pmap.c revision 310133
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	Since the information managed by this module is
46 *	also stored by the logical address mapping module,
47 *	this module may throw away valid virtual-to-physical
48 *	mappings at almost any time.  However, invalidations
49 *	of virtual-to-physical mappings must be done as
50 *	requested.
51 *
52 *	In order to cope with hardware architectures which
53 *	make virtual-to-physical map invalidates expensive,
54 *	this module may delay invalidate or reduced protection
55 *	operations until such time as they are actually
56 *	necessary.  This module is given full information as
57 *	to which processors are currently using which maps,
58 *	and to when physical maps must be made correct.
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: stable/10/sys/mips/mips/pmap.c 310133 2016-12-16 01:06:35Z jhb $");
63
64#include "opt_ddb.h"
65#include "opt_pmap.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mman.h>
71#include <sys/msgbuf.h>
72#include <sys/mutex.h>
73#include <sys/pcpu.h>
74#include <sys/proc.h>
75#include <sys/rwlock.h>
76#include <sys/sched.h>
77#include <sys/smp.h>
78#include <sys/sysctl.h>
79#include <sys/vmmeter.h>
80
81#ifdef DDB
82#include <ddb/ddb.h>
83#endif
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/vm_kern.h>
88#include <vm/vm_page.h>
89#include <vm/vm_map.h>
90#include <vm/vm_object.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_pageout.h>
93#include <vm/vm_pager.h>
94#include <vm/uma.h>
95
96#include <machine/cache.h>
97#include <machine/md_var.h>
98#include <machine/tlb.h>
99
100#undef PMAP_DEBUG
101
102#if !defined(DIAGNOSTIC)
103#define	PMAP_INLINE __inline
104#else
105#define	PMAP_INLINE
106#endif
107
108#ifdef PV_STATS
109#define PV_STAT(x)	do { x ; } while (0)
110#else
111#define PV_STAT(x)	do { } while (0)
112#endif
113
114/*
115 * Get PDEs and PTEs for user/kernel address space
116 */
117#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
118#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
119#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
120#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
121
122#ifdef __mips_n64
123#define	NUPDE			(NPDEPG * NPDEPG)
124#define	NUSERPGTBLS		(NUPDE + NPDEPG)
125#else
126#define	NUPDE			(NPDEPG)
127#define	NUSERPGTBLS		(NUPDE)
128#endif
129
130#define	is_kernel_pmap(x)	((x) == kernel_pmap)
131
132struct pmap kernel_pmap_store;
133pd_entry_t *kernel_segmap;
134
135vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
136vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
137
138static int nkpt;
139unsigned pmap_max_asid;		/* max ASID supported by the system */
140
141#define	PMAP_ASID_RESERVED	0
142
143vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
144
145static void pmap_asid_alloc(pmap_t pmap);
146
147static struct rwlock_padalign pvh_global_lock;
148
149/*
150 * Data for the pv entry allocation mechanism
151 */
152static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
153static int pv_entry_count;
154
155static void free_pv_chunk(struct pv_chunk *pc);
156static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
157static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
158static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
159static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
160static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
161    vm_offset_t va);
162static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
163static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
164    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
165static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
166    pd_entry_t pde);
167static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
168static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
169static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
170    vm_offset_t va, vm_page_t m);
171static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
172static void pmap_invalidate_all(pmap_t pmap);
173static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
174static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
175
176static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
177static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
178static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
179static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
180
181static void pmap_invalidate_page_action(void *arg);
182static void pmap_invalidate_range_action(void *arg);
183static void pmap_update_page_action(void *arg);
184
185#ifndef __mips_n64
186/*
187 * This structure is for high memory (memory above 512Meg in 32 bit) support.
188 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
189 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
190 *
191 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
192 * access a highmem physical address on a CPU, we map the physical address to
193 * the reserved virtual address for the CPU in the kernel pagetable.  This is
194 * done with interrupts disabled(although a spinlock and sched_pin would be
195 * sufficient).
196 */
197struct local_sysmaps {
198	vm_offset_t	base;
199	uint32_t	saved_intr;
200	uint16_t	valid1, valid2;
201};
202static struct local_sysmaps sysmap_lmem[MAXCPU];
203
204static __inline void
205pmap_alloc_lmem_map(void)
206{
207	int i;
208
209	for (i = 0; i < MAXCPU; i++) {
210		sysmap_lmem[i].base = virtual_avail;
211		virtual_avail += PAGE_SIZE * 2;
212		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
213	}
214}
215
216static __inline vm_offset_t
217pmap_lmem_map1(vm_paddr_t phys)
218{
219	struct local_sysmaps *sysm;
220	pt_entry_t *pte, npte;
221	vm_offset_t va;
222	uint32_t intr;
223	int cpu;
224
225	intr = intr_disable();
226	cpu = PCPU_GET(cpuid);
227	sysm = &sysmap_lmem[cpu];
228	sysm->saved_intr = intr;
229	va = sysm->base;
230	npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
231	pte = pmap_pte(kernel_pmap, va);
232	*pte = npte;
233	sysm->valid1 = 1;
234	return (va);
235}
236
237static __inline vm_offset_t
238pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
239{
240	struct local_sysmaps *sysm;
241	pt_entry_t *pte, npte;
242	vm_offset_t va1, va2;
243	uint32_t intr;
244	int cpu;
245
246	intr = intr_disable();
247	cpu = PCPU_GET(cpuid);
248	sysm = &sysmap_lmem[cpu];
249	sysm->saved_intr = intr;
250	va1 = sysm->base;
251	va2 = sysm->base + PAGE_SIZE;
252	npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
253	pte = pmap_pte(kernel_pmap, va1);
254	*pte = npte;
255	npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
256	pte = pmap_pte(kernel_pmap, va2);
257	*pte = npte;
258	sysm->valid1 = 1;
259	sysm->valid2 = 1;
260	return (va1);
261}
262
263static __inline void
264pmap_lmem_unmap(void)
265{
266	struct local_sysmaps *sysm;
267	pt_entry_t *pte;
268	int cpu;
269
270	cpu = PCPU_GET(cpuid);
271	sysm = &sysmap_lmem[cpu];
272	pte = pmap_pte(kernel_pmap, sysm->base);
273	*pte = PTE_G;
274	tlb_invalidate_address(kernel_pmap, sysm->base);
275	sysm->valid1 = 0;
276	if (sysm->valid2) {
277		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
278		*pte = PTE_G;
279		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
280		sysm->valid2 = 0;
281	}
282	intr_restore(sysm->saved_intr);
283}
284#else  /* __mips_n64 */
285
286static __inline void
287pmap_alloc_lmem_map(void)
288{
289}
290
291static __inline vm_offset_t
292pmap_lmem_map1(vm_paddr_t phys)
293{
294
295	return (0);
296}
297
298static __inline vm_offset_t
299pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
300{
301
302	return (0);
303}
304
305static __inline vm_offset_t
306pmap_lmem_unmap(void)
307{
308
309	return (0);
310}
311#endif /* !__mips_n64 */
312
313/*
314 * Page table entry lookup routines.
315 */
316static __inline pd_entry_t *
317pmap_segmap(pmap_t pmap, vm_offset_t va)
318{
319
320	return (&pmap->pm_segtab[pmap_seg_index(va)]);
321}
322
323#ifdef __mips_n64
324static __inline pd_entry_t *
325pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
326{
327	pd_entry_t *pde;
328
329	pde = (pd_entry_t *)*pdpe;
330	return (&pde[pmap_pde_index(va)]);
331}
332
333static __inline pd_entry_t *
334pmap_pde(pmap_t pmap, vm_offset_t va)
335{
336	pd_entry_t *pdpe;
337
338	pdpe = pmap_segmap(pmap, va);
339	if (*pdpe == NULL)
340		return (NULL);
341
342	return (pmap_pdpe_to_pde(pdpe, va));
343}
344#else
345static __inline pd_entry_t *
346pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
347{
348
349	return (pdpe);
350}
351
352static __inline
353pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
354{
355
356	return (pmap_segmap(pmap, va));
357}
358#endif
359
360static __inline pt_entry_t *
361pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
362{
363	pt_entry_t *pte;
364
365	pte = (pt_entry_t *)*pde;
366	return (&pte[pmap_pte_index(va)]);
367}
368
369pt_entry_t *
370pmap_pte(pmap_t pmap, vm_offset_t va)
371{
372	pd_entry_t *pde;
373
374	pde = pmap_pde(pmap, va);
375	if (pde == NULL || *pde == NULL)
376		return (NULL);
377
378	return (pmap_pde_to_pte(pde, va));
379}
380
381vm_offset_t
382pmap_steal_memory(vm_size_t size)
383{
384	vm_paddr_t bank_size, pa;
385	vm_offset_t va;
386
387	size = round_page(size);
388	bank_size = phys_avail[1] - phys_avail[0];
389	while (size > bank_size) {
390		int i;
391
392		for (i = 0; phys_avail[i + 2]; i += 2) {
393			phys_avail[i] = phys_avail[i + 2];
394			phys_avail[i + 1] = phys_avail[i + 3];
395		}
396		phys_avail[i] = 0;
397		phys_avail[i + 1] = 0;
398		if (!phys_avail[0])
399			panic("pmap_steal_memory: out of memory");
400		bank_size = phys_avail[1] - phys_avail[0];
401	}
402
403	pa = phys_avail[0];
404	phys_avail[0] += size;
405	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
406		panic("Out of memory below 512Meg?");
407	va = MIPS_PHYS_TO_DIRECT(pa);
408	bzero((caddr_t)va, size);
409	return (va);
410}
411
412/*
413 * Bootstrap the system enough to run with virtual memory.  This
414 * assumes that the phys_avail array has been initialized.
415 */
416static void
417pmap_create_kernel_pagetable(void)
418{
419	int i, j;
420	vm_offset_t ptaddr;
421	pt_entry_t *pte;
422#ifdef __mips_n64
423	pd_entry_t *pde;
424	vm_offset_t pdaddr;
425	int npt, npde;
426#endif
427
428	/*
429	 * Allocate segment table for the kernel
430	 */
431	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
432
433	/*
434	 * Allocate second level page tables for the kernel
435	 */
436#ifdef __mips_n64
437	npde = howmany(NKPT, NPDEPG);
438	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
439#endif
440	nkpt = NKPT;
441	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
442
443	/*
444	 * The R[4-7]?00 stores only one copy of the Global bit in the
445	 * translation lookaside buffer for each 2 page entry. Thus invalid
446	 * entrys must have the Global bit set so when Entry LO and Entry HI
447	 * G bits are anded together they will produce a global bit to store
448	 * in the tlb.
449	 */
450	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
451		*pte = PTE_G;
452
453#ifdef __mips_n64
454	for (i = 0,  npt = nkpt; npt > 0; i++) {
455		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
456		pde = (pd_entry_t *)kernel_segmap[i];
457
458		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
459			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
460	}
461#else
462	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
463		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
464#endif
465
466	PMAP_LOCK_INIT(kernel_pmap);
467	kernel_pmap->pm_segtab = kernel_segmap;
468	CPU_FILL(&kernel_pmap->pm_active);
469	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
470	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
471	kernel_pmap->pm_asid[0].gen = 0;
472	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
473}
474
475void
476pmap_bootstrap(void)
477{
478	int i;
479	int need_local_mappings = 0;
480
481	/* Sort. */
482again:
483	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
484		/*
485		 * Keep the memory aligned on page boundary.
486		 */
487		phys_avail[i] = round_page(phys_avail[i]);
488		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
489
490		if (i < 2)
491			continue;
492		if (phys_avail[i - 2] > phys_avail[i]) {
493			vm_paddr_t ptemp[2];
494
495			ptemp[0] = phys_avail[i + 0];
496			ptemp[1] = phys_avail[i + 1];
497
498			phys_avail[i + 0] = phys_avail[i - 2];
499			phys_avail[i + 1] = phys_avail[i - 1];
500
501			phys_avail[i - 2] = ptemp[0];
502			phys_avail[i - 1] = ptemp[1];
503			goto again;
504		}
505	}
506
507       	/*
508	 * In 32 bit, we may have memory which cannot be mapped directly.
509	 * This memory will need temporary mapping before it can be
510	 * accessed.
511	 */
512	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
513		need_local_mappings = 1;
514
515	/*
516	 * Copy the phys_avail[] array before we start stealing memory from it.
517	 */
518	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
519		physmem_desc[i] = phys_avail[i];
520		physmem_desc[i + 1] = phys_avail[i + 1];
521	}
522
523	Maxmem = atop(phys_avail[i - 1]);
524
525	if (bootverbose) {
526		printf("Physical memory chunk(s):\n");
527		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
528			vm_paddr_t size;
529
530			size = phys_avail[i + 1] - phys_avail[i];
531			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
532			    (uintmax_t) phys_avail[i],
533			    (uintmax_t) phys_avail[i + 1] - 1,
534			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
535		}
536		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
537	}
538	/*
539	 * Steal the message buffer from the beginning of memory.
540	 */
541	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
542	msgbufinit(msgbufp, msgbufsize);
543
544	/*
545	 * Steal thread0 kstack.
546	 */
547	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
548
549	virtual_avail = VM_MIN_KERNEL_ADDRESS;
550	virtual_end = VM_MAX_KERNEL_ADDRESS;
551
552#ifdef SMP
553	/*
554	 * Steal some virtual address space to map the pcpu area.
555	 */
556	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
557	pcpup = (struct pcpu *)virtual_avail;
558	virtual_avail += PAGE_SIZE * 2;
559
560	/*
561	 * Initialize the wired TLB entry mapping the pcpu region for
562	 * the BSP at 'pcpup'. Up until this point we were operating
563	 * with the 'pcpup' for the BSP pointing to a virtual address
564	 * in KSEG0 so there was no need for a TLB mapping.
565	 */
566	mips_pcpu_tlb_init(PCPU_ADDR(0));
567
568	if (bootverbose)
569		printf("pcpu is available at virtual address %p.\n", pcpup);
570#endif
571
572	if (need_local_mappings)
573		pmap_alloc_lmem_map();
574	pmap_create_kernel_pagetable();
575	pmap_max_asid = VMNUM_PIDS;
576	mips_wr_entryhi(0);
577	mips_wr_pagemask(0);
578
579 	/*
580	 * Initialize the global pv list lock.
581	 */
582	rw_init(&pvh_global_lock, "pmap pv global");
583}
584
585/*
586 * Initialize a vm_page's machine-dependent fields.
587 */
588void
589pmap_page_init(vm_page_t m)
590{
591
592	TAILQ_INIT(&m->md.pv_list);
593	m->md.pv_flags = 0;
594}
595
596/*
597 *	Initialize the pmap module.
598 *	Called by vm_init, to initialize any structures that the pmap
599 *	system needs to map virtual memory.
600 */
601void
602pmap_init(void)
603{
604}
605
606/***************************************************
607 * Low level helper routines.....
608 ***************************************************/
609
610#ifdef	SMP
611static __inline void
612pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
613{
614	int	cpuid, cpu, self;
615	cpuset_t active_cpus;
616
617	sched_pin();
618	if (is_kernel_pmap(pmap)) {
619		smp_rendezvous(NULL, fn, NULL, arg);
620		goto out;
621	}
622	/* Force ASID update on inactive CPUs */
623	CPU_FOREACH(cpu) {
624		if (!CPU_ISSET(cpu, &pmap->pm_active))
625			pmap->pm_asid[cpu].gen = 0;
626	}
627	cpuid = PCPU_GET(cpuid);
628	/*
629	 * XXX: barrier/locking for active?
630	 *
631	 * Take a snapshot of active here, any further changes are ignored.
632	 * tlb update/invalidate should be harmless on inactive CPUs
633	 */
634	active_cpus = pmap->pm_active;
635	self = CPU_ISSET(cpuid, &active_cpus);
636	CPU_CLR(cpuid, &active_cpus);
637	/* Optimize for the case where this cpu is the only active one */
638	if (CPU_EMPTY(&active_cpus)) {
639		if (self)
640			fn(arg);
641	} else {
642		if (self)
643			CPU_SET(cpuid, &active_cpus);
644		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
645	}
646out:
647	sched_unpin();
648}
649#else /* !SMP */
650static __inline void
651pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
652{
653	int	cpuid;
654
655	if (is_kernel_pmap(pmap)) {
656		fn(arg);
657		return;
658	}
659	cpuid = PCPU_GET(cpuid);
660	if (!CPU_ISSET(cpuid, &pmap->pm_active))
661		pmap->pm_asid[cpuid].gen = 0;
662	else
663		fn(arg);
664}
665#endif /* SMP */
666
667static void
668pmap_invalidate_all(pmap_t pmap)
669{
670
671	pmap_call_on_active_cpus(pmap,
672	    (void (*)(void *))tlb_invalidate_all_user, pmap);
673}
674
675struct pmap_invalidate_page_arg {
676	pmap_t pmap;
677	vm_offset_t va;
678};
679
680static void
681pmap_invalidate_page_action(void *arg)
682{
683	struct pmap_invalidate_page_arg *p = arg;
684
685	tlb_invalidate_address(p->pmap, p->va);
686}
687
688static void
689pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
690{
691	struct pmap_invalidate_page_arg arg;
692
693	arg.pmap = pmap;
694	arg.va = va;
695	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
696}
697
698struct pmap_invalidate_range_arg {
699	pmap_t pmap;
700	vm_offset_t sva;
701	vm_offset_t eva;
702};
703
704static void
705pmap_invalidate_range_action(void *arg)
706{
707	struct pmap_invalidate_range_arg *p = arg;
708
709	tlb_invalidate_range(p->pmap, p->sva, p->eva);
710}
711
712static void
713pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
714{
715	struct pmap_invalidate_range_arg arg;
716
717	arg.pmap = pmap;
718	arg.sva = sva;
719	arg.eva = eva;
720	pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
721}
722
723struct pmap_update_page_arg {
724	pmap_t pmap;
725	vm_offset_t va;
726	pt_entry_t pte;
727};
728
729static void
730pmap_update_page_action(void *arg)
731{
732	struct pmap_update_page_arg *p = arg;
733
734	tlb_update(p->pmap, p->va, p->pte);
735}
736
737static void
738pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
739{
740	struct pmap_update_page_arg arg;
741
742	arg.pmap = pmap;
743	arg.va = va;
744	arg.pte = pte;
745	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
746}
747
748/*
749 *	Routine:	pmap_extract
750 *	Function:
751 *		Extract the physical page address associated
752 *		with the given map/virtual_address pair.
753 */
754vm_paddr_t
755pmap_extract(pmap_t pmap, vm_offset_t va)
756{
757	pt_entry_t *pte;
758	vm_offset_t retval = 0;
759
760	PMAP_LOCK(pmap);
761	pte = pmap_pte(pmap, va);
762	if (pte) {
763		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
764	}
765	PMAP_UNLOCK(pmap);
766	return (retval);
767}
768
769/*
770 *	Routine:	pmap_extract_and_hold
771 *	Function:
772 *		Atomically extract and hold the physical page
773 *		with the given pmap and virtual address pair
774 *		if that mapping permits the given protection.
775 */
776vm_page_t
777pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
778{
779	pt_entry_t pte, *ptep;
780	vm_paddr_t pa, pte_pa;
781	vm_page_t m;
782
783	m = NULL;
784	pa = 0;
785	PMAP_LOCK(pmap);
786retry:
787	ptep = pmap_pte(pmap, va);
788	if (ptep != NULL) {
789		pte = *ptep;
790		if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
791		    (prot & VM_PROT_WRITE) == 0)) {
792			pte_pa = TLBLO_PTE_TO_PA(pte);
793			if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
794				goto retry;
795			m = PHYS_TO_VM_PAGE(pte_pa);
796			vm_page_hold(m);
797		}
798	}
799	PA_UNLOCK_COND(pa);
800	PMAP_UNLOCK(pmap);
801	return (m);
802}
803
804/***************************************************
805 * Low level mapping routines.....
806 ***************************************************/
807
808/*
809 * add a wired page to the kva
810 */
811void
812pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
813{
814	pt_entry_t *pte;
815	pt_entry_t opte, npte;
816
817#ifdef PMAP_DEBUG
818	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
819#endif
820
821	pte = pmap_pte(kernel_pmap, va);
822	opte = *pte;
823	npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
824	*pte = npte;
825	if (pte_test(&opte, PTE_V) && opte != npte)
826		pmap_update_page(kernel_pmap, va, npte);
827}
828
829void
830pmap_kenter(vm_offset_t va, vm_paddr_t pa)
831{
832
833	KASSERT(is_cacheable_mem(pa),
834		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
835
836	pmap_kenter_attr(va, pa, PTE_C_CACHE);
837}
838
839/*
840 * remove a page from the kernel pagetables
841 */
842 /* PMAP_INLINE */ void
843pmap_kremove(vm_offset_t va)
844{
845	pt_entry_t *pte;
846
847	/*
848	 * Write back all caches from the page being destroyed
849	 */
850	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
851
852	pte = pmap_pte(kernel_pmap, va);
853	*pte = PTE_G;
854	pmap_invalidate_page(kernel_pmap, va);
855}
856
857/*
858 *	Used to map a range of physical addresses into kernel
859 *	virtual address space.
860 *
861 *	The value passed in '*virt' is a suggested virtual address for
862 *	the mapping. Architectures which can support a direct-mapped
863 *	physical to virtual region can return the appropriate address
864 *	within that region, leaving '*virt' unchanged. Other
865 *	architectures should map the pages starting at '*virt' and
866 *	update '*virt' with the first usable address after the mapped
867 *	region.
868 *
869 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
870 */
871vm_offset_t
872pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
873{
874	vm_offset_t va, sva;
875
876	if (MIPS_DIRECT_MAPPABLE(end - 1))
877		return (MIPS_PHYS_TO_DIRECT(start));
878
879	va = sva = *virt;
880	while (start < end) {
881		pmap_kenter(va, start);
882		va += PAGE_SIZE;
883		start += PAGE_SIZE;
884	}
885	*virt = va;
886	return (sva);
887}
888
889/*
890 * Add a list of wired pages to the kva
891 * this routine is only used for temporary
892 * kernel mappings that do not need to have
893 * page modification or references recorded.
894 * Note that old mappings are simply written
895 * over.  The page *must* be wired.
896 */
897void
898pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
899{
900	int i;
901	vm_offset_t origva = va;
902
903	for (i = 0; i < count; i++) {
904		pmap_flush_pvcache(m[i]);
905		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
906		va += PAGE_SIZE;
907	}
908
909	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
910}
911
912/*
913 * this routine jerks page mappings from the
914 * kernel -- it is meant only for temporary mappings.
915 */
916void
917pmap_qremove(vm_offset_t va, int count)
918{
919	pt_entry_t *pte;
920	vm_offset_t origva;
921
922	if (count < 1)
923		return;
924	mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
925	origva = va;
926	do {
927		pte = pmap_pte(kernel_pmap, va);
928		*pte = PTE_G;
929		va += PAGE_SIZE;
930	} while (--count > 0);
931	pmap_invalidate_range(kernel_pmap, origva, va);
932}
933
934/***************************************************
935 * Page table page management routines.....
936 ***************************************************/
937
938/*
939 * Decrements a page table page's wire count, which is used to record the
940 * number of valid page table entries within the page.  If the wire count
941 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
942 * page table page was unmapped and FALSE otherwise.
943 */
944static PMAP_INLINE boolean_t
945pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
946{
947
948	--m->wire_count;
949	if (m->wire_count == 0) {
950		_pmap_unwire_ptp(pmap, va, m);
951		return (TRUE);
952	} else
953		return (FALSE);
954}
955
956static void
957_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
958{
959	pd_entry_t *pde;
960
961	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
962	/*
963	 * unmap the page table page
964	 */
965#ifdef __mips_n64
966	if (m->pindex < NUPDE)
967		pde = pmap_pde(pmap, va);
968	else
969		pde = pmap_segmap(pmap, va);
970#else
971	pde = pmap_pde(pmap, va);
972#endif
973	*pde = 0;
974	pmap->pm_stats.resident_count--;
975
976#ifdef __mips_n64
977	if (m->pindex < NUPDE) {
978		pd_entry_t *pdp;
979		vm_page_t pdpg;
980
981		/*
982		 * Recursively decrement next level pagetable refcount
983		 */
984		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
985		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
986		pmap_unwire_ptp(pmap, va, pdpg);
987	}
988#endif
989
990	/*
991	 * If the page is finally unwired, simply free it.
992	 */
993	vm_page_free_zero(m);
994	atomic_subtract_int(&cnt.v_wire_count, 1);
995}
996
997/*
998 * After removing a page table entry, this routine is used to
999 * conditionally free the page, and manage the hold/wire counts.
1000 */
1001static int
1002pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1003{
1004	vm_page_t mpte;
1005
1006	if (va >= VM_MAXUSER_ADDRESS)
1007		return (0);
1008	KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
1009	mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
1010	return (pmap_unwire_ptp(pmap, va, mpte));
1011}
1012
1013void
1014pmap_pinit0(pmap_t pmap)
1015{
1016	int i;
1017
1018	PMAP_LOCK_INIT(pmap);
1019	pmap->pm_segtab = kernel_segmap;
1020	CPU_ZERO(&pmap->pm_active);
1021	for (i = 0; i < MAXCPU; i++) {
1022		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1023		pmap->pm_asid[i].gen = 0;
1024	}
1025	PCPU_SET(curpmap, pmap);
1026	TAILQ_INIT(&pmap->pm_pvchunk);
1027	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1028}
1029
1030void
1031pmap_grow_direct_page_cache()
1032{
1033
1034#ifdef __mips_n64
1035	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1036#else
1037	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1038#endif
1039}
1040
1041static vm_page_t
1042pmap_alloc_direct_page(unsigned int index, int req)
1043{
1044	vm_page_t m;
1045
1046	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1047	    VM_ALLOC_ZERO);
1048	if (m == NULL)
1049		return (NULL);
1050
1051	if ((m->flags & PG_ZERO) == 0)
1052		pmap_zero_page(m);
1053
1054	m->pindex = index;
1055	return (m);
1056}
1057
1058/*
1059 * Initialize a preallocated and zeroed pmap structure,
1060 * such as one in a vmspace structure.
1061 */
1062int
1063pmap_pinit(pmap_t pmap)
1064{
1065	vm_offset_t ptdva;
1066	vm_page_t ptdpg;
1067	int i;
1068
1069	/*
1070	 * allocate the page directory page
1071	 */
1072	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1073	       pmap_grow_direct_page_cache();
1074
1075	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1076	pmap->pm_segtab = (pd_entry_t *)ptdva;
1077	CPU_ZERO(&pmap->pm_active);
1078	for (i = 0; i < MAXCPU; i++) {
1079		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1080		pmap->pm_asid[i].gen = 0;
1081	}
1082	TAILQ_INIT(&pmap->pm_pvchunk);
1083	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1084
1085	return (1);
1086}
1087
1088/*
1089 * this routine is called if the page table page is not
1090 * mapped correctly.
1091 */
1092static vm_page_t
1093_pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
1094{
1095	vm_offset_t pageva;
1096	vm_page_t m;
1097
1098	/*
1099	 * Find or fabricate a new pagetable page
1100	 */
1101	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1102		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1103			PMAP_UNLOCK(pmap);
1104			rw_wunlock(&pvh_global_lock);
1105			pmap_grow_direct_page_cache();
1106			rw_wlock(&pvh_global_lock);
1107			PMAP_LOCK(pmap);
1108		}
1109
1110		/*
1111		 * Indicate the need to retry.	While waiting, the page
1112		 * table page may have been allocated.
1113		 */
1114		return (NULL);
1115	}
1116
1117	/*
1118	 * Map the pagetable page into the process address space, if it
1119	 * isn't already there.
1120	 */
1121	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1122
1123#ifdef __mips_n64
1124	if (ptepindex >= NUPDE) {
1125		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1126	} else {
1127		pd_entry_t *pdep, *pde;
1128		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1129		int pdeindex = ptepindex & (NPDEPG - 1);
1130		vm_page_t pg;
1131
1132		pdep = &pmap->pm_segtab[segindex];
1133		if (*pdep == NULL) {
1134			/* recurse for allocating page dir */
1135			if (_pmap_allocpte(pmap, NUPDE + segindex,
1136			    flags) == NULL) {
1137				/* alloc failed, release current */
1138				--m->wire_count;
1139				atomic_subtract_int(&cnt.v_wire_count, 1);
1140				vm_page_free_zero(m);
1141				return (NULL);
1142			}
1143		} else {
1144			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1145			pg->wire_count++;
1146		}
1147		/* Next level entry */
1148		pde = (pd_entry_t *)*pdep;
1149		pde[pdeindex] = (pd_entry_t)pageva;
1150	}
1151#else
1152	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1153#endif
1154	pmap->pm_stats.resident_count++;
1155	return (m);
1156}
1157
1158static vm_page_t
1159pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1160{
1161	unsigned ptepindex;
1162	pd_entry_t *pde;
1163	vm_page_t m;
1164
1165	/*
1166	 * Calculate pagetable page index
1167	 */
1168	ptepindex = pmap_pde_pindex(va);
1169retry:
1170	/*
1171	 * Get the page directory entry
1172	 */
1173	pde = pmap_pde(pmap, va);
1174
1175	/*
1176	 * If the page table page is mapped, we just increment the hold
1177	 * count, and activate it.
1178	 */
1179	if (pde != NULL && *pde != NULL) {
1180		m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1181		m->wire_count++;
1182	} else {
1183		/*
1184		 * Here if the pte page isn't mapped, or if it has been
1185		 * deallocated.
1186		 */
1187		m = _pmap_allocpte(pmap, ptepindex, flags);
1188		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1189			goto retry;
1190	}
1191	return (m);
1192}
1193
1194
1195/***************************************************
1196 * Pmap allocation/deallocation routines.
1197 ***************************************************/
1198
1199/*
1200 * Release any resources held by the given physical map.
1201 * Called when a pmap initialized by pmap_pinit is being released.
1202 * Should only be called if the map contains no valid mappings.
1203 */
1204void
1205pmap_release(pmap_t pmap)
1206{
1207	vm_offset_t ptdva;
1208	vm_page_t ptdpg;
1209
1210	KASSERT(pmap->pm_stats.resident_count == 0,
1211	    ("pmap_release: pmap resident count %ld != 0",
1212	    pmap->pm_stats.resident_count));
1213
1214	ptdva = (vm_offset_t)pmap->pm_segtab;
1215	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1216
1217	ptdpg->wire_count--;
1218	atomic_subtract_int(&cnt.v_wire_count, 1);
1219	vm_page_free_zero(ptdpg);
1220}
1221
1222/*
1223 * grow the number of kernel page table entries, if needed
1224 */
1225void
1226pmap_growkernel(vm_offset_t addr)
1227{
1228	vm_page_t nkpg;
1229	pd_entry_t *pde, *pdpe;
1230	pt_entry_t *pte;
1231	int i;
1232
1233	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1234	addr = roundup2(addr, NBSEG);
1235	if (addr - 1 >= kernel_map->max_offset)
1236		addr = kernel_map->max_offset;
1237	while (kernel_vm_end < addr) {
1238		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1239#ifdef __mips_n64
1240		if (*pdpe == 0) {
1241			/* new intermediate page table entry */
1242			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1243			if (nkpg == NULL)
1244				panic("pmap_growkernel: no memory to grow kernel");
1245			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1246			continue; /* try again */
1247		}
1248#endif
1249		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1250		if (*pde != 0) {
1251			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1252			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1253				kernel_vm_end = kernel_map->max_offset;
1254				break;
1255			}
1256			continue;
1257		}
1258
1259		/*
1260		 * This index is bogus, but out of the way
1261		 */
1262		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1263		if (!nkpg)
1264			panic("pmap_growkernel: no memory to grow kernel");
1265		nkpt++;
1266		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1267
1268		/*
1269		 * The R[4-7]?00 stores only one copy of the Global bit in
1270		 * the translation lookaside buffer for each 2 page entry.
1271		 * Thus invalid entrys must have the Global bit set so when
1272		 * Entry LO and Entry HI G bits are anded together they will
1273		 * produce a global bit to store in the tlb.
1274		 */
1275		pte = (pt_entry_t *)*pde;
1276		for (i = 0; i < NPTEPG; i++)
1277			pte[i] = PTE_G;
1278
1279		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1280		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1281			kernel_vm_end = kernel_map->max_offset;
1282			break;
1283		}
1284	}
1285}
1286
1287/***************************************************
1288 * page management routines.
1289 ***************************************************/
1290
1291CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1292#ifdef __mips_n64
1293CTASSERT(_NPCM == 3);
1294CTASSERT(_NPCPV == 168);
1295#else
1296CTASSERT(_NPCM == 11);
1297CTASSERT(_NPCPV == 336);
1298#endif
1299
1300static __inline struct pv_chunk *
1301pv_to_chunk(pv_entry_t pv)
1302{
1303
1304	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1305}
1306
1307#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1308
1309#ifdef __mips_n64
1310#define	PC_FREE0_1	0xfffffffffffffffful
1311#define	PC_FREE2	0x000000fffffffffful
1312#else
1313#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1314#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1315#endif
1316
1317static const u_long pc_freemask[_NPCM] = {
1318#ifdef __mips_n64
1319	PC_FREE0_1, PC_FREE0_1, PC_FREE2
1320#else
1321	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1322	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1323	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1324	PC_FREE0_9, PC_FREE10
1325#endif
1326};
1327
1328static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1329
1330SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1331    "Current number of pv entries");
1332
1333#ifdef PV_STATS
1334static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1335
1336SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1337    "Current number of pv entry chunks");
1338SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1339    "Current number of pv entry chunks allocated");
1340SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1341    "Current number of pv entry chunks frees");
1342SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1343    "Number of times tried to get a chunk page but failed.");
1344
1345static long pv_entry_frees, pv_entry_allocs;
1346static int pv_entry_spare;
1347
1348SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1349    "Current number of pv entry frees");
1350SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1351    "Current number of pv entry allocs");
1352SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1353    "Current number of spare pv entries");
1354#endif
1355
1356/*
1357 * We are in a serious low memory condition.  Resort to
1358 * drastic measures to free some pages so we can allocate
1359 * another pv entry chunk.
1360 */
1361static vm_page_t
1362pmap_pv_reclaim(pmap_t locked_pmap)
1363{
1364	struct pch newtail;
1365	struct pv_chunk *pc;
1366	pd_entry_t *pde;
1367	pmap_t pmap;
1368	pt_entry_t *pte, oldpte;
1369	pv_entry_t pv;
1370	vm_offset_t va;
1371	vm_page_t m, m_pc;
1372	u_long inuse;
1373	int bit, field, freed, idx;
1374
1375	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1376	pmap = NULL;
1377	m_pc = NULL;
1378	TAILQ_INIT(&newtail);
1379	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
1380		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1381		if (pmap != pc->pc_pmap) {
1382			if (pmap != NULL) {
1383				pmap_invalidate_all(pmap);
1384				if (pmap != locked_pmap)
1385					PMAP_UNLOCK(pmap);
1386			}
1387			pmap = pc->pc_pmap;
1388			/* Avoid deadlock and lock recursion. */
1389			if (pmap > locked_pmap)
1390				PMAP_LOCK(pmap);
1391			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1392				pmap = NULL;
1393				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1394				continue;
1395			}
1396		}
1397
1398		/*
1399		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1400		 */
1401		freed = 0;
1402		for (field = 0; field < _NPCM; field++) {
1403			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1404			    inuse != 0; inuse &= ~(1UL << bit)) {
1405				bit = ffsl(inuse) - 1;
1406				idx = field * sizeof(inuse) * NBBY + bit;
1407				pv = &pc->pc_pventry[idx];
1408				va = pv->pv_va;
1409				pde = pmap_pde(pmap, va);
1410				KASSERT(pde != NULL && *pde != 0,
1411				    ("pmap_pv_reclaim: pde"));
1412				pte = pmap_pde_to_pte(pde, va);
1413				oldpte = *pte;
1414				if (pte_test(&oldpte, PTE_W))
1415					continue;
1416				if (is_kernel_pmap(pmap))
1417					*pte = PTE_G;
1418				else
1419					*pte = 0;
1420				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
1421				if (pte_test(&oldpte, PTE_D))
1422					vm_page_dirty(m);
1423				if (m->md.pv_flags & PV_TABLE_REF)
1424					vm_page_aflag_set(m, PGA_REFERENCED);
1425				m->md.pv_flags &= ~PV_TABLE_REF;
1426				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1427				if (TAILQ_EMPTY(&m->md.pv_list))
1428					vm_page_aflag_clear(m, PGA_WRITEABLE);
1429				pc->pc_map[field] |= 1UL << bit;
1430				pmap_unuse_pt(pmap, va, *pde);
1431				freed++;
1432			}
1433		}
1434		if (freed == 0) {
1435			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1436			continue;
1437		}
1438		/* Every freed mapping is for a 4 KB page. */
1439		pmap->pm_stats.resident_count -= freed;
1440		PV_STAT(pv_entry_frees += freed);
1441		PV_STAT(pv_entry_spare += freed);
1442		pv_entry_count -= freed;
1443		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1444		for (field = 0; field < _NPCM; field++)
1445			if (pc->pc_map[field] != pc_freemask[field]) {
1446				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1447				    pc_list);
1448				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1449
1450				/*
1451				 * One freed pv entry in locked_pmap is
1452				 * sufficient.
1453				 */
1454				if (pmap == locked_pmap)
1455					goto out;
1456				break;
1457			}
1458		if (field == _NPCM) {
1459			PV_STAT(pv_entry_spare -= _NPCPV);
1460			PV_STAT(pc_chunk_count--);
1461			PV_STAT(pc_chunk_frees++);
1462			/* Entire chunk is free; return it. */
1463			m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
1464			    (vm_offset_t)pc));
1465			break;
1466		}
1467	}
1468out:
1469	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
1470	if (pmap != NULL) {
1471		pmap_invalidate_all(pmap);
1472		if (pmap != locked_pmap)
1473			PMAP_UNLOCK(pmap);
1474	}
1475	return (m_pc);
1476}
1477
1478/*
1479 * free the pv_entry back to the free list
1480 */
1481static void
1482free_pv_entry(pmap_t pmap, pv_entry_t pv)
1483{
1484	struct pv_chunk *pc;
1485	int bit, field, idx;
1486
1487	rw_assert(&pvh_global_lock, RA_WLOCKED);
1488	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1489	PV_STAT(pv_entry_frees++);
1490	PV_STAT(pv_entry_spare++);
1491	pv_entry_count--;
1492	pc = pv_to_chunk(pv);
1493	idx = pv - &pc->pc_pventry[0];
1494	field = idx / (sizeof(u_long) * NBBY);
1495	bit = idx % (sizeof(u_long) * NBBY);
1496	pc->pc_map[field] |= 1ul << bit;
1497	for (idx = 0; idx < _NPCM; idx++)
1498		if (pc->pc_map[idx] != pc_freemask[idx]) {
1499			/*
1500			 * 98% of the time, pc is already at the head of the
1501			 * list.  If it isn't already, move it to the head.
1502			 */
1503			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
1504			    pc)) {
1505				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1506				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1507				    pc_list);
1508			}
1509			return;
1510		}
1511	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1512	free_pv_chunk(pc);
1513}
1514
1515static void
1516free_pv_chunk(struct pv_chunk *pc)
1517{
1518	vm_page_t m;
1519
1520 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1521	PV_STAT(pv_entry_spare -= _NPCPV);
1522	PV_STAT(pc_chunk_count--);
1523	PV_STAT(pc_chunk_frees++);
1524	/* entire chunk is free, return it */
1525	m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
1526	vm_page_unwire(m, 0);
1527	vm_page_free(m);
1528}
1529
1530/*
1531 * get a new pv_entry, allocating a block from the system
1532 * when needed.
1533 */
1534static pv_entry_t
1535get_pv_entry(pmap_t pmap, boolean_t try)
1536{
1537	struct pv_chunk *pc;
1538	pv_entry_t pv;
1539	vm_page_t m;
1540	int bit, field, idx;
1541
1542	rw_assert(&pvh_global_lock, RA_WLOCKED);
1543	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1544	PV_STAT(pv_entry_allocs++);
1545	pv_entry_count++;
1546retry:
1547	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1548	if (pc != NULL) {
1549		for (field = 0; field < _NPCM; field++) {
1550			if (pc->pc_map[field]) {
1551				bit = ffsl(pc->pc_map[field]) - 1;
1552				break;
1553			}
1554		}
1555		if (field < _NPCM) {
1556			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
1557			pv = &pc->pc_pventry[idx];
1558			pc->pc_map[field] &= ~(1ul << bit);
1559			/* If this was the last item, move it to tail */
1560			for (field = 0; field < _NPCM; field++)
1561				if (pc->pc_map[field] != 0) {
1562					PV_STAT(pv_entry_spare--);
1563					return (pv);	/* not full, return */
1564				}
1565			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1566			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1567			PV_STAT(pv_entry_spare--);
1568			return (pv);
1569		}
1570	}
1571	/* No free items, allocate another chunk */
1572	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
1573	    VM_ALLOC_WIRED);
1574	if (m == NULL) {
1575		if (try) {
1576			pv_entry_count--;
1577			PV_STAT(pc_chunk_tryfail++);
1578			return (NULL);
1579		}
1580		m = pmap_pv_reclaim(pmap);
1581		if (m == NULL)
1582			goto retry;
1583	}
1584	PV_STAT(pc_chunk_count++);
1585	PV_STAT(pc_chunk_allocs++);
1586	pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1587	pc->pc_pmap = pmap;
1588	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1589	for (field = 1; field < _NPCM; field++)
1590		pc->pc_map[field] = pc_freemask[field];
1591	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1592	pv = &pc->pc_pventry[0];
1593	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1594	PV_STAT(pv_entry_spare += _NPCPV - 1);
1595	return (pv);
1596}
1597
1598static pv_entry_t
1599pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1600{
1601	pv_entry_t pv;
1602
1603	rw_assert(&pvh_global_lock, RA_WLOCKED);
1604	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1605		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1606			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1607			break;
1608		}
1609	}
1610	return (pv);
1611}
1612
1613static void
1614pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1615{
1616	pv_entry_t pv;
1617
1618	pv = pmap_pvh_remove(pvh, pmap, va);
1619	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1620	     (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
1621	     (u_long)va));
1622	free_pv_entry(pmap, pv);
1623}
1624
1625static void
1626pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1627{
1628
1629	rw_assert(&pvh_global_lock, RA_WLOCKED);
1630	pmap_pvh_free(&m->md, pmap, va);
1631	if (TAILQ_EMPTY(&m->md.pv_list))
1632		vm_page_aflag_clear(m, PGA_WRITEABLE);
1633}
1634
1635/*
1636 * Conditionally create a pv entry.
1637 */
1638static boolean_t
1639pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1640    vm_page_t m)
1641{
1642	pv_entry_t pv;
1643
1644	rw_assert(&pvh_global_lock, RA_WLOCKED);
1645	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1646	if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
1647		pv->pv_va = va;
1648		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1649		return (TRUE);
1650	} else
1651		return (FALSE);
1652}
1653
1654/*
1655 * pmap_remove_pte: do the things to unmap a page in a process
1656 */
1657static int
1658pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1659    pd_entry_t pde)
1660{
1661	pt_entry_t oldpte;
1662	vm_page_t m;
1663	vm_paddr_t pa;
1664
1665	rw_assert(&pvh_global_lock, RA_WLOCKED);
1666	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1667
1668	/*
1669	 * Write back all cache lines from the page being unmapped.
1670	 */
1671	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1672
1673	oldpte = *ptq;
1674	if (is_kernel_pmap(pmap))
1675		*ptq = PTE_G;
1676	else
1677		*ptq = 0;
1678
1679	if (pte_test(&oldpte, PTE_W))
1680		pmap->pm_stats.wired_count -= 1;
1681
1682	pmap->pm_stats.resident_count -= 1;
1683
1684	if (pte_test(&oldpte, PTE_MANAGED)) {
1685		pa = TLBLO_PTE_TO_PA(oldpte);
1686		m = PHYS_TO_VM_PAGE(pa);
1687		if (pte_test(&oldpte, PTE_D)) {
1688			KASSERT(!pte_test(&oldpte, PTE_RO),
1689			    ("%s: modified page not writable: va: %p, pte: %#jx",
1690			    __func__, (void *)va, (uintmax_t)oldpte));
1691			vm_page_dirty(m);
1692		}
1693		if (m->md.pv_flags & PV_TABLE_REF)
1694			vm_page_aflag_set(m, PGA_REFERENCED);
1695		m->md.pv_flags &= ~PV_TABLE_REF;
1696
1697		pmap_remove_entry(pmap, m, va);
1698	}
1699	return (pmap_unuse_pt(pmap, va, pde));
1700}
1701
1702/*
1703 * Remove a single page from a process address space
1704 */
1705static void
1706pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1707{
1708	pd_entry_t *pde;
1709	pt_entry_t *ptq;
1710
1711	rw_assert(&pvh_global_lock, RA_WLOCKED);
1712	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1713	pde = pmap_pde(pmap, va);
1714	if (pde == NULL || *pde == 0)
1715		return;
1716	ptq = pmap_pde_to_pte(pde, va);
1717
1718	/*
1719	 * If there is no pte for this address, just skip it!
1720	 */
1721	if (!pte_test(ptq, PTE_V))
1722		return;
1723
1724	(void)pmap_remove_pte(pmap, ptq, va, *pde);
1725	pmap_invalidate_page(pmap, va);
1726}
1727
1728/*
1729 *	Remove the given range of addresses from the specified map.
1730 *
1731 *	It is assumed that the start and end are properly
1732 *	rounded to the page size.
1733 */
1734void
1735pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1736{
1737	pd_entry_t *pde, *pdpe;
1738	pt_entry_t *pte;
1739	vm_offset_t va, va_next;
1740
1741	/*
1742	 * Perform an unsynchronized read.  This is, however, safe.
1743	 */
1744	if (pmap->pm_stats.resident_count == 0)
1745		return;
1746
1747	rw_wlock(&pvh_global_lock);
1748	PMAP_LOCK(pmap);
1749
1750	/*
1751	 * special handling of removing one page.  a very common operation
1752	 * and easy to short circuit some code.
1753	 */
1754	if ((sva + PAGE_SIZE) == eva) {
1755		pmap_remove_page(pmap, sva);
1756		goto out;
1757	}
1758	for (; sva < eva; sva = va_next) {
1759		pdpe = pmap_segmap(pmap, sva);
1760#ifdef __mips_n64
1761		if (*pdpe == 0) {
1762			va_next = (sva + NBSEG) & ~SEGMASK;
1763			if (va_next < sva)
1764				va_next = eva;
1765			continue;
1766		}
1767#endif
1768		va_next = (sva + NBPDR) & ~PDRMASK;
1769		if (va_next < sva)
1770			va_next = eva;
1771
1772		pde = pmap_pdpe_to_pde(pdpe, sva);
1773		if (*pde == NULL)
1774			continue;
1775
1776		/*
1777		 * Limit our scan to either the end of the va represented
1778		 * by the current page table page, or to the end of the
1779		 * range being removed.
1780		 */
1781		if (va_next > eva)
1782			va_next = eva;
1783
1784		va = va_next;
1785		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1786		    sva += PAGE_SIZE) {
1787			if (!pte_test(pte, PTE_V)) {
1788				if (va != va_next) {
1789					pmap_invalidate_range(pmap, va, sva);
1790					va = va_next;
1791				}
1792				continue;
1793			}
1794			if (va == va_next)
1795				va = sva;
1796			if (pmap_remove_pte(pmap, pte, sva, *pde)) {
1797				sva += PAGE_SIZE;
1798				break;
1799			}
1800		}
1801		if (va != va_next)
1802			pmap_invalidate_range(pmap, va, sva);
1803	}
1804out:
1805	rw_wunlock(&pvh_global_lock);
1806	PMAP_UNLOCK(pmap);
1807}
1808
1809/*
1810 *	Routine:	pmap_remove_all
1811 *	Function:
1812 *		Removes this physical page from
1813 *		all physical maps in which it resides.
1814 *		Reflects back modify bits to the pager.
1815 *
1816 *	Notes:
1817 *		Original versions of this routine were very
1818 *		inefficient because they iteratively called
1819 *		pmap_remove (slow...)
1820 */
1821
1822void
1823pmap_remove_all(vm_page_t m)
1824{
1825	pv_entry_t pv;
1826	pmap_t pmap;
1827	pd_entry_t *pde;
1828	pt_entry_t *pte, tpte;
1829
1830	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1831	    ("pmap_remove_all: page %p is not managed", m));
1832	rw_wlock(&pvh_global_lock);
1833
1834	if (m->md.pv_flags & PV_TABLE_REF)
1835		vm_page_aflag_set(m, PGA_REFERENCED);
1836
1837	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1838		pmap = PV_PMAP(pv);
1839		PMAP_LOCK(pmap);
1840
1841		/*
1842		 * If it's last mapping writeback all caches from
1843		 * the page being destroyed
1844	 	 */
1845		if (TAILQ_NEXT(pv, pv_list) == NULL)
1846			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1847
1848		pmap->pm_stats.resident_count--;
1849
1850		pde = pmap_pde(pmap, pv->pv_va);
1851		KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
1852		pte = pmap_pde_to_pte(pde, pv->pv_va);
1853
1854		tpte = *pte;
1855		if (is_kernel_pmap(pmap))
1856			*pte = PTE_G;
1857		else
1858			*pte = 0;
1859
1860		if (pte_test(&tpte, PTE_W))
1861			pmap->pm_stats.wired_count--;
1862
1863		/*
1864		 * Update the vm_page_t clean and reference bits.
1865		 */
1866		if (pte_test(&tpte, PTE_D)) {
1867			KASSERT(!pte_test(&tpte, PTE_RO),
1868			    ("%s: modified page not writable: va: %p, pte: %#jx",
1869			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1870			vm_page_dirty(m);
1871		}
1872		pmap_invalidate_page(pmap, pv->pv_va);
1873
1874		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1875		pmap_unuse_pt(pmap, pv->pv_va, *pde);
1876		free_pv_entry(pmap, pv);
1877		PMAP_UNLOCK(pmap);
1878	}
1879
1880	vm_page_aflag_clear(m, PGA_WRITEABLE);
1881	m->md.pv_flags &= ~PV_TABLE_REF;
1882	rw_wunlock(&pvh_global_lock);
1883}
1884
1885/*
1886 *	Set the physical protection on the
1887 *	specified range of this map as requested.
1888 */
1889void
1890pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1891{
1892	pt_entry_t pbits, *pte;
1893	pd_entry_t *pde, *pdpe;
1894	vm_offset_t va, va_next;
1895	vm_paddr_t pa;
1896	vm_page_t m;
1897
1898	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1899		pmap_remove(pmap, sva, eva);
1900		return;
1901	}
1902	if (prot & VM_PROT_WRITE)
1903		return;
1904
1905	PMAP_LOCK(pmap);
1906	for (; sva < eva; sva = va_next) {
1907		pdpe = pmap_segmap(pmap, sva);
1908#ifdef __mips_n64
1909		if (*pdpe == 0) {
1910			va_next = (sva + NBSEG) & ~SEGMASK;
1911			if (va_next < sva)
1912				va_next = eva;
1913			continue;
1914		}
1915#endif
1916		va_next = (sva + NBPDR) & ~PDRMASK;
1917		if (va_next < sva)
1918			va_next = eva;
1919
1920		pde = pmap_pdpe_to_pde(pdpe, sva);
1921		if (*pde == NULL)
1922			continue;
1923
1924		/*
1925		 * Limit our scan to either the end of the va represented
1926		 * by the current page table page, or to the end of the
1927		 * range being write protected.
1928		 */
1929		if (va_next > eva)
1930			va_next = eva;
1931
1932		va = va_next;
1933		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1934		    sva += PAGE_SIZE) {
1935			pbits = *pte;
1936			if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
1937			    PTE_RO)) {
1938				if (va != va_next) {
1939					pmap_invalidate_range(pmap, va, sva);
1940					va = va_next;
1941				}
1942				continue;
1943			}
1944			pte_set(&pbits, PTE_RO);
1945			if (pte_test(&pbits, PTE_D)) {
1946				pte_clear(&pbits, PTE_D);
1947				if (pte_test(&pbits, PTE_MANAGED)) {
1948					pa = TLBLO_PTE_TO_PA(pbits);
1949					m = PHYS_TO_VM_PAGE(pa);
1950					vm_page_dirty(m);
1951				}
1952				if (va == va_next)
1953					va = sva;
1954			} else {
1955				/*
1956				 * Unless PTE_D is set, any TLB entries
1957				 * mapping "sva" don't allow write access, so
1958				 * they needn't be invalidated.
1959				 */
1960				if (va != va_next) {
1961					pmap_invalidate_range(pmap, va, sva);
1962					va = va_next;
1963				}
1964			}
1965			*pte = pbits;
1966		}
1967		if (va != va_next)
1968			pmap_invalidate_range(pmap, va, sva);
1969	}
1970	PMAP_UNLOCK(pmap);
1971}
1972
1973/*
1974 *	Insert the given physical page (p) at
1975 *	the specified virtual address (v) in the
1976 *	target physical map with the protection requested.
1977 *
1978 *	If specified, the page will be wired down, meaning
1979 *	that the related pte can not be reclaimed.
1980 *
1981 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1982 *	or lose information.  That is, this routine must actually
1983 *	insert this page into the given map NOW.
1984 */
1985int
1986pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1987    u_int flags, int8_t psind __unused)
1988{
1989	vm_paddr_t pa, opa;
1990	pt_entry_t *pte;
1991	pt_entry_t origpte, newpte;
1992	pv_entry_t pv;
1993	vm_page_t mpte, om;
1994
1995	va &= ~PAGE_MASK;
1996 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
1997	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
1998	    va >= kmi.clean_eva,
1999	    ("pmap_enter: managed mapping within the clean submap"));
2000	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2001		VM_OBJECT_ASSERT_LOCKED(m->object);
2002	pa = VM_PAGE_TO_PHYS(m);
2003	newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
2004	if ((flags & PMAP_ENTER_WIRED) != 0)
2005		newpte |= PTE_W;
2006	if (is_kernel_pmap(pmap))
2007		newpte |= PTE_G;
2008	if (is_cacheable_mem(pa))
2009		newpte |= PTE_C_CACHE;
2010	else
2011		newpte |= PTE_C_UNCACHED;
2012
2013	mpte = NULL;
2014
2015	rw_wlock(&pvh_global_lock);
2016	PMAP_LOCK(pmap);
2017
2018	/*
2019	 * In the case that a page table page is not resident, we are
2020	 * creating it here.
2021	 */
2022	if (va < VM_MAXUSER_ADDRESS) {
2023		mpte = pmap_allocpte(pmap, va, flags);
2024		if (mpte == NULL) {
2025			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
2026			    ("pmap_allocpte failed with sleep allowed"));
2027			rw_wunlock(&pvh_global_lock);
2028			PMAP_UNLOCK(pmap);
2029			return (KERN_RESOURCE_SHORTAGE);
2030		}
2031	}
2032	pte = pmap_pte(pmap, va);
2033
2034	/*
2035	 * Page Directory table entry not valid, we need a new PT page
2036	 */
2037	if (pte == NULL) {
2038		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
2039		    (void *)pmap->pm_segtab, (void *)va);
2040	}
2041	om = NULL;
2042	origpte = *pte;
2043	opa = TLBLO_PTE_TO_PA(origpte);
2044
2045	/*
2046	 * Mapping has not changed, must be protection or wiring change.
2047	 */
2048	if (pte_test(&origpte, PTE_V) && opa == pa) {
2049		/*
2050		 * Wiring change, just update stats. We don't worry about
2051		 * wiring PT pages as they remain resident as long as there
2052		 * are valid mappings in them. Hence, if a user page is
2053		 * wired, the PT page will be also.
2054		 */
2055		if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
2056			pmap->pm_stats.wired_count++;
2057		else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
2058		    PTE_W))
2059			pmap->pm_stats.wired_count--;
2060
2061		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
2062		    ("%s: modified page not writable: va: %p, pte: %#jx",
2063		    __func__, (void *)va, (uintmax_t)origpte));
2064
2065		/*
2066		 * Remove extra pte reference
2067		 */
2068		if (mpte)
2069			mpte->wire_count--;
2070
2071		if (pte_test(&origpte, PTE_MANAGED)) {
2072			m->md.pv_flags |= PV_TABLE_REF;
2073			om = m;
2074			newpte |= PTE_MANAGED;
2075			if (!pte_test(&newpte, PTE_RO))
2076				vm_page_aflag_set(m, PGA_WRITEABLE);
2077		}
2078		goto validate;
2079	}
2080
2081	pv = NULL;
2082
2083	/*
2084	 * Mapping has changed, invalidate old range and fall through to
2085	 * handle validating new mapping.
2086	 */
2087	if (opa) {
2088		if (pte_test(&origpte, PTE_W))
2089			pmap->pm_stats.wired_count--;
2090
2091		if (pte_test(&origpte, PTE_MANAGED)) {
2092			om = PHYS_TO_VM_PAGE(opa);
2093			pv = pmap_pvh_remove(&om->md, pmap, va);
2094		}
2095		if (mpte != NULL) {
2096			mpte->wire_count--;
2097			KASSERT(mpte->wire_count > 0,
2098			    ("pmap_enter: missing reference to page table page,"
2099			    " va: %p", (void *)va));
2100		}
2101	} else
2102		pmap->pm_stats.resident_count++;
2103
2104	/*
2105	 * Enter on the PV list if part of our managed memory.
2106	 */
2107	if ((m->oflags & VPO_UNMANAGED) == 0) {
2108		m->md.pv_flags |= PV_TABLE_REF;
2109		if (pv == NULL)
2110			pv = get_pv_entry(pmap, FALSE);
2111		pv->pv_va = va;
2112		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2113		newpte |= PTE_MANAGED;
2114		if (!pte_test(&newpte, PTE_RO))
2115			vm_page_aflag_set(m, PGA_WRITEABLE);
2116	} else if (pv != NULL)
2117		free_pv_entry(pmap, pv);
2118
2119	/*
2120	 * Increment counters
2121	 */
2122	if (pte_test(&newpte, PTE_W))
2123		pmap->pm_stats.wired_count++;
2124
2125validate:
2126
2127#ifdef PMAP_DEBUG
2128	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
2129#endif
2130
2131	/*
2132	 * if the mapping or permission bits are different, we need to
2133	 * update the pte.
2134	 */
2135	if (origpte != newpte) {
2136		*pte = newpte;
2137		if (pte_test(&origpte, PTE_V)) {
2138			if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
2139				if (om->md.pv_flags & PV_TABLE_REF)
2140					vm_page_aflag_set(om, PGA_REFERENCED);
2141				om->md.pv_flags &= ~PV_TABLE_REF;
2142			}
2143			if (pte_test(&origpte, PTE_D)) {
2144				KASSERT(!pte_test(&origpte, PTE_RO),
2145				    ("pmap_enter: modified page not writable:"
2146				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
2147				if (pte_test(&origpte, PTE_MANAGED))
2148					vm_page_dirty(om);
2149			}
2150			if (pte_test(&origpte, PTE_MANAGED) &&
2151			    TAILQ_EMPTY(&om->md.pv_list))
2152				vm_page_aflag_clear(om, PGA_WRITEABLE);
2153			pmap_update_page(pmap, va, newpte);
2154		}
2155	}
2156
2157	/*
2158	 * Sync I & D caches for executable pages.  Do this only if the
2159	 * target pmap belongs to the current process.  Otherwise, an
2160	 * unresolvable TLB miss may occur.
2161	 */
2162	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2163	    (prot & VM_PROT_EXECUTE)) {
2164		mips_icache_sync_range(va, PAGE_SIZE);
2165		mips_dcache_wbinv_range(va, PAGE_SIZE);
2166	}
2167	rw_wunlock(&pvh_global_lock);
2168	PMAP_UNLOCK(pmap);
2169	return (KERN_SUCCESS);
2170}
2171
2172/*
2173 * this code makes some *MAJOR* assumptions:
2174 * 1. Current pmap & pmap exists.
2175 * 2. Not wired.
2176 * 3. Read access.
2177 * 4. No page table pages.
2178 * but is *MUCH* faster than pmap_enter...
2179 */
2180
2181void
2182pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2183{
2184
2185	rw_wlock(&pvh_global_lock);
2186	PMAP_LOCK(pmap);
2187	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2188	rw_wunlock(&pvh_global_lock);
2189	PMAP_UNLOCK(pmap);
2190}
2191
2192static vm_page_t
2193pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2194    vm_prot_t prot, vm_page_t mpte)
2195{
2196	pt_entry_t *pte;
2197	vm_paddr_t pa;
2198
2199	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2200	    (m->oflags & VPO_UNMANAGED) != 0,
2201	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2202	rw_assert(&pvh_global_lock, RA_WLOCKED);
2203	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2204
2205	/*
2206	 * In the case that a page table page is not resident, we are
2207	 * creating it here.
2208	 */
2209	if (va < VM_MAXUSER_ADDRESS) {
2210		pd_entry_t *pde;
2211		unsigned ptepindex;
2212
2213		/*
2214		 * Calculate pagetable page index
2215		 */
2216		ptepindex = pmap_pde_pindex(va);
2217		if (mpte && (mpte->pindex == ptepindex)) {
2218			mpte->wire_count++;
2219		} else {
2220			/*
2221			 * Get the page directory entry
2222			 */
2223			pde = pmap_pde(pmap, va);
2224
2225			/*
2226			 * If the page table page is mapped, we just
2227			 * increment the hold count, and activate it.
2228			 */
2229			if (pde && *pde != 0) {
2230				mpte = PHYS_TO_VM_PAGE(
2231				    MIPS_DIRECT_TO_PHYS(*pde));
2232				mpte->wire_count++;
2233			} else {
2234				mpte = _pmap_allocpte(pmap, ptepindex,
2235				    PMAP_ENTER_NOSLEEP);
2236				if (mpte == NULL)
2237					return (mpte);
2238			}
2239		}
2240	} else {
2241		mpte = NULL;
2242	}
2243
2244	pte = pmap_pte(pmap, va);
2245	if (pte_test(pte, PTE_V)) {
2246		if (mpte != NULL) {
2247			mpte->wire_count--;
2248			mpte = NULL;
2249		}
2250		return (mpte);
2251	}
2252
2253	/*
2254	 * Enter on the PV list if part of our managed memory.
2255	 */
2256	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2257	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2258		if (mpte != NULL) {
2259			pmap_unwire_ptp(pmap, va, mpte);
2260			mpte = NULL;
2261		}
2262		return (mpte);
2263	}
2264
2265	/*
2266	 * Increment counters
2267	 */
2268	pmap->pm_stats.resident_count++;
2269
2270	pa = VM_PAGE_TO_PHYS(m);
2271
2272	/*
2273	 * Now validate mapping with RO protection
2274	 */
2275	*pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
2276	if ((m->oflags & VPO_UNMANAGED) == 0)
2277		*pte |= PTE_MANAGED;
2278
2279	if (is_cacheable_mem(pa))
2280		*pte |= PTE_C_CACHE;
2281	else
2282		*pte |= PTE_C_UNCACHED;
2283
2284	if (is_kernel_pmap(pmap))
2285		*pte |= PTE_G;
2286	else {
2287		/*
2288		 * Sync I & D caches.  Do this only if the target pmap
2289		 * belongs to the current process.  Otherwise, an
2290		 * unresolvable TLB miss may occur. */
2291		if (pmap == &curproc->p_vmspace->vm_pmap) {
2292			va &= ~PAGE_MASK;
2293			mips_icache_sync_range(va, PAGE_SIZE);
2294			mips_dcache_wbinv_range(va, PAGE_SIZE);
2295		}
2296	}
2297	return (mpte);
2298}
2299
2300/*
2301 * Make a temporary mapping for a physical address.  This is only intended
2302 * to be used for panic dumps.
2303 *
2304 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2305 */
2306void *
2307pmap_kenter_temporary(vm_paddr_t pa, int i)
2308{
2309	vm_offset_t va;
2310
2311	if (i != 0)
2312		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2313		    __func__);
2314
2315	if (MIPS_DIRECT_MAPPABLE(pa)) {
2316		va = MIPS_PHYS_TO_DIRECT(pa);
2317	} else {
2318#ifndef __mips_n64    /* XXX : to be converted to new style */
2319		int cpu;
2320		register_t intr;
2321		struct local_sysmaps *sysm;
2322		pt_entry_t *pte, npte;
2323
2324		/* If this is used other than for dumps, we may need to leave
2325		 * interrupts disasbled on return. If crash dumps don't work when
2326		 * we get to this point, we might want to consider this (leaving things
2327		 * disabled as a starting point ;-)
2328	 	 */
2329		intr = intr_disable();
2330		cpu = PCPU_GET(cpuid);
2331		sysm = &sysmap_lmem[cpu];
2332		/* Since this is for the debugger, no locks or any other fun */
2333		npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
2334		    PTE_G;
2335		pte = pmap_pte(kernel_pmap, sysm->base);
2336		*pte = npte;
2337		sysm->valid1 = 1;
2338		pmap_update_page(kernel_pmap, sysm->base, npte);
2339		va = sysm->base;
2340		intr_restore(intr);
2341#endif
2342	}
2343	return ((void *)va);
2344}
2345
2346void
2347pmap_kenter_temporary_free(vm_paddr_t pa)
2348{
2349#ifndef __mips_n64    /* XXX : to be converted to new style */
2350	int cpu;
2351	register_t intr;
2352	struct local_sysmaps *sysm;
2353#endif
2354
2355	if (MIPS_DIRECT_MAPPABLE(pa)) {
2356		/* nothing to do for this case */
2357		return;
2358	}
2359#ifndef __mips_n64    /* XXX : to be converted to new style */
2360	cpu = PCPU_GET(cpuid);
2361	sysm = &sysmap_lmem[cpu];
2362	if (sysm->valid1) {
2363		pt_entry_t *pte;
2364
2365		intr = intr_disable();
2366		pte = pmap_pte(kernel_pmap, sysm->base);
2367		*pte = PTE_G;
2368		pmap_invalidate_page(kernel_pmap, sysm->base);
2369		intr_restore(intr);
2370		sysm->valid1 = 0;
2371	}
2372#endif
2373}
2374
2375/*
2376 * Maps a sequence of resident pages belonging to the same object.
2377 * The sequence begins with the given page m_start.  This page is
2378 * mapped at the given virtual address start.  Each subsequent page is
2379 * mapped at a virtual address that is offset from start by the same
2380 * amount as the page is offset from m_start within the object.  The
2381 * last page in the sequence is the page with the largest offset from
2382 * m_start that can be mapped at a virtual address less than the given
2383 * virtual address end.  Not every virtual page between start and end
2384 * is mapped; only those for which a resident page exists with the
2385 * corresponding offset from m_start are mapped.
2386 */
2387void
2388pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2389    vm_page_t m_start, vm_prot_t prot)
2390{
2391	vm_page_t m, mpte;
2392	vm_pindex_t diff, psize;
2393
2394	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2395
2396	psize = atop(end - start);
2397	mpte = NULL;
2398	m = m_start;
2399	rw_wlock(&pvh_global_lock);
2400	PMAP_LOCK(pmap);
2401	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2402		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2403		    prot, mpte);
2404		m = TAILQ_NEXT(m, listq);
2405	}
2406	rw_wunlock(&pvh_global_lock);
2407 	PMAP_UNLOCK(pmap);
2408}
2409
2410/*
2411 * pmap_object_init_pt preloads the ptes for a given object
2412 * into the specified pmap.  This eliminates the blast of soft
2413 * faults on process startup and immediately after an mmap.
2414 */
2415void
2416pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2417    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2418{
2419	VM_OBJECT_ASSERT_WLOCKED(object);
2420	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2421	    ("pmap_object_init_pt: non-device object"));
2422}
2423
2424/*
2425 *	Clear the wired attribute from the mappings for the specified range of
2426 *	addresses in the given pmap.  Every valid mapping within that range
2427 *	must have the wired attribute set.  In contrast, invalid mappings
2428 *	cannot have the wired attribute set, so they are ignored.
2429 *
2430 *	The wired attribute of the page table entry is not a hardware feature,
2431 *	so there is no need to invalidate any TLB entries.
2432 */
2433void
2434pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2435{
2436	pd_entry_t *pde, *pdpe;
2437	pt_entry_t *pte;
2438	vm_offset_t va_next;
2439
2440	PMAP_LOCK(pmap);
2441	for (; sva < eva; sva = va_next) {
2442		pdpe = pmap_segmap(pmap, sva);
2443#ifdef __mips_n64
2444		if (*pdpe == NULL) {
2445			va_next = (sva + NBSEG) & ~SEGMASK;
2446			if (va_next < sva)
2447				va_next = eva;
2448			continue;
2449		}
2450#endif
2451		va_next = (sva + NBPDR) & ~PDRMASK;
2452		if (va_next < sva)
2453			va_next = eva;
2454		pde = pmap_pdpe_to_pde(pdpe, sva);
2455		if (*pde == NULL)
2456			continue;
2457		if (va_next > eva)
2458			va_next = eva;
2459		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2460		    sva += PAGE_SIZE) {
2461			if (!pte_test(pte, PTE_V))
2462				continue;
2463			if (!pte_test(pte, PTE_W))
2464				panic("pmap_unwire: pte %#jx is missing PG_W",
2465				    (uintmax_t)*pte);
2466			pte_clear(pte, PTE_W);
2467			pmap->pm_stats.wired_count--;
2468		}
2469	}
2470	PMAP_UNLOCK(pmap);
2471}
2472
2473/*
2474 *	Copy the range specified by src_addr/len
2475 *	from the source map to the range dst_addr/len
2476 *	in the destination map.
2477 *
2478 *	This routine is only advisory and need not do anything.
2479 */
2480
2481void
2482pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2483    vm_size_t len, vm_offset_t src_addr)
2484{
2485}
2486
2487/*
2488 *	pmap_zero_page zeros the specified hardware page by mapping
2489 *	the page into KVM and using bzero to clear its contents.
2490 *
2491 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2492 */
2493void
2494pmap_zero_page(vm_page_t m)
2495{
2496	vm_offset_t va;
2497	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2498
2499	if (MIPS_DIRECT_MAPPABLE(phys)) {
2500		va = MIPS_PHYS_TO_DIRECT(phys);
2501		bzero((caddr_t)va, PAGE_SIZE);
2502		mips_dcache_wbinv_range(va, PAGE_SIZE);
2503	} else {
2504		va = pmap_lmem_map1(phys);
2505		bzero((caddr_t)va, PAGE_SIZE);
2506		mips_dcache_wbinv_range(va, PAGE_SIZE);
2507		pmap_lmem_unmap();
2508	}
2509}
2510
2511/*
2512 *	pmap_zero_page_area zeros the specified hardware page by mapping
2513 *	the page into KVM and using bzero to clear its contents.
2514 *
2515 *	off and size may not cover an area beyond a single hardware page.
2516 */
2517void
2518pmap_zero_page_area(vm_page_t m, int off, int size)
2519{
2520	vm_offset_t va;
2521	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2522
2523	if (MIPS_DIRECT_MAPPABLE(phys)) {
2524		va = MIPS_PHYS_TO_DIRECT(phys);
2525		bzero((char *)(caddr_t)va + off, size);
2526		mips_dcache_wbinv_range(va + off, size);
2527	} else {
2528		va = pmap_lmem_map1(phys);
2529		bzero((char *)va + off, size);
2530		mips_dcache_wbinv_range(va + off, size);
2531		pmap_lmem_unmap();
2532	}
2533}
2534
2535void
2536pmap_zero_page_idle(vm_page_t m)
2537{
2538	vm_offset_t va;
2539	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2540
2541	if (MIPS_DIRECT_MAPPABLE(phys)) {
2542		va = MIPS_PHYS_TO_DIRECT(phys);
2543		bzero((caddr_t)va, PAGE_SIZE);
2544		mips_dcache_wbinv_range(va, PAGE_SIZE);
2545	} else {
2546		va = pmap_lmem_map1(phys);
2547		bzero((caddr_t)va, PAGE_SIZE);
2548		mips_dcache_wbinv_range(va, PAGE_SIZE);
2549		pmap_lmem_unmap();
2550	}
2551}
2552
2553/*
2554 *	pmap_copy_page copies the specified (machine independent)
2555 *	page by mapping the page into virtual memory and using
2556 *	bcopy to copy the page, one machine dependent page at a
2557 *	time.
2558 *
2559 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2560 */
2561void
2562pmap_copy_page(vm_page_t src, vm_page_t dst)
2563{
2564	vm_offset_t va_src, va_dst;
2565	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2566	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2567
2568	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2569		/* easy case, all can be accessed via KSEG0 */
2570		/*
2571		 * Flush all caches for VA that are mapped to this page
2572		 * to make sure that data in SDRAM is up to date
2573		 */
2574		pmap_flush_pvcache(src);
2575		mips_dcache_wbinv_range_index(
2576		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2577		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2578		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2579		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2580		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2581	} else {
2582		va_src = pmap_lmem_map2(phys_src, phys_dst);
2583		va_dst = va_src + PAGE_SIZE;
2584		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2585		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2586		pmap_lmem_unmap();
2587	}
2588}
2589
2590int unmapped_buf_allowed;
2591
2592void
2593pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2594    vm_offset_t b_offset, int xfersize)
2595{
2596	char *a_cp, *b_cp;
2597	vm_page_t a_m, b_m;
2598	vm_offset_t a_pg_offset, b_pg_offset;
2599	vm_paddr_t a_phys, b_phys;
2600	int cnt;
2601
2602	while (xfersize > 0) {
2603		a_pg_offset = a_offset & PAGE_MASK;
2604		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2605		a_m = ma[a_offset >> PAGE_SHIFT];
2606		a_phys = VM_PAGE_TO_PHYS(a_m);
2607		b_pg_offset = b_offset & PAGE_MASK;
2608		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2609		b_m = mb[b_offset >> PAGE_SHIFT];
2610		b_phys = VM_PAGE_TO_PHYS(b_m);
2611		if (MIPS_DIRECT_MAPPABLE(a_phys) &&
2612		    MIPS_DIRECT_MAPPABLE(b_phys)) {
2613			pmap_flush_pvcache(a_m);
2614			mips_dcache_wbinv_range_index(
2615			    MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
2616			a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
2617			    a_pg_offset;
2618			b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
2619			    b_pg_offset;
2620			bcopy(a_cp, b_cp, cnt);
2621			mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
2622		} else {
2623			a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
2624			b_cp = (char *)a_cp + PAGE_SIZE;
2625			a_cp += a_pg_offset;
2626			b_cp += b_pg_offset;
2627			bcopy(a_cp, b_cp, cnt);
2628			mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
2629			pmap_lmem_unmap();
2630		}
2631		a_offset += cnt;
2632		b_offset += cnt;
2633		xfersize -= cnt;
2634	}
2635}
2636
2637/*
2638 * Returns true if the pmap's pv is one of the first
2639 * 16 pvs linked to from this page.  This count may
2640 * be changed upwards or downwards in the future; it
2641 * is only necessary that true be returned for a small
2642 * subset of pmaps for proper page aging.
2643 */
2644boolean_t
2645pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2646{
2647	pv_entry_t pv;
2648	int loops = 0;
2649	boolean_t rv;
2650
2651	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2652	    ("pmap_page_exists_quick: page %p is not managed", m));
2653	rv = FALSE;
2654	rw_wlock(&pvh_global_lock);
2655	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2656		if (PV_PMAP(pv) == pmap) {
2657			rv = TRUE;
2658			break;
2659		}
2660		loops++;
2661		if (loops >= 16)
2662			break;
2663	}
2664	rw_wunlock(&pvh_global_lock);
2665	return (rv);
2666}
2667
2668/*
2669 * Remove all pages from specified address space
2670 * this aids process exit speeds.  Also, this code
2671 * is special cased for current process only, but
2672 * can have the more generic (and slightly slower)
2673 * mode enabled.  This is much faster than pmap_remove
2674 * in the case of running down an entire address space.
2675 */
2676void
2677pmap_remove_pages(pmap_t pmap)
2678{
2679	pd_entry_t *pde;
2680	pt_entry_t *pte, tpte;
2681	pv_entry_t pv;
2682	vm_page_t m;
2683	struct pv_chunk *pc, *npc;
2684	u_long inuse, bitmask;
2685	int allfree, bit, field, idx;
2686
2687	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2688		printf("warning: pmap_remove_pages called with non-current pmap\n");
2689		return;
2690	}
2691	rw_wlock(&pvh_global_lock);
2692	PMAP_LOCK(pmap);
2693	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2694		allfree = 1;
2695		for (field = 0; field < _NPCM; field++) {
2696			inuse = ~pc->pc_map[field] & pc_freemask[field];
2697			while (inuse != 0) {
2698				bit = ffsl(inuse) - 1;
2699				bitmask = 1UL << bit;
2700				idx = field * sizeof(inuse) * NBBY + bit;
2701				pv = &pc->pc_pventry[idx];
2702				inuse &= ~bitmask;
2703
2704				pde = pmap_pde(pmap, pv->pv_va);
2705				KASSERT(pde != NULL && *pde != 0,
2706				    ("pmap_remove_pages: pde"));
2707				pte = pmap_pde_to_pte(pde, pv->pv_va);
2708				if (!pte_test(pte, PTE_V))
2709					panic("pmap_remove_pages: bad pte");
2710				tpte = *pte;
2711
2712/*
2713 * We cannot remove wired pages from a process' mapping at this time
2714 */
2715				if (pte_test(&tpte, PTE_W)) {
2716					allfree = 0;
2717					continue;
2718				}
2719				*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2720
2721				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2722				KASSERT(m != NULL,
2723				    ("pmap_remove_pages: bad tpte %#jx",
2724				    (uintmax_t)tpte));
2725
2726				/*
2727				 * Update the vm_page_t clean and reference bits.
2728				 */
2729				if (pte_test(&tpte, PTE_D))
2730					vm_page_dirty(m);
2731
2732				/* Mark free */
2733				PV_STAT(pv_entry_frees++);
2734				PV_STAT(pv_entry_spare++);
2735				pv_entry_count--;
2736				pc->pc_map[field] |= bitmask;
2737				pmap->pm_stats.resident_count--;
2738				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2739				if (TAILQ_EMPTY(&m->md.pv_list))
2740					vm_page_aflag_clear(m, PGA_WRITEABLE);
2741				pmap_unuse_pt(pmap, pv->pv_va, *pde);
2742			}
2743		}
2744		if (allfree) {
2745			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2746			free_pv_chunk(pc);
2747		}
2748	}
2749	pmap_invalidate_all(pmap);
2750	PMAP_UNLOCK(pmap);
2751	rw_wunlock(&pvh_global_lock);
2752}
2753
2754/*
2755 * pmap_testbit tests bits in pte's
2756 */
2757static boolean_t
2758pmap_testbit(vm_page_t m, int bit)
2759{
2760	pv_entry_t pv;
2761	pmap_t pmap;
2762	pt_entry_t *pte;
2763	boolean_t rv = FALSE;
2764
2765	if (m->oflags & VPO_UNMANAGED)
2766		return (rv);
2767
2768	rw_assert(&pvh_global_lock, RA_WLOCKED);
2769	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2770		pmap = PV_PMAP(pv);
2771		PMAP_LOCK(pmap);
2772		pte = pmap_pte(pmap, pv->pv_va);
2773		rv = pte_test(pte, bit);
2774		PMAP_UNLOCK(pmap);
2775		if (rv)
2776			break;
2777	}
2778	return (rv);
2779}
2780
2781/*
2782 *	pmap_page_wired_mappings:
2783 *
2784 *	Return the number of managed mappings to the given physical page
2785 *	that are wired.
2786 */
2787int
2788pmap_page_wired_mappings(vm_page_t m)
2789{
2790	pv_entry_t pv;
2791	pmap_t pmap;
2792	pt_entry_t *pte;
2793	int count;
2794
2795	count = 0;
2796	if ((m->oflags & VPO_UNMANAGED) != 0)
2797		return (count);
2798	rw_wlock(&pvh_global_lock);
2799	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2800		pmap = PV_PMAP(pv);
2801		PMAP_LOCK(pmap);
2802		pte = pmap_pte(pmap, pv->pv_va);
2803		if (pte_test(pte, PTE_W))
2804			count++;
2805		PMAP_UNLOCK(pmap);
2806	}
2807	rw_wunlock(&pvh_global_lock);
2808	return (count);
2809}
2810
2811/*
2812 * Clear the write and modified bits in each of the given page's mappings.
2813 */
2814void
2815pmap_remove_write(vm_page_t m)
2816{
2817	pmap_t pmap;
2818	pt_entry_t pbits, *pte;
2819	pv_entry_t pv;
2820
2821	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2822	    ("pmap_remove_write: page %p is not managed", m));
2823
2824	/*
2825	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2826	 * set by another thread while the object is locked.  Thus,
2827	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2828	 */
2829	VM_OBJECT_ASSERT_WLOCKED(m->object);
2830	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2831		return;
2832	rw_wlock(&pvh_global_lock);
2833	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2834		pmap = PV_PMAP(pv);
2835		PMAP_LOCK(pmap);
2836		pte = pmap_pte(pmap, pv->pv_va);
2837		KASSERT(pte != NULL && pte_test(pte, PTE_V),
2838		    ("page on pv_list has no pte"));
2839		pbits = *pte;
2840		if (pte_test(&pbits, PTE_D)) {
2841			pte_clear(&pbits, PTE_D);
2842			vm_page_dirty(m);
2843		}
2844		pte_set(&pbits, PTE_RO);
2845		if (pbits != *pte) {
2846			*pte = pbits;
2847			pmap_update_page(pmap, pv->pv_va, pbits);
2848		}
2849		PMAP_UNLOCK(pmap);
2850	}
2851	vm_page_aflag_clear(m, PGA_WRITEABLE);
2852	rw_wunlock(&pvh_global_lock);
2853}
2854
2855/*
2856 *	pmap_ts_referenced:
2857 *
2858 *	Return the count of reference bits for a page, clearing all of them.
2859 */
2860int
2861pmap_ts_referenced(vm_page_t m)
2862{
2863
2864	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2865	    ("pmap_ts_referenced: page %p is not managed", m));
2866	if (m->md.pv_flags & PV_TABLE_REF) {
2867		rw_wlock(&pvh_global_lock);
2868		m->md.pv_flags &= ~PV_TABLE_REF;
2869		rw_wunlock(&pvh_global_lock);
2870		return (1);
2871	}
2872	return (0);
2873}
2874
2875/*
2876 *	pmap_is_modified:
2877 *
2878 *	Return whether or not the specified physical page was modified
2879 *	in any physical maps.
2880 */
2881boolean_t
2882pmap_is_modified(vm_page_t m)
2883{
2884	boolean_t rv;
2885
2886	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2887	    ("pmap_is_modified: page %p is not managed", m));
2888
2889	/*
2890	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2891	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2892	 * is clear, no PTEs can have PTE_D set.
2893	 */
2894	VM_OBJECT_ASSERT_WLOCKED(m->object);
2895	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2896		return (FALSE);
2897	rw_wlock(&pvh_global_lock);
2898	rv = pmap_testbit(m, PTE_D);
2899	rw_wunlock(&pvh_global_lock);
2900	return (rv);
2901}
2902
2903/* N/C */
2904
2905/*
2906 *	pmap_is_prefaultable:
2907 *
2908 *	Return whether or not the specified virtual address is elgible
2909 *	for prefault.
2910 */
2911boolean_t
2912pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2913{
2914	pd_entry_t *pde;
2915	pt_entry_t *pte;
2916	boolean_t rv;
2917
2918	rv = FALSE;
2919	PMAP_LOCK(pmap);
2920	pde = pmap_pde(pmap, addr);
2921	if (pde != NULL && *pde != 0) {
2922		pte = pmap_pde_to_pte(pde, addr);
2923		rv = (*pte == 0);
2924	}
2925	PMAP_UNLOCK(pmap);
2926	return (rv);
2927}
2928
2929/*
2930 *	Apply the given advice to the specified range of addresses within the
2931 *	given pmap.  Depending on the advice, clear the referenced and/or
2932 *	modified flags in each mapping and set the mapped page's dirty field.
2933 */
2934void
2935pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
2936{
2937	pd_entry_t *pde, *pdpe;
2938	pt_entry_t *pte;
2939	vm_offset_t va, va_next;
2940	vm_paddr_t pa;
2941	vm_page_t m;
2942
2943	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2944		return;
2945	rw_wlock(&pvh_global_lock);
2946	PMAP_LOCK(pmap);
2947	for (; sva < eva; sva = va_next) {
2948		pdpe = pmap_segmap(pmap, sva);
2949#ifdef __mips_n64
2950		if (*pdpe == 0) {
2951			va_next = (sva + NBSEG) & ~SEGMASK;
2952			if (va_next < sva)
2953				va_next = eva;
2954			continue;
2955		}
2956#endif
2957		va_next = (sva + NBPDR) & ~PDRMASK;
2958		if (va_next < sva)
2959			va_next = eva;
2960
2961		pde = pmap_pdpe_to_pde(pdpe, sva);
2962		if (*pde == NULL)
2963			continue;
2964
2965		/*
2966		 * Limit our scan to either the end of the va represented
2967		 * by the current page table page, or to the end of the
2968		 * range being write protected.
2969		 */
2970		if (va_next > eva)
2971			va_next = eva;
2972
2973		va = va_next;
2974		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2975		    sva += PAGE_SIZE) {
2976			if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
2977				if (va != va_next) {
2978					pmap_invalidate_range(pmap, va, sva);
2979					va = va_next;
2980				}
2981				continue;
2982			}
2983			pa = TLBLO_PTE_TO_PA(*pte);
2984			m = PHYS_TO_VM_PAGE(pa);
2985			m->md.pv_flags &= ~PV_TABLE_REF;
2986			if (pte_test(pte, PTE_D)) {
2987				if (advice == MADV_DONTNEED) {
2988					/*
2989					 * Future calls to pmap_is_modified()
2990					 * can be avoided by making the page
2991					 * dirty now.
2992					 */
2993					vm_page_dirty(m);
2994				} else {
2995					pte_clear(pte, PTE_D);
2996					if (va == va_next)
2997						va = sva;
2998				}
2999			} else {
3000				/*
3001				 * Unless PTE_D is set, any TLB entries
3002				 * mapping "sva" don't allow write access, so
3003				 * they needn't be invalidated.
3004				 */
3005				if (va != va_next) {
3006					pmap_invalidate_range(pmap, va, sva);
3007					va = va_next;
3008				}
3009			}
3010		}
3011		if (va != va_next)
3012			pmap_invalidate_range(pmap, va, sva);
3013	}
3014	rw_wunlock(&pvh_global_lock);
3015	PMAP_UNLOCK(pmap);
3016}
3017
3018/*
3019 *	Clear the modify bits on the specified physical page.
3020 */
3021void
3022pmap_clear_modify(vm_page_t m)
3023{
3024	pmap_t pmap;
3025	pt_entry_t *pte;
3026	pv_entry_t pv;
3027
3028	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3029	    ("pmap_clear_modify: page %p is not managed", m));
3030	VM_OBJECT_ASSERT_WLOCKED(m->object);
3031	KASSERT(!vm_page_xbusied(m),
3032	    ("pmap_clear_modify: page %p is exclusive busied", m));
3033
3034	/*
3035	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
3036	 * If the object containing the page is locked and the page is not
3037	 * write busied, then PGA_WRITEABLE cannot be concurrently set.
3038	 */
3039	if ((m->aflags & PGA_WRITEABLE) == 0)
3040		return;
3041	rw_wlock(&pvh_global_lock);
3042	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3043		pmap = PV_PMAP(pv);
3044		PMAP_LOCK(pmap);
3045		pte = pmap_pte(pmap, pv->pv_va);
3046		if (pte_test(pte, PTE_D)) {
3047			pte_clear(pte, PTE_D);
3048			pmap_update_page(pmap, pv->pv_va, *pte);
3049		}
3050		PMAP_UNLOCK(pmap);
3051	}
3052	rw_wunlock(&pvh_global_lock);
3053}
3054
3055/*
3056 *	pmap_is_referenced:
3057 *
3058 *	Return whether or not the specified physical page was referenced
3059 *	in any physical maps.
3060 */
3061boolean_t
3062pmap_is_referenced(vm_page_t m)
3063{
3064
3065	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3066	    ("pmap_is_referenced: page %p is not managed", m));
3067	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
3068}
3069
3070/*
3071 * Miscellaneous support routines follow
3072 */
3073
3074/*
3075 * Map a set of physical memory pages into the kernel virtual
3076 * address space. Return a pointer to where it is mapped. This
3077 * routine is intended to be used for mapping device memory,
3078 * NOT real memory.
3079 *
3080 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
3081 */
3082void *
3083pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3084{
3085        vm_offset_t va, tmpva, offset;
3086
3087	/*
3088	 * KSEG1 maps only first 512M of phys address space. For
3089	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
3090	 */
3091	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
3092		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
3093	else {
3094		offset = pa & PAGE_MASK;
3095		size = roundup(size + offset, PAGE_SIZE);
3096
3097		va = kva_alloc(size);
3098		if (!va)
3099			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3100		pa = trunc_page(pa);
3101		for (tmpva = va; size > 0;) {
3102			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
3103			size -= PAGE_SIZE;
3104			tmpva += PAGE_SIZE;
3105			pa += PAGE_SIZE;
3106		}
3107	}
3108
3109	return ((void *)(va + offset));
3110}
3111
3112void
3113pmap_unmapdev(vm_offset_t va, vm_size_t size)
3114{
3115#ifndef __mips_n64
3116	vm_offset_t base, offset;
3117
3118	/* If the address is within KSEG1 then there is nothing to do */
3119	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
3120		return;
3121
3122	base = trunc_page(va);
3123	offset = va & PAGE_MASK;
3124	size = roundup(size + offset, PAGE_SIZE);
3125	kva_free(base, size);
3126#endif
3127}
3128
3129/*
3130 * perform the pmap work for mincore
3131 */
3132int
3133pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
3134{
3135	pt_entry_t *ptep, pte;
3136	vm_paddr_t pa;
3137	vm_page_t m;
3138	int val;
3139
3140	PMAP_LOCK(pmap);
3141retry:
3142	ptep = pmap_pte(pmap, addr);
3143	pte = (ptep != NULL) ? *ptep : 0;
3144	if (!pte_test(&pte, PTE_V)) {
3145		val = 0;
3146		goto out;
3147	}
3148	val = MINCORE_INCORE;
3149	if (pte_test(&pte, PTE_D))
3150		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3151	pa = TLBLO_PTE_TO_PA(pte);
3152	if (pte_test(&pte, PTE_MANAGED)) {
3153		/*
3154		 * This may falsely report the given address as
3155		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
3156		 * per-PTE reference information, it is impossible to
3157		 * determine if the address is MINCORE_REFERENCED.
3158		 */
3159		m = PHYS_TO_VM_PAGE(pa);
3160		if ((m->aflags & PGA_REFERENCED) != 0)
3161			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3162	}
3163	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
3164	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
3165	    pte_test(&pte, PTE_MANAGED)) {
3166		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3167		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3168			goto retry;
3169	} else
3170out:
3171		PA_UNLOCK_COND(*locked_pa);
3172	PMAP_UNLOCK(pmap);
3173	return (val);
3174}
3175
3176void
3177pmap_activate(struct thread *td)
3178{
3179	pmap_t pmap, oldpmap;
3180	struct proc *p = td->td_proc;
3181	u_int cpuid;
3182
3183	critical_enter();
3184
3185	pmap = vmspace_pmap(p->p_vmspace);
3186	oldpmap = PCPU_GET(curpmap);
3187	cpuid = PCPU_GET(cpuid);
3188
3189	if (oldpmap)
3190		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
3191	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
3192	pmap_asid_alloc(pmap);
3193	if (td == curthread) {
3194		PCPU_SET(segbase, pmap->pm_segtab);
3195		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
3196	}
3197
3198	PCPU_SET(curpmap, pmap);
3199	critical_exit();
3200}
3201
3202static void
3203pmap_sync_icache_one(void *arg __unused)
3204{
3205
3206	mips_icache_sync_all();
3207	mips_dcache_wbinv_all();
3208}
3209
3210void
3211pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3212{
3213
3214	smp_rendezvous(NULL, pmap_sync_icache_one, NULL, NULL);
3215}
3216
3217/*
3218 *	Increase the starting virtual address of the given mapping if a
3219 *	different alignment might result in more superpage mappings.
3220 */
3221void
3222pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3223    vm_offset_t *addr, vm_size_t size)
3224{
3225	vm_offset_t superpage_offset;
3226
3227	if (size < NBSEG)
3228		return;
3229	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3230		offset += ptoa(object->pg_color);
3231	superpage_offset = offset & SEGMASK;
3232	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
3233	    (*addr & SEGMASK) == superpage_offset)
3234		return;
3235	if ((*addr & SEGMASK) < superpage_offset)
3236		*addr = (*addr & ~SEGMASK) + superpage_offset;
3237	else
3238		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
3239}
3240
3241#ifdef DDB
3242DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3243{
3244	pmap_t pmap;
3245	struct thread *td = NULL;
3246	struct proc *p;
3247	int i, j, k;
3248	vm_paddr_t pa;
3249	vm_offset_t va;
3250
3251	if (have_addr) {
3252		td = db_lookup_thread(addr, TRUE);
3253		if (td == NULL) {
3254			db_printf("Invalid pid or tid");
3255			return;
3256		}
3257		p = td->td_proc;
3258		if (p->p_vmspace == NULL) {
3259			db_printf("No vmspace for process");
3260			return;
3261		}
3262			pmap = vmspace_pmap(p->p_vmspace);
3263	} else
3264		pmap = kernel_pmap;
3265
3266	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3267	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3268	    pmap->pm_asid[0].gen);
3269	for (i = 0; i < NPDEPG; i++) {
3270		pd_entry_t *pdpe;
3271		pt_entry_t *pde;
3272		pt_entry_t pte;
3273
3274		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3275		if (pdpe == NULL)
3276			continue;
3277		db_printf("[%4d] %p\n", i, pdpe);
3278#ifdef __mips_n64
3279		for (j = 0; j < NPDEPG; j++) {
3280			pde = (pt_entry_t *)pdpe[j];
3281			if (pde == NULL)
3282				continue;
3283			db_printf("\t[%4d] %p\n", j, pde);
3284#else
3285		{
3286			j = 0;
3287			pde =  (pt_entry_t *)pdpe;
3288#endif
3289			for (k = 0; k < NPTEPG; k++) {
3290				pte = pde[k];
3291				if (pte == 0 || !pte_test(&pte, PTE_V))
3292					continue;
3293				pa = TLBLO_PTE_TO_PA(pte);
3294				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3295				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3296				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3297			}
3298		}
3299	}
3300}
3301#endif
3302
3303#if defined(DEBUG)
3304
3305static void pads(pmap_t pm);
3306void pmap_pvdump(vm_offset_t pa);
3307
3308/* print address space of pmap*/
3309static void
3310pads(pmap_t pm)
3311{
3312	unsigned va, i, j;
3313	pt_entry_t *ptep;
3314
3315	if (pm == kernel_pmap)
3316		return;
3317	for (i = 0; i < NPTEPG; i++)
3318		if (pm->pm_segtab[i])
3319			for (j = 0; j < NPTEPG; j++) {
3320				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3321				if (pm == kernel_pmap && va < KERNBASE)
3322					continue;
3323				if (pm != kernel_pmap &&
3324				    va >= VM_MAXUSER_ADDRESS)
3325					continue;
3326				ptep = pmap_pte(pm, va);
3327				if (pte_test(ptep, PTE_V))
3328					printf("%x:%x ", va, *(int *)ptep);
3329			}
3330
3331}
3332
3333void
3334pmap_pvdump(vm_offset_t pa)
3335{
3336	register pv_entry_t pv;
3337	vm_page_t m;
3338
3339	printf("pa %x", pa);
3340	m = PHYS_TO_VM_PAGE(pa);
3341	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3342	    pv = TAILQ_NEXT(pv, pv_list)) {
3343		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3344		pads(pv->pv_pmap);
3345	}
3346	printf(" ");
3347}
3348
3349/* N/C */
3350#endif
3351
3352
3353/*
3354 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3355 * It takes almost as much or more time to search the TLB for a
3356 * specific ASID and flush those entries as it does to flush the entire TLB.
3357 * Therefore, when we allocate a new ASID, we just take the next number. When
3358 * we run out of numbers, we flush the TLB, increment the generation count
3359 * and start over. ASID zero is reserved for kernel use.
3360 */
3361static void
3362pmap_asid_alloc(pmap)
3363	pmap_t pmap;
3364{
3365	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3366	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3367	else {
3368		if (PCPU_GET(next_asid) == pmap_max_asid) {
3369			tlb_invalidate_all_user(NULL);
3370			PCPU_SET(asid_generation,
3371			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3372			if (PCPU_GET(asid_generation) == 0) {
3373				PCPU_SET(asid_generation, 1);
3374			}
3375			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3376		}
3377		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3378		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3379		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3380	}
3381}
3382
3383static pt_entry_t
3384init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
3385{
3386	pt_entry_t rw;
3387
3388	if (!(prot & VM_PROT_WRITE))
3389		rw = PTE_V | PTE_RO;
3390	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3391		if ((access & VM_PROT_WRITE) != 0)
3392			rw = PTE_V | PTE_D;
3393		else
3394			rw = PTE_V;
3395	} else
3396		/* Needn't emulate a modified bit for unmanaged pages. */
3397		rw = PTE_V | PTE_D;
3398	return (rw);
3399}
3400
3401/*
3402 * pmap_emulate_modified : do dirty bit emulation
3403 *
3404 * On SMP, update just the local TLB, other CPUs will update their
3405 * TLBs from PTE lazily, if they get the exception.
3406 * Returns 0 in case of sucess, 1 if the page is read only and we
3407 * need to fault.
3408 */
3409int
3410pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3411{
3412	pt_entry_t *pte;
3413
3414	PMAP_LOCK(pmap);
3415	pte = pmap_pte(pmap, va);
3416	if (pte == NULL)
3417		panic("pmap_emulate_modified: can't find PTE");
3418#ifdef SMP
3419	/* It is possible that some other CPU changed m-bit */
3420	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3421		tlb_update(pmap, va, *pte);
3422		PMAP_UNLOCK(pmap);
3423		return (0);
3424	}
3425#else
3426	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3427		panic("pmap_emulate_modified: invalid pte");
3428#endif
3429	if (pte_test(pte, PTE_RO)) {
3430		PMAP_UNLOCK(pmap);
3431		return (1);
3432	}
3433	pte_set(pte, PTE_D);
3434	tlb_update(pmap, va, *pte);
3435	if (!pte_test(pte, PTE_MANAGED))
3436		panic("pmap_emulate_modified: unmanaged page");
3437	PMAP_UNLOCK(pmap);
3438	return (0);
3439}
3440
3441/*
3442 *	Routine:	pmap_kextract
3443 *	Function:
3444 *		Extract the physical page address associated
3445 *		virtual address.
3446 */
3447vm_paddr_t
3448pmap_kextract(vm_offset_t va)
3449{
3450	int mapped;
3451
3452	/*
3453	 * First, the direct-mapped regions.
3454	 */
3455#if defined(__mips_n64)
3456	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3457		return (MIPS_XKPHYS_TO_PHYS(va));
3458#endif
3459	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3460		return (MIPS_KSEG0_TO_PHYS(va));
3461
3462	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3463		return (MIPS_KSEG1_TO_PHYS(va));
3464
3465	/*
3466	 * User virtual addresses.
3467	 */
3468	if (va < VM_MAXUSER_ADDRESS) {
3469		pt_entry_t *ptep;
3470
3471		if (curproc && curproc->p_vmspace) {
3472			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3473			if (ptep) {
3474				return (TLBLO_PTE_TO_PA(*ptep) |
3475				    (va & PAGE_MASK));
3476			}
3477			return (0);
3478		}
3479	}
3480
3481	/*
3482	 * Should be kernel virtual here, otherwise fail
3483	 */
3484	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3485#if defined(__mips_n64)
3486	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3487#endif
3488	/*
3489	 * Kernel virtual.
3490	 */
3491
3492	if (mapped) {
3493		pt_entry_t *ptep;
3494
3495		/* Is the kernel pmap initialized? */
3496		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3497			/* It's inside the virtual address range */
3498			ptep = pmap_pte(kernel_pmap, va);
3499			if (ptep) {
3500				return (TLBLO_PTE_TO_PA(*ptep) |
3501				    (va & PAGE_MASK));
3502			}
3503		}
3504		return (0);
3505	}
3506
3507	panic("%s for unknown address space %p.", __func__, (void *)va);
3508}
3509
3510
3511void
3512pmap_flush_pvcache(vm_page_t m)
3513{
3514	pv_entry_t pv;
3515
3516	if (m != NULL) {
3517		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3518		    pv = TAILQ_NEXT(pv, pv_list)) {
3519			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3520		}
3521	}
3522}
3523