ip_input.c revision 262743
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/netinet/ip_input.c 262743 2014-03-04 15:14:47Z glebius $");
34
35#include "opt_bootp.h"
36#include "opt_ipfw.h"
37#include "opt_ipstealth.h"
38#include "opt_ipsec.h"
39#include "opt_kdtrace.h"
40#include "opt_route.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/domain.h>
47#include <sys/protosw.h>
48#include <sys/socket.h>
49#include <sys/time.h>
50#include <sys/kernel.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/sdt.h>
54#include <sys/syslog.h>
55#include <sys/sysctl.h>
56
57#include <net/pfil.h>
58#include <net/if.h>
59#include <net/if_types.h>
60#include <net/if_var.h>
61#include <net/if_dl.h>
62#include <net/route.h>
63#include <net/netisr.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_kdtrace.h>
68#include <netinet/in_systm.h>
69#include <netinet/in_var.h>
70#include <netinet/ip.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip_var.h>
73#include <netinet/ip_fw.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_options.h>
76#include <machine/in_cksum.h>
77#include <netinet/ip_carp.h>
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#endif /* IPSEC */
81
82#include <sys/socketvar.h>
83
84#include <security/mac/mac_framework.h>
85
86#ifdef CTASSERT
87CTASSERT(sizeof(struct ip) == 20);
88#endif
89
90struct	rwlock in_ifaddr_lock;
91RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
92
93VNET_DEFINE(int, rsvp_on);
94
95VNET_DEFINE(int, ipforwarding);
96SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
97    &VNET_NAME(ipforwarding), 0,
98    "Enable IP forwarding between interfaces");
99
100static VNET_DEFINE(int, ipsendredirects) = 1;	/* XXX */
101#define	V_ipsendredirects	VNET(ipsendredirects)
102SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
103    &VNET_NAME(ipsendredirects), 0,
104    "Enable sending IP redirects");
105
106static VNET_DEFINE(int, ip_keepfaith);
107#define	V_ip_keepfaith		VNET(ip_keepfaith)
108SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
109    &VNET_NAME(ip_keepfaith), 0,
110    "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
111
112static VNET_DEFINE(int, ip_sendsourcequench);
113#define	V_ip_sendsourcequench	VNET(ip_sendsourcequench)
114SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
115    &VNET_NAME(ip_sendsourcequench), 0,
116    "Enable the transmission of source quench packets");
117
118VNET_DEFINE(int, ip_do_randomid);
119SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
120    &VNET_NAME(ip_do_randomid), 0,
121    "Assign random ip_id values");
122
123/*
124 * XXX - Setting ip_checkinterface mostly implements the receive side of
125 * the Strong ES model described in RFC 1122, but since the routing table
126 * and transmit implementation do not implement the Strong ES model,
127 * setting this to 1 results in an odd hybrid.
128 *
129 * XXX - ip_checkinterface currently must be disabled if you use ipnat
130 * to translate the destination address to another local interface.
131 *
132 * XXX - ip_checkinterface must be disabled if you add IP aliases
133 * to the loopback interface instead of the interface where the
134 * packets for those addresses are received.
135 */
136static VNET_DEFINE(int, ip_checkinterface);
137#define	V_ip_checkinterface	VNET(ip_checkinterface)
138SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
139    &VNET_NAME(ip_checkinterface), 0,
140    "Verify packet arrives on correct interface");
141
142VNET_DEFINE(struct pfil_head, inet_pfil_hook);	/* Packet filter hooks */
143
144static struct netisr_handler ip_nh = {
145	.nh_name = "ip",
146	.nh_handler = ip_input,
147	.nh_proto = NETISR_IP,
148	.nh_policy = NETISR_POLICY_FLOW,
149};
150
151extern	struct domain inetdomain;
152extern	struct protosw inetsw[];
153u_char	ip_protox[IPPROTO_MAX];
154VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
155VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
156VNET_DEFINE(u_long, in_ifaddrhmask);		/* mask for hash table */
157
158static VNET_DEFINE(uma_zone_t, ipq_zone);
159static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
160static struct mtx ipqlock;
161
162#define	V_ipq_zone		VNET(ipq_zone)
163#define	V_ipq			VNET(ipq)
164
165#define	IPQ_LOCK()	mtx_lock(&ipqlock)
166#define	IPQ_UNLOCK()	mtx_unlock(&ipqlock)
167#define	IPQ_LOCK_INIT()	mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
168#define	IPQ_LOCK_ASSERT()	mtx_assert(&ipqlock, MA_OWNED)
169
170static void	maxnipq_update(void);
171static void	ipq_zone_change(void *);
172static void	ip_drain_locked(void);
173
174static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
175static VNET_DEFINE(int, nipq);			/* Total # of reass queues */
176#define	V_maxnipq		VNET(maxnipq)
177#define	V_nipq			VNET(nipq)
178SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
179    &VNET_NAME(nipq), 0,
180    "Current number of IPv4 fragment reassembly queue entries");
181
182static VNET_DEFINE(int, maxfragsperpacket);
183#define	V_maxfragsperpacket	VNET(maxfragsperpacket)
184SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
185    &VNET_NAME(maxfragsperpacket), 0,
186    "Maximum number of IPv4 fragments allowed per packet");
187
188#ifdef IPCTL_DEFMTU
189SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
190    &ip_mtu, 0, "Default MTU");
191#endif
192
193#ifdef IPSTEALTH
194VNET_DEFINE(int, ipstealth);
195SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
196    &VNET_NAME(ipstealth), 0,
197    "IP stealth mode, no TTL decrementation on forwarding");
198#endif
199
200static void	ip_freef(struct ipqhead *, struct ipq *);
201
202/*
203 * IP statistics are stored in the "array" of counter(9)s.
204 */
205VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
206VNET_PCPUSTAT_SYSINIT(ipstat);
207SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
208    "IP statistics (struct ipstat, netinet/ip_var.h)");
209
210#ifdef VIMAGE
211VNET_PCPUSTAT_SYSUNINIT(ipstat);
212#endif /* VIMAGE */
213
214/*
215 * Kernel module interface for updating ipstat.  The argument is an index
216 * into ipstat treated as an array.
217 */
218void
219kmod_ipstat_inc(int statnum)
220{
221
222	counter_u64_add(VNET(ipstat)[statnum], 1);
223}
224
225void
226kmod_ipstat_dec(int statnum)
227{
228
229	counter_u64_add(VNET(ipstat)[statnum], -1);
230}
231
232static int
233sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
234{
235	int error, qlimit;
236
237	netisr_getqlimit(&ip_nh, &qlimit);
238	error = sysctl_handle_int(oidp, &qlimit, 0, req);
239	if (error || !req->newptr)
240		return (error);
241	if (qlimit < 1)
242		return (EINVAL);
243	return (netisr_setqlimit(&ip_nh, qlimit));
244}
245SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
246    CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
247    "Maximum size of the IP input queue");
248
249static int
250sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
251{
252	u_int64_t qdrops_long;
253	int error, qdrops;
254
255	netisr_getqdrops(&ip_nh, &qdrops_long);
256	qdrops = qdrops_long;
257	error = sysctl_handle_int(oidp, &qdrops, 0, req);
258	if (error || !req->newptr)
259		return (error);
260	if (qdrops != 0)
261		return (EINVAL);
262	netisr_clearqdrops(&ip_nh);
263	return (0);
264}
265
266SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
267    CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
268    "Number of packets dropped from the IP input queue");
269
270/*
271 * IP initialization: fill in IP protocol switch table.
272 * All protocols not implemented in kernel go to raw IP protocol handler.
273 */
274void
275ip_init(void)
276{
277	struct protosw *pr;
278	int i;
279
280	V_ip_id = time_second & 0xffff;
281
282	TAILQ_INIT(&V_in_ifaddrhead);
283	V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
284
285	/* Initialize IP reassembly queue. */
286	for (i = 0; i < IPREASS_NHASH; i++)
287		TAILQ_INIT(&V_ipq[i]);
288	V_maxnipq = nmbclusters / 32;
289	V_maxfragsperpacket = 16;
290	V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
291	    NULL, UMA_ALIGN_PTR, 0);
292	maxnipq_update();
293
294	/* Initialize packet filter hooks. */
295	V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
296	V_inet_pfil_hook.ph_af = AF_INET;
297	if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
298		printf("%s: WARNING: unable to register pfil hook, "
299			"error %d\n", __func__, i);
300
301	/* Skip initialization of globals for non-default instances. */
302	if (!IS_DEFAULT_VNET(curvnet))
303		return;
304
305	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
306	if (pr == NULL)
307		panic("ip_init: PF_INET not found");
308
309	/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
310	for (i = 0; i < IPPROTO_MAX; i++)
311		ip_protox[i] = pr - inetsw;
312	/*
313	 * Cycle through IP protocols and put them into the appropriate place
314	 * in ip_protox[].
315	 */
316	for (pr = inetdomain.dom_protosw;
317	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
318		if (pr->pr_domain->dom_family == PF_INET &&
319		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
320			/* Be careful to only index valid IP protocols. */
321			if (pr->pr_protocol < IPPROTO_MAX)
322				ip_protox[pr->pr_protocol] = pr - inetsw;
323		}
324
325	EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
326		NULL, EVENTHANDLER_PRI_ANY);
327
328	/* Initialize various other remaining things. */
329	IPQ_LOCK_INIT();
330	netisr_register(&ip_nh);
331}
332
333#ifdef VIMAGE
334void
335ip_destroy(void)
336{
337	int i;
338
339	if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
340		printf("%s: WARNING: unable to unregister pfil hook, "
341		    "error %d\n", __func__, i);
342
343	/* Cleanup in_ifaddr hash table; should be empty. */
344	hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
345
346	IPQ_LOCK();
347	ip_drain_locked();
348	IPQ_UNLOCK();
349
350	uma_zdestroy(V_ipq_zone);
351}
352#endif
353
354/*
355 * Ip input routine.  Checksum and byte swap header.  If fragmented
356 * try to reassemble.  Process options.  Pass to next level.
357 */
358void
359ip_input(struct mbuf *m)
360{
361	struct ip *ip = NULL;
362	struct in_ifaddr *ia = NULL;
363	struct ifaddr *ifa;
364	struct ifnet *ifp;
365	int    checkif, hlen = 0;
366	uint16_t sum, ip_len;
367	int dchg = 0;				/* dest changed after fw */
368	struct in_addr odst;			/* original dst address */
369
370	M_ASSERTPKTHDR(m);
371
372	if (m->m_flags & M_FASTFWD_OURS) {
373		m->m_flags &= ~M_FASTFWD_OURS;
374		/* Set up some basics that will be used later. */
375		ip = mtod(m, struct ip *);
376		hlen = ip->ip_hl << 2;
377		ip_len = ntohs(ip->ip_len);
378		goto ours;
379	}
380
381	IPSTAT_INC(ips_total);
382
383	if (m->m_pkthdr.len < sizeof(struct ip))
384		goto tooshort;
385
386	if (m->m_len < sizeof (struct ip) &&
387	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
388		IPSTAT_INC(ips_toosmall);
389		return;
390	}
391	ip = mtod(m, struct ip *);
392
393	if (ip->ip_v != IPVERSION) {
394		IPSTAT_INC(ips_badvers);
395		goto bad;
396	}
397
398	hlen = ip->ip_hl << 2;
399	if (hlen < sizeof(struct ip)) {	/* minimum header length */
400		IPSTAT_INC(ips_badhlen);
401		goto bad;
402	}
403	if (hlen > m->m_len) {
404		if ((m = m_pullup(m, hlen)) == NULL) {
405			IPSTAT_INC(ips_badhlen);
406			return;
407		}
408		ip = mtod(m, struct ip *);
409	}
410
411	IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
412
413	/* 127/8 must not appear on wire - RFC1122 */
414	ifp = m->m_pkthdr.rcvif;
415	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
416	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
417		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
418			IPSTAT_INC(ips_badaddr);
419			goto bad;
420		}
421	}
422
423	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
424		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
425	} else {
426		if (hlen == sizeof(struct ip)) {
427			sum = in_cksum_hdr(ip);
428		} else {
429			sum = in_cksum(m, hlen);
430		}
431	}
432	if (sum) {
433		IPSTAT_INC(ips_badsum);
434		goto bad;
435	}
436
437#ifdef ALTQ
438	if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
439		/* packet is dropped by traffic conditioner */
440		return;
441#endif
442
443	ip_len = ntohs(ip->ip_len);
444	if (ip_len < hlen) {
445		IPSTAT_INC(ips_badlen);
446		goto bad;
447	}
448
449	/*
450	 * Check that the amount of data in the buffers
451	 * is as at least much as the IP header would have us expect.
452	 * Trim mbufs if longer than we expect.
453	 * Drop packet if shorter than we expect.
454	 */
455	if (m->m_pkthdr.len < ip_len) {
456tooshort:
457		IPSTAT_INC(ips_tooshort);
458		goto bad;
459	}
460	if (m->m_pkthdr.len > ip_len) {
461		if (m->m_len == m->m_pkthdr.len) {
462			m->m_len = ip_len;
463			m->m_pkthdr.len = ip_len;
464		} else
465			m_adj(m, ip_len - m->m_pkthdr.len);
466	}
467#ifdef IPSEC
468	/*
469	 * Bypass packet filtering for packets previously handled by IPsec.
470	 */
471	if (ip_ipsec_filtertunnel(m))
472		goto passin;
473#endif /* IPSEC */
474
475	/*
476	 * Run through list of hooks for input packets.
477	 *
478	 * NB: Beware of the destination address changing (e.g.
479	 *     by NAT rewriting).  When this happens, tell
480	 *     ip_forward to do the right thing.
481	 */
482
483	/* Jump over all PFIL processing if hooks are not active. */
484	if (!PFIL_HOOKED(&V_inet_pfil_hook))
485		goto passin;
486
487	odst = ip->ip_dst;
488	if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
489		return;
490	if (m == NULL)			/* consumed by filter */
491		return;
492
493	ip = mtod(m, struct ip *);
494	dchg = (odst.s_addr != ip->ip_dst.s_addr);
495	ifp = m->m_pkthdr.rcvif;
496
497	if (m->m_flags & M_FASTFWD_OURS) {
498		m->m_flags &= ~M_FASTFWD_OURS;
499		goto ours;
500	}
501	if (m->m_flags & M_IP_NEXTHOP) {
502		dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
503		if (dchg != 0) {
504			/*
505			 * Directly ship the packet on.  This allows
506			 * forwarding packets originally destined to us
507			 * to some other directly connected host.
508			 */
509			ip_forward(m, 1);
510			return;
511		}
512	}
513passin:
514
515	/*
516	 * Process options and, if not destined for us,
517	 * ship it on.  ip_dooptions returns 1 when an
518	 * error was detected (causing an icmp message
519	 * to be sent and the original packet to be freed).
520	 */
521	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
522		return;
523
524        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
525         * matter if it is destined to another node, or whether it is
526         * a multicast one, RSVP wants it! and prevents it from being forwarded
527         * anywhere else. Also checks if the rsvp daemon is running before
528	 * grabbing the packet.
529         */
530	if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP)
531		goto ours;
532
533	/*
534	 * Check our list of addresses, to see if the packet is for us.
535	 * If we don't have any addresses, assume any unicast packet
536	 * we receive might be for us (and let the upper layers deal
537	 * with it).
538	 */
539	if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
540	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
541		goto ours;
542
543	/*
544	 * Enable a consistency check between the destination address
545	 * and the arrival interface for a unicast packet (the RFC 1122
546	 * strong ES model) if IP forwarding is disabled and the packet
547	 * is not locally generated and the packet is not subject to
548	 * 'ipfw fwd'.
549	 *
550	 * XXX - Checking also should be disabled if the destination
551	 * address is ipnat'ed to a different interface.
552	 *
553	 * XXX - Checking is incompatible with IP aliases added
554	 * to the loopback interface instead of the interface where
555	 * the packets are received.
556	 *
557	 * XXX - This is the case for carp vhost IPs as well so we
558	 * insert a workaround. If the packet got here, we already
559	 * checked with carp_iamatch() and carp_forus().
560	 */
561	checkif = V_ip_checkinterface && (V_ipforwarding == 0) &&
562	    ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
563	    ifp->if_carp == NULL && (dchg == 0);
564
565	/*
566	 * Check for exact addresses in the hash bucket.
567	 */
568	/* IN_IFADDR_RLOCK(); */
569	LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
570		/*
571		 * If the address matches, verify that the packet
572		 * arrived via the correct interface if checking is
573		 * enabled.
574		 */
575		if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
576		    (!checkif || ia->ia_ifp == ifp)) {
577			ifa_ref(&ia->ia_ifa);
578			/* IN_IFADDR_RUNLOCK(); */
579			goto ours;
580		}
581	}
582	/* IN_IFADDR_RUNLOCK(); */
583
584	/*
585	 * Check for broadcast addresses.
586	 *
587	 * Only accept broadcast packets that arrive via the matching
588	 * interface.  Reception of forwarded directed broadcasts would
589	 * be handled via ip_forward() and ether_output() with the loopback
590	 * into the stack for SIMPLEX interfaces handled by ether_output().
591	 */
592	if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
593		IF_ADDR_RLOCK(ifp);
594	        TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
595			if (ifa->ifa_addr->sa_family != AF_INET)
596				continue;
597			ia = ifatoia(ifa);
598			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
599			    ip->ip_dst.s_addr) {
600				ifa_ref(ifa);
601				IF_ADDR_RUNLOCK(ifp);
602				goto ours;
603			}
604#ifdef BOOTP_COMPAT
605			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
606				ifa_ref(ifa);
607				IF_ADDR_RUNLOCK(ifp);
608				goto ours;
609			}
610#endif
611		}
612		IF_ADDR_RUNLOCK(ifp);
613		ia = NULL;
614	}
615	/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
616	if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
617		IPSTAT_INC(ips_cantforward);
618		m_freem(m);
619		return;
620	}
621	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
622		if (V_ip_mrouter) {
623			/*
624			 * If we are acting as a multicast router, all
625			 * incoming multicast packets are passed to the
626			 * kernel-level multicast forwarding function.
627			 * The packet is returned (relatively) intact; if
628			 * ip_mforward() returns a non-zero value, the packet
629			 * must be discarded, else it may be accepted below.
630			 */
631			if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
632				IPSTAT_INC(ips_cantforward);
633				m_freem(m);
634				return;
635			}
636
637			/*
638			 * The process-level routing daemon needs to receive
639			 * all multicast IGMP packets, whether or not this
640			 * host belongs to their destination groups.
641			 */
642			if (ip->ip_p == IPPROTO_IGMP)
643				goto ours;
644			IPSTAT_INC(ips_forward);
645		}
646		/*
647		 * Assume the packet is for us, to avoid prematurely taking
648		 * a lock on the in_multi hash. Protocols must perform
649		 * their own filtering and update statistics accordingly.
650		 */
651		goto ours;
652	}
653	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
654		goto ours;
655	if (ip->ip_dst.s_addr == INADDR_ANY)
656		goto ours;
657
658	/*
659	 * FAITH(Firewall Aided Internet Translator)
660	 */
661	if (ifp && ifp->if_type == IFT_FAITH) {
662		if (V_ip_keepfaith) {
663			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
664				goto ours;
665		}
666		m_freem(m);
667		return;
668	}
669
670	/*
671	 * Not for us; forward if possible and desirable.
672	 */
673	if (V_ipforwarding == 0) {
674		IPSTAT_INC(ips_cantforward);
675		m_freem(m);
676	} else {
677#ifdef IPSEC
678		if (ip_ipsec_fwd(m))
679			goto bad;
680#endif /* IPSEC */
681		ip_forward(m, dchg);
682	}
683	return;
684
685ours:
686#ifdef IPSTEALTH
687	/*
688	 * IPSTEALTH: Process non-routing options only
689	 * if the packet is destined for us.
690	 */
691	if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
692		if (ia != NULL)
693			ifa_free(&ia->ia_ifa);
694		return;
695	}
696#endif /* IPSTEALTH */
697
698	/* Count the packet in the ip address stats */
699	if (ia != NULL) {
700		ia->ia_ifa.if_ipackets++;
701		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
702		ifa_free(&ia->ia_ifa);
703	}
704
705	/*
706	 * Attempt reassembly; if it succeeds, proceed.
707	 * ip_reass() will return a different mbuf.
708	 */
709	if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
710		m = ip_reass(m);
711		if (m == NULL)
712			return;
713		ip = mtod(m, struct ip *);
714		/* Get the header length of the reassembled packet */
715		hlen = ip->ip_hl << 2;
716	}
717
718#ifdef IPSEC
719	/*
720	 * enforce IPsec policy checking if we are seeing last header.
721	 * note that we do not visit this with protocols with pcb layer
722	 * code - like udp/tcp/raw ip.
723	 */
724	if (ip_ipsec_input(m))
725		goto bad;
726#endif /* IPSEC */
727
728	/*
729	 * Switch out to protocol's input routine.
730	 */
731	IPSTAT_INC(ips_delivered);
732
733	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
734	return;
735bad:
736	m_freem(m);
737}
738
739/*
740 * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
741 * max has slightly different semantics than the sysctl, for historical
742 * reasons.
743 */
744static void
745maxnipq_update(void)
746{
747
748	/*
749	 * -1 for unlimited allocation.
750	 */
751	if (V_maxnipq < 0)
752		uma_zone_set_max(V_ipq_zone, 0);
753	/*
754	 * Positive number for specific bound.
755	 */
756	if (V_maxnipq > 0)
757		uma_zone_set_max(V_ipq_zone, V_maxnipq);
758	/*
759	 * Zero specifies no further fragment queue allocation -- set the
760	 * bound very low, but rely on implementation elsewhere to actually
761	 * prevent allocation and reclaim current queues.
762	 */
763	if (V_maxnipq == 0)
764		uma_zone_set_max(V_ipq_zone, 1);
765}
766
767static void
768ipq_zone_change(void *tag)
769{
770
771	if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
772		V_maxnipq = nmbclusters / 32;
773		maxnipq_update();
774	}
775}
776
777static int
778sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
779{
780	int error, i;
781
782	i = V_maxnipq;
783	error = sysctl_handle_int(oidp, &i, 0, req);
784	if (error || !req->newptr)
785		return (error);
786
787	/*
788	 * XXXRW: Might be a good idea to sanity check the argument and place
789	 * an extreme upper bound.
790	 */
791	if (i < -1)
792		return (EINVAL);
793	V_maxnipq = i;
794	maxnipq_update();
795	return (0);
796}
797
798SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
799    NULL, 0, sysctl_maxnipq, "I",
800    "Maximum number of IPv4 fragment reassembly queue entries");
801
802/*
803 * Take incoming datagram fragment and try to reassemble it into
804 * whole datagram.  If the argument is the first fragment or one
805 * in between the function will return NULL and store the mbuf
806 * in the fragment chain.  If the argument is the last fragment
807 * the packet will be reassembled and the pointer to the new
808 * mbuf returned for further processing.  Only m_tags attached
809 * to the first packet/fragment are preserved.
810 * The IP header is *NOT* adjusted out of iplen.
811 */
812struct mbuf *
813ip_reass(struct mbuf *m)
814{
815	struct ip *ip;
816	struct mbuf *p, *q, *nq, *t;
817	struct ipq *fp = NULL;
818	struct ipqhead *head;
819	int i, hlen, next;
820	u_int8_t ecn, ecn0;
821	u_short hash;
822
823	/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
824	if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
825		IPSTAT_INC(ips_fragments);
826		IPSTAT_INC(ips_fragdropped);
827		m_freem(m);
828		return (NULL);
829	}
830
831	ip = mtod(m, struct ip *);
832	hlen = ip->ip_hl << 2;
833
834	hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
835	head = &V_ipq[hash];
836	IPQ_LOCK();
837
838	/*
839	 * Look for queue of fragments
840	 * of this datagram.
841	 */
842	TAILQ_FOREACH(fp, head, ipq_list)
843		if (ip->ip_id == fp->ipq_id &&
844		    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
845		    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
846#ifdef MAC
847		    mac_ipq_match(m, fp) &&
848#endif
849		    ip->ip_p == fp->ipq_p)
850			goto found;
851
852	fp = NULL;
853
854	/*
855	 * Attempt to trim the number of allocated fragment queues if it
856	 * exceeds the administrative limit.
857	 */
858	if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
859		/*
860		 * drop something from the tail of the current queue
861		 * before proceeding further
862		 */
863		struct ipq *q = TAILQ_LAST(head, ipqhead);
864		if (q == NULL) {   /* gak */
865			for (i = 0; i < IPREASS_NHASH; i++) {
866				struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
867				if (r) {
868					IPSTAT_ADD(ips_fragtimeout,
869					    r->ipq_nfrags);
870					ip_freef(&V_ipq[i], r);
871					break;
872				}
873			}
874		} else {
875			IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
876			ip_freef(head, q);
877		}
878	}
879
880found:
881	/*
882	 * Adjust ip_len to not reflect header,
883	 * convert offset of this to bytes.
884	 */
885	ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
886	if (ip->ip_off & htons(IP_MF)) {
887		/*
888		 * Make sure that fragments have a data length
889		 * that's a non-zero multiple of 8 bytes.
890		 */
891		if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
892			IPSTAT_INC(ips_toosmall); /* XXX */
893			goto dropfrag;
894		}
895		m->m_flags |= M_IP_FRAG;
896	} else
897		m->m_flags &= ~M_IP_FRAG;
898	ip->ip_off = htons(ntohs(ip->ip_off) << 3);
899
900	/*
901	 * Attempt reassembly; if it succeeds, proceed.
902	 * ip_reass() will return a different mbuf.
903	 */
904	IPSTAT_INC(ips_fragments);
905	m->m_pkthdr.PH_loc.ptr = ip;
906
907	/* Previous ip_reass() started here. */
908	/*
909	 * Presence of header sizes in mbufs
910	 * would confuse code below.
911	 */
912	m->m_data += hlen;
913	m->m_len -= hlen;
914
915	/*
916	 * If first fragment to arrive, create a reassembly queue.
917	 */
918	if (fp == NULL) {
919		fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
920		if (fp == NULL)
921			goto dropfrag;
922#ifdef MAC
923		if (mac_ipq_init(fp, M_NOWAIT) != 0) {
924			uma_zfree(V_ipq_zone, fp);
925			fp = NULL;
926			goto dropfrag;
927		}
928		mac_ipq_create(m, fp);
929#endif
930		TAILQ_INSERT_HEAD(head, fp, ipq_list);
931		V_nipq++;
932		fp->ipq_nfrags = 1;
933		fp->ipq_ttl = IPFRAGTTL;
934		fp->ipq_p = ip->ip_p;
935		fp->ipq_id = ip->ip_id;
936		fp->ipq_src = ip->ip_src;
937		fp->ipq_dst = ip->ip_dst;
938		fp->ipq_frags = m;
939		m->m_nextpkt = NULL;
940		goto done;
941	} else {
942		fp->ipq_nfrags++;
943#ifdef MAC
944		mac_ipq_update(m, fp);
945#endif
946	}
947
948#define GETIP(m)	((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
949
950	/*
951	 * Handle ECN by comparing this segment with the first one;
952	 * if CE is set, do not lose CE.
953	 * drop if CE and not-ECT are mixed for the same packet.
954	 */
955	ecn = ip->ip_tos & IPTOS_ECN_MASK;
956	ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
957	if (ecn == IPTOS_ECN_CE) {
958		if (ecn0 == IPTOS_ECN_NOTECT)
959			goto dropfrag;
960		if (ecn0 != IPTOS_ECN_CE)
961			GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
962	}
963	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
964		goto dropfrag;
965
966	/*
967	 * Find a segment which begins after this one does.
968	 */
969	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
970		if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
971			break;
972
973	/*
974	 * If there is a preceding segment, it may provide some of
975	 * our data already.  If so, drop the data from the incoming
976	 * segment.  If it provides all of our data, drop us, otherwise
977	 * stick new segment in the proper place.
978	 *
979	 * If some of the data is dropped from the preceding
980	 * segment, then it's checksum is invalidated.
981	 */
982	if (p) {
983		i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
984		    ntohs(ip->ip_off);
985		if (i > 0) {
986			if (i >= ntohs(ip->ip_len))
987				goto dropfrag;
988			m_adj(m, i);
989			m->m_pkthdr.csum_flags = 0;
990			ip->ip_off = htons(ntohs(ip->ip_off) + i);
991			ip->ip_len = htons(ntohs(ip->ip_len) - i);
992		}
993		m->m_nextpkt = p->m_nextpkt;
994		p->m_nextpkt = m;
995	} else {
996		m->m_nextpkt = fp->ipq_frags;
997		fp->ipq_frags = m;
998	}
999
1000	/*
1001	 * While we overlap succeeding segments trim them or,
1002	 * if they are completely covered, dequeue them.
1003	 */
1004	for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
1005	    ntohs(GETIP(q)->ip_off); q = nq) {
1006		i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
1007		    ntohs(GETIP(q)->ip_off);
1008		if (i < ntohs(GETIP(q)->ip_len)) {
1009			GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
1010			GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
1011			m_adj(q, i);
1012			q->m_pkthdr.csum_flags = 0;
1013			break;
1014		}
1015		nq = q->m_nextpkt;
1016		m->m_nextpkt = nq;
1017		IPSTAT_INC(ips_fragdropped);
1018		fp->ipq_nfrags--;
1019		m_freem(q);
1020	}
1021
1022	/*
1023	 * Check for complete reassembly and perform frag per packet
1024	 * limiting.
1025	 *
1026	 * Frag limiting is performed here so that the nth frag has
1027	 * a chance to complete the packet before we drop the packet.
1028	 * As a result, n+1 frags are actually allowed per packet, but
1029	 * only n will ever be stored. (n = maxfragsperpacket.)
1030	 *
1031	 */
1032	next = 0;
1033	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1034		if (ntohs(GETIP(q)->ip_off) != next) {
1035			if (fp->ipq_nfrags > V_maxfragsperpacket) {
1036				IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1037				ip_freef(head, fp);
1038			}
1039			goto done;
1040		}
1041		next += ntohs(GETIP(q)->ip_len);
1042	}
1043	/* Make sure the last packet didn't have the IP_MF flag */
1044	if (p->m_flags & M_IP_FRAG) {
1045		if (fp->ipq_nfrags > V_maxfragsperpacket) {
1046			IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1047			ip_freef(head, fp);
1048		}
1049		goto done;
1050	}
1051
1052	/*
1053	 * Reassembly is complete.  Make sure the packet is a sane size.
1054	 */
1055	q = fp->ipq_frags;
1056	ip = GETIP(q);
1057	if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
1058		IPSTAT_INC(ips_toolong);
1059		IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
1060		ip_freef(head, fp);
1061		goto done;
1062	}
1063
1064	/*
1065	 * Concatenate fragments.
1066	 */
1067	m = q;
1068	t = m->m_next;
1069	m->m_next = NULL;
1070	m_cat(m, t);
1071	nq = q->m_nextpkt;
1072	q->m_nextpkt = NULL;
1073	for (q = nq; q != NULL; q = nq) {
1074		nq = q->m_nextpkt;
1075		q->m_nextpkt = NULL;
1076		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1077		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1078		m_cat(m, q);
1079	}
1080	/*
1081	 * In order to do checksumming faster we do 'end-around carry' here
1082	 * (and not in for{} loop), though it implies we are not going to
1083	 * reassemble more than 64k fragments.
1084	 */
1085	m->m_pkthdr.csum_data =
1086	    (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
1087#ifdef MAC
1088	mac_ipq_reassemble(fp, m);
1089	mac_ipq_destroy(fp);
1090#endif
1091
1092	/*
1093	 * Create header for new ip packet by modifying header of first
1094	 * packet;  dequeue and discard fragment reassembly header.
1095	 * Make header visible.
1096	 */
1097	ip->ip_len = htons((ip->ip_hl << 2) + next);
1098	ip->ip_src = fp->ipq_src;
1099	ip->ip_dst = fp->ipq_dst;
1100	TAILQ_REMOVE(head, fp, ipq_list);
1101	V_nipq--;
1102	uma_zfree(V_ipq_zone, fp);
1103	m->m_len += (ip->ip_hl << 2);
1104	m->m_data -= (ip->ip_hl << 2);
1105	/* some debugging cruft by sklower, below, will go away soon */
1106	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1107		m_fixhdr(m);
1108	IPSTAT_INC(ips_reassembled);
1109	IPQ_UNLOCK();
1110	return (m);
1111
1112dropfrag:
1113	IPSTAT_INC(ips_fragdropped);
1114	if (fp != NULL)
1115		fp->ipq_nfrags--;
1116	m_freem(m);
1117done:
1118	IPQ_UNLOCK();
1119	return (NULL);
1120
1121#undef GETIP
1122}
1123
1124/*
1125 * Free a fragment reassembly header and all
1126 * associated datagrams.
1127 */
1128static void
1129ip_freef(struct ipqhead *fhp, struct ipq *fp)
1130{
1131	struct mbuf *q;
1132
1133	IPQ_LOCK_ASSERT();
1134
1135	while (fp->ipq_frags) {
1136		q = fp->ipq_frags;
1137		fp->ipq_frags = q->m_nextpkt;
1138		m_freem(q);
1139	}
1140	TAILQ_REMOVE(fhp, fp, ipq_list);
1141	uma_zfree(V_ipq_zone, fp);
1142	V_nipq--;
1143}
1144
1145/*
1146 * IP timer processing;
1147 * if a timer expires on a reassembly
1148 * queue, discard it.
1149 */
1150void
1151ip_slowtimo(void)
1152{
1153	VNET_ITERATOR_DECL(vnet_iter);
1154	struct ipq *fp;
1155	int i;
1156
1157	VNET_LIST_RLOCK_NOSLEEP();
1158	IPQ_LOCK();
1159	VNET_FOREACH(vnet_iter) {
1160		CURVNET_SET(vnet_iter);
1161		for (i = 0; i < IPREASS_NHASH; i++) {
1162			for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
1163				struct ipq *fpp;
1164
1165				fpp = fp;
1166				fp = TAILQ_NEXT(fp, ipq_list);
1167				if(--fpp->ipq_ttl == 0) {
1168					IPSTAT_ADD(ips_fragtimeout,
1169					    fpp->ipq_nfrags);
1170					ip_freef(&V_ipq[i], fpp);
1171				}
1172			}
1173		}
1174		/*
1175		 * If we are over the maximum number of fragments
1176		 * (due to the limit being lowered), drain off
1177		 * enough to get down to the new limit.
1178		 */
1179		if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
1180			for (i = 0; i < IPREASS_NHASH; i++) {
1181				while (V_nipq > V_maxnipq &&
1182				    !TAILQ_EMPTY(&V_ipq[i])) {
1183					IPSTAT_ADD(ips_fragdropped,
1184					    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1185					ip_freef(&V_ipq[i],
1186					    TAILQ_FIRST(&V_ipq[i]));
1187				}
1188			}
1189		}
1190		CURVNET_RESTORE();
1191	}
1192	IPQ_UNLOCK();
1193	VNET_LIST_RUNLOCK_NOSLEEP();
1194}
1195
1196/*
1197 * Drain off all datagram fragments.
1198 */
1199static void
1200ip_drain_locked(void)
1201{
1202	int     i;
1203
1204	IPQ_LOCK_ASSERT();
1205
1206	for (i = 0; i < IPREASS_NHASH; i++) {
1207		while(!TAILQ_EMPTY(&V_ipq[i])) {
1208			IPSTAT_ADD(ips_fragdropped,
1209			    TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
1210			ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
1211		}
1212	}
1213}
1214
1215void
1216ip_drain(void)
1217{
1218	VNET_ITERATOR_DECL(vnet_iter);
1219
1220	VNET_LIST_RLOCK_NOSLEEP();
1221	IPQ_LOCK();
1222	VNET_FOREACH(vnet_iter) {
1223		CURVNET_SET(vnet_iter);
1224		ip_drain_locked();
1225		CURVNET_RESTORE();
1226	}
1227	IPQ_UNLOCK();
1228	VNET_LIST_RUNLOCK_NOSLEEP();
1229	in_rtqdrain();
1230}
1231
1232/*
1233 * The protocol to be inserted into ip_protox[] must be already registered
1234 * in inetsw[], either statically or through pf_proto_register().
1235 */
1236int
1237ipproto_register(short ipproto)
1238{
1239	struct protosw *pr;
1240
1241	/* Sanity checks. */
1242	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1243		return (EPROTONOSUPPORT);
1244
1245	/*
1246	 * The protocol slot must not be occupied by another protocol
1247	 * already.  An index pointing to IPPROTO_RAW is unused.
1248	 */
1249	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1250	if (pr == NULL)
1251		return (EPFNOSUPPORT);
1252	if (ip_protox[ipproto] != pr - inetsw)	/* IPPROTO_RAW */
1253		return (EEXIST);
1254
1255	/* Find the protocol position in inetsw[] and set the index. */
1256	for (pr = inetdomain.dom_protosw;
1257	     pr < inetdomain.dom_protoswNPROTOSW; pr++) {
1258		if (pr->pr_domain->dom_family == PF_INET &&
1259		    pr->pr_protocol && pr->pr_protocol == ipproto) {
1260			ip_protox[pr->pr_protocol] = pr - inetsw;
1261			return (0);
1262		}
1263	}
1264	return (EPROTONOSUPPORT);
1265}
1266
1267int
1268ipproto_unregister(short ipproto)
1269{
1270	struct protosw *pr;
1271
1272	/* Sanity checks. */
1273	if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
1274		return (EPROTONOSUPPORT);
1275
1276	/* Check if the protocol was indeed registered. */
1277	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
1278	if (pr == NULL)
1279		return (EPFNOSUPPORT);
1280	if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
1281		return (ENOENT);
1282
1283	/* Reset the protocol slot to IPPROTO_RAW. */
1284	ip_protox[ipproto] = pr - inetsw;
1285	return (0);
1286}
1287
1288/*
1289 * Given address of next destination (final or next hop), return (referenced)
1290 * internet address info of interface to be used to get there.
1291 */
1292struct in_ifaddr *
1293ip_rtaddr(struct in_addr dst, u_int fibnum)
1294{
1295	struct route sro;
1296	struct sockaddr_in *sin;
1297	struct in_ifaddr *ia;
1298
1299	bzero(&sro, sizeof(sro));
1300	sin = (struct sockaddr_in *)&sro.ro_dst;
1301	sin->sin_family = AF_INET;
1302	sin->sin_len = sizeof(*sin);
1303	sin->sin_addr = dst;
1304	in_rtalloc_ign(&sro, 0, fibnum);
1305
1306	if (sro.ro_rt == NULL)
1307		return (NULL);
1308
1309	ia = ifatoia(sro.ro_rt->rt_ifa);
1310	ifa_ref(&ia->ia_ifa);
1311	RTFREE(sro.ro_rt);
1312	return (ia);
1313}
1314
1315u_char inetctlerrmap[PRC_NCMDS] = {
1316	0,		0,		0,		0,
1317	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1318	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1319	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1320	0,		0,		EHOSTUNREACH,	0,
1321	ENOPROTOOPT,	ECONNREFUSED
1322};
1323
1324/*
1325 * Forward a packet.  If some error occurs return the sender
1326 * an icmp packet.  Note we can't always generate a meaningful
1327 * icmp message because icmp doesn't have a large enough repertoire
1328 * of codes and types.
1329 *
1330 * If not forwarding, just drop the packet.  This could be confusing
1331 * if ipforwarding was zero but some routing protocol was advancing
1332 * us as a gateway to somewhere.  However, we must let the routing
1333 * protocol deal with that.
1334 *
1335 * The srcrt parameter indicates whether the packet is being forwarded
1336 * via a source route.
1337 */
1338void
1339ip_forward(struct mbuf *m, int srcrt)
1340{
1341	struct ip *ip = mtod(m, struct ip *);
1342	struct in_ifaddr *ia;
1343	struct mbuf *mcopy;
1344	struct in_addr dest;
1345	struct route ro;
1346	int error, type = 0, code = 0, mtu = 0;
1347
1348	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1349		IPSTAT_INC(ips_cantforward);
1350		m_freem(m);
1351		return;
1352	}
1353#ifdef IPSTEALTH
1354	if (!V_ipstealth) {
1355#endif
1356		if (ip->ip_ttl <= IPTTLDEC) {
1357			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1358			    0, 0);
1359			return;
1360		}
1361#ifdef IPSTEALTH
1362	}
1363#endif
1364
1365	ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
1366#ifndef IPSEC
1367	/*
1368	 * 'ia' may be NULL if there is no route for this destination.
1369	 * In case of IPsec, Don't discard it just yet, but pass it to
1370	 * ip_output in case of outgoing IPsec policy.
1371	 */
1372	if (!srcrt && ia == NULL) {
1373		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
1374		return;
1375	}
1376#endif
1377
1378	/*
1379	 * Save the IP header and at most 8 bytes of the payload,
1380	 * in case we need to generate an ICMP message to the src.
1381	 *
1382	 * XXX this can be optimized a lot by saving the data in a local
1383	 * buffer on the stack (72 bytes at most), and only allocating the
1384	 * mbuf if really necessary. The vast majority of the packets
1385	 * are forwarded without having to send an ICMP back (either
1386	 * because unnecessary, or because rate limited), so we are
1387	 * really we are wasting a lot of work here.
1388	 *
1389	 * We don't use m_copy() because it might return a reference
1390	 * to a shared cluster. Both this function and ip_output()
1391	 * assume exclusive access to the IP header in `m', so any
1392	 * data in a cluster may change before we reach icmp_error().
1393	 */
1394	mcopy = m_gethdr(M_NOWAIT, m->m_type);
1395	if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
1396		/*
1397		 * It's probably ok if the pkthdr dup fails (because
1398		 * the deep copy of the tag chain failed), but for now
1399		 * be conservative and just discard the copy since
1400		 * code below may some day want the tags.
1401		 */
1402		m_free(mcopy);
1403		mcopy = NULL;
1404	}
1405	if (mcopy != NULL) {
1406		mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
1407		mcopy->m_pkthdr.len = mcopy->m_len;
1408		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1409	}
1410
1411#ifdef IPSTEALTH
1412	if (!V_ipstealth) {
1413#endif
1414		ip->ip_ttl -= IPTTLDEC;
1415#ifdef IPSTEALTH
1416	}
1417#endif
1418
1419	/*
1420	 * If forwarding packet using same interface that it came in on,
1421	 * perhaps should send a redirect to sender to shortcut a hop.
1422	 * Only send redirect if source is sending directly to us,
1423	 * and if packet was not source routed (or has any options).
1424	 * Also, don't send redirect if forwarding using a default route
1425	 * or a route modified by a redirect.
1426	 */
1427	dest.s_addr = 0;
1428	if (!srcrt && V_ipsendredirects &&
1429	    ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
1430		struct sockaddr_in *sin;
1431		struct rtentry *rt;
1432
1433		bzero(&ro, sizeof(ro));
1434		sin = (struct sockaddr_in *)&ro.ro_dst;
1435		sin->sin_family = AF_INET;
1436		sin->sin_len = sizeof(*sin);
1437		sin->sin_addr = ip->ip_dst;
1438		in_rtalloc_ign(&ro, 0, M_GETFIB(m));
1439
1440		rt = ro.ro_rt;
1441
1442		if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1443		    satosin(rt_key(rt))->sin_addr.s_addr != 0) {
1444#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1445			u_long src = ntohl(ip->ip_src.s_addr);
1446
1447			if (RTA(rt) &&
1448			    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1449				if (rt->rt_flags & RTF_GATEWAY)
1450					dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
1451				else
1452					dest.s_addr = ip->ip_dst.s_addr;
1453				/* Router requirements says to only send host redirects */
1454				type = ICMP_REDIRECT;
1455				code = ICMP_REDIRECT_HOST;
1456			}
1457		}
1458		if (rt)
1459			RTFREE(rt);
1460	}
1461
1462	/*
1463	 * Try to cache the route MTU from ip_output so we can consider it for
1464	 * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
1465	 */
1466	bzero(&ro, sizeof(ro));
1467
1468	error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
1469
1470	if (error == EMSGSIZE && ro.ro_rt)
1471		mtu = ro.ro_rt->rt_rmx.rmx_mtu;
1472	RO_RTFREE(&ro);
1473
1474	if (error)
1475		IPSTAT_INC(ips_cantforward);
1476	else {
1477		IPSTAT_INC(ips_forward);
1478		if (type)
1479			IPSTAT_INC(ips_redirectsent);
1480		else {
1481			if (mcopy)
1482				m_freem(mcopy);
1483			if (ia != NULL)
1484				ifa_free(&ia->ia_ifa);
1485			return;
1486		}
1487	}
1488	if (mcopy == NULL) {
1489		if (ia != NULL)
1490			ifa_free(&ia->ia_ifa);
1491		return;
1492	}
1493
1494	switch (error) {
1495
1496	case 0:				/* forwarded, but need redirect */
1497		/* type, code set above */
1498		break;
1499
1500	case ENETUNREACH:
1501	case EHOSTUNREACH:
1502	case ENETDOWN:
1503	case EHOSTDOWN:
1504	default:
1505		type = ICMP_UNREACH;
1506		code = ICMP_UNREACH_HOST;
1507		break;
1508
1509	case EMSGSIZE:
1510		type = ICMP_UNREACH;
1511		code = ICMP_UNREACH_NEEDFRAG;
1512
1513#ifdef IPSEC
1514		/*
1515		 * If IPsec is configured for this path,
1516		 * override any possibly mtu value set by ip_output.
1517		 */
1518		mtu = ip_ipsec_mtu(mcopy, mtu);
1519#endif /* IPSEC */
1520		/*
1521		 * If the MTU was set before make sure we are below the
1522		 * interface MTU.
1523		 * If the MTU wasn't set before use the interface mtu or
1524		 * fall back to the next smaller mtu step compared to the
1525		 * current packet size.
1526		 */
1527		if (mtu != 0) {
1528			if (ia != NULL)
1529				mtu = min(mtu, ia->ia_ifp->if_mtu);
1530		} else {
1531			if (ia != NULL)
1532				mtu = ia->ia_ifp->if_mtu;
1533			else
1534				mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
1535		}
1536		IPSTAT_INC(ips_cantfrag);
1537		break;
1538
1539	case ENOBUFS:
1540		/*
1541		 * A router should not generate ICMP_SOURCEQUENCH as
1542		 * required in RFC1812 Requirements for IP Version 4 Routers.
1543		 * Source quench could be a big problem under DoS attacks,
1544		 * or if the underlying interface is rate-limited.
1545		 * Those who need source quench packets may re-enable them
1546		 * via the net.inet.ip.sendsourcequench sysctl.
1547		 */
1548		if (V_ip_sendsourcequench == 0) {
1549			m_freem(mcopy);
1550			if (ia != NULL)
1551				ifa_free(&ia->ia_ifa);
1552			return;
1553		} else {
1554			type = ICMP_SOURCEQUENCH;
1555			code = 0;
1556		}
1557		break;
1558
1559	case EACCES:			/* ipfw denied packet */
1560		m_freem(mcopy);
1561		if (ia != NULL)
1562			ifa_free(&ia->ia_ifa);
1563		return;
1564	}
1565	if (ia != NULL)
1566		ifa_free(&ia->ia_ifa);
1567	icmp_error(mcopy, type, code, dest.s_addr, mtu);
1568}
1569
1570void
1571ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1572    struct mbuf *m)
1573{
1574
1575	if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
1576		struct bintime bt;
1577
1578		bintime(&bt);
1579		if (inp->inp_socket->so_options & SO_BINTIME) {
1580			*mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
1581			    SCM_BINTIME, SOL_SOCKET);
1582			if (*mp)
1583				mp = &(*mp)->m_next;
1584		}
1585		if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1586			struct timeval tv;
1587
1588			bintime2timeval(&bt, &tv);
1589			*mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
1590			    SCM_TIMESTAMP, SOL_SOCKET);
1591			if (*mp)
1592				mp = &(*mp)->m_next;
1593		}
1594	}
1595	if (inp->inp_flags & INP_RECVDSTADDR) {
1596		*mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
1597		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1598		if (*mp)
1599			mp = &(*mp)->m_next;
1600	}
1601	if (inp->inp_flags & INP_RECVTTL) {
1602		*mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
1603		    sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
1604		if (*mp)
1605			mp = &(*mp)->m_next;
1606	}
1607#ifdef notyet
1608	/* XXX
1609	 * Moving these out of udp_input() made them even more broken
1610	 * than they already were.
1611	 */
1612	/* options were tossed already */
1613	if (inp->inp_flags & INP_RECVOPTS) {
1614		*mp = sbcreatecontrol((caddr_t)opts_deleted_above,
1615		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1616		if (*mp)
1617			mp = &(*mp)->m_next;
1618	}
1619	/* ip_srcroute doesn't do what we want here, need to fix */
1620	if (inp->inp_flags & INP_RECVRETOPTS) {
1621		*mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
1622		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1623		if (*mp)
1624			mp = &(*mp)->m_next;
1625	}
1626#endif
1627	if (inp->inp_flags & INP_RECVIF) {
1628		struct ifnet *ifp;
1629		struct sdlbuf {
1630			struct sockaddr_dl sdl;
1631			u_char	pad[32];
1632		} sdlbuf;
1633		struct sockaddr_dl *sdp;
1634		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1635
1636		if ((ifp = m->m_pkthdr.rcvif) &&
1637		    ifp->if_index && ifp->if_index <= V_if_index) {
1638			sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
1639			/*
1640			 * Change our mind and don't try copy.
1641			 */
1642			if (sdp->sdl_family != AF_LINK ||
1643			    sdp->sdl_len > sizeof(sdlbuf)) {
1644				goto makedummy;
1645			}
1646			bcopy(sdp, sdl2, sdp->sdl_len);
1647		} else {
1648makedummy:
1649			sdl2->sdl_len =
1650			    offsetof(struct sockaddr_dl, sdl_data[0]);
1651			sdl2->sdl_family = AF_LINK;
1652			sdl2->sdl_index = 0;
1653			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1654		}
1655		*mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
1656		    IP_RECVIF, IPPROTO_IP);
1657		if (*mp)
1658			mp = &(*mp)->m_next;
1659	}
1660	if (inp->inp_flags & INP_RECVTOS) {
1661		*mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
1662		    sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
1663		if (*mp)
1664			mp = &(*mp)->m_next;
1665	}
1666}
1667
1668/*
1669 * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
1670 * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
1671 * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
1672 * compiled.
1673 */
1674static VNET_DEFINE(int, ip_rsvp_on);
1675VNET_DEFINE(struct socket *, ip_rsvpd);
1676
1677#define	V_ip_rsvp_on		VNET(ip_rsvp_on)
1678
1679int
1680ip_rsvp_init(struct socket *so)
1681{
1682
1683	if (so->so_type != SOCK_RAW ||
1684	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1685		return EOPNOTSUPP;
1686
1687	if (V_ip_rsvpd != NULL)
1688		return EADDRINUSE;
1689
1690	V_ip_rsvpd = so;
1691	/*
1692	 * This may seem silly, but we need to be sure we don't over-increment
1693	 * the RSVP counter, in case something slips up.
1694	 */
1695	if (!V_ip_rsvp_on) {
1696		V_ip_rsvp_on = 1;
1697		V_rsvp_on++;
1698	}
1699
1700	return 0;
1701}
1702
1703int
1704ip_rsvp_done(void)
1705{
1706
1707	V_ip_rsvpd = NULL;
1708	/*
1709	 * This may seem silly, but we need to be sure we don't over-decrement
1710	 * the RSVP counter, in case something slips up.
1711	 */
1712	if (V_ip_rsvp_on) {
1713		V_ip_rsvp_on = 0;
1714		V_rsvp_on--;
1715	}
1716	return 0;
1717}
1718
1719void
1720rsvp_input(struct mbuf *m, int off)	/* XXX must fixup manually */
1721{
1722
1723	if (rsvp_input_p) { /* call the real one if loaded */
1724		rsvp_input_p(m, off);
1725		return;
1726	}
1727
1728	/* Can still get packets with rsvp_on = 0 if there is a local member
1729	 * of the group to which the RSVP packet is addressed.  But in this
1730	 * case we want to throw the packet away.
1731	 */
1732
1733	if (!V_rsvp_on) {
1734		m_freem(m);
1735		return;
1736	}
1737
1738	if (V_ip_rsvpd != NULL) {
1739		rip_input(m, off);
1740		return;
1741	}
1742	/* Drop the packet */
1743	m_freem(m);
1744}
1745