tcp_subr.c revision 285976
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/netinet/tcp_subr.c 285976 2015-07-28 19:58:44Z delphij $");
34
35#include "opt_compat.h"
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_kdtrace.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/callout.h>
45#include <sys/hhook.h>
46#include <sys/kernel.h>
47#include <sys/khelp.h>
48#include <sys/sysctl.h>
49#include <sys/jail.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#ifdef INET6
53#include <sys/domain.h>
54#endif
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/sdt.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/protosw.h>
61#include <sys/random.h>
62
63#include <vm/uma.h>
64
65#include <net/route.h>
66#include <net/if.h>
67#include <net/vnet.h>
68
69#include <netinet/cc.h>
70#include <netinet/in.h>
71#include <netinet/in_kdtrace.h>
72#include <netinet/in_pcb.h>
73#include <netinet/in_systm.h>
74#include <netinet/in_var.h>
75#include <netinet/ip.h>
76#include <netinet/ip_icmp.h>
77#include <netinet/ip_var.h>
78#ifdef INET6
79#include <netinet/ip6.h>
80#include <netinet6/in6_pcb.h>
81#include <netinet6/ip6_var.h>
82#include <netinet6/scope6_var.h>
83#include <netinet6/nd6.h>
84#endif
85
86#include <netinet/tcp_fsm.h>
87#include <netinet/tcp_seq.h>
88#include <netinet/tcp_timer.h>
89#include <netinet/tcp_var.h>
90#include <netinet/tcp_syncache.h>
91#ifdef INET6
92#include <netinet6/tcp6_var.h>
93#endif
94#include <netinet/tcpip.h>
95#ifdef TCPDEBUG
96#include <netinet/tcp_debug.h>
97#endif
98#ifdef INET6
99#include <netinet6/ip6protosw.h>
100#endif
101#ifdef TCP_OFFLOAD
102#include <netinet/tcp_offload.h>
103#endif
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/xform.h>
108#ifdef INET6
109#include <netipsec/ipsec6.h>
110#endif
111#include <netipsec/key.h>
112#include <sys/syslog.h>
113#endif /*IPSEC*/
114
115#include <machine/in_cksum.h>
116#include <sys/md5.h>
117
118#include <security/mac/mac_framework.h>
119
120VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
121#ifdef INET6
122VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
123#endif
124
125static int
126sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
127{
128	int error, new;
129
130	new = V_tcp_mssdflt;
131	error = sysctl_handle_int(oidp, &new, 0, req);
132	if (error == 0 && req->newptr) {
133		if (new < TCP_MINMSS)
134			error = EINVAL;
135		else
136			V_tcp_mssdflt = new;
137	}
138	return (error);
139}
140
141SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
142    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
143    &sysctl_net_inet_tcp_mss_check, "I",
144    "Default TCP Maximum Segment Size");
145
146#ifdef INET6
147static int
148sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
149{
150	int error, new;
151
152	new = V_tcp_v6mssdflt;
153	error = sysctl_handle_int(oidp, &new, 0, req);
154	if (error == 0 && req->newptr) {
155		if (new < TCP_MINMSS)
156			error = EINVAL;
157		else
158			V_tcp_v6mssdflt = new;
159	}
160	return (error);
161}
162
163SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
164    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
165    &sysctl_net_inet_tcp_mss_v6_check, "I",
166   "Default TCP Maximum Segment Size for IPv6");
167#endif /* INET6 */
168
169/*
170 * Minimum MSS we accept and use. This prevents DoS attacks where
171 * we are forced to a ridiculous low MSS like 20 and send hundreds
172 * of packets instead of one. The effect scales with the available
173 * bandwidth and quickly saturates the CPU and network interface
174 * with packet generation and sending. Set to zero to disable MINMSS
175 * checking. This setting prevents us from sending too small packets.
176 */
177VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
178SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
179     &VNET_NAME(tcp_minmss), 0,
180    "Minimum TCP Maximum Segment Size");
181
182VNET_DEFINE(int, tcp_do_rfc1323) = 1;
183SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
184    &VNET_NAME(tcp_do_rfc1323), 0,
185    "Enable rfc1323 (high performance TCP) extensions");
186
187static int	tcp_log_debug = 0;
188SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
189    &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
190
191static int	tcp_tcbhashsize = 0;
192SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
193    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
194
195static int	do_tcpdrain = 1;
196SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
197    "Enable tcp_drain routine for extra help when low on mbufs");
198
199SYSCTL_VNET_UINT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
200    &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
201
202static VNET_DEFINE(int, icmp_may_rst) = 1;
203#define	V_icmp_may_rst			VNET(icmp_may_rst)
204SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
205    &VNET_NAME(icmp_may_rst), 0,
206    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
207
208static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
209#define	V_tcp_isn_reseed_interval	VNET(tcp_isn_reseed_interval)
210SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
211    &VNET_NAME(tcp_isn_reseed_interval), 0,
212    "Seconds between reseeding of ISN secret");
213
214static int	tcp_soreceive_stream = 0;
215SYSCTL_INT(_net_inet_tcp, OID_AUTO, soreceive_stream, CTLFLAG_RDTUN,
216    &tcp_soreceive_stream, 0, "Using soreceive_stream for TCP sockets");
217
218#ifdef TCP_SIGNATURE
219static int	tcp_sig_checksigs = 1;
220SYSCTL_INT(_net_inet_tcp, OID_AUTO, signature_verify_input, CTLFLAG_RW,
221    &tcp_sig_checksigs, 0, "Verify RFC2385 digests on inbound traffic");
222#endif
223
224VNET_DEFINE(uma_zone_t, sack_hole_zone);
225#define	V_sack_hole_zone		VNET(sack_hole_zone)
226
227VNET_DEFINE(struct hhook_head *, tcp_hhh[HHOOK_TCP_LAST+1]);
228
229static struct inpcb *tcp_notify(struct inpcb *, int);
230static struct inpcb *tcp_mtudisc_notify(struct inpcb *, int);
231static char *	tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
232		    void *ip4hdr, const void *ip6hdr);
233static void	tcp_timer_discard(struct tcpcb *, uint32_t);
234
235/*
236 * Target size of TCP PCB hash tables. Must be a power of two.
237 *
238 * Note that this can be overridden by the kernel environment
239 * variable net.inet.tcp.tcbhashsize
240 */
241#ifndef TCBHASHSIZE
242#define TCBHASHSIZE	0
243#endif
244
245/*
246 * XXX
247 * Callouts should be moved into struct tcp directly.  They are currently
248 * separate because the tcpcb structure is exported to userland for sysctl
249 * parsing purposes, which do not know about callouts.
250 */
251struct tcpcb_mem {
252	struct	tcpcb		tcb;
253	struct	tcp_timer	tt;
254	struct	cc_var		ccv;
255	struct	osd		osd;
256};
257
258static VNET_DEFINE(uma_zone_t, tcpcb_zone);
259#define	V_tcpcb_zone			VNET(tcpcb_zone)
260
261MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
262static struct mtx isn_mtx;
263
264#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
265#define	ISN_LOCK()	mtx_lock(&isn_mtx)
266#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
267
268/*
269 * TCP initialization.
270 */
271static void
272tcp_zone_change(void *tag)
273{
274
275	uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
276	uma_zone_set_max(V_tcpcb_zone, maxsockets);
277	tcp_tw_zone_change();
278}
279
280static int
281tcp_inpcb_init(void *mem, int size, int flags)
282{
283	struct inpcb *inp = mem;
284
285	INP_LOCK_INIT(inp, "inp", "tcpinp");
286	return (0);
287}
288
289/*
290 * Take a value and get the next power of 2 that doesn't overflow.
291 * Used to size the tcp_inpcb hash buckets.
292 */
293static int
294maketcp_hashsize(int size)
295{
296	int hashsize;
297
298	/*
299	 * auto tune.
300	 * get the next power of 2 higher than maxsockets.
301	 */
302	hashsize = 1 << fls(size);
303	/* catch overflow, and just go one power of 2 smaller */
304	if (hashsize < size) {
305		hashsize = 1 << (fls(size) - 1);
306	}
307	return (hashsize);
308}
309
310void
311tcp_init(void)
312{
313	const char *tcbhash_tuneable;
314	int hashsize;
315
316	tcbhash_tuneable = "net.inet.tcp.tcbhashsize";
317
318	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_IN,
319	    &V_tcp_hhh[HHOOK_TCP_EST_IN], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
320		printf("%s: WARNING: unable to register helper hook\n", __func__);
321	if (hhook_head_register(HHOOK_TYPE_TCP, HHOOK_TCP_EST_OUT,
322	    &V_tcp_hhh[HHOOK_TCP_EST_OUT], HHOOK_NOWAIT|HHOOK_HEADISINVNET) != 0)
323		printf("%s: WARNING: unable to register helper hook\n", __func__);
324
325	hashsize = TCBHASHSIZE;
326	TUNABLE_INT_FETCH(tcbhash_tuneable, &hashsize);
327	if (hashsize == 0) {
328		/*
329		 * Auto tune the hash size based on maxsockets.
330		 * A perfect hash would have a 1:1 mapping
331		 * (hashsize = maxsockets) however it's been
332		 * suggested that O(2) average is better.
333		 */
334		hashsize = maketcp_hashsize(maxsockets / 4);
335		/*
336		 * Our historical default is 512,
337		 * do not autotune lower than this.
338		 */
339		if (hashsize < 512)
340			hashsize = 512;
341		if (bootverbose)
342			printf("%s: %s auto tuned to %d\n", __func__,
343			    tcbhash_tuneable, hashsize);
344	}
345	/*
346	 * We require a hashsize to be a power of two.
347	 * Previously if it was not a power of two we would just reset it
348	 * back to 512, which could be a nasty surprise if you did not notice
349	 * the error message.
350	 * Instead what we do is clip it to the closest power of two lower
351	 * than the specified hash value.
352	 */
353	if (!powerof2(hashsize)) {
354		int oldhashsize = hashsize;
355
356		hashsize = maketcp_hashsize(hashsize);
357		/* prevent absurdly low value */
358		if (hashsize < 16)
359			hashsize = 16;
360		printf("%s: WARNING: TCB hash size not a power of 2, "
361		    "clipped from %d to %d.\n", __func__, oldhashsize,
362		    hashsize);
363	}
364	in_pcbinfo_init(&V_tcbinfo, "tcp", &V_tcb, hashsize, hashsize,
365	    "tcp_inpcb", tcp_inpcb_init, NULL, UMA_ZONE_NOFREE,
366	    IPI_HASHFIELDS_4TUPLE);
367
368	/*
369	 * These have to be type stable for the benefit of the timers.
370	 */
371	V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
372	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
373	uma_zone_set_max(V_tcpcb_zone, maxsockets);
374	uma_zone_set_warning(V_tcpcb_zone, "kern.ipc.maxsockets limit reached");
375
376	tcp_tw_init();
377	syncache_init();
378	tcp_hc_init();
379
380	TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
381	V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
382	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
383
384	/* Skip initialization of globals for non-default instances. */
385	if (!IS_DEFAULT_VNET(curvnet))
386		return;
387
388	tcp_reass_global_init();
389
390	/* XXX virtualize those bellow? */
391	tcp_delacktime = TCPTV_DELACK;
392	tcp_keepinit = TCPTV_KEEP_INIT;
393	tcp_keepidle = TCPTV_KEEP_IDLE;
394	tcp_keepintvl = TCPTV_KEEPINTVL;
395	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
396	tcp_msl = TCPTV_MSL;
397	tcp_rexmit_min = TCPTV_MIN;
398	if (tcp_rexmit_min < 1)
399		tcp_rexmit_min = 1;
400	tcp_rexmit_slop = TCPTV_CPU_VAR;
401	tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
402	tcp_tcbhashsize = hashsize;
403
404	TUNABLE_INT_FETCH("net.inet.tcp.soreceive_stream", &tcp_soreceive_stream);
405	if (tcp_soreceive_stream) {
406#ifdef INET
407		tcp_usrreqs.pru_soreceive = soreceive_stream;
408#endif
409#ifdef INET6
410		tcp6_usrreqs.pru_soreceive = soreceive_stream;
411#endif /* INET6 */
412	}
413
414#ifdef INET6
415#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
416#else /* INET6 */
417#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
418#endif /* INET6 */
419	if (max_protohdr < TCP_MINPROTOHDR)
420		max_protohdr = TCP_MINPROTOHDR;
421	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
422		panic("tcp_init");
423#undef TCP_MINPROTOHDR
424
425	ISN_LOCK_INIT();
426	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
427		SHUTDOWN_PRI_DEFAULT);
428	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
429		EVENTHANDLER_PRI_ANY);
430}
431
432#ifdef VIMAGE
433void
434tcp_destroy(void)
435{
436
437	tcp_hc_destroy();
438	syncache_destroy();
439	tcp_tw_destroy();
440	in_pcbinfo_destroy(&V_tcbinfo);
441	uma_zdestroy(V_sack_hole_zone);
442	uma_zdestroy(V_tcpcb_zone);
443}
444#endif
445
446void
447tcp_fini(void *xtp)
448{
449
450}
451
452/*
453 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
454 * tcp_template used to store this data in mbufs, but we now recopy it out
455 * of the tcpcb each time to conserve mbufs.
456 */
457void
458tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
459{
460	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
461
462	INP_WLOCK_ASSERT(inp);
463
464#ifdef INET6
465	if ((inp->inp_vflag & INP_IPV6) != 0) {
466		struct ip6_hdr *ip6;
467
468		ip6 = (struct ip6_hdr *)ip_ptr;
469		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
470			(inp->inp_flow & IPV6_FLOWINFO_MASK);
471		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
472			(IPV6_VERSION & IPV6_VERSION_MASK);
473		ip6->ip6_nxt = IPPROTO_TCP;
474		ip6->ip6_plen = htons(sizeof(struct tcphdr));
475		ip6->ip6_src = inp->in6p_laddr;
476		ip6->ip6_dst = inp->in6p_faddr;
477	}
478#endif /* INET6 */
479#if defined(INET6) && defined(INET)
480	else
481#endif
482#ifdef INET
483	{
484		struct ip *ip;
485
486		ip = (struct ip *)ip_ptr;
487		ip->ip_v = IPVERSION;
488		ip->ip_hl = 5;
489		ip->ip_tos = inp->inp_ip_tos;
490		ip->ip_len = 0;
491		ip->ip_id = 0;
492		ip->ip_off = 0;
493		ip->ip_ttl = inp->inp_ip_ttl;
494		ip->ip_sum = 0;
495		ip->ip_p = IPPROTO_TCP;
496		ip->ip_src = inp->inp_laddr;
497		ip->ip_dst = inp->inp_faddr;
498	}
499#endif /* INET */
500	th->th_sport = inp->inp_lport;
501	th->th_dport = inp->inp_fport;
502	th->th_seq = 0;
503	th->th_ack = 0;
504	th->th_x2 = 0;
505	th->th_off = 5;
506	th->th_flags = 0;
507	th->th_win = 0;
508	th->th_urp = 0;
509	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
510}
511
512/*
513 * Create template to be used to send tcp packets on a connection.
514 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
515 * use for this function is in keepalives, which use tcp_respond.
516 */
517struct tcptemp *
518tcpip_maketemplate(struct inpcb *inp)
519{
520	struct tcptemp *t;
521
522	t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
523	if (t == NULL)
524		return (NULL);
525	tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
526	return (t);
527}
528
529/*
530 * Send a single message to the TCP at address specified by
531 * the given TCP/IP header.  If m == NULL, then we make a copy
532 * of the tcpiphdr at ti and send directly to the addressed host.
533 * This is used to force keep alive messages out using the TCP
534 * template for a connection.  If flags are given then we send
535 * a message back to the TCP which originated the * segment ti,
536 * and discard the mbuf containing it and any other attached mbufs.
537 *
538 * In any case the ack and sequence number of the transmitted
539 * segment are as specified by the parameters.
540 *
541 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
542 */
543void
544tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
545    tcp_seq ack, tcp_seq seq, int flags)
546{
547	int tlen;
548	int win = 0;
549	struct ip *ip;
550	struct tcphdr *nth;
551#ifdef INET6
552	struct ip6_hdr *ip6;
553	int isipv6;
554#endif /* INET6 */
555	int ipflags = 0;
556	struct inpcb *inp;
557
558	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
559
560#ifdef INET6
561	isipv6 = ((struct ip *)ipgen)->ip_v == (IPV6_VERSION >> 4);
562	ip6 = ipgen;
563#endif /* INET6 */
564	ip = ipgen;
565
566	if (tp != NULL) {
567		inp = tp->t_inpcb;
568		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
569		INP_WLOCK_ASSERT(inp);
570	} else
571		inp = NULL;
572
573	if (tp != NULL) {
574		if (!(flags & TH_RST)) {
575			win = sbspace(&inp->inp_socket->so_rcv);
576			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
577				win = (long)TCP_MAXWIN << tp->rcv_scale;
578		}
579	}
580	if (m == NULL) {
581		m = m_gethdr(M_NOWAIT, MT_DATA);
582		if (m == NULL)
583			return;
584		tlen = 0;
585		m->m_data += max_linkhdr;
586#ifdef INET6
587		if (isipv6) {
588			bcopy((caddr_t)ip6, mtod(m, caddr_t),
589			      sizeof(struct ip6_hdr));
590			ip6 = mtod(m, struct ip6_hdr *);
591			nth = (struct tcphdr *)(ip6 + 1);
592		} else
593#endif /* INET6 */
594		{
595			bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
596			ip = mtod(m, struct ip *);
597			nth = (struct tcphdr *)(ip + 1);
598		}
599		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
600		flags = TH_ACK;
601	} else {
602		/*
603		 *  reuse the mbuf.
604		 * XXX MRT We inherrit the FIB, which is lucky.
605		 */
606		m_freem(m->m_next);
607		m->m_next = NULL;
608		m->m_data = (caddr_t)ipgen;
609		/* m_len is set later */
610		tlen = 0;
611#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
612#ifdef INET6
613		if (isipv6) {
614			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
615			nth = (struct tcphdr *)(ip6 + 1);
616		} else
617#endif /* INET6 */
618		{
619			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
620			nth = (struct tcphdr *)(ip + 1);
621		}
622		if (th != nth) {
623			/*
624			 * this is usually a case when an extension header
625			 * exists between the IPv6 header and the
626			 * TCP header.
627			 */
628			nth->th_sport = th->th_sport;
629			nth->th_dport = th->th_dport;
630		}
631		xchg(nth->th_dport, nth->th_sport, uint16_t);
632#undef xchg
633	}
634#ifdef INET6
635	if (isipv6) {
636		ip6->ip6_flow = 0;
637		ip6->ip6_vfc = IPV6_VERSION;
638		ip6->ip6_nxt = IPPROTO_TCP;
639		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
640		ip6->ip6_plen = htons(tlen - sizeof(*ip6));
641	}
642#endif
643#if defined(INET) && defined(INET6)
644	else
645#endif
646#ifdef INET
647	{
648		tlen += sizeof (struct tcpiphdr);
649		ip->ip_len = htons(tlen);
650		ip->ip_ttl = V_ip_defttl;
651		if (V_path_mtu_discovery)
652			ip->ip_off |= htons(IP_DF);
653	}
654#endif
655	m->m_len = tlen;
656	m->m_pkthdr.len = tlen;
657	m->m_pkthdr.rcvif = NULL;
658#ifdef MAC
659	if (inp != NULL) {
660		/*
661		 * Packet is associated with a socket, so allow the
662		 * label of the response to reflect the socket label.
663		 */
664		INP_WLOCK_ASSERT(inp);
665		mac_inpcb_create_mbuf(inp, m);
666	} else {
667		/*
668		 * Packet is not associated with a socket, so possibly
669		 * update the label in place.
670		 */
671		mac_netinet_tcp_reply(m);
672	}
673#endif
674	nth->th_seq = htonl(seq);
675	nth->th_ack = htonl(ack);
676	nth->th_x2 = 0;
677	nth->th_off = sizeof (struct tcphdr) >> 2;
678	nth->th_flags = flags;
679	if (tp != NULL)
680		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
681	else
682		nth->th_win = htons((u_short)win);
683	nth->th_urp = 0;
684
685	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
686#ifdef INET6
687	if (isipv6) {
688		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
689		nth->th_sum = in6_cksum_pseudo(ip6,
690		    tlen - sizeof(struct ip6_hdr), IPPROTO_TCP, 0);
691		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
692		    NULL, NULL);
693	}
694#endif /* INET6 */
695#if defined(INET6) && defined(INET)
696	else
697#endif
698#ifdef INET
699	{
700		m->m_pkthdr.csum_flags = CSUM_TCP;
701		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
702		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
703	}
704#endif /* INET */
705#ifdef TCPDEBUG
706	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
707		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
708#endif
709	if (flags & TH_RST)
710		TCP_PROBE5(accept__refused, NULL, NULL, mtod(m, const char *),
711		    tp, nth);
712
713	TCP_PROBE5(send, NULL, tp, mtod(m, const char *), tp, nth);
714#ifdef INET6
715	if (isipv6)
716		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
717#endif /* INET6 */
718#if defined(INET) && defined(INET6)
719	else
720#endif
721#ifdef INET
722		(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
723#endif
724}
725
726/*
727 * Create a new TCP control block, making an
728 * empty reassembly queue and hooking it to the argument
729 * protocol control block.  The `inp' parameter must have
730 * come from the zone allocator set up in tcp_init().
731 */
732struct tcpcb *
733tcp_newtcpcb(struct inpcb *inp)
734{
735	struct tcpcb_mem *tm;
736	struct tcpcb *tp;
737#ifdef INET6
738	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
739#endif /* INET6 */
740
741	tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
742	if (tm == NULL)
743		return (NULL);
744	tp = &tm->tcb;
745
746	/* Initialise cc_var struct for this tcpcb. */
747	tp->ccv = &tm->ccv;
748	tp->ccv->type = IPPROTO_TCP;
749	tp->ccv->ccvc.tcp = tp;
750
751	/*
752	 * Use the current system default CC algorithm.
753	 */
754	CC_LIST_RLOCK();
755	KASSERT(!STAILQ_EMPTY(&cc_list), ("cc_list is empty!"));
756	CC_ALGO(tp) = CC_DEFAULT();
757	CC_LIST_RUNLOCK();
758
759	if (CC_ALGO(tp)->cb_init != NULL)
760		if (CC_ALGO(tp)->cb_init(tp->ccv) > 0) {
761			uma_zfree(V_tcpcb_zone, tm);
762			return (NULL);
763		}
764
765	tp->osd = &tm->osd;
766	if (khelp_init_osd(HELPER_CLASS_TCP, tp->osd)) {
767		uma_zfree(V_tcpcb_zone, tm);
768		return (NULL);
769	}
770
771#ifdef VIMAGE
772	tp->t_vnet = inp->inp_vnet;
773#endif
774	tp->t_timers = &tm->tt;
775	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
776	tp->t_maxseg = tp->t_maxopd =
777#ifdef INET6
778		isipv6 ? V_tcp_v6mssdflt :
779#endif /* INET6 */
780		V_tcp_mssdflt;
781
782	/* Set up our timeouts. */
783	callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
784	callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
785	callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
786	callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
787	callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
788
789	if (V_tcp_do_rfc1323)
790		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
791	if (V_tcp_do_sack)
792		tp->t_flags |= TF_SACK_PERMIT;
793	TAILQ_INIT(&tp->snd_holes);
794	/*
795	 * The tcpcb will hold a reference on its inpcb until tcp_discardcb()
796	 * is called.
797	 */
798	in_pcbref(inp);	/* Reference for tcpcb */
799	tp->t_inpcb = inp;
800
801	/*
802	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
803	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
804	 * reasonable initial retransmit time.
805	 */
806	tp->t_srtt = TCPTV_SRTTBASE;
807	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
808	tp->t_rttmin = tcp_rexmit_min;
809	tp->t_rxtcur = TCPTV_RTOBASE;
810	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
811	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
812	tp->t_rcvtime = ticks;
813	/*
814	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
815	 * because the socket may be bound to an IPv6 wildcard address,
816	 * which may match an IPv4-mapped IPv6 address.
817	 */
818	inp->inp_ip_ttl = V_ip_defttl;
819	inp->inp_ppcb = tp;
820	return (tp);		/* XXX */
821}
822
823/*
824 * Switch the congestion control algorithm back to NewReno for any active
825 * control blocks using an algorithm which is about to go away.
826 * This ensures the CC framework can allow the unload to proceed without leaving
827 * any dangling pointers which would trigger a panic.
828 * Returning non-zero would inform the CC framework that something went wrong
829 * and it would be unsafe to allow the unload to proceed. However, there is no
830 * way for this to occur with this implementation so we always return zero.
831 */
832int
833tcp_ccalgounload(struct cc_algo *unload_algo)
834{
835	struct cc_algo *tmpalgo;
836	struct inpcb *inp;
837	struct tcpcb *tp;
838	VNET_ITERATOR_DECL(vnet_iter);
839
840	/*
841	 * Check all active control blocks across all network stacks and change
842	 * any that are using "unload_algo" back to NewReno. If "unload_algo"
843	 * requires cleanup code to be run, call it.
844	 */
845	VNET_LIST_RLOCK();
846	VNET_FOREACH(vnet_iter) {
847		CURVNET_SET(vnet_iter);
848		INP_INFO_RLOCK(&V_tcbinfo);
849		/*
850		 * New connections already part way through being initialised
851		 * with the CC algo we're removing will not race with this code
852		 * because the INP_INFO_WLOCK is held during initialisation. We
853		 * therefore don't enter the loop below until the connection
854		 * list has stabilised.
855		 */
856		LIST_FOREACH(inp, &V_tcb, inp_list) {
857			INP_WLOCK(inp);
858			/* Important to skip tcptw structs. */
859			if (!(inp->inp_flags & INP_TIMEWAIT) &&
860			    (tp = intotcpcb(inp)) != NULL) {
861				/*
862				 * By holding INP_WLOCK here, we are assured
863				 * that the connection is not currently
864				 * executing inside the CC module's functions
865				 * i.e. it is safe to make the switch back to
866				 * NewReno.
867				 */
868				if (CC_ALGO(tp) == unload_algo) {
869					tmpalgo = CC_ALGO(tp);
870					/* NewReno does not require any init. */
871					CC_ALGO(tp) = &newreno_cc_algo;
872					if (tmpalgo->cb_destroy != NULL)
873						tmpalgo->cb_destroy(tp->ccv);
874				}
875			}
876			INP_WUNLOCK(inp);
877		}
878		INP_INFO_RUNLOCK(&V_tcbinfo);
879		CURVNET_RESTORE();
880	}
881	VNET_LIST_RUNLOCK();
882
883	return (0);
884}
885
886/*
887 * Drop a TCP connection, reporting
888 * the specified error.  If connection is synchronized,
889 * then send a RST to peer.
890 */
891struct tcpcb *
892tcp_drop(struct tcpcb *tp, int errno)
893{
894	struct socket *so = tp->t_inpcb->inp_socket;
895
896	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
897	INP_WLOCK_ASSERT(tp->t_inpcb);
898
899	if (TCPS_HAVERCVDSYN(tp->t_state)) {
900		tcp_state_change(tp, TCPS_CLOSED);
901		(void) tcp_output(tp);
902		TCPSTAT_INC(tcps_drops);
903	} else
904		TCPSTAT_INC(tcps_conndrops);
905	if (errno == ETIMEDOUT && tp->t_softerror)
906		errno = tp->t_softerror;
907	so->so_error = errno;
908	return (tcp_close(tp));
909}
910
911void
912tcp_discardcb(struct tcpcb *tp)
913{
914	struct inpcb *inp = tp->t_inpcb;
915	struct socket *so = inp->inp_socket;
916#ifdef INET6
917	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
918#endif /* INET6 */
919	int released;
920
921	INP_WLOCK_ASSERT(inp);
922
923	/*
924	 * Make sure that all of our timers are stopped before we delete the
925	 * PCB.
926	 *
927	 * If stopping a timer fails, we schedule a discard function in same
928	 * callout, and the last discard function called will take care of
929	 * deleting the tcpcb.
930	 */
931	tcp_timer_stop(tp, TT_REXMT);
932	tcp_timer_stop(tp, TT_PERSIST);
933	tcp_timer_stop(tp, TT_KEEP);
934	tcp_timer_stop(tp, TT_2MSL);
935	tcp_timer_stop(tp, TT_DELACK);
936
937	/*
938	 * If we got enough samples through the srtt filter,
939	 * save the rtt and rttvar in the routing entry.
940	 * 'Enough' is arbitrarily defined as 4 rtt samples.
941	 * 4 samples is enough for the srtt filter to converge
942	 * to within enough % of the correct value; fewer samples
943	 * and we could save a bogus rtt. The danger is not high
944	 * as tcp quickly recovers from everything.
945	 * XXX: Works very well but needs some more statistics!
946	 */
947	if (tp->t_rttupdated >= 4) {
948		struct hc_metrics_lite metrics;
949		u_long ssthresh;
950
951		bzero(&metrics, sizeof(metrics));
952		/*
953		 * Update the ssthresh always when the conditions below
954		 * are satisfied. This gives us better new start value
955		 * for the congestion avoidance for new connections.
956		 * ssthresh is only set if packet loss occured on a session.
957		 *
958		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
959		 * being torn down.  Ideally this code would not use 'so'.
960		 */
961		ssthresh = tp->snd_ssthresh;
962		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
963			/*
964			 * convert the limit from user data bytes to
965			 * packets then to packet data bytes.
966			 */
967			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
968			if (ssthresh < 2)
969				ssthresh = 2;
970			ssthresh *= (u_long)(tp->t_maxseg +
971#ifdef INET6
972			    (isipv6 ? sizeof (struct ip6_hdr) +
973				sizeof (struct tcphdr) :
974#endif
975				sizeof (struct tcpiphdr)
976#ifdef INET6
977			    )
978#endif
979			    );
980		} else
981			ssthresh = 0;
982		metrics.rmx_ssthresh = ssthresh;
983
984		metrics.rmx_rtt = tp->t_srtt;
985		metrics.rmx_rttvar = tp->t_rttvar;
986		metrics.rmx_cwnd = tp->snd_cwnd;
987		metrics.rmx_sendpipe = 0;
988		metrics.rmx_recvpipe = 0;
989
990		tcp_hc_update(&inp->inp_inc, &metrics);
991	}
992
993	/* free the reassembly queue, if any */
994	tcp_reass_flush(tp);
995
996#ifdef TCP_OFFLOAD
997	/* Disconnect offload device, if any. */
998	if (tp->t_flags & TF_TOE)
999		tcp_offload_detach(tp);
1000#endif
1001
1002	tcp_free_sackholes(tp);
1003
1004	/* Allow the CC algorithm to clean up after itself. */
1005	if (CC_ALGO(tp)->cb_destroy != NULL)
1006		CC_ALGO(tp)->cb_destroy(tp->ccv);
1007
1008	khelp_destroy_osd(tp->osd);
1009
1010	CC_ALGO(tp) = NULL;
1011	inp->inp_ppcb = NULL;
1012	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1013		/* We own the last reference on tcpcb, let's free it. */
1014		tp->t_inpcb = NULL;
1015		uma_zfree(V_tcpcb_zone, tp);
1016		released = in_pcbrele_wlocked(inp);
1017		KASSERT(!released, ("%s: inp %p should not have been released "
1018			"here", __func__, inp));
1019	}
1020}
1021
1022void
1023tcp_timer_2msl_discard(void *xtp)
1024{
1025
1026	tcp_timer_discard((struct tcpcb *)xtp, TT_2MSL);
1027}
1028
1029void
1030tcp_timer_keep_discard(void *xtp)
1031{
1032
1033	tcp_timer_discard((struct tcpcb *)xtp, TT_KEEP);
1034}
1035
1036void
1037tcp_timer_persist_discard(void *xtp)
1038{
1039
1040	tcp_timer_discard((struct tcpcb *)xtp, TT_PERSIST);
1041}
1042
1043void
1044tcp_timer_rexmt_discard(void *xtp)
1045{
1046
1047	tcp_timer_discard((struct tcpcb *)xtp, TT_REXMT);
1048}
1049
1050void
1051tcp_timer_delack_discard(void *xtp)
1052{
1053
1054	tcp_timer_discard((struct tcpcb *)xtp, TT_DELACK);
1055}
1056
1057void
1058tcp_timer_discard(struct tcpcb *tp, uint32_t timer_type)
1059{
1060	struct inpcb *inp;
1061
1062	CURVNET_SET(tp->t_vnet);
1063	INP_INFO_WLOCK(&V_tcbinfo);
1064	inp = tp->t_inpcb;
1065	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL",
1066		__func__, tp));
1067	INP_WLOCK(inp);
1068	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) != 0,
1069		("%s: tcpcb has to be stopped here", __func__));
1070	KASSERT((tp->t_timers->tt_flags & timer_type) != 0,
1071		("%s: discard callout should be running", __func__));
1072	tp->t_timers->tt_flags &= ~timer_type;
1073	if ((tp->t_timers->tt_flags & TT_MASK) == 0) {
1074		/* We own the last reference on this tcpcb, let's free it. */
1075		tp->t_inpcb = NULL;
1076		uma_zfree(V_tcpcb_zone, tp);
1077		if (in_pcbrele_wlocked(inp)) {
1078			INP_INFO_WUNLOCK(&V_tcbinfo);
1079			CURVNET_RESTORE();
1080			return;
1081		}
1082	}
1083	INP_WUNLOCK(inp);
1084	INP_INFO_WUNLOCK(&V_tcbinfo);
1085	CURVNET_RESTORE();
1086}
1087
1088/*
1089 * Attempt to close a TCP control block, marking it as dropped, and freeing
1090 * the socket if we hold the only reference.
1091 */
1092struct tcpcb *
1093tcp_close(struct tcpcb *tp)
1094{
1095	struct inpcb *inp = tp->t_inpcb;
1096	struct socket *so;
1097
1098	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1099	INP_WLOCK_ASSERT(inp);
1100
1101#ifdef TCP_OFFLOAD
1102	if (tp->t_state == TCPS_LISTEN)
1103		tcp_offload_listen_stop(tp);
1104#endif
1105	in_pcbdrop(inp);
1106	TCPSTAT_INC(tcps_closed);
1107	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
1108	so = inp->inp_socket;
1109	soisdisconnected(so);
1110	if (inp->inp_flags & INP_SOCKREF) {
1111		KASSERT(so->so_state & SS_PROTOREF,
1112		    ("tcp_close: !SS_PROTOREF"));
1113		inp->inp_flags &= ~INP_SOCKREF;
1114		INP_WUNLOCK(inp);
1115		ACCEPT_LOCK();
1116		SOCK_LOCK(so);
1117		so->so_state &= ~SS_PROTOREF;
1118		sofree(so);
1119		return (NULL);
1120	}
1121	return (tp);
1122}
1123
1124void
1125tcp_drain(void)
1126{
1127	VNET_ITERATOR_DECL(vnet_iter);
1128
1129	if (!do_tcpdrain)
1130		return;
1131
1132	VNET_LIST_RLOCK_NOSLEEP();
1133	VNET_FOREACH(vnet_iter) {
1134		CURVNET_SET(vnet_iter);
1135		struct inpcb *inpb;
1136		struct tcpcb *tcpb;
1137
1138	/*
1139	 * Walk the tcpbs, if existing, and flush the reassembly queue,
1140	 * if there is one...
1141	 * XXX: The "Net/3" implementation doesn't imply that the TCP
1142	 *      reassembly queue should be flushed, but in a situation
1143	 *	where we're really low on mbufs, this is potentially
1144	 *	useful.
1145	 */
1146		INP_INFO_RLOCK(&V_tcbinfo);
1147		LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
1148			if (inpb->inp_flags & INP_TIMEWAIT)
1149				continue;
1150			INP_WLOCK(inpb);
1151			if ((tcpb = intotcpcb(inpb)) != NULL) {
1152				tcp_reass_flush(tcpb);
1153				tcp_clean_sackreport(tcpb);
1154			}
1155			INP_WUNLOCK(inpb);
1156		}
1157		INP_INFO_RUNLOCK(&V_tcbinfo);
1158		CURVNET_RESTORE();
1159	}
1160	VNET_LIST_RUNLOCK_NOSLEEP();
1161}
1162
1163/*
1164 * Notify a tcp user of an asynchronous error;
1165 * store error as soft error, but wake up user
1166 * (for now, won't do anything until can select for soft error).
1167 *
1168 * Do not wake up user since there currently is no mechanism for
1169 * reporting soft errors (yet - a kqueue filter may be added).
1170 */
1171static struct inpcb *
1172tcp_notify(struct inpcb *inp, int error)
1173{
1174	struct tcpcb *tp;
1175
1176	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1177	INP_WLOCK_ASSERT(inp);
1178
1179	if ((inp->inp_flags & INP_TIMEWAIT) ||
1180	    (inp->inp_flags & INP_DROPPED))
1181		return (inp);
1182
1183	tp = intotcpcb(inp);
1184	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
1185
1186	/*
1187	 * Ignore some errors if we are hooked up.
1188	 * If connection hasn't completed, has retransmitted several times,
1189	 * and receives a second error, give up now.  This is better
1190	 * than waiting a long time to establish a connection that
1191	 * can never complete.
1192	 */
1193	if (tp->t_state == TCPS_ESTABLISHED &&
1194	    (error == EHOSTUNREACH || error == ENETUNREACH ||
1195	     error == EHOSTDOWN)) {
1196		return (inp);
1197	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1198	    tp->t_softerror) {
1199		tp = tcp_drop(tp, error);
1200		if (tp != NULL)
1201			return (inp);
1202		else
1203			return (NULL);
1204	} else {
1205		tp->t_softerror = error;
1206		return (inp);
1207	}
1208#if 0
1209	wakeup( &so->so_timeo);
1210	sorwakeup(so);
1211	sowwakeup(so);
1212#endif
1213}
1214
1215static int
1216tcp_pcblist(SYSCTL_HANDLER_ARGS)
1217{
1218	int error, i, m, n, pcb_count;
1219	struct inpcb *inp, **inp_list;
1220	inp_gen_t gencnt;
1221	struct xinpgen xig;
1222
1223	/*
1224	 * The process of preparing the TCB list is too time-consuming and
1225	 * resource-intensive to repeat twice on every request.
1226	 */
1227	if (req->oldptr == NULL) {
1228		n = V_tcbinfo.ipi_count + syncache_pcbcount();
1229		n += imax(n / 8, 10);
1230		req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1231		return (0);
1232	}
1233
1234	if (req->newptr != NULL)
1235		return (EPERM);
1236
1237	/*
1238	 * OK, now we're committed to doing something.
1239	 */
1240	INP_INFO_RLOCK(&V_tcbinfo);
1241	gencnt = V_tcbinfo.ipi_gencnt;
1242	n = V_tcbinfo.ipi_count;
1243	INP_INFO_RUNLOCK(&V_tcbinfo);
1244
1245	m = syncache_pcbcount();
1246
1247	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1248		+ (n + m) * sizeof(struct xtcpcb));
1249	if (error != 0)
1250		return (error);
1251
1252	xig.xig_len = sizeof xig;
1253	xig.xig_count = n + m;
1254	xig.xig_gen = gencnt;
1255	xig.xig_sogen = so_gencnt;
1256	error = SYSCTL_OUT(req, &xig, sizeof xig);
1257	if (error)
1258		return (error);
1259
1260	error = syncache_pcblist(req, m, &pcb_count);
1261	if (error)
1262		return (error);
1263
1264	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1265	if (inp_list == NULL)
1266		return (ENOMEM);
1267
1268	INP_INFO_RLOCK(&V_tcbinfo);
1269	for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1270	    inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1271		INP_WLOCK(inp);
1272		if (inp->inp_gencnt <= gencnt) {
1273			/*
1274			 * XXX: This use of cr_cansee(), introduced with
1275			 * TCP state changes, is not quite right, but for
1276			 * now, better than nothing.
1277			 */
1278			if (inp->inp_flags & INP_TIMEWAIT) {
1279				if (intotw(inp) != NULL)
1280					error = cr_cansee(req->td->td_ucred,
1281					    intotw(inp)->tw_cred);
1282				else
1283					error = EINVAL;	/* Skip this inp. */
1284			} else
1285				error = cr_canseeinpcb(req->td->td_ucred, inp);
1286			if (error == 0) {
1287				in_pcbref(inp);
1288				inp_list[i++] = inp;
1289			}
1290		}
1291		INP_WUNLOCK(inp);
1292	}
1293	INP_INFO_RUNLOCK(&V_tcbinfo);
1294	n = i;
1295
1296	error = 0;
1297	for (i = 0; i < n; i++) {
1298		inp = inp_list[i];
1299		INP_RLOCK(inp);
1300		if (inp->inp_gencnt <= gencnt) {
1301			struct xtcpcb xt;
1302			void *inp_ppcb;
1303
1304			bzero(&xt, sizeof(xt));
1305			xt.xt_len = sizeof xt;
1306			/* XXX should avoid extra copy */
1307			bcopy(inp, &xt.xt_inp, sizeof *inp);
1308			inp_ppcb = inp->inp_ppcb;
1309			if (inp_ppcb == NULL)
1310				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1311			else if (inp->inp_flags & INP_TIMEWAIT) {
1312				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1313				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1314			} else {
1315				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1316				if (xt.xt_tp.t_timers)
1317					tcp_timer_to_xtimer(&xt.xt_tp, xt.xt_tp.t_timers, &xt.xt_timer);
1318			}
1319			if (inp->inp_socket != NULL)
1320				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1321			else {
1322				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1323				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1324			}
1325			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1326			INP_RUNLOCK(inp);
1327			error = SYSCTL_OUT(req, &xt, sizeof xt);
1328		} else
1329			INP_RUNLOCK(inp);
1330	}
1331	INP_INFO_WLOCK(&V_tcbinfo);
1332	for (i = 0; i < n; i++) {
1333		inp = inp_list[i];
1334		INP_RLOCK(inp);
1335		if (!in_pcbrele_rlocked(inp))
1336			INP_RUNLOCK(inp);
1337	}
1338	INP_INFO_WUNLOCK(&V_tcbinfo);
1339
1340	if (!error) {
1341		/*
1342		 * Give the user an updated idea of our state.
1343		 * If the generation differs from what we told
1344		 * her before, she knows that something happened
1345		 * while we were processing this request, and it
1346		 * might be necessary to retry.
1347		 */
1348		INP_INFO_RLOCK(&V_tcbinfo);
1349		xig.xig_gen = V_tcbinfo.ipi_gencnt;
1350		xig.xig_sogen = so_gencnt;
1351		xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1352		INP_INFO_RUNLOCK(&V_tcbinfo);
1353		error = SYSCTL_OUT(req, &xig, sizeof xig);
1354	}
1355	free(inp_list, M_TEMP);
1356	return (error);
1357}
1358
1359SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist,
1360    CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
1361    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1362
1363#ifdef INET
1364static int
1365tcp_getcred(SYSCTL_HANDLER_ARGS)
1366{
1367	struct xucred xuc;
1368	struct sockaddr_in addrs[2];
1369	struct inpcb *inp;
1370	int error;
1371
1372	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1373	if (error)
1374		return (error);
1375	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1376	if (error)
1377		return (error);
1378	inp = in_pcblookup(&V_tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1379	    addrs[0].sin_addr, addrs[0].sin_port, INPLOOKUP_RLOCKPCB, NULL);
1380	if (inp != NULL) {
1381		if (inp->inp_socket == NULL)
1382			error = ENOENT;
1383		if (error == 0)
1384			error = cr_canseeinpcb(req->td->td_ucred, inp);
1385		if (error == 0)
1386			cru2x(inp->inp_cred, &xuc);
1387		INP_RUNLOCK(inp);
1388	} else
1389		error = ENOENT;
1390	if (error == 0)
1391		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1392	return (error);
1393}
1394
1395SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1396    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1397    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1398#endif /* INET */
1399
1400#ifdef INET6
1401static int
1402tcp6_getcred(SYSCTL_HANDLER_ARGS)
1403{
1404	struct xucred xuc;
1405	struct sockaddr_in6 addrs[2];
1406	struct inpcb *inp;
1407	int error;
1408#ifdef INET
1409	int mapped = 0;
1410#endif
1411
1412	error = priv_check(req->td, PRIV_NETINET_GETCRED);
1413	if (error)
1414		return (error);
1415	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1416	if (error)
1417		return (error);
1418	if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1419	    (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1420		return (error);
1421	}
1422	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1423#ifdef INET
1424		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1425			mapped = 1;
1426		else
1427#endif
1428			return (EINVAL);
1429	}
1430
1431#ifdef INET
1432	if (mapped == 1)
1433		inp = in_pcblookup(&V_tcbinfo,
1434			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1435			addrs[1].sin6_port,
1436			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1437			addrs[0].sin6_port, INPLOOKUP_RLOCKPCB, NULL);
1438	else
1439#endif
1440		inp = in6_pcblookup(&V_tcbinfo,
1441			&addrs[1].sin6_addr, addrs[1].sin6_port,
1442			&addrs[0].sin6_addr, addrs[0].sin6_port,
1443			INPLOOKUP_RLOCKPCB, NULL);
1444	if (inp != NULL) {
1445		if (inp->inp_socket == NULL)
1446			error = ENOENT;
1447		if (error == 0)
1448			error = cr_canseeinpcb(req->td->td_ucred, inp);
1449		if (error == 0)
1450			cru2x(inp->inp_cred, &xuc);
1451		INP_RUNLOCK(inp);
1452	} else
1453		error = ENOENT;
1454	if (error == 0)
1455		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1456	return (error);
1457}
1458
1459SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1460    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1461    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1462#endif /* INET6 */
1463
1464
1465#ifdef INET
1466void
1467tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1468{
1469	struct ip *ip = vip;
1470	struct tcphdr *th;
1471	struct in_addr faddr;
1472	struct inpcb *inp;
1473	struct tcpcb *tp;
1474	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1475	struct icmp *icp;
1476	struct in_conninfo inc;
1477	tcp_seq icmp_tcp_seq;
1478	int mtu;
1479
1480	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1481	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1482		return;
1483
1484	if (cmd == PRC_MSGSIZE)
1485		notify = tcp_mtudisc_notify;
1486	else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1487		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1488		notify = tcp_drop_syn_sent;
1489	/*
1490	 * Redirects don't need to be handled up here.
1491	 */
1492	else if (PRC_IS_REDIRECT(cmd))
1493		return;
1494	/*
1495	 * Source quench is depreciated.
1496	 */
1497	else if (cmd == PRC_QUENCH)
1498		return;
1499	/*
1500	 * Hostdead is ugly because it goes linearly through all PCBs.
1501	 * XXX: We never get this from ICMP, otherwise it makes an
1502	 * excellent DoS attack on machines with many connections.
1503	 */
1504	else if (cmd == PRC_HOSTDEAD)
1505		ip = NULL;
1506	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1507		return;
1508	if (ip != NULL) {
1509		icp = (struct icmp *)((caddr_t)ip
1510				      - offsetof(struct icmp, icmp_ip));
1511		th = (struct tcphdr *)((caddr_t)ip
1512				       + (ip->ip_hl << 2));
1513		INP_INFO_WLOCK(&V_tcbinfo);
1514		inp = in_pcblookup(&V_tcbinfo, faddr, th->th_dport,
1515		    ip->ip_src, th->th_sport, INPLOOKUP_WLOCKPCB, NULL);
1516		if (inp != NULL)  {
1517			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1518			    !(inp->inp_flags & INP_DROPPED) &&
1519			    !(inp->inp_socket == NULL)) {
1520				icmp_tcp_seq = htonl(th->th_seq);
1521				tp = intotcpcb(inp);
1522				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1523				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1524					if (cmd == PRC_MSGSIZE) {
1525					    /*
1526					     * MTU discovery:
1527					     * If we got a needfrag set the MTU
1528					     * in the route to the suggested new
1529					     * value (if given) and then notify.
1530					     */
1531					    bzero(&inc, sizeof(inc));
1532					    inc.inc_faddr = faddr;
1533					    inc.inc_fibnum =
1534						inp->inp_inc.inc_fibnum;
1535
1536					    mtu = ntohs(icp->icmp_nextmtu);
1537					    /*
1538					     * If no alternative MTU was
1539					     * proposed, try the next smaller
1540					     * one.
1541					     */
1542					    if (!mtu)
1543						mtu = ip_next_mtu(
1544						 ntohs(ip->ip_len), 1);
1545					    if (mtu < V_tcp_minmss
1546						 + sizeof(struct tcpiphdr))
1547						mtu = V_tcp_minmss
1548						 + sizeof(struct tcpiphdr);
1549					    /*
1550					     * Only cache the MTU if it
1551					     * is smaller than the interface
1552					     * or route MTU.  tcp_mtudisc()
1553					     * will do right thing by itself.
1554					     */
1555					    if (mtu <= tcp_maxmtu(&inc, NULL))
1556						tcp_hc_updatemtu(&inc, mtu);
1557					    tcp_mtudisc(inp, mtu);
1558					} else
1559						inp = (*notify)(inp,
1560						    inetctlerrmap[cmd]);
1561				}
1562			}
1563			if (inp != NULL)
1564				INP_WUNLOCK(inp);
1565		} else {
1566			bzero(&inc, sizeof(inc));
1567			inc.inc_fport = th->th_dport;
1568			inc.inc_lport = th->th_sport;
1569			inc.inc_faddr = faddr;
1570			inc.inc_laddr = ip->ip_src;
1571			syncache_unreach(&inc, th);
1572		}
1573		INP_INFO_WUNLOCK(&V_tcbinfo);
1574	} else
1575		in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1576}
1577#endif /* INET */
1578
1579#ifdef INET6
1580void
1581tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1582{
1583	struct tcphdr th;
1584	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1585	struct ip6_hdr *ip6;
1586	struct mbuf *m;
1587	struct ip6ctlparam *ip6cp = NULL;
1588	const struct sockaddr_in6 *sa6_src = NULL;
1589	int off;
1590	struct tcp_portonly {
1591		u_int16_t th_sport;
1592		u_int16_t th_dport;
1593	} *thp;
1594
1595	if (sa->sa_family != AF_INET6 ||
1596	    sa->sa_len != sizeof(struct sockaddr_in6))
1597		return;
1598
1599	if (cmd == PRC_MSGSIZE)
1600		notify = tcp_mtudisc_notify;
1601	else if (!PRC_IS_REDIRECT(cmd) &&
1602		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1603		return;
1604	/* Source quench is depreciated. */
1605	else if (cmd == PRC_QUENCH)
1606		return;
1607
1608	/* if the parameter is from icmp6, decode it. */
1609	if (d != NULL) {
1610		ip6cp = (struct ip6ctlparam *)d;
1611		m = ip6cp->ip6c_m;
1612		ip6 = ip6cp->ip6c_ip6;
1613		off = ip6cp->ip6c_off;
1614		sa6_src = ip6cp->ip6c_src;
1615	} else {
1616		m = NULL;
1617		ip6 = NULL;
1618		off = 0;	/* fool gcc */
1619		sa6_src = &sa6_any;
1620	}
1621
1622	if (ip6 != NULL) {
1623		struct in_conninfo inc;
1624		/*
1625		 * XXX: We assume that when IPV6 is non NULL,
1626		 * M and OFF are valid.
1627		 */
1628
1629		/* check if we can safely examine src and dst ports */
1630		if (m->m_pkthdr.len < off + sizeof(*thp))
1631			return;
1632
1633		bzero(&th, sizeof(th));
1634		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1635
1636		in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1637		    (struct sockaddr *)ip6cp->ip6c_src,
1638		    th.th_sport, cmd, NULL, notify);
1639
1640		bzero(&inc, sizeof(inc));
1641		inc.inc_fport = th.th_dport;
1642		inc.inc_lport = th.th_sport;
1643		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1644		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1645		inc.inc_flags |= INC_ISIPV6;
1646		INP_INFO_WLOCK(&V_tcbinfo);
1647		syncache_unreach(&inc, &th);
1648		INP_INFO_WUNLOCK(&V_tcbinfo);
1649	} else
1650		in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1651			      0, cmd, NULL, notify);
1652}
1653#endif /* INET6 */
1654
1655
1656/*
1657 * Following is where TCP initial sequence number generation occurs.
1658 *
1659 * There are two places where we must use initial sequence numbers:
1660 * 1.  In SYN-ACK packets.
1661 * 2.  In SYN packets.
1662 *
1663 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1664 * tcp_syncache.c for details.
1665 *
1666 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1667 * depends on this property.  In addition, these ISNs should be
1668 * unguessable so as to prevent connection hijacking.  To satisfy
1669 * the requirements of this situation, the algorithm outlined in
1670 * RFC 1948 is used, with only small modifications.
1671 *
1672 * Implementation details:
1673 *
1674 * Time is based off the system timer, and is corrected so that it
1675 * increases by one megabyte per second.  This allows for proper
1676 * recycling on high speed LANs while still leaving over an hour
1677 * before rollover.
1678 *
1679 * As reading the *exact* system time is too expensive to be done
1680 * whenever setting up a TCP connection, we increment the time
1681 * offset in two ways.  First, a small random positive increment
1682 * is added to isn_offset for each connection that is set up.
1683 * Second, the function tcp_isn_tick fires once per clock tick
1684 * and increments isn_offset as necessary so that sequence numbers
1685 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1686 * random positive increments serve only to ensure that the same
1687 * exact sequence number is never sent out twice (as could otherwise
1688 * happen when a port is recycled in less than the system tick
1689 * interval.)
1690 *
1691 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1692 * between seeding of isn_secret.  This is normally set to zero,
1693 * as reseeding should not be necessary.
1694 *
1695 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1696 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1697 * general, this means holding an exclusive (write) lock.
1698 */
1699
1700#define ISN_BYTES_PER_SECOND 1048576
1701#define ISN_STATIC_INCREMENT 4096
1702#define ISN_RANDOM_INCREMENT (4096 - 1)
1703
1704static VNET_DEFINE(u_char, isn_secret[32]);
1705static VNET_DEFINE(int, isn_last);
1706static VNET_DEFINE(int, isn_last_reseed);
1707static VNET_DEFINE(u_int32_t, isn_offset);
1708static VNET_DEFINE(u_int32_t, isn_offset_old);
1709
1710#define	V_isn_secret			VNET(isn_secret)
1711#define	V_isn_last			VNET(isn_last)
1712#define	V_isn_last_reseed		VNET(isn_last_reseed)
1713#define	V_isn_offset			VNET(isn_offset)
1714#define	V_isn_offset_old		VNET(isn_offset_old)
1715
1716tcp_seq
1717tcp_new_isn(struct tcpcb *tp)
1718{
1719	MD5_CTX isn_ctx;
1720	u_int32_t md5_buffer[4];
1721	tcp_seq new_isn;
1722	u_int32_t projected_offset;
1723
1724	INP_WLOCK_ASSERT(tp->t_inpcb);
1725
1726	ISN_LOCK();
1727	/* Seed if this is the first use, reseed if requested. */
1728	if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1729	     (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1730		< (u_int)ticks))) {
1731		read_random(&V_isn_secret, sizeof(V_isn_secret));
1732		V_isn_last_reseed = ticks;
1733	}
1734
1735	/* Compute the md5 hash and return the ISN. */
1736	MD5Init(&isn_ctx);
1737	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1738	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1739#ifdef INET6
1740	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1741		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1742			  sizeof(struct in6_addr));
1743		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1744			  sizeof(struct in6_addr));
1745	} else
1746#endif
1747	{
1748		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1749			  sizeof(struct in_addr));
1750		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1751			  sizeof(struct in_addr));
1752	}
1753	MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1754	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1755	new_isn = (tcp_seq) md5_buffer[0];
1756	V_isn_offset += ISN_STATIC_INCREMENT +
1757		(arc4random() & ISN_RANDOM_INCREMENT);
1758	if (ticks != V_isn_last) {
1759		projected_offset = V_isn_offset_old +
1760		    ISN_BYTES_PER_SECOND / hz * (ticks - V_isn_last);
1761		if (SEQ_GT(projected_offset, V_isn_offset))
1762			V_isn_offset = projected_offset;
1763		V_isn_offset_old = V_isn_offset;
1764		V_isn_last = ticks;
1765	}
1766	new_isn += V_isn_offset;
1767	ISN_UNLOCK();
1768	return (new_isn);
1769}
1770
1771/*
1772 * When a specific ICMP unreachable message is received and the
1773 * connection state is SYN-SENT, drop the connection.  This behavior
1774 * is controlled by the icmp_may_rst sysctl.
1775 */
1776struct inpcb *
1777tcp_drop_syn_sent(struct inpcb *inp, int errno)
1778{
1779	struct tcpcb *tp;
1780
1781	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1782	INP_WLOCK_ASSERT(inp);
1783
1784	if ((inp->inp_flags & INP_TIMEWAIT) ||
1785	    (inp->inp_flags & INP_DROPPED))
1786		return (inp);
1787
1788	tp = intotcpcb(inp);
1789	if (tp->t_state != TCPS_SYN_SENT)
1790		return (inp);
1791
1792	tp = tcp_drop(tp, errno);
1793	if (tp != NULL)
1794		return (inp);
1795	else
1796		return (NULL);
1797}
1798
1799/*
1800 * When `need fragmentation' ICMP is received, update our idea of the MSS
1801 * based on the new value. Also nudge TCP to send something, since we
1802 * know the packet we just sent was dropped.
1803 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1804 */
1805static struct inpcb *
1806tcp_mtudisc_notify(struct inpcb *inp, int error)
1807{
1808
1809	return (tcp_mtudisc(inp, -1));
1810}
1811
1812struct inpcb *
1813tcp_mtudisc(struct inpcb *inp, int mtuoffer)
1814{
1815	struct tcpcb *tp;
1816	struct socket *so;
1817
1818	INP_WLOCK_ASSERT(inp);
1819	if ((inp->inp_flags & INP_TIMEWAIT) ||
1820	    (inp->inp_flags & INP_DROPPED))
1821		return (inp);
1822
1823	tp = intotcpcb(inp);
1824	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1825
1826	tcp_mss_update(tp, -1, mtuoffer, NULL, NULL);
1827
1828	so = inp->inp_socket;
1829	SOCKBUF_LOCK(&so->so_snd);
1830	/* If the mss is larger than the socket buffer, decrease the mss. */
1831	if (so->so_snd.sb_hiwat < tp->t_maxseg)
1832		tp->t_maxseg = so->so_snd.sb_hiwat;
1833	SOCKBUF_UNLOCK(&so->so_snd);
1834
1835	TCPSTAT_INC(tcps_mturesent);
1836	tp->t_rtttime = 0;
1837	tp->snd_nxt = tp->snd_una;
1838	tcp_free_sackholes(tp);
1839	tp->snd_recover = tp->snd_max;
1840	if (tp->t_flags & TF_SACK_PERMIT)
1841		EXIT_FASTRECOVERY(tp->t_flags);
1842	tcp_output(tp);
1843	return (inp);
1844}
1845
1846#ifdef INET
1847/*
1848 * Look-up the routing entry to the peer of this inpcb.  If no route
1849 * is found and it cannot be allocated, then return 0.  This routine
1850 * is called by TCP routines that access the rmx structure and by
1851 * tcp_mss_update to get the peer/interface MTU.
1852 */
1853u_long
1854tcp_maxmtu(struct in_conninfo *inc, struct tcp_ifcap *cap)
1855{
1856	struct route sro;
1857	struct sockaddr_in *dst;
1858	struct ifnet *ifp;
1859	u_long maxmtu = 0;
1860
1861	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1862
1863	bzero(&sro, sizeof(sro));
1864	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1865	        dst = (struct sockaddr_in *)&sro.ro_dst;
1866		dst->sin_family = AF_INET;
1867		dst->sin_len = sizeof(*dst);
1868		dst->sin_addr = inc->inc_faddr;
1869		in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1870	}
1871	if (sro.ro_rt != NULL) {
1872		ifp = sro.ro_rt->rt_ifp;
1873		if (sro.ro_rt->rt_mtu == 0)
1874			maxmtu = ifp->if_mtu;
1875		else
1876			maxmtu = min(sro.ro_rt->rt_mtu, ifp->if_mtu);
1877
1878		/* Report additional interface capabilities. */
1879		if (cap != NULL) {
1880			if (ifp->if_capenable & IFCAP_TSO4 &&
1881			    ifp->if_hwassist & CSUM_TSO) {
1882				cap->ifcap |= CSUM_TSO;
1883				cap->tsomax = ifp->if_hw_tsomax;
1884				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1885				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1886			}
1887		}
1888		RTFREE(sro.ro_rt);
1889	}
1890	return (maxmtu);
1891}
1892#endif /* INET */
1893
1894#ifdef INET6
1895u_long
1896tcp_maxmtu6(struct in_conninfo *inc, struct tcp_ifcap *cap)
1897{
1898	struct route_in6 sro6;
1899	struct ifnet *ifp;
1900	u_long maxmtu = 0;
1901
1902	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1903
1904	bzero(&sro6, sizeof(sro6));
1905	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1906		sro6.ro_dst.sin6_family = AF_INET6;
1907		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1908		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1909		in6_rtalloc_ign(&sro6, 0, inc->inc_fibnum);
1910	}
1911	if (sro6.ro_rt != NULL) {
1912		ifp = sro6.ro_rt->rt_ifp;
1913		if (sro6.ro_rt->rt_mtu == 0)
1914			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1915		else
1916			maxmtu = min(sro6.ro_rt->rt_mtu,
1917				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1918
1919		/* Report additional interface capabilities. */
1920		if (cap != NULL) {
1921			if (ifp->if_capenable & IFCAP_TSO6 &&
1922			    ifp->if_hwassist & CSUM_TSO) {
1923				cap->ifcap |= CSUM_TSO;
1924				cap->tsomax = ifp->if_hw_tsomax;
1925				cap->tsomaxsegcount = ifp->if_hw_tsomaxsegcount;
1926				cap->tsomaxsegsize = ifp->if_hw_tsomaxsegsize;
1927			}
1928		}
1929		RTFREE(sro6.ro_rt);
1930	}
1931
1932	return (maxmtu);
1933}
1934#endif /* INET6 */
1935
1936#ifdef IPSEC
1937/* compute ESP/AH header size for TCP, including outer IP header. */
1938size_t
1939ipsec_hdrsiz_tcp(struct tcpcb *tp)
1940{
1941	struct inpcb *inp;
1942	struct mbuf *m;
1943	size_t hdrsiz;
1944	struct ip *ip;
1945#ifdef INET6
1946	struct ip6_hdr *ip6;
1947#endif
1948	struct tcphdr *th;
1949
1950	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1951		return (0);
1952	m = m_gethdr(M_NOWAIT, MT_DATA);
1953	if (!m)
1954		return (0);
1955
1956#ifdef INET6
1957	if ((inp->inp_vflag & INP_IPV6) != 0) {
1958		ip6 = mtod(m, struct ip6_hdr *);
1959		th = (struct tcphdr *)(ip6 + 1);
1960		m->m_pkthdr.len = m->m_len =
1961			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1962		tcpip_fillheaders(inp, ip6, th);
1963		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1964	} else
1965#endif /* INET6 */
1966	{
1967		ip = mtod(m, struct ip *);
1968		th = (struct tcphdr *)(ip + 1);
1969		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1970		tcpip_fillheaders(inp, ip, th);
1971		hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1972	}
1973
1974	m_free(m);
1975	return (hdrsiz);
1976}
1977#endif /* IPSEC */
1978
1979#ifdef TCP_SIGNATURE
1980/*
1981 * Callback function invoked by m_apply() to digest TCP segment data
1982 * contained within an mbuf chain.
1983 */
1984static int
1985tcp_signature_apply(void *fstate, void *data, u_int len)
1986{
1987
1988	MD5Update(fstate, (u_char *)data, len);
1989	return (0);
1990}
1991
1992/*
1993 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1994 *
1995 * Parameters:
1996 * m		pointer to head of mbuf chain
1997 * _unused
1998 * len		length of TCP segment data, excluding options
1999 * optlen	length of TCP segment options
2000 * buf		pointer to storage for computed MD5 digest
2001 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2002 *
2003 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2004 * When called from tcp_input(), we can be sure that th_sum has been
2005 * zeroed out and verified already.
2006 *
2007 * Return 0 if successful, otherwise return -1.
2008 *
2009 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2010 * search with the destination IP address, and a 'magic SPI' to be
2011 * determined by the application. This is hardcoded elsewhere to 1179
2012 * right now. Another branch of this code exists which uses the SPD to
2013 * specify per-application flows but it is unstable.
2014 */
2015int
2016tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
2017    u_char *buf, u_int direction)
2018{
2019	union sockaddr_union dst;
2020#ifdef INET
2021	struct ippseudo ippseudo;
2022#endif
2023	MD5_CTX ctx;
2024	int doff;
2025	struct ip *ip;
2026#ifdef INET
2027	struct ipovly *ipovly;
2028#endif
2029	struct secasvar *sav;
2030	struct tcphdr *th;
2031#ifdef INET6
2032	struct ip6_hdr *ip6;
2033	struct in6_addr in6;
2034	char ip6buf[INET6_ADDRSTRLEN];
2035	uint32_t plen;
2036	uint16_t nhdr;
2037#endif
2038	u_short savecsum;
2039
2040	KASSERT(m != NULL, ("NULL mbuf chain"));
2041	KASSERT(buf != NULL, ("NULL signature pointer"));
2042
2043	/* Extract the destination from the IP header in the mbuf. */
2044	bzero(&dst, sizeof(union sockaddr_union));
2045	ip = mtod(m, struct ip *);
2046#ifdef INET6
2047	ip6 = NULL;	/* Make the compiler happy. */
2048#endif
2049	switch (ip->ip_v) {
2050#ifdef INET
2051	case IPVERSION:
2052		dst.sa.sa_len = sizeof(struct sockaddr_in);
2053		dst.sa.sa_family = AF_INET;
2054		dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2055		    ip->ip_src : ip->ip_dst;
2056		break;
2057#endif
2058#ifdef INET6
2059	case (IPV6_VERSION >> 4):
2060		ip6 = mtod(m, struct ip6_hdr *);
2061		dst.sa.sa_len = sizeof(struct sockaddr_in6);
2062		dst.sa.sa_family = AF_INET6;
2063		dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
2064		    ip6->ip6_src : ip6->ip6_dst;
2065		break;
2066#endif
2067	default:
2068		return (EINVAL);
2069		/* NOTREACHED */
2070		break;
2071	}
2072
2073	/* Look up an SADB entry which matches the address of the peer. */
2074	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2075	if (sav == NULL) {
2076		ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
2077		    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
2078#ifdef INET6
2079			(ip->ip_v == (IPV6_VERSION >> 4)) ?
2080			    ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
2081#endif
2082			"(unsupported)"));
2083		return (EINVAL);
2084	}
2085
2086	MD5Init(&ctx);
2087	/*
2088	 * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2089	 *
2090	 * XXX The ippseudo header MUST be digested in network byte order,
2091	 * or else we'll fail the regression test. Assume all fields we've
2092	 * been doing arithmetic on have been in host byte order.
2093	 * XXX One cannot depend on ipovly->ih_len here. When called from
2094	 * tcp_output(), the underlying ip_len member has not yet been set.
2095	 */
2096	switch (ip->ip_v) {
2097#ifdef INET
2098	case IPVERSION:
2099		ipovly = (struct ipovly *)ip;
2100		ippseudo.ippseudo_src = ipovly->ih_src;
2101		ippseudo.ippseudo_dst = ipovly->ih_dst;
2102		ippseudo.ippseudo_pad = 0;
2103		ippseudo.ippseudo_p = IPPROTO_TCP;
2104		ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2105		    optlen);
2106		MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2107
2108		th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2109		doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2110		break;
2111#endif
2112#ifdef INET6
2113	/*
2114	 * RFC 2385, 2.0  Proposal
2115	 * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2116	 * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2117	 * extended next header value (to form 32 bits), and 32-bit segment
2118	 * length.
2119	 * Note: Upper-Layer Packet Length comes before Next Header.
2120	 */
2121	case (IPV6_VERSION >> 4):
2122		in6 = ip6->ip6_src;
2123		in6_clearscope(&in6);
2124		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2125		in6 = ip6->ip6_dst;
2126		in6_clearscope(&in6);
2127		MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2128		plen = htonl(len + sizeof(struct tcphdr) + optlen);
2129		MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2130		nhdr = 0;
2131		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2132		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2133		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2134		nhdr = IPPROTO_TCP;
2135		MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2136
2137		th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2138		doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2139		break;
2140#endif
2141	default:
2142		return (EINVAL);
2143		/* NOTREACHED */
2144		break;
2145	}
2146
2147
2148	/*
2149	 * Step 2: Update MD5 hash with TCP header, excluding options.
2150	 * The TCP checksum must be set to zero.
2151	 */
2152	savecsum = th->th_sum;
2153	th->th_sum = 0;
2154	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2155	th->th_sum = savecsum;
2156
2157	/*
2158	 * Step 3: Update MD5 hash with TCP segment data.
2159	 *         Use m_apply() to avoid an early m_pullup().
2160	 */
2161	if (len > 0)
2162		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2163
2164	/*
2165	 * Step 4: Update MD5 hash with shared secret.
2166	 */
2167	MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2168	MD5Final(buf, &ctx);
2169
2170	key_sa_recordxfer(sav, m);
2171	KEY_FREESAV(&sav);
2172	return (0);
2173}
2174
2175/*
2176 * Verify the TCP-MD5 hash of a TCP segment. (RFC2385)
2177 *
2178 * Parameters:
2179 * m		pointer to head of mbuf chain
2180 * len		length of TCP segment data, excluding options
2181 * optlen	length of TCP segment options
2182 * buf		pointer to storage for computed MD5 digest
2183 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2184 *
2185 * Return 1 if successful, otherwise return 0.
2186 */
2187int
2188tcp_signature_verify(struct mbuf *m, int off0, int tlen, int optlen,
2189    struct tcpopt *to, struct tcphdr *th, u_int tcpbflag)
2190{
2191	char tmpdigest[TCP_SIGLEN];
2192
2193	if (tcp_sig_checksigs == 0)
2194		return (1);
2195	if ((tcpbflag & TF_SIGNATURE) == 0) {
2196		if ((to->to_flags & TOF_SIGNATURE) != 0) {
2197
2198			/*
2199			 * If this socket is not expecting signature but
2200			 * the segment contains signature just fail.
2201			 */
2202			TCPSTAT_INC(tcps_sig_err_sigopt);
2203			TCPSTAT_INC(tcps_sig_rcvbadsig);
2204			return (0);
2205		}
2206
2207		/* Signature is not expected, and not present in segment. */
2208		return (1);
2209	}
2210
2211	/*
2212	 * If this socket is expecting signature but the segment does not
2213	 * contain any just fail.
2214	 */
2215	if ((to->to_flags & TOF_SIGNATURE) == 0) {
2216		TCPSTAT_INC(tcps_sig_err_nosigopt);
2217		TCPSTAT_INC(tcps_sig_rcvbadsig);
2218		return (0);
2219	}
2220	if (tcp_signature_compute(m, off0, tlen, optlen, &tmpdigest[0],
2221	    IPSEC_DIR_INBOUND) == -1) {
2222		TCPSTAT_INC(tcps_sig_err_buildsig);
2223		TCPSTAT_INC(tcps_sig_rcvbadsig);
2224		return (0);
2225	}
2226
2227	if (bcmp(to->to_signature, &tmpdigest[0], TCP_SIGLEN) != 0) {
2228		TCPSTAT_INC(tcps_sig_rcvbadsig);
2229		return (0);
2230	}
2231	TCPSTAT_INC(tcps_sig_rcvgoodsig);
2232	return (1);
2233}
2234#endif /* TCP_SIGNATURE */
2235
2236static int
2237sysctl_drop(SYSCTL_HANDLER_ARGS)
2238{
2239	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2240	struct sockaddr_storage addrs[2];
2241	struct inpcb *inp;
2242	struct tcpcb *tp;
2243	struct tcptw *tw;
2244	struct sockaddr_in *fin, *lin;
2245#ifdef INET6
2246	struct sockaddr_in6 *fin6, *lin6;
2247#endif
2248	int error;
2249
2250	inp = NULL;
2251	fin = lin = NULL;
2252#ifdef INET6
2253	fin6 = lin6 = NULL;
2254#endif
2255	error = 0;
2256
2257	if (req->oldptr != NULL || req->oldlen != 0)
2258		return (EINVAL);
2259	if (req->newptr == NULL)
2260		return (EPERM);
2261	if (req->newlen < sizeof(addrs))
2262		return (ENOMEM);
2263	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2264	if (error)
2265		return (error);
2266
2267	switch (addrs[0].ss_family) {
2268#ifdef INET6
2269	case AF_INET6:
2270		fin6 = (struct sockaddr_in6 *)&addrs[0];
2271		lin6 = (struct sockaddr_in6 *)&addrs[1];
2272		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2273		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2274			return (EINVAL);
2275		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2276			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2277				return (EINVAL);
2278			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2279			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2280			fin = (struct sockaddr_in *)&addrs[0];
2281			lin = (struct sockaddr_in *)&addrs[1];
2282			break;
2283		}
2284		error = sa6_embedscope(fin6, V_ip6_use_defzone);
2285		if (error)
2286			return (error);
2287		error = sa6_embedscope(lin6, V_ip6_use_defzone);
2288		if (error)
2289			return (error);
2290		break;
2291#endif
2292#ifdef INET
2293	case AF_INET:
2294		fin = (struct sockaddr_in *)&addrs[0];
2295		lin = (struct sockaddr_in *)&addrs[1];
2296		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2297		    lin->sin_len != sizeof(struct sockaddr_in))
2298			return (EINVAL);
2299		break;
2300#endif
2301	default:
2302		return (EINVAL);
2303	}
2304	INP_INFO_WLOCK(&V_tcbinfo);
2305	switch (addrs[0].ss_family) {
2306#ifdef INET6
2307	case AF_INET6:
2308		inp = in6_pcblookup(&V_tcbinfo, &fin6->sin6_addr,
2309		    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port,
2310		    INPLOOKUP_WLOCKPCB, NULL);
2311		break;
2312#endif
2313#ifdef INET
2314	case AF_INET:
2315		inp = in_pcblookup(&V_tcbinfo, fin->sin_addr, fin->sin_port,
2316		    lin->sin_addr, lin->sin_port, INPLOOKUP_WLOCKPCB, NULL);
2317		break;
2318#endif
2319	}
2320	if (inp != NULL) {
2321		if (inp->inp_flags & INP_TIMEWAIT) {
2322			/*
2323			 * XXXRW: There currently exists a state where an
2324			 * inpcb is present, but its timewait state has been
2325			 * discarded.  For now, don't allow dropping of this
2326			 * type of inpcb.
2327			 */
2328			tw = intotw(inp);
2329			if (tw != NULL)
2330				tcp_twclose(tw, 0);
2331			else
2332				INP_WUNLOCK(inp);
2333		} else if (!(inp->inp_flags & INP_DROPPED) &&
2334			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2335			tp = intotcpcb(inp);
2336			tp = tcp_drop(tp, ECONNABORTED);
2337			if (tp != NULL)
2338				INP_WUNLOCK(inp);
2339		} else
2340			INP_WUNLOCK(inp);
2341	} else
2342		error = ESRCH;
2343	INP_INFO_WUNLOCK(&V_tcbinfo);
2344	return (error);
2345}
2346
2347SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2348    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2349    0, sysctl_drop, "", "Drop TCP connection");
2350
2351/*
2352 * Generate a standardized TCP log line for use throughout the
2353 * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2354 * allow use in the interrupt context.
2355 *
2356 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2357 * NB: The function may return NULL if memory allocation failed.
2358 *
2359 * Due to header inclusion and ordering limitations the struct ip
2360 * and ip6_hdr pointers have to be passed as void pointers.
2361 */
2362char *
2363tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2364    const void *ip6hdr)
2365{
2366
2367	/* Is logging enabled? */
2368	if (tcp_log_in_vain == 0)
2369		return (NULL);
2370
2371	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2372}
2373
2374char *
2375tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2376    const void *ip6hdr)
2377{
2378
2379	/* Is logging enabled? */
2380	if (tcp_log_debug == 0)
2381		return (NULL);
2382
2383	return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2384}
2385
2386static char *
2387tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2388    const void *ip6hdr)
2389{
2390	char *s, *sp;
2391	size_t size;
2392	struct ip *ip;
2393#ifdef INET6
2394	const struct ip6_hdr *ip6;
2395
2396	ip6 = (const struct ip6_hdr *)ip6hdr;
2397#endif /* INET6 */
2398	ip = (struct ip *)ip4hdr;
2399
2400	/*
2401	 * The log line looks like this:
2402	 * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2403	 */
2404	size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2405	    sizeof(PRINT_TH_FLAGS) + 1 +
2406#ifdef INET6
2407	    2 * INET6_ADDRSTRLEN;
2408#else
2409	    2 * INET_ADDRSTRLEN;
2410#endif /* INET6 */
2411
2412	s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2413	if (s == NULL)
2414		return (NULL);
2415
2416	strcat(s, "TCP: [");
2417	sp = s + strlen(s);
2418
2419	if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2420		inet_ntoa_r(inc->inc_faddr, sp);
2421		sp = s + strlen(s);
2422		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2423		sp = s + strlen(s);
2424		inet_ntoa_r(inc->inc_laddr, sp);
2425		sp = s + strlen(s);
2426		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2427#ifdef INET6
2428	} else if (inc) {
2429		ip6_sprintf(sp, &inc->inc6_faddr);
2430		sp = s + strlen(s);
2431		sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2432		sp = s + strlen(s);
2433		ip6_sprintf(sp, &inc->inc6_laddr);
2434		sp = s + strlen(s);
2435		sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2436	} else if (ip6 && th) {
2437		ip6_sprintf(sp, &ip6->ip6_src);
2438		sp = s + strlen(s);
2439		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2440		sp = s + strlen(s);
2441		ip6_sprintf(sp, &ip6->ip6_dst);
2442		sp = s + strlen(s);
2443		sprintf(sp, "]:%i", ntohs(th->th_dport));
2444#endif /* INET6 */
2445#ifdef INET
2446	} else if (ip && th) {
2447		inet_ntoa_r(ip->ip_src, sp);
2448		sp = s + strlen(s);
2449		sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2450		sp = s + strlen(s);
2451		inet_ntoa_r(ip->ip_dst, sp);
2452		sp = s + strlen(s);
2453		sprintf(sp, "]:%i", ntohs(th->th_dport));
2454#endif /* INET */
2455	} else {
2456		free(s, M_TCPLOG);
2457		return (NULL);
2458	}
2459	sp = s + strlen(s);
2460	if (th)
2461		sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2462	if (*(s + size - 1) != '\0')
2463		panic("%s: string too long", __func__);
2464	return (s);
2465}
2466
2467/*
2468 * A subroutine which makes it easy to track TCP state changes with DTrace.
2469 * This function shouldn't be called for t_state initializations that don't
2470 * correspond to actual TCP state transitions.
2471 */
2472void
2473tcp_state_change(struct tcpcb *tp, int newstate)
2474{
2475#if defined(KDTRACE_HOOKS)
2476	int pstate = tp->t_state;
2477#endif
2478
2479	tp->t_state = newstate;
2480	TCP_PROBE6(state__change, NULL, tp, NULL, tp, NULL, pstate);
2481}
2482