmallettSYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
219232809Sjmallett    &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
220232809Sjmallett
221232809Sjmallett#ifdef TCP_SIGNATURE
222232809Sjmallettstatic int	tcp_sig_checksigs = 1;
223232809SjmallettSYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
224232809Sjmallett    &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
225232809Sjmallett#endif
226232809Sjmallett
227232809SjmallettVNET_DEFINE(uma_zone_t, sack_hole_zone);
228232809Sjmallett#define	V_sack_hole_zone		VNET(sack_hole_zone)
229232809Sjmallett
230232809SjmallettVNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
231232809Sjmallett
232232809Sjmallettstatic struct inpcb *tcp_notify(struct inpcb *, int);
233232809Sjmallettstatic struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
234232809Sjmallettstatic char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
235232809Sjmallett		    void *ip4hdr, const void *ip6hdr);
236232809Sjmallettstatic void	tcp_timer_discard(struct tcpcb *, uint32_t);
237232809Sjmallett
238232809Sjmallett/*
239232809Sjmallett * Target size of TCP PCB hash tables. Must be a power of two.
240232809Sjmallett *
241232809Sjmallett * Note that this can be overridden by the kernel environment
242232809Sjmallett * variable net.inet.tcp.tcbhashsize
243232809Sjmallett */
244232809Sjmallett#ifndef TCBHASHSIZE
245232809Sjmallett#define TCBHASHSIZE	0
246232809Sjmallett#endif
247232809Sjmallett
248232809Sjmallett/*
249232809Sjmallett * XXX
250232809Sjmallett * Callouts should be moved into struct tcp directly.  They are currently
251232809Sjmallett * separate because the tcpcb structure is exported to userland for sysctl
252232809Sjmallett * parsing purposes, which do not know about callouts.
253232809Sjmallett */
254232809Sjmallettstruct tcpcb_mem {
255232809Sjmallett	struct	tcpcb		tcb;
256232809Sjmallett	struct	tcp_timer	tt;
257232809Sjmallett	struct	cc_var		ccv;
258232809Sjmallett	struct	osd		osd;
259232809Sjmallett};
260232809Sjmallett
261232809Sjmallettstatic VNET_DEFINE(uma_zone_t, tcpcb_zone);
262232809Sjmallett#define	V_tcpcb_zone			VNET(tcpcb_zone)
263232809Sjmallett
264232809SjmallettMALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
265232809Sjmallettstatic struct mtx isn_mtx;
266232809Sjmallett
267232809Sjmallett#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
268232809Sjmallett#define	ISN_LOCK()	mtx_lock(&isn_mtx)
269232809Sjmallett#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
270232809Sjmallett
271232809Sjmallett/*
272232809Sjmallett * TCP initialization.
273232809Sjmallett */
274232809Sjmallettstatic void
275232809Sjmalletttcp_zone_change(void *tag)
276232809Sjmallett{
277232809Sjmallett
278232809Sjmallett	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
279232809Sjmallett	uma_zone_set_max(V_tcpcb_zone, maxsockets);
280232809Sjmallett	tcp_tw_zone_change();
281232809Sjmallett}
282232809Sjmallett
283232809Sjmallettstatic int
284232809Sjmalletttcp_inpcb_init(void *mem, int size, int flags)
285232809Sjmallett{
286232809Sjmallett	struct inpcb *inp = mem;
287232809Sjmallett
288232809Sjmallett	INP_LOCK_INIT(inp, "inp", "tcpinp");
289232809Sjmallett	return (0);
290232809Sjmallett}
291232809Sjmallett
292232809Sjmallett/*
293232809Sjmallett * Take a value and get the next power of 2 that doesn't overflow.
294232809Sjmallett * Used to size the tcp_inpcb hash buckets.
295232809Sjmallett */
296232809Sjmallettstatic int
297232809Sjmallettmaketcp_hashsize(int size)
298232809Sjmallett{
299232809Sjmallett	int hashsize;
300232809Sjmallett
301232809Sjmallett	/*
302232809Sjmallett	 * auto tune.
303232809Sjmallett	 * get the next power of 2 higher than maxsockets.
304232809Sjmallett	 */
305232809Sjmallett	hashsize = 1 << fls(size);
306232809Sjmallett	/* catch overflow, and just go one power of 2 smaller */
307232809Sjmallett	if (hashsize < size) {
308232809Sjmallett		hashsize = 1 << (fls(size) - 1);
309232809Sjmallett	}
310232809Sjmallett	return (hashsize);
311232809Sjmallett}
312232809Sjmallett
313232809Sjmallettvoid
314232809Sjmalletttcp_init(void)
315232809Sjmallett{
316232809Sjmallett	const char *tcbhash_tuneable;
317232809Sjmallett	int hashsize;
318232809Sjmallett
319232809Sjmallett	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
320232809Sjmallett
321232809Sjmallett	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
322232809Sjmallett	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
323232809Sjmallett		printf("%s: WARNING: unable to register helper hook\n", __func__);
324232809Sjmallett	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
325232809Sjmallett	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
326232809Sjmallett		printf("%s: WARNING: unable to register helper hook\n", __func__);
327232809Sjmallett
328232809Sjmallett	hashsize = TCBHASHSIZE;
329232809Sjmallett	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
330232809Sjmallett	if (hashsize == 0) {
331232809Sjmallett		/*
332232809Sjmallett		 * Auto tune the hash size based on maxsockets.
333232809Sjmallett		 * A perfect hash would have a 1:1 mapping
334232809Sjmallett		 * (hashsize = maxsockets) however it's been
335232809Sjmallett		 * suggested that O(2) average is better.
336232809Sjmallett		 */
337232809Sjmallett		hashsize = maketcp_hashsize(maxsockets / 4);
338232809Sjmallett		/*
339232809Sjmallett		 * Our historical default is 512,
340232809Sjmallett		 * do not autotune lower than this.
341232809Sjmallett		 */
342232809Sjmallett		if (hashsize < 512)
343232809Sjmallett			hashsize = 512;
344232809Sjmallett		if (bootverbose && IS_DEFAULT_VNET(curvnet))
345232809Sjmallett			printf("%s: %s auto tuned to %d\n", __func__,
346232809Sjmallett			    tcbhash_tuneable, hashsize);
347232809Sjmallett	}
348232809Sjmallett	/*
349232809Sjmallett	 * We require a hashsize to be a power of two.
350232809Sjmallett	 * Previously if it was not a power of two we would just reset it
351232809Sjmallett	 * back to 512, which could be a nasty surprise if you did not notice
352232809Sjmallett	 * the error message.
353232809Sjmallett	 * Instead what we do is clip it to the closest power of two lower
354232809Sjmallett	 * than the specified hash value.
355232809Sjmallett	 */
356232809Sjmallett	if (!powerof2(hashsize)) {
357232809Sjmallett		int oldhashsize = hashsize;
358232809Sjmallett
359232809Sjmallett		hashsize = maketcp_hashsize(hashsize);
360232809Sjmallett		/* prevent absurdly low value */
361232809Sjmallett		if (hashsize < 16)
362232809Sjmallett			hashsize = 16;
363232809Sjmallett		printf("%s: WARNING: TCB hash size not a power of 2, "
364232809Sjmallett		    "clipped from %d to %d.\n", __func__, oldhashsize,
365232809Sjmallett		    hashsize);
366232809Sjmallett	}
367232809Sjmallett	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
368232809Sjmallett	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
369232809Sjmallett	    IPI_HASHFIELDS_4TUPLE);
370232809Sjmallett
371232809Sjmallett	/*
372232809Sjmallett	 * These have to be type stable for the benefit of the timers.
373232809Sjmallett	 */
374232809Sjmallett	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
375232809Sjmallett	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
376232809Sjmallett	uma_zone_set_max(V_tcpcb_zone, maxsockets);
377232809Sjmallett	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
378232809Sjmallett
379232809Sjmallett	tcp_tw_init();
380232809Sjmallett	syncache_init();
381232809Sjmallett	tcp_hc_init();
382232809Sjmallett
383232809Sjmallett	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
384232809Sjmallett	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
385232809Sjmallett	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
386232809Sjmallett
387232809Sjmallett	/* Skip initialization of globals for non-default instances. */
388232809Sjmallett	if (!IS_DEFAULT_VNET(curvnet))
389232809Sjmallett		return;
390232809Sjmallett
391232809Sjmallett	tcp_reass_global_init();
392232809Sjmallett
393232809Sjmallett	/* XXX virtualize those bellow? */
394232809Sjmallett	tcp_delacktime = TCPTV_DELACK;
395232809Sjmallett	tcp_keepinit = TCPTV_KEEP_INIT;
396232809Sjmallett	tcp_keepidle = TCPTV_KEEP_IDLE;
397232809Sjmallett	tcp_keepintvl = TCPTV_KEEPINTVL;
398232809Sjmallett	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
399232809Sjmallett	tcp_msl = TCPTV_MSL;
400232809Sjmallett	tcp_rexmit_min = TCPTV_MIN;
401232809Sjmallett	if (tcp_rexmit_min < 1)
402232809Sjmallett		tcp_rexmit_min = 1;
403232809Sjmallett	tcp_persmin = TCPTV_PERSMIN;
404232809Sjmallett	tcp_persmax = TCPTV_PERSMAX;
405232809Sjmallett	tcp_rexmit_slop = TCPTV_CPU_VAR;
406232809Sjmallett	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
407232809Sjmallett	tcp_tcbhashsize = hashsize;
408232809Sjmallett
409232809Sjmallett	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
410232809Sjmallett	if (tcp_soreceive_stream) {
411232809Sjmallett#ifdef INET
412232809Sjmallett		tcp_usrreqs.pru_soreceive = soreceive_stream;
413232809Sjmallett#endif
414232809Sjmallett#ifdef INET6
415232809Sjmallett		tcp6_usrreqs.pru_soreceive = soreceive_stream;
416232809Sjmallett#endif /* INET6 */
417232809Sjmallett	}
418232809Sjmallett
419232809Sjmallett#ifdef INET6
420232809Sjmallett#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
421232809Sjmallett#else /* INET6 */
422232809Sjmallett#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
423232809Sjmallett#endif /* INET6 */
424232809Sjmallett	if (max_protohdr < TCP_MINPROTOHDR)
425232809Sjmallett		max_protohdr = TCP_MINPROTOHDR;
426232809Sjmallett	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
427232809Sjmallett		panic("tcp_init");
428232809Sjmallett#undef TCP_MINPROTOHDR
429232809Sjmallett
430232809Sjmallett	ISN_LOCK_INIT();
431232809Sjmallett	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
432232809Sjmallett		SHUTDOWN_PRI_DEFAULT);
433232809Sjmallett	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
434232809Sjmallett		EVENTHANDLER_PRI_ANY);
435232809Sjmallett
436232809Sjmallett#ifdef TCP_RFC7413
437232809Sjmallett	tcp_fastopen_init();
438232809Sjmallett#endif
439232809Sjmallett}
440232809Sjmallett
441232809Sjmallett#ifdef VIMAGE
442232809Sjmallettvoid
443tcp_destroy(void)
444{
445
446#ifdef TCP_RFC7413
447	tcp_fastopen_destroy();
448#endif
449	tcp_hc_destroy();
450	syncache_destroy();
451	tcp_tw_destroy();
452	in_pcbinfo_destroy(&V_tcbinfo);
453	uma_zdestroy(V_sack_hole_zone);
454	uma_zdestroy(V_tcpcb_zone);
455}
456#endif
457
458void
459tcp_fini(void *xtp)
460{
461
462}
463
464/*
465 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
466 * tcp_template used to store this data in mbufs, but we now recopy it out
467 * of the tcpcb each time to conserve mbufs.
468 */
469void
470tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
471{
472	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
473
474	INP_WLOCK_ASSERT(inp);
475
476#ifdef INET6
477	if ((inp->inp_vflag & INP_IPV6) != 0) {
478		struct ip6_hdr *ip6;
479
480		ip6 = (struct ip6_hdr *)ip_ptr;
481		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
482			(inp->inp_flow & IPV6_FLOWINFO_MASK);
483		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
484			(IPV6_VERSION & IPV6_VERSION_MASK);
485		ip6->ip6_nxt = IPPROTO_TCP;
486		ip6->ip6_plen = htons(sizeof(struct tcphdr));
487		ip6->ip6_src = inp->in6p_laddr;
488		ip6->ip6_dst = inp->in6p_faddr;
489	}
490#endif /* INET6 */
491#if defined(INET6) && defined(INET)
492	else
493#endif
494#ifdef INET
495	{
496		struct ip *ip;
497
498		ip = (struct ip *)ip_ptr;
499		ip->ip_v = IPVERSION;
500		ip->ip_hl = 5;
501		ip->ip_tos = inp->inp_ip_tos;
502		ip->ip_len = 0;
503		ip->ip_id = 0;
504		ip->ip_off = 0;
505		ip->ip_ttl = inp->inp_ip_ttl;
506		ip->ip_sum = 0;
507		ip->ip_p = IPPROTO_TCP;
508		ip->ip_src = inp->inp_laddr;
509		ip->ip_dst = inp->inp_faddr;
510	}
511#endif /* INET */
512	th->th_sport = inp->inp_lport;
513	th->th_dport = inp->inp_fport;
514	th->th_seq = 0;
515	th->th_ack = 0;
516	th->th_x2 = 0;
517	th->th_off = 5;
518	th->th_flags = 0;
519	th->th_win = 0;
520	th->th_urp = 0;
521	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
522}
523
524/*
525 * Create template to be used to send tcp packets on a connection.
526 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
527 * use for this function is in keepalives, which use tcp_respond.
528 */
529struct tcptemp *
530tcpip_maketemplate(struct inpcb *inp)
531{
532	struct tcptemp *t;
533
534	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
535	if (t == NULL)
536		return (NULL);
537	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
538	return (t);
539}
540
541/*
542 * Send a single message to the TCP at address specified by
543 * the given TCP/IP header.  If m == NULL, then we make a copy
544 * of the tcpiphdr at ti and send directly to the addressed host.
545 * This is used to force keep alive messages out using the TCP
546 * template for a connection.  If flags are given then we send
547 * a message back to the TCP which originated the * segment ti,
548 * and discard the mbuf containing it and any other attached mbufs.
549 *
550 * In any case the ack and sequence number of the transmitted
551 * segment are as specified by the parameters.
552 *
553 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
554 */
555void
556tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
557    tcp_seq ack, tcp_seq seq, int flags)
558{
559	int tlen;
560	int win = 0;
561	struct ip *ip;
562	struct tcphdr *nth;
563#ifdef INET6
564	struct ip6_hdr *ip6;
565	int isipv6;
566#endif /* INET6 */
567	int ipflags = 0;
568	struct inpcb *inp;
569
570	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
571
572#ifdef INET6
573	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
574	ip6 = ipgen;
575#endif /* INET6 */
576	ip = ipgen;
577
578	if (tp != NULL) {
579		inp = tp->t_inpcb;
580		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
581		INP_WLOCK_ASSERT(inp);
582	} else
583		inp = NULL;
584
585	if (tp != NULL) {
586		if (!(flags & TH_RST)) {
587			win = sbspace(&inp->inp_socket->so_rcv);
588			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
589				win = (long)TCP_MAXWIN << tp->rcv_scale;
590		}
591	}
592	if (m == NULL) {
593		m = m_gethdr(M_NOWAIT, MT_DATA);
594		if (m == NULL)
595			return;
596		tlen = 0;
597		m->m_data += max_linkhdr;
598#ifdef INET6
599		if (isipv6) {
600			bcopy((caddr_t)ip6, mtod(m, caddr_t),
601			      sizeof(struct ip6_hdr));
602			ip6 = mtod(m, struct ip6_hdr *);
603			nth = (struct tcphdr *)(ip6 + 1);
604		} else
605#endif /* INET6 */
606		{
607			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
608			ip = mtod(m, struct ip *);
609			nth = (struct tcphdr *)(ip + 1);
610		}
611		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
612		flags = TH_ACK;
613	} else {
614		/*
615		 *  reuse the mbuf.
616		 * XXX MRT We inherrit the FIB, which is lucky.
617		 */
618		m_freem(m->m_next);
619		m->m_next = NULL;
620		m->m_data = (caddr_t)ipgen;
621		/* m_len is set later */
622		tlen = 0;
623#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
624#ifdef INET6
625		if (isipv6) {
626			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
627			nth = (struct tcphdr *)(ip6 + 1);
628		} else
629#endif /* INET6 */
630		{
631			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
632			nth = (struct tcphdr *)(ip + 1);
633		}
634		if (th != nth) {
635			/*
636			 * this is usually a case when an extension header
637			 * exists between the IPv6 header and the
638			 * TCP header.
639			 */
640			nth->th_sport = th->th_sport;
641			nth->th_dport = th->th_dport;
642		}
643		xchg(nth->th_dport, nth->th_sport, uint16_t);
644#undef xchg
645	}
646#ifdef INET6
647	if (isipv6) {
648		ip6->ip6_flow = 0;
649		ip6->ip6_vfc = IPV6_VERSION;
650		ip6->ip6_nxt = IPPROTO_TCP;
651		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
652		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
653	}
654#endif
655#if defined(INET) && defined(INET6)
656	else
657#endif
658#ifdef INET
659	{
660		tlen += sizeof (struct tcpiphdr);
661		ip->ip_len = htons(tlen);
662		ip->ip_ttl = V_ip_defttl;
663		if (V_path_mtu_discovery)
664			ip->ip_off |= htons(IP_DF);
665	}
666#endif
667	m->m_len = tlen;
668	m->m_pkthdr.len = tlen;
669	m->m_pkthdr.rcvif = NULL;
670#ifdef MAC
671	if (inp != NULL) {
672		/*
673		 * Packet is associated with a socket, so allow the
674		 * label of the response to reflect the socket label.
675		 */
676		INP_WLOCK_ASSERT(inp);
677		mac_inpcb_create_mbuf(inp, m);
678	} else {
679		/*
680		 * Packet is not associated with a socket, so possibly
681		 * update the label in place.
682		 */
683		mac_netinet_tcp_reply(m);
684	}
685#endif
686	nth->th_seq = htonl(seq);
687	nth->th_ack = htonl(ack);
688	nth->th_x2 = 0;
689	nth->th_off = sizeof (struct tcphdr) >> 2;
690	nth->th_flags = flags;
691	if (tp != NULL)
692		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
693	else
694		nth->th_win = htons((u_short)win);
695	nth->th_urp = 0;
696
697	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
698#ifdef INET6
699	if (isipv6) {
700		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
701		nth->th_sum = in6_cksum_pseudo(ip6,
702		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
703		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
704		    NULL, NULL);
705	}
706#endif /* INET6 */
707#if defined(INET6) && defined(INET)
708	else
709#endif
710#ifdef INET
711	{
712		m->m_pkthdr.csum_flags = CSUM_TCP;
713		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
714		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
715	}
716#endif /* INET */
717#ifdef TCPDEBUG
718	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
719		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
720#endif
721	if (flags & TH_RST)
722		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
723		    tp, nth);
724
725	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
726#ifdef INET6
727	if (isipv6)
728		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
729#endif /* INET6 */
730#if defined(INET) && defined(INET6)
731	else
732#endif
733#ifdef INET
734		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
735#endif
736}
737
738/*
739 * Create a new TCP control block, making an
740 * empty reassembly queue and hooking it to the argument
741 * protocol control block.  The `inp' parameter must have
742 * come from the zone allocator set up in tcp_init().
743 */
744struct tcpcb *
745tcp_newtcpcb(struct inpcb *inp)
746{
747	struct tcpcb_mem *tm;
748	struct tcpcb *tp;
749#ifdef INET6
750	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
751#endif /* INET6 */
752
753	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
754	if (tm == NULL)
755		return (NULL);
756	tp = &tm->tcb;
757
758	/* Initialise cc_var struct for this tcpcb. */
759	tp->ccv = &tm->ccv;
760	tp->ccv->type = IPPROTO_TCP;
761	tp->ccv->ccvc.tcp = tp;
762
763	/*
764	 * Use the current system default CC algorithm.
765	 */
766	CC_LIST_RLOCK();
767	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
768	CC_ALGO(tp) = CC_DEFAULT();
769	CC_LIST_RUNLOCK();
770
771	if (CC_ALGO(tp)->cb_init != NULL)
772		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
773			uma_zfree(V_tcpcb_zone, tm);
774			return (NULL);
775		}
776
777	tp->osd = &tm->osd;
778	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
779		uma_zfree(V_tcpcb_zone, tm);
780		return (NULL);
781	}
782
783#ifdef VIMAGE
784	tp->t_vnet = inp->inp_vnet;
785#endif
786	tp->t_timers = &tm->tt;
787	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
788	tp->t_maxseg = tp->t_maxopd =
789#ifdef INET6
790		isipv6 ? V_tcp_v6mssdflt :
791#endif /* INET6 */
792		V_tcp_mssdflt;
793
794	/* Set up our timeouts. */
795	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
796	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
797	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
798	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
799	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
800
801	if (V_tcp_do_rfc1323)
802		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
803	if (V_tcp_do_sack)
804		tp->t_flags |= TF_SACK_PERMIT;
805	TAILQ_INIT(&tp->snd_holes);
806	/*
807	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
808	 * is called.
809	 */
810	in_pcbref(inp);	/* Reference for tcpcb */
811	tp->t_inpcb = inp;
812
813	/*
814	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
815	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
816	 * reasonable initial retransmit time.
817	 */
818	tp->t_srtt = TCPTV_SRTTBASE;
819	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
820	tp->t_rttmin = tcp_rexmit_min;
821	tp->t_rxtcur = TCPTV_RTOBASE;
822	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
823	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
824	tp->t_rcvtime = ticks;
825	/*
826	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
827	 * because the socket may be bound to an IPv6 wildcard address,
828	 * which may match an IPv4-mapped IPv6 address.
829	 */
830	inp->inp_ip_ttl = V_ip_defttl;
831	inp->inp_ppcb = tp;
832	return (tp);		/* XXX */
833}
834
835/*
836 * Switch the congestion control algorithm back to NewReno for any active
837 * control blocks using an algorithm which is about to go away.
838 * This ensures the CC framework can allow the unload to proceed without leaving
839 * any dangling pointers which would trigger a panic.
840 * Returning non-zero would inform the CC framework that something went wrong
841 * and it would be unsafe to allow the unload to proceed. However, there is no
842 * way for this to occur with this implementation so we always return zero.
843 */
844int
845tcp_ccalgounload(struct cc_algo *unload_algo)
846{
847	struct cc_algo *tmpalgo;
848	struct inpcb *inp;
849	struct tcpcb *tp;
850	VNET_ITERATOR_DECL(vnet_iter);
851
852	/*
853	 * Check all active control blocks across all network stacks and change
854	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
855	 * requires cleanup code to be run, call it.
856	 */
857	VNET_LIST_RLOCK();
858	VNET_FOREACH(vnet_iter) {
859		CURVNET_SET(vnet_iter);
860		INP_INFO_RLOCK(&V_tcbinfo);
861		/*
862		 * New connections already part way through being initialised
863		 * with the CC algo we're removing will not race with this code
864		 * because the INP_INFO_WLOCK is held during initialisation. We
865		 * therefore don't enter the loop below until the connection
866		 * list has stabilised.
867		 */
868		LIST_FOREACH(inp, &V_tcb, inp_list) {
869			INP_WLOCK(inp);
870			/* Important to skip tcptw structs. */
871			if (!(inp->inp_flags & INP_TIMEWAIT) &&
872			    (tp = intotcpcb(inp)) != NULL) {
873				/*
874				 * By holding INP_WLOCK here, we are assured
875				 * that the connection is not currently
876				 * executing inside the CC module's functions
877				 * i.e. it is safe to make the switch back to
878				 * NewReno.
879				 */
880				if (CC_ALGO(tp) == unload_algo) {
881					tmpalgo = CC_ALGO(tp);
882					/* NewReno does not require any init. */
883					CC_ALGO(tp) = &newreno_cc_algo;
884					if (tmpalgo->cb_destroy != NULL)
885						tmpalgo->cb_destroy(tp->ccv);
886				}
887			}
888			INP_WUNLOCK(inp);
889		}
890		INP_INFO_RUNLOCK(&V_tcbinfo);
891		CURVNET_RESTORE();
892	}
893	VNET_LIST_RUNLOCK();
894
895	return (0);
896}
897
898/*
899 * Drop a TCP connection, reporting
900 * the specified error.  If connection is synchronized,
901 * then send a RST to peer.
902 */
903struct tcpcb *
904tcp_drop(struct tcpcb *tp, int errno)
905{
906	struct socket *so = tp->t_inpcb->inp_socket;
907
908	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
909	INP_WLOCK_ASSERT(tp->t_inpcb);
910
911	if (TCPS_HAVERCVDSYN(tp->t_state)) {
912		tcp_state_change(tp, TCPS_CLOSED);
913		(void) tcp_output(tp);
914		TCPSTAT_INC(tcps_drops);
915	} else
916		TCPSTAT_INC(tcps_conndrops);
917	if (errno == ETIMEDOUT && tp->t_softerror)
918		errno = tp->t_softerror;
919	so->so_error = errno;
920	return (tcp_close(tp));
921}
922
923void
924tcp_discardcb(struct tcpcb *tp)
925{
926	struct inpcb *inp = tp->t_inpcb;
927	struct socket *so = inp->inp_socket;
928#ifdef INET6
929	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
930#endif /* INET6 */
931	int released;
932
933	INP_WLOCK_ASSERT(inp);
934
935	/*
936	 * Make sure that all of our timers are stopped before we delete the
937	 * PCB.
938	 *
939	 * If stopping a timer fails, we schedule a discard function in same
940	 * callout, and the last discard function called will take care of
941	 * deleting the tcpcb.
942	 */
943	tcp_timer_stop(tp, TT_REXMT);
944	tcp_timer_stop(tp, TT_PERSIST);
945	tcp_timer_stop(tp, TT_KEEP);
946	tcp_timer_stop(tp, TT_2MSL);
947	tcp_timer_stop(tp, TT_DELACK);
948
949	/*
950	 * If we got enough samples through the srtt filter,
951	 * save the rtt and rttvar in the routing entry.
952	 * 'Enough' is arbitrarily defined as 4 rtt samples.
953	 * 4 samples is enough for the srtt filter to converge
954	 * to within enough % of the correct value; fewer samples
955	 * and we could save a bogus rtt. The danger is not high
956	 * as tcp quickly recovers from everything.
957	 * XXX: Works very well but needs some more statistics!
958	 */
959	if (tp->t_rttupdated >= 4) {
960		struct hc_metrics_lite metrics;
961		u_long ssthresh;
962
963		bzero(&metrics, sizeof(metrics));
964		/*
965		 * Update the ssthresh always when the conditions below
966		 * are satisfied. This gives us better new start value
967		 * for the congestion avoidance for new connections.
968		 * ssthresh is only set if packet loss occured on a session.
969		 *
970		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
971		 * being torn down.  Ideally this code would not use 'so'.
972		 */
973		ssthresh = tp->snd_ssthresh;
974		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
975			/*
976			 * convert the limit from user data bytes to
977			 * packets then to packet data bytes.
978			 */
979			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
980			if (ssthresh < 2)
981				ssthresh = 2;
982			ssthresh *= (u_long)(tp->t_maxseg +
983#ifdef INET6
984			    (isipv6 ? sizeof (struct ip6_hdr) +
985				sizeof (struct tcphdr) :
986#endif
987				sizeof (struct tcpiphdr)
988#ifdef INET6
989			    )
990#endif
991			    );
992		} else
993			ssthresh = 0;
994		metrics.rmx_ssthresh = ssthresh;
995
996		metrics.rmx_rtt = tp->t_srtt;
997		metrics.rmx_rttvar = tp->t_rttvar;
998		metrics.rmx_cwnd = tp->snd_cwnd;
999		metrics.rmx_sendpipe = 0;
1000		metrics.rmx_recvpipe = 0;
1001
1002		tcp_hc_update(&inp->inp_inc, &metrics);
1003	}
1004
1005	/* free the reassembly queue, if any */
1006	tcp_reass_flush(tp);
1007
1008#ifdef TCP_OFFLOAD
1009	/* Disconnect offload device, if any. */
1010	if (tp->t_flags & TF_TOE)
1011		tcp_offload_detach(tp);
1012#endif
1013
1014	tcp_free_sackholes(tp);
1015
1016	/* Allow the CC algorithm to clean up after itself. */
1017	if (CC_ALGO(tp)->cb_destroy != NULL)
1018		CC_ALGO(tp)->cb_destroy(tp->ccv);
1019
1020	khelp_destroy_osd(tp->osd);
1021
1022	CC_ALGO(tp) = NULL;
1023	inp->inp_ppcb = NULL;
1024	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1025		/* We own the last reference on tcpcb, let's free it. */
1026		tp->t_inpcb = NULL;
1027		uma_zfree(V_tcpcb_zone, tp);
1028		released = in_pcbrele_wlocked(inp);
1029		KASSERT(!released, ("%s: inp %p should not have been released "
1030			"here", __func__, inp));
1031	}
1032}
1033
1034void
1035tcp_timer_2msl_discard(void *xtp)
1036{
1037
1038	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1039}
1040
1041void
1042tcp_timer_keep_discard(void *xtp)
1043{
1044
1045	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1046}
1047
1048void
1049tcp_timer_persist_discard(void *xtp)
1050{
1051
1052	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1053}
1054
1055void
1056tcp_timer_rexmt_discard(void *xtp)
1057{
1058
1059	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1060}
1061
1062void
1063tcp_timer_delack_discard(void *xtp)
1064{
1065
1066	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1067}
1068
1069void
1070tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1071{
1072	struct inpcb *inp;
1073
1074	CURVNET_SET(tp->t_vnet);
1075	INP_INFO_WLOCK(&V_tcbinfo);
1076	inp = tp->t_inpcb;
1077	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1078		__func__, tp));
1079	INP_WLOCK(inp);
1080	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1081		("%s: tcpcb has to be stopped here", __func__));
1082	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1083		("%s: discard callout should be running", __func__));
1084	tp->t_timers->tt_flags &= ~timer_type;
1085	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1086		/* We own the last reference on this tcpcb, let's free it. */
1087		tp->t_inpcb = NULL;
1088		uma_zfree(V_tcpcb_zone, tp);
1089		if (in_pcbrele_wlocked(inp)) {
1090			INP_INFO_WUNLOCK(&V_tcbinfo);
1091			CURVNET_RESTORE();
1092			return;
1093		}
1094	}
1095	INP_WUNLOCK(inp);
1096	INP_INFO_WUNLOCK(&V_tcbinfo);
1097	CURVNET_RESTORE();
1098}
1099
1100/*
1101 * Attempt to close a TCP control block, marking it as dropped, and freeing
1102 * the socket if we hold the only reference.
1103 */
1104struct tcpcb *
1105tcp_close(struct tcpcb *tp)
1106{
1107	struct inpcb *inp = tp->t_inpcb;
1108	struct socket *so;
1109
1110	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1111	INP_WLOCK_ASSERT(inp);
1112
1113#ifdef TCP_OFFLOAD
1114	if (tp->t_state == TCPS_LISTEN)
1115		tcp_offload_listen_stop(tp);
1116#endif
1117#ifdef TCP_RFC7413
1118	/*
1119	 * This releases the TFO pending counter resource for TFO listen
1120	 * sockets as well as passively-created TFO sockets that transition
1121	 * from SYN_RECEIVED to CLOSED.
1122	 */
1123	if (tp->t_tfo_pending) {
1124		tcp_fastopen_decrement_counter(tp->t_tfo_pending);
1125		tp->t_tfo_pending = NULL;
1126	}
1127#endif
1128	in_pcbdrop(inp);
1129	TCPSTAT_INC(tcps_closed);
1130	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1131	so = inp->inp_socket;
1132	soisdisconnected(so);
1133	if (inp->inp_flags & INP_SOCKREF) {
1134		KASSERT(so->so_state & SS_PROTOREF,
1135		    ("tcp_close: !SS_PROTOREF"));
1136		inp->inp_flags &= ~INP_SOCKREF;
1137		INP_WUNLOCK(inp);
1138		ACCEPT_LOCK();
1139		SOCK_LOCK(so);
1140		so->so_state &= ~SS_PROTOREF;
1141		sofree(so);
1142		return (NULL);
1143	}
1144	return (tp);
1145}
1146
1147void
1148tcp_drain(void)
1149{
1150	VNET_ITERATOR_DECL(vnet_iter);
1151
1152	if (!do_tcpdrain)
1153		return;
1154
1155	VNET_LIST_RLOCK_NOSLEEP();
1156	VNET_FOREACH(vnet_iter) {
1157		CURVNET_SET(vnet_iter);
1158		struct inpcb *inpb;
1159		struct tcpcb *tcpb;
1160
1161	/*
1162	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1163	 * if there is one...
1164	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1165	 *      reassembly queue should be flushed, but in a situation
1166	 *	where we're really low on mbufs, this is potentially
1167	 *	useful.
1168	 */
1169		INP_INFO_RLOCK(&V_tcbinfo);
1170		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1171			if (inpb->inp_flags & INP_TIMEWAIT)
1172				continue;
1173			INP_WLOCK(inpb);
1174			if ((tcpb = intotcpcb(inpb)) != NULL) {
1175				tcp_reass_flush(tcpb);
1176				tcp_clean_sackreport(tcpb);
1177			}
1178			INP_WUNLOCK(inpb);
1179		}
1180		INP_INFO_RUNLOCK(&V_tcbinfo);
1181		CURVNET_RESTORE();
1182	}
1183	VNET_LIST_RUNLOCK_NOSLEEP();
1184}
1185
1186/*
1187 * Notify a tcp user of an asynchronous error;
1188 * store error as soft error, but wake up user
1189 * (for now, won't do anything until can select for soft error).
1190 *
1191 * Do not wake up user since there currently is no mechanism for
1192 * reporting soft errors (yet - a kqueue filter may be added).
1193 */
1194static struct inpcb *
1195tcp_notify(struct inpcb *inp, int error)
1196{
1197	struct tcpcb *tp;
1198
1199	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1200	INP_WLOCK_ASSERT(inp);
1201
1202	if ((inp->inp_flags & INP_TIMEWAIT) ||
1203	    (inp->inp_flags & INP_DROPPED))
1204		return (inp);
1205
1206	tp = intotcpcb(inp);
1207	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1208
1209	/*
1210	 * Ignore some errors if we are hooked up.
1211	 * If connection hasn't completed, has retransmitted several times,
1212	 * and receives a second error, give up now.  This is better
1213	 * than waiting a long time to establish a connection that
1214	 * can never complete.
1215	 */
1216	if (tp->t_state == TCPS_ESTABLISHED &&
1217	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1218	     error == EHOSTDOWN)) {
1219		return (inp);
1220	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1221	    tp->t_softerror) {
1222		tp = tcp_drop(tp, error);
1223		if (tp != NULL)
1224			return (inp);
1225		else
1226			return (NULL);
1227	} else {
1228		tp->t_softerror = error;
1229		return (inp);
1230	}
1231#if 0
1232	wakeup( &so->so_timeo);
1233	sorwakeup(so);
1234	sowwakeup(so);
1235#endif
1236}
1237
1238static int
1239tcp_pcblist(SYSCTL_HANDLER_ARGS)
1240{
1241	int error, i, m, n, pcb_count;
1242	struct inpcb *inp, **inp_list;
1243	inp_gen_t gencnt;
1244	struct xinpgen xig;
1245
1246	/*
1247	 * The process of preparing the TCB list is too time-consuming and
1248	 * resource-intensive to repeat twice on every request.
1249	 */
1250	if (req->oldptr == NULL) {
1251		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1252		n += imax(n / 8, 10);
1253		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1254		return (0);
1255	}
1256
1257	if (req->newptr != NULL)
1258		return (EPERM);
1259
1260	/*
1261	 * OK, now we're committed to doing something.
1262	 */
1263	INP_INFO_RLOCK(&V_tcbinfo);
1264	gencnt = V_tcbinfo.ipi_gencnt;
1265	n = V_tcbinfo.ipi_count;
1266	INP_INFO_RUNLOCK(&V_tcbinfo);
1267
1268	m = syncache_pcbcount();
1269
1270	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1271		+ (n + m) * sizeof(struct xtcpcb));
1272	if (error != 0)
1273		return (error);
1274
1275	xig.xig_len = sizeof xig;
1276	xig.xig_count = n + m;
1277	xig.xig_gen = gencnt;
1278	xig.xig_sogen = so_gencnt;
1279	error = SYSCTL_OUT(req, &xig, sizeof xig);
1280	if (error)
1281		return (error);
1282
1283	error = syncache_pcblist(req, m, &pcb_count);
1284	if (error)
1285		return (error);
1286
1287	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1288
1289	INP_INFO_RLOCK(&V_tcbinfo);
1290	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1291	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1292		INP_WLOCK(inp);
1293		if (inp->inp_gencnt <= gencnt) {
1294			/*
1295			 * XXX: This use of cr_cansee(), introduced with
1296			 * TCP state changes, is not quite right, but for
1297			 * now, better than nothing.
1298			 */
1299			if (inp->inp_flags & INP_TIMEWAIT) {
1300				if (intotw(inp) != NULL)
1301					error = cr_cansee(req->td->td_ucred,
1302					    intotw(inp)->tw_cred);
1303				else
1304					error = EINVAL;	/* Skip this inp. */
1305			} else
1306				error = cr_canseeinpcb(req->td->td_ucred, inp);
1307			if (error == 0) {
1308				in_pcbref(inp);
1309				inp_list[i++] = inp;
1310			}
1311		}
1312		INP_WUNLOCK(inp);
1313	}
1314	INP_INFO_RUNLOCK(&V_tcbinfo);
1315	n = i;
1316
1317	error = 0;
1318	for (i = 0; i < n; i++) {
1319		inp = inp_list[i];
1320		INP_RLOCK(inp);
1321		if (inp->inp_gencnt <= gencnt) {
1322			struct xtcpcb xt;
1323			void *inp_ppcb;
1324
1325			bzero(&xt, sizeof(xt));
1326			xt.xt_len = sizeof xt;
1327			/* XXX should avoid extra copy */
1328			bcopy(inp, &xt.xt_inp, sizeof *inp);
1329			inp_ppcb = inp->inp_ppcb;
1330			if (inp_ppcb == NULL)
1331				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1332			else if (inp->inp_flags & INP_TIMEWAIT) {
1333				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1334				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1335			} else {
1336				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1337				if (xt.xt_tp.t_timers)
1338					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1339			}
1340			if (inp->inp_socket != NULL)
1341				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1342			else {
1343				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1344				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1345			}
1346			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1347			INP_RUNLOCK(inp);
1348			error = SYSCTL_OUT(req, &xt, sizeof xt);
1349		} else
1350			INP_RUNLOCK(inp);
1351	}
1352	INP_INFO_WLOCK(&V_tcbinfo);
1353	for (i = 0; i < n; i++) {
1354		inp = inp_list[i];
1355		INP_RLOCK(inp);
1356		if (!in_pcbrele_rlocked(inp))
1357			INP_RUNLOCK(inp);
1358	}
1359	INP_INFO_WUNLOCK(&V_tcbinfo);
1360
1361	if (!error) {
1362		/*
1363		 * Give the user an updated idea of our state.
1364		 * If the generation differs from what we told
1365		 * her before, she knows that something happened
1366		 * while we were processing this request, and it
1367		 * might be necessary to retry.
1368		 */
1369		INP_INFO_RLOCK(&V_tcbinfo);
1370		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1371		xig.xig_sogen = so_gencnt;
1372		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1373		INP_INFO_RUNLOCK(&V_tcbinfo);
1374		error = SYSCTL_OUT(req, &xig, sizeof xig);
1375	}
1376	free(inp_list, M_TEMP);
1377	return (error);
1378}
1379
1380SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1381    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1382    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1383
1384#ifdef INET
1385static int
1386tcp_getcred(SYSCTL_HANDLER_ARGS)
1387{
1388	struct xucred xuc;
1389	struct sockaddr_in addrs[2];
1390	struct inpcb *inp;
1391	int error;
1392
1393	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1394	if (error)
1395		return (error);
1396	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1397	if (error)
1398		return (error);
1399	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1400	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1401	if (inp != NULL) {
1402		if (inp->inp_socket == NULL)
1403			error = ENOENT;
1404		if (error == 0)
1405			error = cr_canseeinpcb(req->td->td_ucred, inp);
1406		if (error == 0)
1407			cru2x(inp->inp_cred, &xuc);
1408		INP_RUNLOCK(inp);
1409	} else
1410		error = ENOENT;
1411	if (error == 0)
1412		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1413	return (error);
1414}
1415
1416SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1417    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1418    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1419#endif /* INET */
1420
1421#ifdef INET6
1422static int
1423tcp6_getcred(SYSCTL_HANDLER_ARGS)
1424{
1425	struct xucred xuc;
1426	struct sockaddr_in6 addrs[2];
1427	struct inpcb *inp;
1428	int error;
1429#ifdef INET
1430	int mapped = 0;
1431#endif
1432
1433	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1434	if (error)
1435		return (error);
1436	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1437	if (error)
1438		return (error);
1439	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1440	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1441		return (error);
1442	}
1443	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1444#ifdef INET
1445		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1446			mapped = 1;
1447		else
1448#endif
1449			return (EINVAL);
1450	}
1451
1452#ifdef INET
1453	if (mapped == 1)
1454		inp = in_pcblookup(&V_tcbinfo,
1455			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1456			addrs[1].sin6_port,
1457			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1458			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1459	else
1460#endif
1461		inp = in6_pcblookup(&V_tcbinfo,
1462			&addrs[1].sin6_addr, addrs[1].sin6_port,
1463			&addrs[0].sin6_addr, addrs[0].sin6_port,
1464			INPLOOKUP_RLOCKPCB, NULL);
1465	if (inp != NULL) {
1466		if (inp->inp_socket == NULL)
1467			error = ENOENT;
1468		if (error == 0)
1469			error = cr_canseeinpcb(req->td->td_ucred, inp);
1470		if (error == 0)
1471			cru2x(inp->inp_cred, &xuc);
1472		INP_RUNLOCK(inp);
1473	} else
1474		error = ENOENT;
1475	if (error == 0)
1476		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1477	return (error);
1478}
1479
1480SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1481    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1482    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1483#endif /* INET6 */
1484
1485
1486#ifdef INET
1487void
1488tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1489{
1490	struct ip *ip = vip;
1491	struct tcphdr *th;
1492	struct in_addr faddr;
1493	struct inpcb *inp;
1494	struct tcpcb *tp;
1495	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1496	struct icmp *icp;
1497	struct in_conninfo inc;
1498	tcp_seq icmp_tcp_seq;
1499	int mtu;
1500
1501	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1502	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1503		return;
1504
1505	if (cmd == PRC_MSGSIZE)
1506		notify = tcp_mtudisc_notify;
1507	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1508		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1509		notify = tcp_drop_syn_sent;
1510	/*
1511	 * Redirects don't need to be handled up here.
1512	 */
1513	else if (PRC_IS_REDIRECT(cmd))
1514		return;
1515	/*
1516	 * Source quench is depreciated.
1517	 */
1518	else if (cmd == PRC_QUENCH)
1519		return;
1520	/*
1521	 * Hostdead is ugly because it goes linearly through all PCBs.
1522	 * XXX: We never get this from ICMP, otherwise it makes an
1523	 * excellent DoS attack on machines with many connections.
1524	 */
1525	else if (cmd == PRC_HOSTDEAD)
1526		ip = NULL;
1527	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1528		return;
1529	if (ip != NULL) {
1530		icp = (struct icmp *)((caddr_t)ip
1531				      - offsetof(struct icmp, icmp_ip));
1532		th = (struct tcphdr *)((caddr_t)ip
1533				       + (ip->ip_hl << 2));
1534		INP_INFO_WLOCK(&V_tcbinfo);
1535		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1536		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1537		if (inp != NULL)  {
1538			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1539			    !(inp->inp_flags & INP_DROPPED) &&
1540			    !(inp->inp_socket == NULL)) {
1541				icmp_tcp_seq = htonl(th->th_seq);
1542				tp = intotcpcb(inp);
1543				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1544				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1545					if (cmd == PRC_MSGSIZE) {
1546					    /*
1547					     * MTU discovery:
1548					     * If we got a needfrag set the MTU
1549					     * in the route to the suggested new
1550					     * value (if given) and then notify.
1551					     */
1552					    bzero(&inc, sizeof(inc));
1553					    inc.inc_faddr = faddr;
1554					    inc.inc_fibnum =
1555						inp->inp_inc.inc_fibnum;
1556
1557					    mtu = ntohs(icp->icmp_nextmtu);
1558					    /*
1559					     * If no alternative MTU was
1560					     * proposed, try the next smaller
1561					     * one.
1562					     */
1563					    if (!mtu)
1564						mtu = ip_next_mtu(
1565						 ntohs(ip->ip_len), 1);
1566					    if (mtu < V_tcp_minmss
1567						 + sizeof(struct tcpiphdr))
1568						mtu = V_tcp_minmss
1569						 + sizeof(struct tcpiphdr);
1570					    /*
1571					     * Only cache the MTU if it
1572					     * is smaller than the interface
1573					     * or route MTU.  tcp_mtudisc()
1574					     * will do right thing by itself.
1575					     */
1576					    if (mtu <= tcp_maxmtu(&inc, NULL))
1577						tcp_hc_updatemtu(&inc, mtu);
1578					    tcp_mtudisc(inp, mtu);
1579					} else
1580						inp = (*notify)(inp,
1581						    inetctlerrmap[cmd]);
1582				}
1583			}
1584			if (inp != NULL)
1585				INP_WUNLOCK(inp);
1586		} else {
1587			bzero(&inc, sizeof(inc));
1588			inc.inc_fport = th->th_dport;
1589			inc.inc_lport = th->th_sport;
1590			inc.inc_faddr = faddr;
1591			inc.inc_laddr = ip->ip_src;
1592			syncache_unreach(&inc, th);
1593		}
1594		INP_INFO_WUNLOCK(&V_tcbinfo);
1595	} else
1596		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1597}
1598#endif /* INET */
1599
1600#ifdef INET6
1601void
1602tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1603{
1604	struct tcphdr th;
1605	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1606	struct ip6_hdr *ip6;
1607	struct mbuf *m;
1608	struct ip6ctlparam *ip6cp = NULL;
1609	const struct sockaddr_in6 *sa6_src = NULL;
1610	int off;
1611	struct tcp_portonly {
1612		u_int16_t th_sport;
1613		u_int16_t th_dport;
1614	} *thp;
1615
1616	if (sa->sa_family != AF_INET6 ||
1617	    sa->sa_len != sizeof(struct sockaddr_in6))
1618		return;
1619
1620	if (cmd == PRC_MSGSIZE)
1621		notify = tcp_mtudisc_notify;
1622	else if (!PRC_IS_REDIRECT(cmd) &&
1623		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1624		return;
1625	/* Source quench is depreciated. */
1626	else if (cmd == PRC_QUENCH)
1627		return;
1628
1629	/* if the parameter is from icmp6, decode it. */
1630	if (d != NULL) {
1631		ip6cp = (struct ip6ctlparam *)d;
1632		m = ip6cp->ip6c_m;
1633		ip6 = ip6cp->ip6c_ip6;
1634		off = ip6cp->ip6c_off;
1635		sa6_src = ip6cp->ip6c_src;
1636	} else {
1637		m = NULL;
1638		ip6 = NULL;
1639		off = 0;	/* fool gcc */
1640		sa6_src = &sa6_any;
1641	}
1642
1643	if (ip6 != NULL) {
1644		struct in_conninfo inc;
1645		/*
1646		 * XXX: We assume that when IPV6 is non NULL,
1647		 * M and OFF are valid.
1648		 */
1649
1650		/* check if we can safely examine src and dst ports */
1651		if (m->m_pkthdr.len < off + sizeof(*thp))
1652			return;
1653
1654		bzero(&th, sizeof(th));
1655		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1656
1657		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1658		    (struct sockaddr *)ip6cp->ip6c_src,
1659		    th.th_sport, cmd, NULL, notify);
1660
1661		bzero(&inc, sizeof(inc));
1662		inc.inc_fport = th.th_dport;
1663		inc.inc_lport = th.th_sport;
1664		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1665		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1666		inc.inc_flags |= INC_ISIPV6;
1667		INP_INFO_WLOCK(&V_tcbinfo);
1668		syncache_unreach(&inc, &th);
1669		INP_INFO_WUNLOCK(&V_tcbinfo);
1670	} else
1671		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1672			      0, cmd, NULL, notify);
1673}
1674#endif /* INET6 */
1675
1676
1677/*
1678 * Following is where TCP initial sequence number generation occurs.
1679 *
1680 * There are two places where we must use initial sequence numbers:
1681 * 1.  In SYN-ACK packets.
1682 * 2.  In SYN packets.
1683 *
1684 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1685 * tcp_syncache.c for details.
1686 *
1687 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1688 * depends on this property.  In addition, these ISNs should be
1689 * unguessable so as to prevent connection hijacking.  To satisfy
1690 * the requirements of this situation, the algorithm outlined in
1691 * RFC 1948 is used, with only small modifications.
1692 *
1693 * Implementation details:
1694 *
1695 * Time is based off the system timer, and is corrected so that it
1696 * increases by one megabyte per second.  This allows for proper
1697 * recycling on high speed LANs while still leaving over an hour
1698 * before rollover.
1699 *
1700 * As reading the *exact* system time is too expensive to be done
1701 * whenever setting up a TCP connection, we increment the time
1702 * offset in two ways.  First, a small random positive increment
1703 * is added to isn_offset for each connection that is set up.
1704 * Second, the function tcp_isn_tick fires once per clock tick
1705 * and increments isn_offset as necessary so that sequence numbers
1706 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1707 * random positive increments serve only to ensure that the same
1708 * exact sequence number is never sent out twice (as could otherwise
1709 * happen when a port is recycled in less than the system tick
1710 * interval.)
1711 *
1712 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1713 * between seeding of isn_secret.  This is normally set to zero,
1714 * as reseeding should not be necessary.
1715 *
1716 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1717 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1718 * general, this means holding an exclusive (write) lock.
1719 */
1720
1721#define ISN_BYTES_PER_SECOND 1048576
1722#define ISN_STATIC_INCREMENT 4096
1723#define ISN_RANDOM_INCREMENT (4096 - 1)
1724
1725static VNET_DEFINE(u_char, isn_secret[32]);
1726static VNET_DEFINE(int, isn_last);
1727static VNET_DEFINE(int, isn_last_reseed);
1728static VNET_DEFINE(u_int32_t, isn_offset);
1729static VNET_DEFINE(u_int32_t, isn_offset_old);
1730
1731#define	V_isn_secret			VNET(isn_secret)
1732#define	V_isn_last			VNET(isn_last)
1733#define	V_isn_last_reseed		VNET(isn_last_reseed)
1734#define	V_isn_offset			VNET(isn_offset)
1735#define	V_isn_offset_old		VNET(isn_offset_old)
1736
1737tcp_seq
1738tcp_new_isn(struct tcpcb *tp)
1739{
1740	MD5_CTX isn_ctx;
1741	u_int32_t md5_buffer[4];
1742	tcp_seq new_isn;
1743	u_int32_t projected_offset;
1744
1745	INP_WLOCK_ASSERT(tp->t_inpcb);
1746
1747	ISN_LOCK();
1748	/* Seed if this is the first use, reseed if requested. */
1749	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1750	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1751		< (u_int)ticks))) {
1752		read_random(&V_isn_secret, sizeof(V_isn_secret));
1753		V_isn_last_reseed = ticks;
1754	}
1755
1756	/* Compute the md5 hash and return the ISN. */
1757	MD5Init(&isn_ctx);
1758	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1759	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1760#ifdef INET6
1761	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1762		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1763			  sizeof(struct in6_addr));
1764		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1765			  sizeof(struct in6_addr));
1766	} else
1767#endif
1768	{
1769		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1770			  sizeof(struct in_addr));
1771		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1772			  sizeof(struct in_addr));
1773	}
1774	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1775	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1776	new_isn = (tcp_seq) md5_buffer[0];
1777	V_isn_offset += ISN_STATIC_INCREMENT +
1778		(arc4random() & ISN_RANDOM_INCREMENT);
1779	if (ticks != V_isn_last) {
1780		projected_offset = V_isn_offset_old +
1781		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1782		if (SEQ_GT(projected_offset, V_isn_offset))
1783			V_isn_offset = projected_offset;
1784		V_isn_offset_old = V_isn_offset;
1785		V_isn_last = ticks;
1786	}
1787	new_isn += V_isn_offset;
1788	ISN_UNLOCK();
1789	return (new_isn);
1790}
1791
1792/*
1793 * When a specific ICMP unreachable message is received and the
1794 * connection state is SYN-SENT, drop the connection.  This behavior
1795 * is controlled by the icmp_may_rst sysctl.
1796 */
1797struct inpcb *
1798tcp_drop_syn_sent(struct inpcb *inp, int errno)
1799{
1800	struct tcpcb *tp;
1801
1802	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1803	INP_WLOCK_ASSERT(inp);
1804
1805	if ((inp->inp_flags & INP_TIMEWAIT) ||
1806	    (inp->inp_flags & INP_DROPPED))
1807		return (inp);
1808
1809	tp = intotcpcb(inp);
1810	if (tp->t_state != TCPS_SYN_SENT)
1811		return (inp);
1812
1813	tp = tcp_drop(tp, errno);
1814	if (tp != NULL)
1815		return (inp);
1816	else
1817		return (NULL);
1818}
1819
1820/*
1821 * When `need fragmentation' ICMP is received, update our idea of the MSS
1822 * based on the new value. Also nudge TCP to send something, since we
1823 * know the packet we just sent was dropped.
1824 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1825 */
1826static struct inpcb *
1827tcp_mtudisc_notify(struct inpcb *inp, int error)
1828{
1829
1830	return (tcp_mtudisc(inp, -1));
1831}
1832
1833struct inpcb *
1834tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1835{
1836	struct tcpcb *tp;
1837	struct socket *so;
1838
1839	INP_WLOCK_ASSERT(inp);
1840	if ((inp->inp_flags & INP_TIMEWAIT) ||
1841	    (inp->inp_flags & INP_DROPPED))
1842		return (inp);
1843
1844	tp = intotcpcb(inp);
1845	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1846
1847	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1848
1849	so = inp->inp_socket;
1850	SOCKBUF_LOCK(&so->so_snd);
1851	/* If the mss is larger than the socket buffer, decrease the mss. */
1852	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1853		tp->t_maxseg = so->so_snd.sb_hiwat;
1854	SOCKBUF_UNLOCK(&so->so_snd);
1855
1856	TCPSTAT_INC(tcps_mturesent);
1857	tp->t_rtttime = 0;
1858	tp->snd_nxt = tp->snd_una;
1859	tcp_free_sackholes(tp);
1860	tp->snd_recover = tp->snd_max;
1861	if (tp->t_flags & TF_SACK_PERMIT)
1862		EXIT_FASTRECOVERY(tp->t_flags);
1863	tcp_output(tp);
1864	return (inp);
1865}
1866
1867#ifdef INET
1868/*
1869 * Look-up the routing entry to the peer of this inpcb.  If no route
1870 * is found and it cannot be allocated, then return 0.  This routine
1871 * is called by TCP routines that access the rmx structure and by
1872 * tcp_mss_update to get the peer/interface MTU.
1873 */
1874u_long
1875tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1876{
1877	struct route sro;
1878	struct sockaddr_in *dst;
1879	struct ifnet *ifp;
1880	u_long maxmtu = 0;
1881
1882	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1883
1884	bzero(&sro, sizeof(sro));
1885	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1886	        dst = (struct sockaddr_in *)&sro.ro_dst;
1887		dst->sin_family = AF_INET;
1888		dst->sin_len = sizeof(*dst);
1889		dst->sin_addr = inc->inc_faddr;
1890		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1891	}
1892	if (sro.ro_rt != NULL) {
1893		ifp = sro.ro_rt->rt_ifp;
1894		if (sro.ro_rt->rt_mtu == 0)
1895			maxmtu = ifp->if_mtu;
1896		else
1897			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
1898
1899		/* Report additional interface capabilities. */
1900		if (cap != NULL) {
1901			if (ifp->if_capenable & IFCAP_TSO4 &&
1902			    ifp->if_hwassist & CSUM_TSO) {
1903				cap->ifcap |= CSUM_TSO;
1904				cap->tsomax = ifp->if_hw_tsomax;
1905				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1906				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1907			}
1908		}
1909		RTFREE(sro.ro_rt);
1910	}
1911	return (maxmtu);
1912}
1913#endif /* INET */
1914
1915#ifdef INET6
1916u_long
1917tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1918{
1919	struct route_in6 sro6;
1920	struct ifnet *ifp;
1921	u_long maxmtu = 0;
1922
1923	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1924
1925	bzero(&sro6, sizeof(sro6));
1926	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1927		sro6.ro_dst.sin6_family = AF_INET6;
1928		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1929		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1930		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1931	}
1932	if (sro6.ro_rt != NULL) {
1933		ifp = sro6.ro_rt->rt_ifp;
1934		if (sro6.ro_rt->rt_mtu == 0)
1935			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1936		else
1937			maxmtu = min(sro6.ro_rt->rt_mtu,
1938				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1939
1940		/* Report additional interface capabilities. */
1941		if (cap != NULL) {
1942			if (ifp->if_capenable & IFCAP_TSO6 &&
1943			    ifp->if_hwassist & CSUM_TSO) {
1944				cap->ifcap |= CSUM_TSO;
1945				cap->tsomax = ifp->if_hw_tsomax;
1946				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1947				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1948			}
1949		}
1950		RTFREE(sro6.ro_rt);
1951	}
1952
1953	return (maxmtu);
1954}
1955#endif /* INET6 */
1956
1957#ifdef IPSEC
1958/* compute ESP/AH header size for TCP, including outer IP header. */
1959size_t
1960ipsec_hdrsiz_tcp(struct tcpcb *tp)
1961{
1962	struct inpcb *inp;
1963	struct mbuf *m;
1964	size_t hdrsiz;
1965	struct ip *ip;
1966#ifdef INET6
1967	struct ip6_hdr *ip6;
1968#endif
1969	struct tcphdr *th;
1970
1971	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL) ||
1972		(!key_havesp(IPSEC_DIR_OUTBOUND)))
1973		return (0);
1974	m = m_gethdr(M_NOWAIT, MT_DATA);
1975	if (!m)
1976		return (0);
1977
1978#ifdef INET6
1979	if ((inp->inp_vflag & INP_IPV6) != 0) {
1980		ip6 = mtod(m, struct ip6_hdr *);
1981		th = (struct tcphdr *)(ip6 + 1);
1982		m->m_pkthdr.len = m->m_len =
1983			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1984		tcpip_fillheaders(inp, ip6, th);
1985		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1986	} else
1987#endif /* INET6 */
1988	{
1989		ip = mtod(m, struct ip *);
1990		th = (struct tcphdr *)(ip + 1);
1991		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1992		tcpip_fillheaders(inp, ip, th);
1993		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1994	}
1995
1996	m_free(m);
1997	return (hdrsiz);
1998}
1999#endif /* IPSEC */
2000
2001#ifdef TCP_SIGNATURE
2002/*
2003 * Callback function invoked by m_apply() to digest TCP segment data
2004 * contained within an mbuf chain.
2005 */
2006static int
2007tcp_signature_apply(void *fstate, void *data, u_int len)
2008{
2009
2010	MD5Update(fstate, (u_char *)data, len);
2011	return (0);
2012}
2013
2014/*
2015 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
2016 *
2017 * Parameters:
2018 * m		pointer to head of mbuf chain
2019 * _unused
2020 * len		length of TCP segment data, excluding options
2021 * optlen	length of TCP segment options
2022 * buf		pointer to storage for computed MD5 digest
2023 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2024 *
2025 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2026 * When called from tcp_input(), we can be sure that th_sum has been
2027 * zeroed out and verified already.
2028 *
2029 * Return 0 if successful, otherwise return -1.
2030 *
2031 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2032 * search with the destination IP address, and a 'magic SPI' to be
2033 * determined by the application. This is hardcoded elsewhere to 1179
2034 * right now. Another branch of this code exists which uses the SPD to
2035 * specify per-application flows but it is unstable.
2036 */
2037int
2038tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2039    u_char *buf, u_int direction)
2040{
2041	union sockaddr_union dst;
2042#ifdef INET
2043	struct ippseudo ippseudo;
2044#endif
2045	MD5_CTX ctx;
2046	int doff;
2047	struct ip *ip;
2048#ifdef INET
2049	struct ipovly *ipovly;
2050#endif
2051	struct secasvar *sav;
2052	struct tcphdr *th;
2053#ifdef INET6
2054	struct ip6_hdr *ip6;
2055	struct in6_addr in6;
2056	char ip6buf[INET6_ADDRSTRLEN];
2057	uint32_t plen;
2058	uint16_t nhdr;
2059#endif
2060	u_short savecsum;
2061
2062	KASSERT(m != NULL, ("NULL mbuf chain"));
2063	KASSERT(buf != NULL, ("NULL signature pointer"));
2064
2065	/* Extract the destination from the IP header in the mbuf. */
2066	bzero(&dst, sizeof(union sockaddr_union));
2067	ip = mtod(m, struct ip *);
2068#ifdef INET6
2069	ip6 = NULL;	/* Make the compiler happy. */
2070#endif
2071	switch (ip->ip_v) {
2072#ifdef INET
2073	case IPVERSION:
2074		dst.sa.sa_len = sizeof(struct sockaddr_in);
2075		dst.sa.sa_family = AF_INET;
2076		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2077		    ip->ip_src : ip->ip_dst;
2078		break;
2079#endif
2080#ifdef INET6
2081	case (IPV6_VERSION >> 4):
2082		ip6 = mtod(m, struct ip6_hdr *);
2083		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2084		dst.sa.sa_family = AF_INET6;
2085		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2086		    ip6->ip6_src : ip6->ip6_dst;
2087		break;
2088#endif
2089	default:
2090		return (EINVAL);
2091		/* NOTREACHED */
2092		break;
2093	}
2094
2095	/* Look up an SADB entry which matches the address of the peer. */
2096	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2097	if (sav == NULL) {
2098		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2099		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2100#ifdef INET6
2101			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2102			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2103#endif
2104			"(unsupported)"));
2105		return (EINVAL);
2106	}
2107
2108	MD5Init(&ctx);
2109	/*
2110	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2111	 *
2112	 * XXX The ippseudo header MUST be digested in network byte order,
2113	 * or else we'll fail the regression test. Assume all fields we've
2114	 * been doing arithmetic on have been in host byte order.
2115	 * XXX One cannot depend on ipovly->ih_len here. When called from
2116	 * tcp_output(), the underlying ip_len member has not yet been set.
2117	 */
2118	switch (ip->ip_v) {
2119#ifdef INET
2120	case IPVERSION:
2121		ipovly = (struct ipovly *)ip;
2122		ippseudo.ippseudo_src = ipovly->ih_src;
2123		ippseudo.ippseudo_dst = ipovly->ih_dst;
2124		ippseudo.ippseudo_pad = 0;
2125		ippseudo.ippseudo_p = IPPROTO_TCP;
2126		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2127		    optlen);
2128		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2129
2130		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2131		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2132		break;
2133#endif
2134#ifdef INET6
2135	/*
2136	 * RFC 2385, 2.0  Proposal
2137	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2138	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2139	 * extended next header value (to form 32 bits), and 32-bit segment
2140	 * length.
2141	 * Note: Upper-Layer Packet Length comes before Next Header.
2142	 */
2143	case (IPV6_VERSION >> 4):
2144		in6 = ip6->ip6_src;
2145		in6_clearscope(&in6);
2146		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2147		in6 = ip6->ip6_dst;
2148		in6_clearscope(&in6);
2149		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2150		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2151		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2152		nhdr = 0;
2153		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2154		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2155		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2156		nhdr = IPPROTO_TCP;
2157		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2158
2159		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2160		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2161		break;
2162#endif
2163	default:
2164		return (EINVAL);
2165		/* NOTREACHED */
2166		break;
2167	}
2168
2169
2170	/*
2171	 * Step 2: Update MD5 hash with TCP header, excluding options.
2172	 * The TCP checksum must be set to zero.
2173	 */
2174	savecsum = th->th_sum;
2175	th->th_sum = 0;
2176	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2177	th->th_sum = savecsum;
2178
2179	/*
2180	 * Step 3: Update MD5 hash with TCP segment data.
2181	 *         Use m_apply() to avoid an early m_pullup().
2182	 */
2183	if (len > 0)
2184		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2185
2186	/*
2187	 * Step 4: Update MD5 hash with shared secret.
2188	 */
2189	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2190	MD5Final(buf, &ctx);
2191
2192	key_sa_recordxfer(sav, m);
2193	KEY_FREESAV(&sav);
2194	return (0);
2195}
2196
2197/*
2198 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2199 *
2200 * Parameters:
2201 * m		pointer to head of mbuf chain
2202 * len		length of TCP segment data, excluding options
2203 * optlen	length of TCP segment options
2204 * buf		pointer to storage for computed MD5 digest
2205 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2206 *
2207 * Return 1 if successful, otherwise return 0.
2208 */
2209int
2210tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2211    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2212{
2213	char tmpdigest[TCP_SIGLEN];
2214
2215	if (tcp_sig_checksigs == 0)
2216		return (1);
2217	if ((tcpbflag & TF_SIGNATURE) == 0) {
2218		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2219
2220			/*
2221			 * If this socket is not expecting signature but
2222			 * the segment contains signature just fail.
2223			 */
2224			TCPSTAT_INC(tcps_sig_err_sigopt);
2225			TCPSTAT_INC(tcps_sig_rcvbadsig);
2226			return (0);
2227		}
2228
2229		/* Signature is not expected, and not present in segment. */
2230		return (1);
2231	}
2232
2233	/*
2234	 * If this socket is expecting signature but the segment does not
2235	 * contain any just fail.
2236	 */
2237	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2238		TCPSTAT_INC(tcps_sig_err_nosigopt);
2239		TCPSTAT_INC(tcps_sig_rcvbadsig);
2240		return (0);
2241	}
2242	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2243	    IPSEC_DIR_INBOUND) == -1) {
2244		TCPSTAT_INC(tcps_sig_err_buildsig);
2245		TCPSTAT_INC(tcps_sig_rcvbadsig);
2246		return (0);
2247	}
2248
2249	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2250		TCPSTAT_INC(tcps_sig_rcvbadsig);
2251		return (0);
2252	}
2253	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2254	return (1);
2255}
2256#endif /* TCP_SIGNATURE */
2257
2258static int
2259sysctl_drop(SYSCTL_HANDLER_ARGS)
2260{
2261	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2262	struct sockaddr_storage addrs[2];
2263	struct inpcb *inp;
2264	struct tcpcb *tp;
2265	struct tcptw *tw;
2266	struct sockaddr_in *fin, *lin;
2267#ifdef INET6
2268	struct sockaddr_in6 *fin6, *lin6;
2269#endif
2270	int error;
2271
2272	inp = NULL;
2273	fin = lin = NULL;
2274#ifdef INET6
2275	fin6 = lin6 = NULL;
2276#endif
2277	error = 0;
2278
2279	if (req->oldptr != NULL || req->oldlen != 0)
2280		return (EINVAL);
2281	if (req->newptr == NULL)
2282		return (EPERM);
2283	if (req->newlen < sizeof(addrs))
2284		return (ENOMEM);
2285	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2286	if (error)
2287		return (error);
2288
2289	switch (addrs[0].ss_family) {
2290#ifdef INET6
2291	case AF_INET6:
2292		fin6 = (struct sockaddr_in6 *)&addrs[0];
2293		lin6 = (struct sockaddr_in6 *)&addrs[1];
2294		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2295		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2296			return (EINVAL);
2297		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2298			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2299				return (EINVAL);
2300			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2301			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2302			fin = (struct sockaddr_in *)&addrs[0];
2303			lin = (struct sockaddr_in *)&addrs[1];
2304			break;
2305		}
2306		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2307		if (error)
2308			return (error);
2309		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2310		if (error)
2311			return (error);
2312		break;
2313#endif
2314#ifdef INET
2315	case AF_INET:
2316		fin = (struct sockaddr_in *)&addrs[0];
2317		lin = (struct sockaddr_in *)&addrs[1];
2318		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2319		    lin->sin_len != sizeof(struct sockaddr_in))
2320			return (EINVAL);
2321		break;
2322#endif
2323	default:
2324		return (EINVAL);
2325	}
2326	INP_INFO_WLOCK(&V_tcbinfo);
2327	switch (addrs[0].ss_family) {
2328#ifdef INET6
2329	case AF_INET6:
2330		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2331		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2332		    INPLOOKUP_WLOCKPCB, NULL);
2333		break;
2334#endif
2335#ifdef INET
2336	case AF_INET:
2337		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2338		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2339		break;
2340#endif
2341	}
2342	if (inp != NULL) {
2343		if (inp->inp_flags & INP_TIMEWAIT) {
2344			/*
2345			 * XXXRW: There currently exists a state where an
2346			 * inpcb is present, but its timewait state has been
2347			 * discarded.  For now, don't allow dropping of this
2348			 * type of inpcb.
2349			 */
2350			tw = intotw(inp);
2351			if (tw != NULL)
2352				tcp_twclose(tw, 0);
2353			else
2354				INP_WUNLOCK(inp);
2355		} else if (!(inp->inp_flags & INP_DROPPED) &&
2356			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2357			tp = intotcpcb(inp);
2358			tp = tcp_drop(tp, ECONNABORTED);
2359			if (tp != NULL)
2360				INP_WUNLOCK(inp);
2361		} else
2362			INP_WUNLOCK(inp);
2363	} else
2364		error = ESRCH;
2365	INP_INFO_WUNLOCK(&V_tcbinfo);
2366	return (error);
2367}
2368
2369SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2370    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2371    0, sysctl_drop, "", "Drop TCP connection");
2372
2373/*
2374 * Generate a standardized TCP log line for use throughout the
2375 * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2376 * allow use in the interrupt context.
2377 *
2378 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2379 * NB: The function may return NULL if memory allocation failed.
2380 *
2381 * Due to header inclusion and ordering limitations the struct ip
2382 * and ip6_hdr pointers have to be passed as void pointers.
2383 */
2384char *
2385tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2386    const void *ip6hdr)
2387{
2388
2389	/* Is logging enabled? */
2390	if (tcp_log_in_vain == 0)
2391		return (NULL);
2392
2393	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2394}
2395
2396char *
2397tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2398    const void *ip6hdr)
2399{
2400
2401	/* Is logging enabled? */
2402	if (tcp_log_debug == 0)
2403		return (NULL);
2404
2405	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2406}
2407
2408static char *
2409tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2410    const void *ip6hdr)
2411{
2412	char *s, *sp;
2413	size_t size;
2414	struct ip *ip;
2415#ifdef INET6
2416	const struct ip6_hdr *ip6;
2417
2418	ip6 = (const struct ip6_hdr *)ip6hdr;
2419#endif /* INET6 */
2420	ip = (struct ip *)ip4hdr;
2421
2422	/*
2423	 * The log line looks like this:
2424	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2425	 */
2426	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2427	    sizeof(PRINT_TH_FLAGS) + 1 +
2428#ifdef INET6
2429	    2 * INET6_ADDRSTRLEN;
2430#else
2431	    2 * INET_ADDRSTRLEN;
2432#endif /* INET6 */
2433
2434	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2435	if (s == NULL)
2436		return (NULL);
2437
2438	strcat(s, "TCP: [");
2439	sp = s + strlen(s);
2440
2441	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2442		inet_ntoa_r(inc->inc_faddr, sp);
2443		sp = s + strlen(s);
2444		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2445		sp = s + strlen(s);
2446		inet_ntoa_r(inc->inc_laddr, sp);
2447		sp = s + strlen(s);
2448		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2449#ifdef INET6
2450	} else if (inc) {
2451		ip6_sprintf(sp, &inc->inc6_faddr);
2452		sp = s + strlen(s);
2453		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2454		sp = s + strlen(s);
2455		ip6_sprintf(sp, &inc->inc6_laddr);
2456		sp = s + strlen(s);
2457		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2458	} else if (ip6 && th) {
2459		ip6_sprintf(sp, &ip6->ip6_src);
2460		sp = s + strlen(s);
2461		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2462		sp = s + strlen(s);
2463		ip6_sprintf(sp, &ip6->ip6_dst);
2464		sp = s + strlen(s);
2465		sprintf(sp, "]:%i", ntohs(th->th_dport));
2466#endif /* INET6 */
2467#ifdef INET
2468	} else if (ip && th) {
2469		inet_ntoa_r(ip->ip_src, sp);
2470		sp = s + strlen(s);
2471		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2472		sp = s + strlen(s);
2473		inet_ntoa_r(ip->ip_dst, sp);
2474		sp = s + strlen(s);
2475		sprintf(sp, "]:%i", ntohs(th->th_dport));
2476#endif /* INET */
2477	} else {
2478		free(s, M_TCPLOG);
2479		return (NULL);
2480	}
2481	sp = s + strlen(s);
2482	if (th)
2483		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2484	if (*(s + size - 1) != '\0')
2485		panic("%s: string too long", __func__);
2486	return (s);
2487}
2488
2489/*
2490 * A subroutine which makes it easy to track TCP state changes with DTrace.
2491 * This function shouldn't be called for t_state initializations that don't
2492 * correspond to actual TCP state transitions.
2493 */
2494void
2495tcp_state_change(struct tcpcb *tp, int newstate)
2496{
2497#if defined(KDTRACE_HOOKS)
2498	int pstate = tp->t_state;
2499#endif
2500
2501	tp->t_state = newstate;
2502	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2503}
2504