pmap.c revision 270439
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 4. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
38 *	from: src/sys/i386/i386/pmap.c,v 1.250.2.8 2000/11/21 00:09:14 ps
39 *	JNPR: pmap.c,v 1.11.2.1 2007/08/16 11:51:06 girish
40 */
41
42/*
43 *	Manages physical address maps.
44 *
45 *	Since the information managed by this module is
46 *	also stored by the logical address mapping module,
47 *	this module may throw away valid virtual-to-physical
48 *	mappings at almost any time.  However, invalidations
49 *	of virtual-to-physical mappings must be done as
50 *	requested.
51 *
52 *	In order to cope with hardware architectures which
53 *	make virtual-to-physical map invalidates expensive,
54 *	this module may delay invalidate or reduced protection
55 *	operations until such time as they are actually
56 *	necessary.  This module is given full information as
57 *	to which processors are currently using which maps,
58 *	and to when physical maps must be made correct.
59 */
60
61#include <sys/cdefs.h>
62__FBSDID("$FreeBSD: stable/10/sys/mips/mips/pmap.c 270439 2014-08-24 07:53:15Z kib $");
63
64#include "opt_ddb.h"
65#include "opt_pmap.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mman.h>
71#include <sys/msgbuf.h>
72#include <sys/mutex.h>
73#include <sys/pcpu.h>
74#include <sys/proc.h>
75#include <sys/rwlock.h>
76#include <sys/sched.h>
77#ifdef SMP
78#include <sys/smp.h>
79#else
80#include <sys/cpuset.h>
81#endif
82#include <sys/sysctl.h>
83#include <sys/vmmeter.h>
84
85#ifdef DDB
86#include <ddb/ddb.h>
87#endif
88
89#include <vm/vm.h>
90#include <vm/vm_param.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_page.h>
93#include <vm/vm_map.h>
94#include <vm/vm_object.h>
95#include <vm/vm_extern.h>
96#include <vm/vm_pageout.h>
97#include <vm/vm_pager.h>
98#include <vm/uma.h>
99
100#include <machine/cache.h>
101#include <machine/md_var.h>
102#include <machine/tlb.h>
103
104#undef PMAP_DEBUG
105
106#if !defined(DIAGNOSTIC)
107#define	PMAP_INLINE __inline
108#else
109#define	PMAP_INLINE
110#endif
111
112#ifdef PV_STATS
113#define PV_STAT(x)	do { x ; } while (0)
114#else
115#define PV_STAT(x)	do { } while (0)
116#endif
117
118/*
119 * Get PDEs and PTEs for user/kernel address space
120 */
121#define	pmap_seg_index(v)	(((v) >> SEGSHIFT) & (NPDEPG - 1))
122#define	pmap_pde_index(v)	(((v) >> PDRSHIFT) & (NPDEPG - 1))
123#define	pmap_pte_index(v)	(((v) >> PAGE_SHIFT) & (NPTEPG - 1))
124#define	pmap_pde_pindex(v)	((v) >> PDRSHIFT)
125
126#ifdef __mips_n64
127#define	NUPDE			(NPDEPG * NPDEPG)
128#define	NUSERPGTBLS		(NUPDE + NPDEPG)
129#else
130#define	NUPDE			(NPDEPG)
131#define	NUSERPGTBLS		(NUPDE)
132#endif
133
134#define	is_kernel_pmap(x)	((x) == kernel_pmap)
135
136struct pmap kernel_pmap_store;
137pd_entry_t *kernel_segmap;
138
139vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
140vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
141
142static int nkpt;
143unsigned pmap_max_asid;		/* max ASID supported by the system */
144
145#define	PMAP_ASID_RESERVED	0
146
147vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
148
149static void pmap_asid_alloc(pmap_t pmap);
150
151static struct rwlock_padalign pvh_global_lock;
152
153/*
154 * Data for the pv entry allocation mechanism
155 */
156static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
157static int pv_entry_count;
158
159static void free_pv_chunk(struct pv_chunk *pc);
160static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
161static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
162static vm_page_t pmap_pv_reclaim(pmap_t locked_pmap);
163static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
164static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
165    vm_offset_t va);
166static vm_page_t pmap_alloc_direct_page(unsigned int index, int req);
167static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
168    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
169static int pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
170    pd_entry_t pde);
171static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
172static void pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va);
173static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte,
174    vm_offset_t va, vm_page_t m);
175static void pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte);
176static void pmap_invalidate_all(pmap_t pmap);
177static void pmap_invalidate_page(pmap_t pmap, vm_offset_t va);
178static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m);
179
180static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
181static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags);
182static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t);
183static pt_entry_t init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot);
184
185static void pmap_invalidate_page_action(void *arg);
186static void pmap_invalidate_range_action(void *arg);
187static void pmap_update_page_action(void *arg);
188
189#ifndef __mips_n64
190/*
191 * This structure is for high memory (memory above 512Meg in 32 bit) support.
192 * The highmem area does not have a KSEG0 mapping, and we need a mechanism to
193 * do temporary per-CPU mappings for pmap_zero_page, pmap_copy_page etc.
194 *
195 * At bootup, we reserve 2 virtual pages per CPU for mapping highmem pages. To
196 * access a highmem physical address on a CPU, we map the physical address to
197 * the reserved virtual address for the CPU in the kernel pagetable.  This is
198 * done with interrupts disabled(although a spinlock and sched_pin would be
199 * sufficient).
200 */
201struct local_sysmaps {
202	vm_offset_t	base;
203	uint32_t	saved_intr;
204	uint16_t	valid1, valid2;
205};
206static struct local_sysmaps sysmap_lmem[MAXCPU];
207
208static __inline void
209pmap_alloc_lmem_map(void)
210{
211	int i;
212
213	for (i = 0; i < MAXCPU; i++) {
214		sysmap_lmem[i].base = virtual_avail;
215		virtual_avail += PAGE_SIZE * 2;
216		sysmap_lmem[i].valid1 = sysmap_lmem[i].valid2 = 0;
217	}
218}
219
220static __inline vm_offset_t
221pmap_lmem_map1(vm_paddr_t phys)
222{
223	struct local_sysmaps *sysm;
224	pt_entry_t *pte, npte;
225	vm_offset_t va;
226	uint32_t intr;
227	int cpu;
228
229	intr = intr_disable();
230	cpu = PCPU_GET(cpuid);
231	sysm = &sysmap_lmem[cpu];
232	sysm->saved_intr = intr;
233	va = sysm->base;
234	npte = TLBLO_PA_TO_PFN(phys) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
235	pte = pmap_pte(kernel_pmap, va);
236	*pte = npte;
237	sysm->valid1 = 1;
238	return (va);
239}
240
241static __inline vm_offset_t
242pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
243{
244	struct local_sysmaps *sysm;
245	pt_entry_t *pte, npte;
246	vm_offset_t va1, va2;
247	uint32_t intr;
248	int cpu;
249
250	intr = intr_disable();
251	cpu = PCPU_GET(cpuid);
252	sysm = &sysmap_lmem[cpu];
253	sysm->saved_intr = intr;
254	va1 = sysm->base;
255	va2 = sysm->base + PAGE_SIZE;
256	npte = TLBLO_PA_TO_PFN(phys1) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
257	pte = pmap_pte(kernel_pmap, va1);
258	*pte = npte;
259	npte = TLBLO_PA_TO_PFN(phys2) | PTE_C_CACHE | PTE_D | PTE_V | PTE_G;
260	pte = pmap_pte(kernel_pmap, va2);
261	*pte = npte;
262	sysm->valid1 = 1;
263	sysm->valid2 = 1;
264	return (va1);
265}
266
267static __inline void
268pmap_lmem_unmap(void)
269{
270	struct local_sysmaps *sysm;
271	pt_entry_t *pte;
272	int cpu;
273
274	cpu = PCPU_GET(cpuid);
275	sysm = &sysmap_lmem[cpu];
276	pte = pmap_pte(kernel_pmap, sysm->base);
277	*pte = PTE_G;
278	tlb_invalidate_address(kernel_pmap, sysm->base);
279	sysm->valid1 = 0;
280	if (sysm->valid2) {
281		pte = pmap_pte(kernel_pmap, sysm->base + PAGE_SIZE);
282		*pte = PTE_G;
283		tlb_invalidate_address(kernel_pmap, sysm->base + PAGE_SIZE);
284		sysm->valid2 = 0;
285	}
286	intr_restore(sysm->saved_intr);
287}
288#else  /* __mips_n64 */
289
290static __inline void
291pmap_alloc_lmem_map(void)
292{
293}
294
295static __inline vm_offset_t
296pmap_lmem_map1(vm_paddr_t phys)
297{
298
299	return (0);
300}
301
302static __inline vm_offset_t
303pmap_lmem_map2(vm_paddr_t phys1, vm_paddr_t phys2)
304{
305
306	return (0);
307}
308
309static __inline vm_offset_t
310pmap_lmem_unmap(void)
311{
312
313	return (0);
314}
315#endif /* !__mips_n64 */
316
317/*
318 * Page table entry lookup routines.
319 */
320static __inline pd_entry_t *
321pmap_segmap(pmap_t pmap, vm_offset_t va)
322{
323
324	return (&pmap->pm_segtab[pmap_seg_index(va)]);
325}
326
327#ifdef __mips_n64
328static __inline pd_entry_t *
329pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
330{
331	pd_entry_t *pde;
332
333	pde = (pd_entry_t *)*pdpe;
334	return (&pde[pmap_pde_index(va)]);
335}
336
337static __inline pd_entry_t *
338pmap_pde(pmap_t pmap, vm_offset_t va)
339{
340	pd_entry_t *pdpe;
341
342	pdpe = pmap_segmap(pmap, va);
343	if (*pdpe == NULL)
344		return (NULL);
345
346	return (pmap_pdpe_to_pde(pdpe, va));
347}
348#else
349static __inline pd_entry_t *
350pmap_pdpe_to_pde(pd_entry_t *pdpe, vm_offset_t va)
351{
352
353	return (pdpe);
354}
355
356static __inline
357pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va)
358{
359
360	return (pmap_segmap(pmap, va));
361}
362#endif
363
364static __inline pt_entry_t *
365pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
366{
367	pt_entry_t *pte;
368
369	pte = (pt_entry_t *)*pde;
370	return (&pte[pmap_pte_index(va)]);
371}
372
373pt_entry_t *
374pmap_pte(pmap_t pmap, vm_offset_t va)
375{
376	pd_entry_t *pde;
377
378	pde = pmap_pde(pmap, va);
379	if (pde == NULL || *pde == NULL)
380		return (NULL);
381
382	return (pmap_pde_to_pte(pde, va));
383}
384
385vm_offset_t
386pmap_steal_memory(vm_size_t size)
387{
388	vm_paddr_t bank_size, pa;
389	vm_offset_t va;
390
391	size = round_page(size);
392	bank_size = phys_avail[1] - phys_avail[0];
393	while (size > bank_size) {
394		int i;
395
396		for (i = 0; phys_avail[i + 2]; i += 2) {
397			phys_avail[i] = phys_avail[i + 2];
398			phys_avail[i + 1] = phys_avail[i + 3];
399		}
400		phys_avail[i] = 0;
401		phys_avail[i + 1] = 0;
402		if (!phys_avail[0])
403			panic("pmap_steal_memory: out of memory");
404		bank_size = phys_avail[1] - phys_avail[0];
405	}
406
407	pa = phys_avail[0];
408	phys_avail[0] += size;
409	if (MIPS_DIRECT_MAPPABLE(pa) == 0)
410		panic("Out of memory below 512Meg?");
411	va = MIPS_PHYS_TO_DIRECT(pa);
412	bzero((caddr_t)va, size);
413	return (va);
414}
415
416/*
417 * Bootstrap the system enough to run with virtual memory.  This
418 * assumes that the phys_avail array has been initialized.
419 */
420static void
421pmap_create_kernel_pagetable(void)
422{
423	int i, j;
424	vm_offset_t ptaddr;
425	pt_entry_t *pte;
426#ifdef __mips_n64
427	pd_entry_t *pde;
428	vm_offset_t pdaddr;
429	int npt, npde;
430#endif
431
432	/*
433	 * Allocate segment table for the kernel
434	 */
435	kernel_segmap = (pd_entry_t *)pmap_steal_memory(PAGE_SIZE);
436
437	/*
438	 * Allocate second level page tables for the kernel
439	 */
440#ifdef __mips_n64
441	npde = howmany(NKPT, NPDEPG);
442	pdaddr = pmap_steal_memory(PAGE_SIZE * npde);
443#endif
444	nkpt = NKPT;
445	ptaddr = pmap_steal_memory(PAGE_SIZE * nkpt);
446
447	/*
448	 * The R[4-7]?00 stores only one copy of the Global bit in the
449	 * translation lookaside buffer for each 2 page entry. Thus invalid
450	 * entrys must have the Global bit set so when Entry LO and Entry HI
451	 * G bits are anded together they will produce a global bit to store
452	 * in the tlb.
453	 */
454	for (i = 0, pte = (pt_entry_t *)ptaddr; i < (nkpt * NPTEPG); i++, pte++)
455		*pte = PTE_G;
456
457#ifdef __mips_n64
458	for (i = 0,  npt = nkpt; npt > 0; i++) {
459		kernel_segmap[i] = (pd_entry_t)(pdaddr + i * PAGE_SIZE);
460		pde = (pd_entry_t *)kernel_segmap[i];
461
462		for (j = 0; j < NPDEPG && npt > 0; j++, npt--)
463			pde[j] = (pd_entry_t)(ptaddr + (i * NPDEPG + j) * PAGE_SIZE);
464	}
465#else
466	for (i = 0, j = pmap_seg_index(VM_MIN_KERNEL_ADDRESS); i < nkpt; i++, j++)
467		kernel_segmap[j] = (pd_entry_t)(ptaddr + (i * PAGE_SIZE));
468#endif
469
470	PMAP_LOCK_INIT(kernel_pmap);
471	kernel_pmap->pm_segtab = kernel_segmap;
472	CPU_FILL(&kernel_pmap->pm_active);
473	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
474	kernel_pmap->pm_asid[0].asid = PMAP_ASID_RESERVED;
475	kernel_pmap->pm_asid[0].gen = 0;
476	kernel_vm_end += nkpt * NPTEPG * PAGE_SIZE;
477}
478
479void
480pmap_bootstrap(void)
481{
482	int i;
483	int need_local_mappings = 0;
484
485	/* Sort. */
486again:
487	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
488		/*
489		 * Keep the memory aligned on page boundary.
490		 */
491		phys_avail[i] = round_page(phys_avail[i]);
492		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
493
494		if (i < 2)
495			continue;
496		if (phys_avail[i - 2] > phys_avail[i]) {
497			vm_paddr_t ptemp[2];
498
499			ptemp[0] = phys_avail[i + 0];
500			ptemp[1] = phys_avail[i + 1];
501
502			phys_avail[i + 0] = phys_avail[i - 2];
503			phys_avail[i + 1] = phys_avail[i - 1];
504
505			phys_avail[i - 2] = ptemp[0];
506			phys_avail[i - 1] = ptemp[1];
507			goto again;
508		}
509	}
510
511       	/*
512	 * In 32 bit, we may have memory which cannot be mapped directly.
513	 * This memory will need temporary mapping before it can be
514	 * accessed.
515	 */
516	if (!MIPS_DIRECT_MAPPABLE(phys_avail[i - 1] - 1))
517		need_local_mappings = 1;
518
519	/*
520	 * Copy the phys_avail[] array before we start stealing memory from it.
521	 */
522	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
523		physmem_desc[i] = phys_avail[i];
524		physmem_desc[i + 1] = phys_avail[i + 1];
525	}
526
527	Maxmem = atop(phys_avail[i - 1]);
528
529	if (bootverbose) {
530		printf("Physical memory chunk(s):\n");
531		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
532			vm_paddr_t size;
533
534			size = phys_avail[i + 1] - phys_avail[i];
535			printf("%#08jx - %#08jx, %ju bytes (%ju pages)\n",
536			    (uintmax_t) phys_avail[i],
537			    (uintmax_t) phys_avail[i + 1] - 1,
538			    (uintmax_t) size, (uintmax_t) size / PAGE_SIZE);
539		}
540		printf("Maxmem is 0x%0jx\n", ptoa((uintmax_t)Maxmem));
541	}
542	/*
543	 * Steal the message buffer from the beginning of memory.
544	 */
545	msgbufp = (struct msgbuf *)pmap_steal_memory(msgbufsize);
546	msgbufinit(msgbufp, msgbufsize);
547
548	/*
549	 * Steal thread0 kstack.
550	 */
551	kstack0 = pmap_steal_memory(KSTACK_PAGES << PAGE_SHIFT);
552
553	virtual_avail = VM_MIN_KERNEL_ADDRESS;
554	virtual_end = VM_MAX_KERNEL_ADDRESS;
555
556#ifdef SMP
557	/*
558	 * Steal some virtual address space to map the pcpu area.
559	 */
560	virtual_avail = roundup2(virtual_avail, PAGE_SIZE * 2);
561	pcpup = (struct pcpu *)virtual_avail;
562	virtual_avail += PAGE_SIZE * 2;
563
564	/*
565	 * Initialize the wired TLB entry mapping the pcpu region for
566	 * the BSP at 'pcpup'. Up until this point we were operating
567	 * with the 'pcpup' for the BSP pointing to a virtual address
568	 * in KSEG0 so there was no need for a TLB mapping.
569	 */
570	mips_pcpu_tlb_init(PCPU_ADDR(0));
571
572	if (bootverbose)
573		printf("pcpu is available at virtual address %p.\n", pcpup);
574#endif
575
576	if (need_local_mappings)
577		pmap_alloc_lmem_map();
578	pmap_create_kernel_pagetable();
579	pmap_max_asid = VMNUM_PIDS;
580	mips_wr_entryhi(0);
581	mips_wr_pagemask(0);
582
583 	/*
584	 * Initialize the global pv list lock.
585	 */
586	rw_init(&pvh_global_lock, "pmap pv global");
587}
588
589/*
590 * Initialize a vm_page's machine-dependent fields.
591 */
592void
593pmap_page_init(vm_page_t m)
594{
595
596	TAILQ_INIT(&m->md.pv_list);
597	m->md.pv_flags = 0;
598}
599
600/*
601 *	Initialize the pmap module.
602 *	Called by vm_init, to initialize any structures that the pmap
603 *	system needs to map virtual memory.
604 */
605void
606pmap_init(void)
607{
608}
609
610/***************************************************
611 * Low level helper routines.....
612 ***************************************************/
613
614#ifdef	SMP
615static __inline void
616pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
617{
618	int	cpuid, cpu, self;
619	cpuset_t active_cpus;
620
621	sched_pin();
622	if (is_kernel_pmap(pmap)) {
623		smp_rendezvous(NULL, fn, NULL, arg);
624		goto out;
625	}
626	/* Force ASID update on inactive CPUs */
627	CPU_FOREACH(cpu) {
628		if (!CPU_ISSET(cpu, &pmap->pm_active))
629			pmap->pm_asid[cpu].gen = 0;
630	}
631	cpuid = PCPU_GET(cpuid);
632	/*
633	 * XXX: barrier/locking for active?
634	 *
635	 * Take a snapshot of active here, any further changes are ignored.
636	 * tlb update/invalidate should be harmless on inactive CPUs
637	 */
638	active_cpus = pmap->pm_active;
639	self = CPU_ISSET(cpuid, &active_cpus);
640	CPU_CLR(cpuid, &active_cpus);
641	/* Optimize for the case where this cpu is the only active one */
642	if (CPU_EMPTY(&active_cpus)) {
643		if (self)
644			fn(arg);
645	} else {
646		if (self)
647			CPU_SET(cpuid, &active_cpus);
648		smp_rendezvous_cpus(active_cpus, NULL, fn, NULL, arg);
649	}
650out:
651	sched_unpin();
652}
653#else /* !SMP */
654static __inline void
655pmap_call_on_active_cpus(pmap_t pmap, void (*fn)(void *), void *arg)
656{
657	int	cpuid;
658
659	if (is_kernel_pmap(pmap)) {
660		fn(arg);
661		return;
662	}
663	cpuid = PCPU_GET(cpuid);
664	if (!CPU_ISSET(cpuid, &pmap->pm_active))
665		pmap->pm_asid[cpuid].gen = 0;
666	else
667		fn(arg);
668}
669#endif /* SMP */
670
671static void
672pmap_invalidate_all(pmap_t pmap)
673{
674
675	pmap_call_on_active_cpus(pmap,
676	    (void (*)(void *))tlb_invalidate_all_user, pmap);
677}
678
679struct pmap_invalidate_page_arg {
680	pmap_t pmap;
681	vm_offset_t va;
682};
683
684static void
685pmap_invalidate_page_action(void *arg)
686{
687	struct pmap_invalidate_page_arg *p = arg;
688
689	tlb_invalidate_address(p->pmap, p->va);
690}
691
692static void
693pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
694{
695	struct pmap_invalidate_page_arg arg;
696
697	arg.pmap = pmap;
698	arg.va = va;
699	pmap_call_on_active_cpus(pmap, pmap_invalidate_page_action, &arg);
700}
701
702struct pmap_invalidate_range_arg {
703	pmap_t pmap;
704	vm_offset_t sva;
705	vm_offset_t eva;
706};
707
708static void
709pmap_invalidate_range_action(void *arg)
710{
711	struct pmap_invalidate_range_arg *p = arg;
712
713	tlb_invalidate_range(p->pmap, p->sva, p->eva);
714}
715
716static void
717pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
718{
719	struct pmap_invalidate_range_arg arg;
720
721	arg.pmap = pmap;
722	arg.sva = sva;
723	arg.eva = eva;
724	pmap_call_on_active_cpus(pmap, pmap_invalidate_range_action, &arg);
725}
726
727struct pmap_update_page_arg {
728	pmap_t pmap;
729	vm_offset_t va;
730	pt_entry_t pte;
731};
732
733static void
734pmap_update_page_action(void *arg)
735{
736	struct pmap_update_page_arg *p = arg;
737
738	tlb_update(p->pmap, p->va, p->pte);
739}
740
741static void
742pmap_update_page(pmap_t pmap, vm_offset_t va, pt_entry_t pte)
743{
744	struct pmap_update_page_arg arg;
745
746	arg.pmap = pmap;
747	arg.va = va;
748	arg.pte = pte;
749	pmap_call_on_active_cpus(pmap, pmap_update_page_action, &arg);
750}
751
752/*
753 *	Routine:	pmap_extract
754 *	Function:
755 *		Extract the physical page address associated
756 *		with the given map/virtual_address pair.
757 */
758vm_paddr_t
759pmap_extract(pmap_t pmap, vm_offset_t va)
760{
761	pt_entry_t *pte;
762	vm_offset_t retval = 0;
763
764	PMAP_LOCK(pmap);
765	pte = pmap_pte(pmap, va);
766	if (pte) {
767		retval = TLBLO_PTE_TO_PA(*pte) | (va & PAGE_MASK);
768	}
769	PMAP_UNLOCK(pmap);
770	return (retval);
771}
772
773/*
774 *	Routine:	pmap_extract_and_hold
775 *	Function:
776 *		Atomically extract and hold the physical page
777 *		with the given pmap and virtual address pair
778 *		if that mapping permits the given protection.
779 */
780vm_page_t
781pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
782{
783	pt_entry_t pte, *ptep;
784	vm_paddr_t pa, pte_pa;
785	vm_page_t m;
786
787	m = NULL;
788	pa = 0;
789	PMAP_LOCK(pmap);
790retry:
791	ptep = pmap_pte(pmap, va);
792	if (ptep != NULL) {
793		pte = *ptep;
794		if (pte_test(&pte, PTE_V) && (!pte_test(&pte, PTE_RO) ||
795		    (prot & VM_PROT_WRITE) == 0)) {
796			pte_pa = TLBLO_PTE_TO_PA(pte);
797			if (vm_page_pa_tryrelock(pmap, pte_pa, &pa))
798				goto retry;
799			m = PHYS_TO_VM_PAGE(pte_pa);
800			vm_page_hold(m);
801		}
802	}
803	PA_UNLOCK_COND(pa);
804	PMAP_UNLOCK(pmap);
805	return (m);
806}
807
808/***************************************************
809 * Low level mapping routines.....
810 ***************************************************/
811
812/*
813 * add a wired page to the kva
814 */
815void
816pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int attr)
817{
818	pt_entry_t *pte;
819	pt_entry_t opte, npte;
820
821#ifdef PMAP_DEBUG
822	printf("pmap_kenter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
823#endif
824
825	pte = pmap_pte(kernel_pmap, va);
826	opte = *pte;
827	npte = TLBLO_PA_TO_PFN(pa) | attr | PTE_D | PTE_V | PTE_G;
828	*pte = npte;
829	if (pte_test(&opte, PTE_V) && opte != npte)
830		pmap_update_page(kernel_pmap, va, npte);
831}
832
833void
834pmap_kenter(vm_offset_t va, vm_paddr_t pa)
835{
836
837	KASSERT(is_cacheable_mem(pa),
838		("pmap_kenter: memory at 0x%lx is not cacheable", (u_long)pa));
839
840	pmap_kenter_attr(va, pa, PTE_C_CACHE);
841}
842
843/*
844 * remove a page from the kernel pagetables
845 */
846 /* PMAP_INLINE */ void
847pmap_kremove(vm_offset_t va)
848{
849	pt_entry_t *pte;
850
851	/*
852	 * Write back all caches from the page being destroyed
853	 */
854	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
855
856	pte = pmap_pte(kernel_pmap, va);
857	*pte = PTE_G;
858	pmap_invalidate_page(kernel_pmap, va);
859}
860
861/*
862 *	Used to map a range of physical addresses into kernel
863 *	virtual address space.
864 *
865 *	The value passed in '*virt' is a suggested virtual address for
866 *	the mapping. Architectures which can support a direct-mapped
867 *	physical to virtual region can return the appropriate address
868 *	within that region, leaving '*virt' unchanged. Other
869 *	architectures should map the pages starting at '*virt' and
870 *	update '*virt' with the first usable address after the mapped
871 *	region.
872 *
873 *	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
874 */
875vm_offset_t
876pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
877{
878	vm_offset_t va, sva;
879
880	if (MIPS_DIRECT_MAPPABLE(end - 1))
881		return (MIPS_PHYS_TO_DIRECT(start));
882
883	va = sva = *virt;
884	while (start < end) {
885		pmap_kenter(va, start);
886		va += PAGE_SIZE;
887		start += PAGE_SIZE;
888	}
889	*virt = va;
890	return (sva);
891}
892
893/*
894 * Add a list of wired pages to the kva
895 * this routine is only used for temporary
896 * kernel mappings that do not need to have
897 * page modification or references recorded.
898 * Note that old mappings are simply written
899 * over.  The page *must* be wired.
900 */
901void
902pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
903{
904	int i;
905	vm_offset_t origva = va;
906
907	for (i = 0; i < count; i++) {
908		pmap_flush_pvcache(m[i]);
909		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
910		va += PAGE_SIZE;
911	}
912
913	mips_dcache_wbinv_range_index(origva, PAGE_SIZE*count);
914}
915
916/*
917 * this routine jerks page mappings from the
918 * kernel -- it is meant only for temporary mappings.
919 */
920void
921pmap_qremove(vm_offset_t va, int count)
922{
923	pt_entry_t *pte;
924	vm_offset_t origva;
925
926	if (count < 1)
927		return;
928	mips_dcache_wbinv_range_index(va, PAGE_SIZE * count);
929	origva = va;
930	do {
931		pte = pmap_pte(kernel_pmap, va);
932		*pte = PTE_G;
933		va += PAGE_SIZE;
934	} while (--count > 0);
935	pmap_invalidate_range(kernel_pmap, origva, va);
936}
937
938/***************************************************
939 * Page table page management routines.....
940 ***************************************************/
941
942/*
943 * Decrements a page table page's wire count, which is used to record the
944 * number of valid page table entries within the page.  If the wire count
945 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
946 * page table page was unmapped and FALSE otherwise.
947 */
948static PMAP_INLINE boolean_t
949pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
950{
951
952	--m->wire_count;
953	if (m->wire_count == 0) {
954		_pmap_unwire_ptp(pmap, va, m);
955		return (TRUE);
956	} else
957		return (FALSE);
958}
959
960static void
961_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m)
962{
963	pd_entry_t *pde;
964
965	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
966	/*
967	 * unmap the page table page
968	 */
969#ifdef __mips_n64
970	if (m->pindex < NUPDE)
971		pde = pmap_pde(pmap, va);
972	else
973		pde = pmap_segmap(pmap, va);
974#else
975	pde = pmap_pde(pmap, va);
976#endif
977	*pde = 0;
978	pmap->pm_stats.resident_count--;
979
980#ifdef __mips_n64
981	if (m->pindex < NUPDE) {
982		pd_entry_t *pdp;
983		vm_page_t pdpg;
984
985		/*
986		 * Recursively decrement next level pagetable refcount
987		 */
988		pdp = (pd_entry_t *)*pmap_segmap(pmap, va);
989		pdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pdp));
990		pmap_unwire_ptp(pmap, va, pdpg);
991	}
992#endif
993
994	/*
995	 * If the page is finally unwired, simply free it.
996	 */
997	vm_page_free_zero(m);
998	atomic_subtract_int(&cnt.v_wire_count, 1);
999}
1000
1001/*
1002 * After removing a page table entry, this routine is used to
1003 * conditionally free the page, and manage the hold/wire counts.
1004 */
1005static int
1006pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
1007{
1008	vm_page_t mpte;
1009
1010	if (va >= VM_MAXUSER_ADDRESS)
1011		return (0);
1012	KASSERT(pde != 0, ("pmap_unuse_pt: pde != 0"));
1013	mpte = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(pde));
1014	return (pmap_unwire_ptp(pmap, va, mpte));
1015}
1016
1017void
1018pmap_pinit0(pmap_t pmap)
1019{
1020	int i;
1021
1022	PMAP_LOCK_INIT(pmap);
1023	pmap->pm_segtab = kernel_segmap;
1024	CPU_ZERO(&pmap->pm_active);
1025	for (i = 0; i < MAXCPU; i++) {
1026		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1027		pmap->pm_asid[i].gen = 0;
1028	}
1029	PCPU_SET(curpmap, pmap);
1030	TAILQ_INIT(&pmap->pm_pvchunk);
1031	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1032}
1033
1034void
1035pmap_grow_direct_page_cache()
1036{
1037
1038#ifdef __mips_n64
1039	vm_pageout_grow_cache(3, 0, MIPS_XKPHYS_LARGEST_PHYS);
1040#else
1041	vm_pageout_grow_cache(3, 0, MIPS_KSEG0_LARGEST_PHYS);
1042#endif
1043}
1044
1045static vm_page_t
1046pmap_alloc_direct_page(unsigned int index, int req)
1047{
1048	vm_page_t m;
1049
1050	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, req | VM_ALLOC_WIRED |
1051	    VM_ALLOC_ZERO);
1052	if (m == NULL)
1053		return (NULL);
1054
1055	if ((m->flags & PG_ZERO) == 0)
1056		pmap_zero_page(m);
1057
1058	m->pindex = index;
1059	return (m);
1060}
1061
1062/*
1063 * Initialize a preallocated and zeroed pmap structure,
1064 * such as one in a vmspace structure.
1065 */
1066int
1067pmap_pinit(pmap_t pmap)
1068{
1069	vm_offset_t ptdva;
1070	vm_page_t ptdpg;
1071	int i;
1072
1073	/*
1074	 * allocate the page directory page
1075	 */
1076	while ((ptdpg = pmap_alloc_direct_page(NUSERPGTBLS, VM_ALLOC_NORMAL)) == NULL)
1077	       pmap_grow_direct_page_cache();
1078
1079	ptdva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(ptdpg));
1080	pmap->pm_segtab = (pd_entry_t *)ptdva;
1081	CPU_ZERO(&pmap->pm_active);
1082	for (i = 0; i < MAXCPU; i++) {
1083		pmap->pm_asid[i].asid = PMAP_ASID_RESERVED;
1084		pmap->pm_asid[i].gen = 0;
1085	}
1086	TAILQ_INIT(&pmap->pm_pvchunk);
1087	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1088
1089	return (1);
1090}
1091
1092/*
1093 * this routine is called if the page table page is not
1094 * mapped correctly.
1095 */
1096static vm_page_t
1097_pmap_allocpte(pmap_t pmap, unsigned ptepindex, u_int flags)
1098{
1099	vm_offset_t pageva;
1100	vm_page_t m;
1101
1102	/*
1103	 * Find or fabricate a new pagetable page
1104	 */
1105	if ((m = pmap_alloc_direct_page(ptepindex, VM_ALLOC_NORMAL)) == NULL) {
1106		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1107			PMAP_UNLOCK(pmap);
1108			rw_wunlock(&pvh_global_lock);
1109			pmap_grow_direct_page_cache();
1110			rw_wlock(&pvh_global_lock);
1111			PMAP_LOCK(pmap);
1112		}
1113
1114		/*
1115		 * Indicate the need to retry.	While waiting, the page
1116		 * table page may have been allocated.
1117		 */
1118		return (NULL);
1119	}
1120
1121	/*
1122	 * Map the pagetable page into the process address space, if it
1123	 * isn't already there.
1124	 */
1125	pageva = MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1126
1127#ifdef __mips_n64
1128	if (ptepindex >= NUPDE) {
1129		pmap->pm_segtab[ptepindex - NUPDE] = (pd_entry_t)pageva;
1130	} else {
1131		pd_entry_t *pdep, *pde;
1132		int segindex = ptepindex >> (SEGSHIFT - PDRSHIFT);
1133		int pdeindex = ptepindex & (NPDEPG - 1);
1134		vm_page_t pg;
1135
1136		pdep = &pmap->pm_segtab[segindex];
1137		if (*pdep == NULL) {
1138			/* recurse for allocating page dir */
1139			if (_pmap_allocpte(pmap, NUPDE + segindex,
1140			    flags) == NULL) {
1141				/* alloc failed, release current */
1142				--m->wire_count;
1143				atomic_subtract_int(&cnt.v_wire_count, 1);
1144				vm_page_free_zero(m);
1145				return (NULL);
1146			}
1147		} else {
1148			pg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pdep));
1149			pg->wire_count++;
1150		}
1151		/* Next level entry */
1152		pde = (pd_entry_t *)*pdep;
1153		pde[pdeindex] = (pd_entry_t)pageva;
1154	}
1155#else
1156	pmap->pm_segtab[ptepindex] = (pd_entry_t)pageva;
1157#endif
1158	pmap->pm_stats.resident_count++;
1159	return (m);
1160}
1161
1162static vm_page_t
1163pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1164{
1165	unsigned ptepindex;
1166	pd_entry_t *pde;
1167	vm_page_t m;
1168
1169	/*
1170	 * Calculate pagetable page index
1171	 */
1172	ptepindex = pmap_pde_pindex(va);
1173retry:
1174	/*
1175	 * Get the page directory entry
1176	 */
1177	pde = pmap_pde(pmap, va);
1178
1179	/*
1180	 * If the page table page is mapped, we just increment the hold
1181	 * count, and activate it.
1182	 */
1183	if (pde != NULL && *pde != NULL) {
1184		m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(*pde));
1185		m->wire_count++;
1186	} else {
1187		/*
1188		 * Here if the pte page isn't mapped, or if it has been
1189		 * deallocated.
1190		 */
1191		m = _pmap_allocpte(pmap, ptepindex, flags);
1192		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1193			goto retry;
1194	}
1195	return (m);
1196}
1197
1198
1199/***************************************************
1200 * Pmap allocation/deallocation routines.
1201 ***************************************************/
1202
1203/*
1204 * Release any resources held by the given physical map.
1205 * Called when a pmap initialized by pmap_pinit is being released.
1206 * Should only be called if the map contains no valid mappings.
1207 */
1208void
1209pmap_release(pmap_t pmap)
1210{
1211	vm_offset_t ptdva;
1212	vm_page_t ptdpg;
1213
1214	KASSERT(pmap->pm_stats.resident_count == 0,
1215	    ("pmap_release: pmap resident count %ld != 0",
1216	    pmap->pm_stats.resident_count));
1217
1218	ptdva = (vm_offset_t)pmap->pm_segtab;
1219	ptdpg = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(ptdva));
1220
1221	ptdpg->wire_count--;
1222	atomic_subtract_int(&cnt.v_wire_count, 1);
1223	vm_page_free_zero(ptdpg);
1224}
1225
1226/*
1227 * grow the number of kernel page table entries, if needed
1228 */
1229void
1230pmap_growkernel(vm_offset_t addr)
1231{
1232	vm_page_t nkpg;
1233	pd_entry_t *pde, *pdpe;
1234	pt_entry_t *pte;
1235	int i;
1236
1237	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1238	addr = roundup2(addr, NBSEG);
1239	if (addr - 1 >= kernel_map->max_offset)
1240		addr = kernel_map->max_offset;
1241	while (kernel_vm_end < addr) {
1242		pdpe = pmap_segmap(kernel_pmap, kernel_vm_end);
1243#ifdef __mips_n64
1244		if (*pdpe == 0) {
1245			/* new intermediate page table entry */
1246			nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1247			if (nkpg == NULL)
1248				panic("pmap_growkernel: no memory to grow kernel");
1249			*pdpe = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1250			continue; /* try again */
1251		}
1252#endif
1253		pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
1254		if (*pde != 0) {
1255			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1256			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1257				kernel_vm_end = kernel_map->max_offset;
1258				break;
1259			}
1260			continue;
1261		}
1262
1263		/*
1264		 * This index is bogus, but out of the way
1265		 */
1266		nkpg = pmap_alloc_direct_page(nkpt, VM_ALLOC_INTERRUPT);
1267		if (!nkpg)
1268			panic("pmap_growkernel: no memory to grow kernel");
1269		nkpt++;
1270		*pde = (pd_entry_t)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(nkpg));
1271
1272		/*
1273		 * The R[4-7]?00 stores only one copy of the Global bit in
1274		 * the translation lookaside buffer for each 2 page entry.
1275		 * Thus invalid entrys must have the Global bit set so when
1276		 * Entry LO and Entry HI G bits are anded together they will
1277		 * produce a global bit to store in the tlb.
1278		 */
1279		pte = (pt_entry_t *)*pde;
1280		for (i = 0; i < NPTEPG; i++)
1281			pte[i] = PTE_G;
1282
1283		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1284		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1285			kernel_vm_end = kernel_map->max_offset;
1286			break;
1287		}
1288	}
1289}
1290
1291/***************************************************
1292 * page management routines.
1293 ***************************************************/
1294
1295CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1296#ifdef __mips_n64
1297CTASSERT(_NPCM == 3);
1298CTASSERT(_NPCPV == 168);
1299#else
1300CTASSERT(_NPCM == 11);
1301CTASSERT(_NPCPV == 336);
1302#endif
1303
1304static __inline struct pv_chunk *
1305pv_to_chunk(pv_entry_t pv)
1306{
1307
1308	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1309}
1310
1311#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1312
1313#ifdef __mips_n64
1314#define	PC_FREE0_1	0xfffffffffffffffful
1315#define	PC_FREE2	0x000000fffffffffful
1316#else
1317#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1318#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1319#endif
1320
1321static const u_long pc_freemask[_NPCM] = {
1322#ifdef __mips_n64
1323	PC_FREE0_1, PC_FREE0_1, PC_FREE2
1324#else
1325	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1326	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1327	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1328	PC_FREE0_9, PC_FREE10
1329#endif
1330};
1331
1332static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1333
1334SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1335    "Current number of pv entries");
1336
1337#ifdef PV_STATS
1338static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1339
1340SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1341    "Current number of pv entry chunks");
1342SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1343    "Current number of pv entry chunks allocated");
1344SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1345    "Current number of pv entry chunks frees");
1346SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1347    "Number of times tried to get a chunk page but failed.");
1348
1349static long pv_entry_frees, pv_entry_allocs;
1350static int pv_entry_spare;
1351
1352SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1353    "Current number of pv entry frees");
1354SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1355    "Current number of pv entry allocs");
1356SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1357    "Current number of spare pv entries");
1358#endif
1359
1360/*
1361 * We are in a serious low memory condition.  Resort to
1362 * drastic measures to free some pages so we can allocate
1363 * another pv entry chunk.
1364 */
1365static vm_page_t
1366pmap_pv_reclaim(pmap_t locked_pmap)
1367{
1368	struct pch newtail;
1369	struct pv_chunk *pc;
1370	pd_entry_t *pde;
1371	pmap_t pmap;
1372	pt_entry_t *pte, oldpte;
1373	pv_entry_t pv;
1374	vm_offset_t va;
1375	vm_page_t m, m_pc;
1376	u_long inuse;
1377	int bit, field, freed, idx;
1378
1379	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1380	pmap = NULL;
1381	m_pc = NULL;
1382	TAILQ_INIT(&newtail);
1383	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL) {
1384		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1385		if (pmap != pc->pc_pmap) {
1386			if (pmap != NULL) {
1387				pmap_invalidate_all(pmap);
1388				if (pmap != locked_pmap)
1389					PMAP_UNLOCK(pmap);
1390			}
1391			pmap = pc->pc_pmap;
1392			/* Avoid deadlock and lock recursion. */
1393			if (pmap > locked_pmap)
1394				PMAP_LOCK(pmap);
1395			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1396				pmap = NULL;
1397				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1398				continue;
1399			}
1400		}
1401
1402		/*
1403		 * Destroy every non-wired, 4 KB page mapping in the chunk.
1404		 */
1405		freed = 0;
1406		for (field = 0; field < _NPCM; field++) {
1407			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
1408			    inuse != 0; inuse &= ~(1UL << bit)) {
1409				bit = ffsl(inuse) - 1;
1410				idx = field * sizeof(inuse) * NBBY + bit;
1411				pv = &pc->pc_pventry[idx];
1412				va = pv->pv_va;
1413				pde = pmap_pde(pmap, va);
1414				KASSERT(pde != NULL && *pde != 0,
1415				    ("pmap_pv_reclaim: pde"));
1416				pte = pmap_pde_to_pte(pde, va);
1417				oldpte = *pte;
1418				if (pte_test(&oldpte, PTE_W))
1419					continue;
1420				if (is_kernel_pmap(pmap))
1421					*pte = PTE_G;
1422				else
1423					*pte = 0;
1424				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(oldpte));
1425				if (pte_test(&oldpte, PTE_D))
1426					vm_page_dirty(m);
1427				if (m->md.pv_flags & PV_TABLE_REF)
1428					vm_page_aflag_set(m, PGA_REFERENCED);
1429				m->md.pv_flags &= ~PV_TABLE_REF;
1430				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1431				if (TAILQ_EMPTY(&m->md.pv_list))
1432					vm_page_aflag_clear(m, PGA_WRITEABLE);
1433				pc->pc_map[field] |= 1UL << bit;
1434				pmap_unuse_pt(pmap, va, *pde);
1435				freed++;
1436			}
1437		}
1438		if (freed == 0) {
1439			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1440			continue;
1441		}
1442		/* Every freed mapping is for a 4 KB page. */
1443		pmap->pm_stats.resident_count -= freed;
1444		PV_STAT(pv_entry_frees += freed);
1445		PV_STAT(pv_entry_spare += freed);
1446		pv_entry_count -= freed;
1447		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1448		for (field = 0; field < _NPCM; field++)
1449			if (pc->pc_map[field] != pc_freemask[field]) {
1450				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1451				    pc_list);
1452				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1453
1454				/*
1455				 * One freed pv entry in locked_pmap is
1456				 * sufficient.
1457				 */
1458				if (pmap == locked_pmap)
1459					goto out;
1460				break;
1461			}
1462		if (field == _NPCM) {
1463			PV_STAT(pv_entry_spare -= _NPCPV);
1464			PV_STAT(pc_chunk_count--);
1465			PV_STAT(pc_chunk_frees++);
1466			/* Entire chunk is free; return it. */
1467			m_pc = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS(
1468			    (vm_offset_t)pc));
1469			break;
1470		}
1471	}
1472out:
1473	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
1474	if (pmap != NULL) {
1475		pmap_invalidate_all(pmap);
1476		if (pmap != locked_pmap)
1477			PMAP_UNLOCK(pmap);
1478	}
1479	return (m_pc);
1480}
1481
1482/*
1483 * free the pv_entry back to the free list
1484 */
1485static void
1486free_pv_entry(pmap_t pmap, pv_entry_t pv)
1487{
1488	struct pv_chunk *pc;
1489	int bit, field, idx;
1490
1491	rw_assert(&pvh_global_lock, RA_WLOCKED);
1492	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1493	PV_STAT(pv_entry_frees++);
1494	PV_STAT(pv_entry_spare++);
1495	pv_entry_count--;
1496	pc = pv_to_chunk(pv);
1497	idx = pv - &pc->pc_pventry[0];
1498	field = idx / (sizeof(u_long) * NBBY);
1499	bit = idx % (sizeof(u_long) * NBBY);
1500	pc->pc_map[field] |= 1ul << bit;
1501	for (idx = 0; idx < _NPCM; idx++)
1502		if (pc->pc_map[idx] != pc_freemask[idx]) {
1503			/*
1504			 * 98% of the time, pc is already at the head of the
1505			 * list.  If it isn't already, move it to the head.
1506			 */
1507			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
1508			    pc)) {
1509				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1510				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
1511				    pc_list);
1512			}
1513			return;
1514		}
1515	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1516	free_pv_chunk(pc);
1517}
1518
1519static void
1520free_pv_chunk(struct pv_chunk *pc)
1521{
1522	vm_page_t m;
1523
1524 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1525	PV_STAT(pv_entry_spare -= _NPCPV);
1526	PV_STAT(pc_chunk_count--);
1527	PV_STAT(pc_chunk_frees++);
1528	/* entire chunk is free, return it */
1529	m = PHYS_TO_VM_PAGE(MIPS_DIRECT_TO_PHYS((vm_offset_t)pc));
1530	vm_page_unwire(m, 0);
1531	vm_page_free(m);
1532}
1533
1534/*
1535 * get a new pv_entry, allocating a block from the system
1536 * when needed.
1537 */
1538static pv_entry_t
1539get_pv_entry(pmap_t pmap, boolean_t try)
1540{
1541	struct pv_chunk *pc;
1542	pv_entry_t pv;
1543	vm_page_t m;
1544	int bit, field, idx;
1545
1546	rw_assert(&pvh_global_lock, RA_WLOCKED);
1547	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1548	PV_STAT(pv_entry_allocs++);
1549	pv_entry_count++;
1550retry:
1551	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1552	if (pc != NULL) {
1553		for (field = 0; field < _NPCM; field++) {
1554			if (pc->pc_map[field]) {
1555				bit = ffsl(pc->pc_map[field]) - 1;
1556				break;
1557			}
1558		}
1559		if (field < _NPCM) {
1560			idx = field * sizeof(pc->pc_map[field]) * NBBY + bit;
1561			pv = &pc->pc_pventry[idx];
1562			pc->pc_map[field] &= ~(1ul << bit);
1563			/* If this was the last item, move it to tail */
1564			for (field = 0; field < _NPCM; field++)
1565				if (pc->pc_map[field] != 0) {
1566					PV_STAT(pv_entry_spare--);
1567					return (pv);	/* not full, return */
1568				}
1569			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1570			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1571			PV_STAT(pv_entry_spare--);
1572			return (pv);
1573		}
1574	}
1575	/* No free items, allocate another chunk */
1576	m = vm_page_alloc_freelist(VM_FREELIST_DIRECT, VM_ALLOC_NORMAL |
1577	    VM_ALLOC_WIRED);
1578	if (m == NULL) {
1579		if (try) {
1580			pv_entry_count--;
1581			PV_STAT(pc_chunk_tryfail++);
1582			return (NULL);
1583		}
1584		m = pmap_pv_reclaim(pmap);
1585		if (m == NULL)
1586			goto retry;
1587	}
1588	PV_STAT(pc_chunk_count++);
1589	PV_STAT(pc_chunk_allocs++);
1590	pc = (struct pv_chunk *)MIPS_PHYS_TO_DIRECT(VM_PAGE_TO_PHYS(m));
1591	pc->pc_pmap = pmap;
1592	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1593	for (field = 1; field < _NPCM; field++)
1594		pc->pc_map[field] = pc_freemask[field];
1595	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
1596	pv = &pc->pc_pventry[0];
1597	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1598	PV_STAT(pv_entry_spare += _NPCPV - 1);
1599	return (pv);
1600}
1601
1602static pv_entry_t
1603pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1604{
1605	pv_entry_t pv;
1606
1607	rw_assert(&pvh_global_lock, RA_WLOCKED);
1608	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
1609		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
1610			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
1611			break;
1612		}
1613	}
1614	return (pv);
1615}
1616
1617static void
1618pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
1619{
1620	pv_entry_t pv;
1621
1622	pv = pmap_pvh_remove(pvh, pmap, va);
1623	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found, pa %lx va %lx",
1624	     (u_long)VM_PAGE_TO_PHYS(__containerof(pvh, struct vm_page, md)),
1625	     (u_long)va));
1626	free_pv_entry(pmap, pv);
1627}
1628
1629static void
1630pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1631{
1632
1633	rw_assert(&pvh_global_lock, RA_WLOCKED);
1634	pmap_pvh_free(&m->md, pmap, va);
1635	if (TAILQ_EMPTY(&m->md.pv_list))
1636		vm_page_aflag_clear(m, PGA_WRITEABLE);
1637}
1638
1639/*
1640 * Conditionally create a pv entry.
1641 */
1642static boolean_t
1643pmap_try_insert_pv_entry(pmap_t pmap, vm_page_t mpte, vm_offset_t va,
1644    vm_page_t m)
1645{
1646	pv_entry_t pv;
1647
1648	rw_assert(&pvh_global_lock, RA_WLOCKED);
1649	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1650	if ((pv = get_pv_entry(pmap, TRUE)) != NULL) {
1651		pv->pv_va = va;
1652		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1653		return (TRUE);
1654	} else
1655		return (FALSE);
1656}
1657
1658/*
1659 * pmap_remove_pte: do the things to unmap a page in a process
1660 */
1661static int
1662pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
1663    pd_entry_t pde)
1664{
1665	pt_entry_t oldpte;
1666	vm_page_t m;
1667	vm_paddr_t pa;
1668
1669	rw_assert(&pvh_global_lock, RA_WLOCKED);
1670	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1671
1672	/*
1673	 * Write back all cache lines from the page being unmapped.
1674	 */
1675	mips_dcache_wbinv_range_index(va, PAGE_SIZE);
1676
1677	oldpte = *ptq;
1678	if (is_kernel_pmap(pmap))
1679		*ptq = PTE_G;
1680	else
1681		*ptq = 0;
1682
1683	if (pte_test(&oldpte, PTE_W))
1684		pmap->pm_stats.wired_count -= 1;
1685
1686	pmap->pm_stats.resident_count -= 1;
1687
1688	if (pte_test(&oldpte, PTE_MANAGED)) {
1689		pa = TLBLO_PTE_TO_PA(oldpte);
1690		m = PHYS_TO_VM_PAGE(pa);
1691		if (pte_test(&oldpte, PTE_D)) {
1692			KASSERT(!pte_test(&oldpte, PTE_RO),
1693			    ("%s: modified page not writable: va: %p, pte: %#jx",
1694			    __func__, (void *)va, (uintmax_t)oldpte));
1695			vm_page_dirty(m);
1696		}
1697		if (m->md.pv_flags & PV_TABLE_REF)
1698			vm_page_aflag_set(m, PGA_REFERENCED);
1699		m->md.pv_flags &= ~PV_TABLE_REF;
1700
1701		pmap_remove_entry(pmap, m, va);
1702	}
1703	return (pmap_unuse_pt(pmap, va, pde));
1704}
1705
1706/*
1707 * Remove a single page from a process address space
1708 */
1709static void
1710pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1711{
1712	pd_entry_t *pde;
1713	pt_entry_t *ptq;
1714
1715	rw_assert(&pvh_global_lock, RA_WLOCKED);
1716	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1717	pde = pmap_pde(pmap, va);
1718	if (pde == NULL || *pde == 0)
1719		return;
1720	ptq = pmap_pde_to_pte(pde, va);
1721
1722	/*
1723	 * If there is no pte for this address, just skip it!
1724	 */
1725	if (!pte_test(ptq, PTE_V))
1726		return;
1727
1728	(void)pmap_remove_pte(pmap, ptq, va, *pde);
1729	pmap_invalidate_page(pmap, va);
1730}
1731
1732/*
1733 *	Remove the given range of addresses from the specified map.
1734 *
1735 *	It is assumed that the start and end are properly
1736 *	rounded to the page size.
1737 */
1738void
1739pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1740{
1741	pd_entry_t *pde, *pdpe;
1742	pt_entry_t *pte;
1743	vm_offset_t va, va_next;
1744
1745	/*
1746	 * Perform an unsynchronized read.  This is, however, safe.
1747	 */
1748	if (pmap->pm_stats.resident_count == 0)
1749		return;
1750
1751	rw_wlock(&pvh_global_lock);
1752	PMAP_LOCK(pmap);
1753
1754	/*
1755	 * special handling of removing one page.  a very common operation
1756	 * and easy to short circuit some code.
1757	 */
1758	if ((sva + PAGE_SIZE) == eva) {
1759		pmap_remove_page(pmap, sva);
1760		goto out;
1761	}
1762	for (; sva < eva; sva = va_next) {
1763		pdpe = pmap_segmap(pmap, sva);
1764#ifdef __mips_n64
1765		if (*pdpe == 0) {
1766			va_next = (sva + NBSEG) & ~SEGMASK;
1767			if (va_next < sva)
1768				va_next = eva;
1769			continue;
1770		}
1771#endif
1772		va_next = (sva + NBPDR) & ~PDRMASK;
1773		if (va_next < sva)
1774			va_next = eva;
1775
1776		pde = pmap_pdpe_to_pde(pdpe, sva);
1777		if (*pde == NULL)
1778			continue;
1779
1780		/*
1781		 * Limit our scan to either the end of the va represented
1782		 * by the current page table page, or to the end of the
1783		 * range being removed.
1784		 */
1785		if (va_next > eva)
1786			va_next = eva;
1787
1788		va = va_next;
1789		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1790		    sva += PAGE_SIZE) {
1791			if (!pte_test(pte, PTE_V)) {
1792				if (va != va_next) {
1793					pmap_invalidate_range(pmap, va, sva);
1794					va = va_next;
1795				}
1796				continue;
1797			}
1798			if (va == va_next)
1799				va = sva;
1800			if (pmap_remove_pte(pmap, pte, sva, *pde)) {
1801				sva += PAGE_SIZE;
1802				break;
1803			}
1804		}
1805		if (va != va_next)
1806			pmap_invalidate_range(pmap, va, sva);
1807	}
1808out:
1809	rw_wunlock(&pvh_global_lock);
1810	PMAP_UNLOCK(pmap);
1811}
1812
1813/*
1814 *	Routine:	pmap_remove_all
1815 *	Function:
1816 *		Removes this physical page from
1817 *		all physical maps in which it resides.
1818 *		Reflects back modify bits to the pager.
1819 *
1820 *	Notes:
1821 *		Original versions of this routine were very
1822 *		inefficient because they iteratively called
1823 *		pmap_remove (slow...)
1824 */
1825
1826void
1827pmap_remove_all(vm_page_t m)
1828{
1829	pv_entry_t pv;
1830	pmap_t pmap;
1831	pd_entry_t *pde;
1832	pt_entry_t *pte, tpte;
1833
1834	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1835	    ("pmap_remove_all: page %p is not managed", m));
1836	rw_wlock(&pvh_global_lock);
1837
1838	if (m->md.pv_flags & PV_TABLE_REF)
1839		vm_page_aflag_set(m, PGA_REFERENCED);
1840
1841	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1842		pmap = PV_PMAP(pv);
1843		PMAP_LOCK(pmap);
1844
1845		/*
1846		 * If it's last mapping writeback all caches from
1847		 * the page being destroyed
1848	 	 */
1849		if (TAILQ_NEXT(pv, pv_list) == NULL)
1850			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
1851
1852		pmap->pm_stats.resident_count--;
1853
1854		pde = pmap_pde(pmap, pv->pv_va);
1855		KASSERT(pde != NULL && *pde != 0, ("pmap_remove_all: pde"));
1856		pte = pmap_pde_to_pte(pde, pv->pv_va);
1857
1858		tpte = *pte;
1859		if (is_kernel_pmap(pmap))
1860			*pte = PTE_G;
1861		else
1862			*pte = 0;
1863
1864		if (pte_test(&tpte, PTE_W))
1865			pmap->pm_stats.wired_count--;
1866
1867		/*
1868		 * Update the vm_page_t clean and reference bits.
1869		 */
1870		if (pte_test(&tpte, PTE_D)) {
1871			KASSERT(!pte_test(&tpte, PTE_RO),
1872			    ("%s: modified page not writable: va: %p, pte: %#jx",
1873			    __func__, (void *)pv->pv_va, (uintmax_t)tpte));
1874			vm_page_dirty(m);
1875		}
1876		pmap_invalidate_page(pmap, pv->pv_va);
1877
1878		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1879		pmap_unuse_pt(pmap, pv->pv_va, *pde);
1880		free_pv_entry(pmap, pv);
1881		PMAP_UNLOCK(pmap);
1882	}
1883
1884	vm_page_aflag_clear(m, PGA_WRITEABLE);
1885	m->md.pv_flags &= ~PV_TABLE_REF;
1886	rw_wunlock(&pvh_global_lock);
1887}
1888
1889/*
1890 *	Set the physical protection on the
1891 *	specified range of this map as requested.
1892 */
1893void
1894pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1895{
1896	pt_entry_t pbits, *pte;
1897	pd_entry_t *pde, *pdpe;
1898	vm_offset_t va, va_next;
1899	vm_paddr_t pa;
1900	vm_page_t m;
1901
1902	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1903		pmap_remove(pmap, sva, eva);
1904		return;
1905	}
1906	if (prot & VM_PROT_WRITE)
1907		return;
1908
1909	PMAP_LOCK(pmap);
1910	for (; sva < eva; sva = va_next) {
1911		pdpe = pmap_segmap(pmap, sva);
1912#ifdef __mips_n64
1913		if (*pdpe == 0) {
1914			va_next = (sva + NBSEG) & ~SEGMASK;
1915			if (va_next < sva)
1916				va_next = eva;
1917			continue;
1918		}
1919#endif
1920		va_next = (sva + NBPDR) & ~PDRMASK;
1921		if (va_next < sva)
1922			va_next = eva;
1923
1924		pde = pmap_pdpe_to_pde(pdpe, sva);
1925		if (*pde == NULL)
1926			continue;
1927
1928		/*
1929		 * Limit our scan to either the end of the va represented
1930		 * by the current page table page, or to the end of the
1931		 * range being write protected.
1932		 */
1933		if (va_next > eva)
1934			va_next = eva;
1935
1936		va = va_next;
1937		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
1938		    sva += PAGE_SIZE) {
1939			pbits = *pte;
1940			if (!pte_test(&pbits, PTE_V) || pte_test(&pbits,
1941			    PTE_RO)) {
1942				if (va != va_next) {
1943					pmap_invalidate_range(pmap, va, sva);
1944					va = va_next;
1945				}
1946				continue;
1947			}
1948			pte_set(&pbits, PTE_RO);
1949			if (pte_test(&pbits, PTE_D)) {
1950				pte_clear(&pbits, PTE_D);
1951				if (pte_test(&pbits, PTE_MANAGED)) {
1952					pa = TLBLO_PTE_TO_PA(pbits);
1953					m = PHYS_TO_VM_PAGE(pa);
1954					vm_page_dirty(m);
1955				}
1956				if (va == va_next)
1957					va = sva;
1958			} else {
1959				/*
1960				 * Unless PTE_D is set, any TLB entries
1961				 * mapping "sva" don't allow write access, so
1962				 * they needn't be invalidated.
1963				 */
1964				if (va != va_next) {
1965					pmap_invalidate_range(pmap, va, sva);
1966					va = va_next;
1967				}
1968			}
1969			*pte = pbits;
1970		}
1971		if (va != va_next)
1972			pmap_invalidate_range(pmap, va, sva);
1973	}
1974	PMAP_UNLOCK(pmap);
1975}
1976
1977/*
1978 *	Insert the given physical page (p) at
1979 *	the specified virtual address (v) in the
1980 *	target physical map with the protection requested.
1981 *
1982 *	If specified, the page will be wired down, meaning
1983 *	that the related pte can not be reclaimed.
1984 *
1985 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1986 *	or lose information.  That is, this routine must actually
1987 *	insert this page into the given map NOW.
1988 */
1989int
1990pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1991    u_int flags, int8_t psind __unused)
1992{
1993	vm_paddr_t pa, opa;
1994	pt_entry_t *pte;
1995	pt_entry_t origpte, newpte;
1996	pv_entry_t pv;
1997	vm_page_t mpte, om;
1998
1999	va &= ~PAGE_MASK;
2000 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2001	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
2002	    va >= kmi.clean_eva,
2003	    ("pmap_enter: managed mapping within the clean submap"));
2004	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2005		VM_OBJECT_ASSERT_LOCKED(m->object);
2006	pa = VM_PAGE_TO_PHYS(m);
2007	newpte = TLBLO_PA_TO_PFN(pa) | init_pte_prot(m, flags, prot);
2008	if ((flags & PMAP_ENTER_WIRED) != 0)
2009		newpte |= PTE_W;
2010	if (is_kernel_pmap(pmap))
2011		newpte |= PTE_G;
2012	if (is_cacheable_mem(pa))
2013		newpte |= PTE_C_CACHE;
2014	else
2015		newpte |= PTE_C_UNCACHED;
2016
2017	mpte = NULL;
2018
2019	rw_wlock(&pvh_global_lock);
2020	PMAP_LOCK(pmap);
2021
2022	/*
2023	 * In the case that a page table page is not resident, we are
2024	 * creating it here.
2025	 */
2026	if (va < VM_MAXUSER_ADDRESS) {
2027		mpte = pmap_allocpte(pmap, va, flags);
2028		if (mpte == NULL) {
2029			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
2030			    ("pmap_allocpte failed with sleep allowed"));
2031			rw_wunlock(&pvh_global_lock);
2032			PMAP_UNLOCK(pmap);
2033			return (KERN_RESOURCE_SHORTAGE);
2034		}
2035	}
2036	pte = pmap_pte(pmap, va);
2037
2038	/*
2039	 * Page Directory table entry not valid, we need a new PT page
2040	 */
2041	if (pte == NULL) {
2042		panic("pmap_enter: invalid page directory, pdir=%p, va=%p",
2043		    (void *)pmap->pm_segtab, (void *)va);
2044	}
2045	om = NULL;
2046	origpte = *pte;
2047	opa = TLBLO_PTE_TO_PA(origpte);
2048
2049	/*
2050	 * Mapping has not changed, must be protection or wiring change.
2051	 */
2052	if (pte_test(&origpte, PTE_V) && opa == pa) {
2053		/*
2054		 * Wiring change, just update stats. We don't worry about
2055		 * wiring PT pages as they remain resident as long as there
2056		 * are valid mappings in them. Hence, if a user page is
2057		 * wired, the PT page will be also.
2058		 */
2059		if (pte_test(&newpte, PTE_W) && !pte_test(&origpte, PTE_W))
2060			pmap->pm_stats.wired_count++;
2061		else if (!pte_test(&newpte, PTE_W) && pte_test(&origpte,
2062		    PTE_W))
2063			pmap->pm_stats.wired_count--;
2064
2065		KASSERT(!pte_test(&origpte, PTE_D | PTE_RO),
2066		    ("%s: modified page not writable: va: %p, pte: %#jx",
2067		    __func__, (void *)va, (uintmax_t)origpte));
2068
2069		/*
2070		 * Remove extra pte reference
2071		 */
2072		if (mpte)
2073			mpte->wire_count--;
2074
2075		if (pte_test(&origpte, PTE_MANAGED)) {
2076			m->md.pv_flags |= PV_TABLE_REF;
2077			om = m;
2078			newpte |= PTE_MANAGED;
2079			if (!pte_test(&newpte, PTE_RO))
2080				vm_page_aflag_set(m, PGA_WRITEABLE);
2081		}
2082		goto validate;
2083	}
2084
2085	pv = NULL;
2086
2087	/*
2088	 * Mapping has changed, invalidate old range and fall through to
2089	 * handle validating new mapping.
2090	 */
2091	if (opa) {
2092		if (pte_test(&origpte, PTE_W))
2093			pmap->pm_stats.wired_count--;
2094
2095		if (pte_test(&origpte, PTE_MANAGED)) {
2096			om = PHYS_TO_VM_PAGE(opa);
2097			pv = pmap_pvh_remove(&om->md, pmap, va);
2098		}
2099		if (mpte != NULL) {
2100			mpte->wire_count--;
2101			KASSERT(mpte->wire_count > 0,
2102			    ("pmap_enter: missing reference to page table page,"
2103			    " va: %p", (void *)va));
2104		}
2105	} else
2106		pmap->pm_stats.resident_count++;
2107
2108	/*
2109	 * Enter on the PV list if part of our managed memory.
2110	 */
2111	if ((m->oflags & VPO_UNMANAGED) == 0) {
2112		m->md.pv_flags |= PV_TABLE_REF;
2113		if (pv == NULL)
2114			pv = get_pv_entry(pmap, FALSE);
2115		pv->pv_va = va;
2116		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2117		newpte |= PTE_MANAGED;
2118		if (!pte_test(&newpte, PTE_RO))
2119			vm_page_aflag_set(m, PGA_WRITEABLE);
2120	} else if (pv != NULL)
2121		free_pv_entry(pmap, pv);
2122
2123	/*
2124	 * Increment counters
2125	 */
2126	if (pte_test(&newpte, PTE_W))
2127		pmap->pm_stats.wired_count++;
2128
2129validate:
2130
2131#ifdef PMAP_DEBUG
2132	printf("pmap_enter:  va: %p -> pa: %p\n", (void *)va, (void *)pa);
2133#endif
2134
2135	/*
2136	 * if the mapping or permission bits are different, we need to
2137	 * update the pte.
2138	 */
2139	if (origpte != newpte) {
2140		*pte = newpte;
2141		if (pte_test(&origpte, PTE_V)) {
2142			if (pte_test(&origpte, PTE_MANAGED) && opa != pa) {
2143				if (om->md.pv_flags & PV_TABLE_REF)
2144					vm_page_aflag_set(om, PGA_REFERENCED);
2145				om->md.pv_flags &= ~PV_TABLE_REF;
2146			}
2147			if (pte_test(&origpte, PTE_D)) {
2148				KASSERT(!pte_test(&origpte, PTE_RO),
2149				    ("pmap_enter: modified page not writable:"
2150				    " va: %p, pte: %#jx", (void *)va, (uintmax_t)origpte));
2151				if (pte_test(&origpte, PTE_MANAGED))
2152					vm_page_dirty(om);
2153			}
2154			if (pte_test(&origpte, PTE_MANAGED) &&
2155			    TAILQ_EMPTY(&om->md.pv_list))
2156				vm_page_aflag_clear(om, PGA_WRITEABLE);
2157			pmap_update_page(pmap, va, newpte);
2158		}
2159	}
2160
2161	/*
2162	 * Sync I & D caches for executable pages.  Do this only if the
2163	 * target pmap belongs to the current process.  Otherwise, an
2164	 * unresolvable TLB miss may occur.
2165	 */
2166	if (!is_kernel_pmap(pmap) && (pmap == &curproc->p_vmspace->vm_pmap) &&
2167	    (prot & VM_PROT_EXECUTE)) {
2168		mips_icache_sync_range(va, PAGE_SIZE);
2169		mips_dcache_wbinv_range(va, PAGE_SIZE);
2170	}
2171	rw_wunlock(&pvh_global_lock);
2172	PMAP_UNLOCK(pmap);
2173	return (KERN_SUCCESS);
2174}
2175
2176/*
2177 * this code makes some *MAJOR* assumptions:
2178 * 1. Current pmap & pmap exists.
2179 * 2. Not wired.
2180 * 3. Read access.
2181 * 4. No page table pages.
2182 * but is *MUCH* faster than pmap_enter...
2183 */
2184
2185void
2186pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2187{
2188
2189	rw_wlock(&pvh_global_lock);
2190	PMAP_LOCK(pmap);
2191	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2192	rw_wunlock(&pvh_global_lock);
2193	PMAP_UNLOCK(pmap);
2194}
2195
2196static vm_page_t
2197pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2198    vm_prot_t prot, vm_page_t mpte)
2199{
2200	pt_entry_t *pte;
2201	vm_paddr_t pa;
2202
2203	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2204	    (m->oflags & VPO_UNMANAGED) != 0,
2205	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2206	rw_assert(&pvh_global_lock, RA_WLOCKED);
2207	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2208
2209	/*
2210	 * In the case that a page table page is not resident, we are
2211	 * creating it here.
2212	 */
2213	if (va < VM_MAXUSER_ADDRESS) {
2214		pd_entry_t *pde;
2215		unsigned ptepindex;
2216
2217		/*
2218		 * Calculate pagetable page index
2219		 */
2220		ptepindex = pmap_pde_pindex(va);
2221		if (mpte && (mpte->pindex == ptepindex)) {
2222			mpte->wire_count++;
2223		} else {
2224			/*
2225			 * Get the page directory entry
2226			 */
2227			pde = pmap_pde(pmap, va);
2228
2229			/*
2230			 * If the page table page is mapped, we just
2231			 * increment the hold count, and activate it.
2232			 */
2233			if (pde && *pde != 0) {
2234				mpte = PHYS_TO_VM_PAGE(
2235				    MIPS_DIRECT_TO_PHYS(*pde));
2236				mpte->wire_count++;
2237			} else {
2238				mpte = _pmap_allocpte(pmap, ptepindex,
2239				    PMAP_ENTER_NOSLEEP);
2240				if (mpte == NULL)
2241					return (mpte);
2242			}
2243		}
2244	} else {
2245		mpte = NULL;
2246	}
2247
2248	pte = pmap_pte(pmap, va);
2249	if (pte_test(pte, PTE_V)) {
2250		if (mpte != NULL) {
2251			mpte->wire_count--;
2252			mpte = NULL;
2253		}
2254		return (mpte);
2255	}
2256
2257	/*
2258	 * Enter on the PV list if part of our managed memory.
2259	 */
2260	if ((m->oflags & VPO_UNMANAGED) == 0 &&
2261	    !pmap_try_insert_pv_entry(pmap, mpte, va, m)) {
2262		if (mpte != NULL) {
2263			pmap_unwire_ptp(pmap, va, mpte);
2264			mpte = NULL;
2265		}
2266		return (mpte);
2267	}
2268
2269	/*
2270	 * Increment counters
2271	 */
2272	pmap->pm_stats.resident_count++;
2273
2274	pa = VM_PAGE_TO_PHYS(m);
2275
2276	/*
2277	 * Now validate mapping with RO protection
2278	 */
2279	*pte = PTE_RO | TLBLO_PA_TO_PFN(pa) | PTE_V;
2280	if ((m->oflags & VPO_UNMANAGED) == 0)
2281		*pte |= PTE_MANAGED;
2282
2283	if (is_cacheable_mem(pa))
2284		*pte |= PTE_C_CACHE;
2285	else
2286		*pte |= PTE_C_UNCACHED;
2287
2288	if (is_kernel_pmap(pmap))
2289		*pte |= PTE_G;
2290	else {
2291		/*
2292		 * Sync I & D caches.  Do this only if the target pmap
2293		 * belongs to the current process.  Otherwise, an
2294		 * unresolvable TLB miss may occur. */
2295		if (pmap == &curproc->p_vmspace->vm_pmap) {
2296			va &= ~PAGE_MASK;
2297			mips_icache_sync_range(va, PAGE_SIZE);
2298			mips_dcache_wbinv_range(va, PAGE_SIZE);
2299		}
2300	}
2301	return (mpte);
2302}
2303
2304/*
2305 * Make a temporary mapping for a physical address.  This is only intended
2306 * to be used for panic dumps.
2307 *
2308 * Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2309 */
2310void *
2311pmap_kenter_temporary(vm_paddr_t pa, int i)
2312{
2313	vm_offset_t va;
2314
2315	if (i != 0)
2316		printf("%s: ERROR!!! More than one page of virtual address mapping not supported\n",
2317		    __func__);
2318
2319	if (MIPS_DIRECT_MAPPABLE(pa)) {
2320		va = MIPS_PHYS_TO_DIRECT(pa);
2321	} else {
2322#ifndef __mips_n64    /* XXX : to be converted to new style */
2323		int cpu;
2324		register_t intr;
2325		struct local_sysmaps *sysm;
2326		pt_entry_t *pte, npte;
2327
2328		/* If this is used other than for dumps, we may need to leave
2329		 * interrupts disasbled on return. If crash dumps don't work when
2330		 * we get to this point, we might want to consider this (leaving things
2331		 * disabled as a starting point ;-)
2332	 	 */
2333		intr = intr_disable();
2334		cpu = PCPU_GET(cpuid);
2335		sysm = &sysmap_lmem[cpu];
2336		/* Since this is for the debugger, no locks or any other fun */
2337		npte = TLBLO_PA_TO_PFN(pa) | PTE_C_CACHE | PTE_D | PTE_V |
2338		    PTE_G;
2339		pte = pmap_pte(kernel_pmap, sysm->base);
2340		*pte = npte;
2341		sysm->valid1 = 1;
2342		pmap_update_page(kernel_pmap, sysm->base, npte);
2343		va = sysm->base;
2344		intr_restore(intr);
2345#endif
2346	}
2347	return ((void *)va);
2348}
2349
2350void
2351pmap_kenter_temporary_free(vm_paddr_t pa)
2352{
2353#ifndef __mips_n64    /* XXX : to be converted to new style */
2354	int cpu;
2355	register_t intr;
2356	struct local_sysmaps *sysm;
2357#endif
2358
2359	if (MIPS_DIRECT_MAPPABLE(pa)) {
2360		/* nothing to do for this case */
2361		return;
2362	}
2363#ifndef __mips_n64    /* XXX : to be converted to new style */
2364	cpu = PCPU_GET(cpuid);
2365	sysm = &sysmap_lmem[cpu];
2366	if (sysm->valid1) {
2367		pt_entry_t *pte;
2368
2369		intr = intr_disable();
2370		pte = pmap_pte(kernel_pmap, sysm->base);
2371		*pte = PTE_G;
2372		pmap_invalidate_page(kernel_pmap, sysm->base);
2373		intr_restore(intr);
2374		sysm->valid1 = 0;
2375	}
2376#endif
2377}
2378
2379/*
2380 * Maps a sequence of resident pages belonging to the same object.
2381 * The sequence begins with the given page m_start.  This page is
2382 * mapped at the given virtual address start.  Each subsequent page is
2383 * mapped at a virtual address that is offset from start by the same
2384 * amount as the page is offset from m_start within the object.  The
2385 * last page in the sequence is the page with the largest offset from
2386 * m_start that can be mapped at a virtual address less than the given
2387 * virtual address end.  Not every virtual page between start and end
2388 * is mapped; only those for which a resident page exists with the
2389 * corresponding offset from m_start are mapped.
2390 */
2391void
2392pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2393    vm_page_t m_start, vm_prot_t prot)
2394{
2395	vm_page_t m, mpte;
2396	vm_pindex_t diff, psize;
2397
2398	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2399
2400	psize = atop(end - start);
2401	mpte = NULL;
2402	m = m_start;
2403	rw_wlock(&pvh_global_lock);
2404	PMAP_LOCK(pmap);
2405	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2406		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2407		    prot, mpte);
2408		m = TAILQ_NEXT(m, listq);
2409	}
2410	rw_wunlock(&pvh_global_lock);
2411 	PMAP_UNLOCK(pmap);
2412}
2413
2414/*
2415 * pmap_object_init_pt preloads the ptes for a given object
2416 * into the specified pmap.  This eliminates the blast of soft
2417 * faults on process startup and immediately after an mmap.
2418 */
2419void
2420pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2421    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2422{
2423	VM_OBJECT_ASSERT_WLOCKED(object);
2424	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2425	    ("pmap_object_init_pt: non-device object"));
2426}
2427
2428/*
2429 *	Routine:	pmap_change_wiring
2430 *	Function:	Change the wiring attribute for a map/virtual-address
2431 *			pair.
2432 *	In/out conditions:
2433 *			The mapping must already exist in the pmap.
2434 */
2435void
2436pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2437{
2438	pt_entry_t *pte;
2439
2440	PMAP_LOCK(pmap);
2441	pte = pmap_pte(pmap, va);
2442
2443	if (wired && !pte_test(pte, PTE_W))
2444		pmap->pm_stats.wired_count++;
2445	else if (!wired && pte_test(pte, PTE_W))
2446		pmap->pm_stats.wired_count--;
2447
2448	/*
2449	 * Wiring is not a hardware characteristic so there is no need to
2450	 * invalidate TLB.
2451	 */
2452	if (wired)
2453		pte_set(pte, PTE_W);
2454	else
2455		pte_clear(pte, PTE_W);
2456	PMAP_UNLOCK(pmap);
2457}
2458
2459/*
2460 *	Copy the range specified by src_addr/len
2461 *	from the source map to the range dst_addr/len
2462 *	in the destination map.
2463 *
2464 *	This routine is only advisory and need not do anything.
2465 */
2466
2467void
2468pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2469    vm_size_t len, vm_offset_t src_addr)
2470{
2471}
2472
2473/*
2474 *	pmap_zero_page zeros the specified hardware page by mapping
2475 *	the page into KVM and using bzero to clear its contents.
2476 *
2477 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2478 */
2479void
2480pmap_zero_page(vm_page_t m)
2481{
2482	vm_offset_t va;
2483	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2484
2485	if (MIPS_DIRECT_MAPPABLE(phys)) {
2486		va = MIPS_PHYS_TO_DIRECT(phys);
2487		bzero((caddr_t)va, PAGE_SIZE);
2488		mips_dcache_wbinv_range(va, PAGE_SIZE);
2489	} else {
2490		va = pmap_lmem_map1(phys);
2491		bzero((caddr_t)va, PAGE_SIZE);
2492		mips_dcache_wbinv_range(va, PAGE_SIZE);
2493		pmap_lmem_unmap();
2494	}
2495}
2496
2497/*
2498 *	pmap_zero_page_area zeros the specified hardware page by mapping
2499 *	the page into KVM and using bzero to clear its contents.
2500 *
2501 *	off and size may not cover an area beyond a single hardware page.
2502 */
2503void
2504pmap_zero_page_area(vm_page_t m, int off, int size)
2505{
2506	vm_offset_t va;
2507	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2508
2509	if (MIPS_DIRECT_MAPPABLE(phys)) {
2510		va = MIPS_PHYS_TO_DIRECT(phys);
2511		bzero((char *)(caddr_t)va + off, size);
2512		mips_dcache_wbinv_range(va + off, size);
2513	} else {
2514		va = pmap_lmem_map1(phys);
2515		bzero((char *)va + off, size);
2516		mips_dcache_wbinv_range(va + off, size);
2517		pmap_lmem_unmap();
2518	}
2519}
2520
2521void
2522pmap_zero_page_idle(vm_page_t m)
2523{
2524	vm_offset_t va;
2525	vm_paddr_t phys = VM_PAGE_TO_PHYS(m);
2526
2527	if (MIPS_DIRECT_MAPPABLE(phys)) {
2528		va = MIPS_PHYS_TO_DIRECT(phys);
2529		bzero((caddr_t)va, PAGE_SIZE);
2530		mips_dcache_wbinv_range(va, PAGE_SIZE);
2531	} else {
2532		va = pmap_lmem_map1(phys);
2533		bzero((caddr_t)va, PAGE_SIZE);
2534		mips_dcache_wbinv_range(va, PAGE_SIZE);
2535		pmap_lmem_unmap();
2536	}
2537}
2538
2539/*
2540 *	pmap_copy_page copies the specified (machine independent)
2541 *	page by mapping the page into virtual memory and using
2542 *	bcopy to copy the page, one machine dependent page at a
2543 *	time.
2544 *
2545 * 	Use XKPHYS for 64 bit, and KSEG0 where possible for 32 bit.
2546 */
2547void
2548pmap_copy_page(vm_page_t src, vm_page_t dst)
2549{
2550	vm_offset_t va_src, va_dst;
2551	vm_paddr_t phys_src = VM_PAGE_TO_PHYS(src);
2552	vm_paddr_t phys_dst = VM_PAGE_TO_PHYS(dst);
2553
2554	if (MIPS_DIRECT_MAPPABLE(phys_src) && MIPS_DIRECT_MAPPABLE(phys_dst)) {
2555		/* easy case, all can be accessed via KSEG0 */
2556		/*
2557		 * Flush all caches for VA that are mapped to this page
2558		 * to make sure that data in SDRAM is up to date
2559		 */
2560		pmap_flush_pvcache(src);
2561		mips_dcache_wbinv_range_index(
2562		    MIPS_PHYS_TO_DIRECT(phys_dst), PAGE_SIZE);
2563		va_src = MIPS_PHYS_TO_DIRECT(phys_src);
2564		va_dst = MIPS_PHYS_TO_DIRECT(phys_dst);
2565		bcopy((caddr_t)va_src, (caddr_t)va_dst, PAGE_SIZE);
2566		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2567	} else {
2568		va_src = pmap_lmem_map2(phys_src, phys_dst);
2569		va_dst = va_src + PAGE_SIZE;
2570		bcopy((void *)va_src, (void *)va_dst, PAGE_SIZE);
2571		mips_dcache_wbinv_range(va_dst, PAGE_SIZE);
2572		pmap_lmem_unmap();
2573	}
2574}
2575
2576int unmapped_buf_allowed;
2577
2578void
2579pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
2580    vm_offset_t b_offset, int xfersize)
2581{
2582	char *a_cp, *b_cp;
2583	vm_page_t a_m, b_m;
2584	vm_offset_t a_pg_offset, b_pg_offset;
2585	vm_paddr_t a_phys, b_phys;
2586	int cnt;
2587
2588	while (xfersize > 0) {
2589		a_pg_offset = a_offset & PAGE_MASK;
2590		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
2591		a_m = ma[a_offset >> PAGE_SHIFT];
2592		a_phys = VM_PAGE_TO_PHYS(a_m);
2593		b_pg_offset = b_offset & PAGE_MASK;
2594		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
2595		b_m = mb[b_offset >> PAGE_SHIFT];
2596		b_phys = VM_PAGE_TO_PHYS(b_m);
2597		if (MIPS_DIRECT_MAPPABLE(a_phys) &&
2598		    MIPS_DIRECT_MAPPABLE(b_phys)) {
2599			pmap_flush_pvcache(a_m);
2600			mips_dcache_wbinv_range_index(
2601			    MIPS_PHYS_TO_DIRECT(b_phys), PAGE_SIZE);
2602			a_cp = (char *)MIPS_PHYS_TO_DIRECT(a_phys) +
2603			    a_pg_offset;
2604			b_cp = (char *)MIPS_PHYS_TO_DIRECT(b_phys) +
2605			    b_pg_offset;
2606			bcopy(a_cp, b_cp, cnt);
2607			mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
2608		} else {
2609			a_cp = (char *)pmap_lmem_map2(a_phys, b_phys);
2610			b_cp = (char *)a_cp + PAGE_SIZE;
2611			a_cp += a_pg_offset;
2612			b_cp += b_pg_offset;
2613			bcopy(a_cp, b_cp, cnt);
2614			mips_dcache_wbinv_range((vm_offset_t)b_cp, cnt);
2615			pmap_lmem_unmap();
2616		}
2617		a_offset += cnt;
2618		b_offset += cnt;
2619		xfersize -= cnt;
2620	}
2621}
2622
2623/*
2624 * Returns true if the pmap's pv is one of the first
2625 * 16 pvs linked to from this page.  This count may
2626 * be changed upwards or downwards in the future; it
2627 * is only necessary that true be returned for a small
2628 * subset of pmaps for proper page aging.
2629 */
2630boolean_t
2631pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2632{
2633	pv_entry_t pv;
2634	int loops = 0;
2635	boolean_t rv;
2636
2637	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2638	    ("pmap_page_exists_quick: page %p is not managed", m));
2639	rv = FALSE;
2640	rw_wlock(&pvh_global_lock);
2641	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2642		if (PV_PMAP(pv) == pmap) {
2643			rv = TRUE;
2644			break;
2645		}
2646		loops++;
2647		if (loops >= 16)
2648			break;
2649	}
2650	rw_wunlock(&pvh_global_lock);
2651	return (rv);
2652}
2653
2654/*
2655 * Remove all pages from specified address space
2656 * this aids process exit speeds.  Also, this code
2657 * is special cased for current process only, but
2658 * can have the more generic (and slightly slower)
2659 * mode enabled.  This is much faster than pmap_remove
2660 * in the case of running down an entire address space.
2661 */
2662void
2663pmap_remove_pages(pmap_t pmap)
2664{
2665	pd_entry_t *pde;
2666	pt_entry_t *pte, tpte;
2667	pv_entry_t pv;
2668	vm_page_t m;
2669	struct pv_chunk *pc, *npc;
2670	u_long inuse, bitmask;
2671	int allfree, bit, field, idx;
2672
2673	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
2674		printf("warning: pmap_remove_pages called with non-current pmap\n");
2675		return;
2676	}
2677	rw_wlock(&pvh_global_lock);
2678	PMAP_LOCK(pmap);
2679	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
2680		allfree = 1;
2681		for (field = 0; field < _NPCM; field++) {
2682			inuse = ~pc->pc_map[field] & pc_freemask[field];
2683			while (inuse != 0) {
2684				bit = ffsl(inuse) - 1;
2685				bitmask = 1UL << bit;
2686				idx = field * sizeof(inuse) * NBBY + bit;
2687				pv = &pc->pc_pventry[idx];
2688				inuse &= ~bitmask;
2689
2690				pde = pmap_pde(pmap, pv->pv_va);
2691				KASSERT(pde != NULL && *pde != 0,
2692				    ("pmap_remove_pages: pde"));
2693				pte = pmap_pde_to_pte(pde, pv->pv_va);
2694				if (!pte_test(pte, PTE_V))
2695					panic("pmap_remove_pages: bad pte");
2696				tpte = *pte;
2697
2698/*
2699 * We cannot remove wired pages from a process' mapping at this time
2700 */
2701				if (pte_test(&tpte, PTE_W)) {
2702					allfree = 0;
2703					continue;
2704				}
2705				*pte = is_kernel_pmap(pmap) ? PTE_G : 0;
2706
2707				m = PHYS_TO_VM_PAGE(TLBLO_PTE_TO_PA(tpte));
2708				KASSERT(m != NULL,
2709				    ("pmap_remove_pages: bad tpte %#jx",
2710				    (uintmax_t)tpte));
2711
2712				/*
2713				 * Update the vm_page_t clean and reference bits.
2714				 */
2715				if (pte_test(&tpte, PTE_D))
2716					vm_page_dirty(m);
2717
2718				/* Mark free */
2719				PV_STAT(pv_entry_frees++);
2720				PV_STAT(pv_entry_spare++);
2721				pv_entry_count--;
2722				pc->pc_map[field] |= bitmask;
2723				pmap->pm_stats.resident_count--;
2724				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2725				if (TAILQ_EMPTY(&m->md.pv_list))
2726					vm_page_aflag_clear(m, PGA_WRITEABLE);
2727				pmap_unuse_pt(pmap, pv->pv_va, *pde);
2728			}
2729		}
2730		if (allfree) {
2731			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2732			free_pv_chunk(pc);
2733		}
2734	}
2735	pmap_invalidate_all(pmap);
2736	PMAP_UNLOCK(pmap);
2737	rw_wunlock(&pvh_global_lock);
2738}
2739
2740/*
2741 * pmap_testbit tests bits in pte's
2742 */
2743static boolean_t
2744pmap_testbit(vm_page_t m, int bit)
2745{
2746	pv_entry_t pv;
2747	pmap_t pmap;
2748	pt_entry_t *pte;
2749	boolean_t rv = FALSE;
2750
2751	if (m->oflags & VPO_UNMANAGED)
2752		return (rv);
2753
2754	rw_assert(&pvh_global_lock, RA_WLOCKED);
2755	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2756		pmap = PV_PMAP(pv);
2757		PMAP_LOCK(pmap);
2758		pte = pmap_pte(pmap, pv->pv_va);
2759		rv = pte_test(pte, bit);
2760		PMAP_UNLOCK(pmap);
2761		if (rv)
2762			break;
2763	}
2764	return (rv);
2765}
2766
2767/*
2768 *	pmap_page_wired_mappings:
2769 *
2770 *	Return the number of managed mappings to the given physical page
2771 *	that are wired.
2772 */
2773int
2774pmap_page_wired_mappings(vm_page_t m)
2775{
2776	pv_entry_t pv;
2777	pmap_t pmap;
2778	pt_entry_t *pte;
2779	int count;
2780
2781	count = 0;
2782	if ((m->oflags & VPO_UNMANAGED) != 0)
2783		return (count);
2784	rw_wlock(&pvh_global_lock);
2785	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2786		pmap = PV_PMAP(pv);
2787		PMAP_LOCK(pmap);
2788		pte = pmap_pte(pmap, pv->pv_va);
2789		if (pte_test(pte, PTE_W))
2790			count++;
2791		PMAP_UNLOCK(pmap);
2792	}
2793	rw_wunlock(&pvh_global_lock);
2794	return (count);
2795}
2796
2797/*
2798 * Clear the write and modified bits in each of the given page's mappings.
2799 */
2800void
2801pmap_remove_write(vm_page_t m)
2802{
2803	pmap_t pmap;
2804	pt_entry_t pbits, *pte;
2805	pv_entry_t pv;
2806
2807	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2808	    ("pmap_remove_write: page %p is not managed", m));
2809
2810	/*
2811	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2812	 * set by another thread while the object is locked.  Thus,
2813	 * if PGA_WRITEABLE is clear, no page table entries need updating.
2814	 */
2815	VM_OBJECT_ASSERT_WLOCKED(m->object);
2816	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2817		return;
2818	rw_wlock(&pvh_global_lock);
2819	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2820		pmap = PV_PMAP(pv);
2821		PMAP_LOCK(pmap);
2822		pte = pmap_pte(pmap, pv->pv_va);
2823		KASSERT(pte != NULL && pte_test(pte, PTE_V),
2824		    ("page on pv_list has no pte"));
2825		pbits = *pte;
2826		if (pte_test(&pbits, PTE_D)) {
2827			pte_clear(&pbits, PTE_D);
2828			vm_page_dirty(m);
2829		}
2830		pte_set(&pbits, PTE_RO);
2831		if (pbits != *pte) {
2832			*pte = pbits;
2833			pmap_update_page(pmap, pv->pv_va, pbits);
2834		}
2835		PMAP_UNLOCK(pmap);
2836	}
2837	vm_page_aflag_clear(m, PGA_WRITEABLE);
2838	rw_wunlock(&pvh_global_lock);
2839}
2840
2841/*
2842 *	pmap_ts_referenced:
2843 *
2844 *	Return the count of reference bits for a page, clearing all of them.
2845 */
2846int
2847pmap_ts_referenced(vm_page_t m)
2848{
2849
2850	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2851	    ("pmap_ts_referenced: page %p is not managed", m));
2852	if (m->md.pv_flags & PV_TABLE_REF) {
2853		rw_wlock(&pvh_global_lock);
2854		m->md.pv_flags &= ~PV_TABLE_REF;
2855		rw_wunlock(&pvh_global_lock);
2856		return (1);
2857	}
2858	return (0);
2859}
2860
2861/*
2862 *	pmap_is_modified:
2863 *
2864 *	Return whether or not the specified physical page was modified
2865 *	in any physical maps.
2866 */
2867boolean_t
2868pmap_is_modified(vm_page_t m)
2869{
2870	boolean_t rv;
2871
2872	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2873	    ("pmap_is_modified: page %p is not managed", m));
2874
2875	/*
2876	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
2877	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
2878	 * is clear, no PTEs can have PTE_D set.
2879	 */
2880	VM_OBJECT_ASSERT_WLOCKED(m->object);
2881	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
2882		return (FALSE);
2883	rw_wlock(&pvh_global_lock);
2884	rv = pmap_testbit(m, PTE_D);
2885	rw_wunlock(&pvh_global_lock);
2886	return (rv);
2887}
2888
2889/* N/C */
2890
2891/*
2892 *	pmap_is_prefaultable:
2893 *
2894 *	Return whether or not the specified virtual address is elgible
2895 *	for prefault.
2896 */
2897boolean_t
2898pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2899{
2900	pd_entry_t *pde;
2901	pt_entry_t *pte;
2902	boolean_t rv;
2903
2904	rv = FALSE;
2905	PMAP_LOCK(pmap);
2906	pde = pmap_pde(pmap, addr);
2907	if (pde != NULL && *pde != 0) {
2908		pte = pmap_pde_to_pte(pde, addr);
2909		rv = (*pte == 0);
2910	}
2911	PMAP_UNLOCK(pmap);
2912	return (rv);
2913}
2914
2915/*
2916 *	Apply the given advice to the specified range of addresses within the
2917 *	given pmap.  Depending on the advice, clear the referenced and/or
2918 *	modified flags in each mapping and set the mapped page's dirty field.
2919 */
2920void
2921pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
2922{
2923	pd_entry_t *pde, *pdpe;
2924	pt_entry_t *pte;
2925	vm_offset_t va, va_next;
2926	vm_paddr_t pa;
2927	vm_page_t m;
2928
2929	if (advice != MADV_DONTNEED && advice != MADV_FREE)
2930		return;
2931	rw_wlock(&pvh_global_lock);
2932	PMAP_LOCK(pmap);
2933	for (; sva < eva; sva = va_next) {
2934		pdpe = pmap_segmap(pmap, sva);
2935#ifdef __mips_n64
2936		if (*pdpe == 0) {
2937			va_next = (sva + NBSEG) & ~SEGMASK;
2938			if (va_next < sva)
2939				va_next = eva;
2940			continue;
2941		}
2942#endif
2943		va_next = (sva + NBPDR) & ~PDRMASK;
2944		if (va_next < sva)
2945			va_next = eva;
2946
2947		pde = pmap_pdpe_to_pde(pdpe, sva);
2948		if (*pde == NULL)
2949			continue;
2950
2951		/*
2952		 * Limit our scan to either the end of the va represented
2953		 * by the current page table page, or to the end of the
2954		 * range being write protected.
2955		 */
2956		if (va_next > eva)
2957			va_next = eva;
2958
2959		va = va_next;
2960		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2961		    sva += PAGE_SIZE) {
2962			if (!pte_test(pte, PTE_MANAGED | PTE_V)) {
2963				if (va != va_next) {
2964					pmap_invalidate_range(pmap, va, sva);
2965					va = va_next;
2966				}
2967				continue;
2968			}
2969			pa = TLBLO_PTE_TO_PA(*pte);
2970			m = PHYS_TO_VM_PAGE(pa);
2971			m->md.pv_flags &= ~PV_TABLE_REF;
2972			if (pte_test(pte, PTE_D)) {
2973				if (advice == MADV_DONTNEED) {
2974					/*
2975					 * Future calls to pmap_is_modified()
2976					 * can be avoided by making the page
2977					 * dirty now.
2978					 */
2979					vm_page_dirty(m);
2980				} else {
2981					pte_clear(pte, PTE_D);
2982					if (va == va_next)
2983						va = sva;
2984				}
2985			} else {
2986				/*
2987				 * Unless PTE_D is set, any TLB entries
2988				 * mapping "sva" don't allow write access, so
2989				 * they needn't be invalidated.
2990				 */
2991				if (va != va_next) {
2992					pmap_invalidate_range(pmap, va, sva);
2993					va = va_next;
2994				}
2995			}
2996		}
2997		if (va != va_next)
2998			pmap_invalidate_range(pmap, va, sva);
2999	}
3000	rw_wunlock(&pvh_global_lock);
3001	PMAP_UNLOCK(pmap);
3002}
3003
3004/*
3005 *	Clear the modify bits on the specified physical page.
3006 */
3007void
3008pmap_clear_modify(vm_page_t m)
3009{
3010	pmap_t pmap;
3011	pt_entry_t *pte;
3012	pv_entry_t pv;
3013
3014	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3015	    ("pmap_clear_modify: page %p is not managed", m));
3016	VM_OBJECT_ASSERT_WLOCKED(m->object);
3017	KASSERT(!vm_page_xbusied(m),
3018	    ("pmap_clear_modify: page %p is exclusive busied", m));
3019
3020	/*
3021	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_D set.
3022	 * If the object containing the page is locked and the page is not
3023	 * write busied, then PGA_WRITEABLE cannot be concurrently set.
3024	 */
3025	if ((m->aflags & PGA_WRITEABLE) == 0)
3026		return;
3027	rw_wlock(&pvh_global_lock);
3028	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3029		pmap = PV_PMAP(pv);
3030		PMAP_LOCK(pmap);
3031		pte = pmap_pte(pmap, pv->pv_va);
3032		if (pte_test(pte, PTE_D)) {
3033			pte_clear(pte, PTE_D);
3034			pmap_update_page(pmap, pv->pv_va, *pte);
3035		}
3036		PMAP_UNLOCK(pmap);
3037	}
3038	rw_wunlock(&pvh_global_lock);
3039}
3040
3041/*
3042 *	pmap_is_referenced:
3043 *
3044 *	Return whether or not the specified physical page was referenced
3045 *	in any physical maps.
3046 */
3047boolean_t
3048pmap_is_referenced(vm_page_t m)
3049{
3050
3051	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3052	    ("pmap_is_referenced: page %p is not managed", m));
3053	return ((m->md.pv_flags & PV_TABLE_REF) != 0);
3054}
3055
3056/*
3057 * Miscellaneous support routines follow
3058 */
3059
3060/*
3061 * Map a set of physical memory pages into the kernel virtual
3062 * address space. Return a pointer to where it is mapped. This
3063 * routine is intended to be used for mapping device memory,
3064 * NOT real memory.
3065 *
3066 * Use XKPHYS uncached for 64 bit, and KSEG1 where possible for 32 bit.
3067 */
3068void *
3069pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3070{
3071        vm_offset_t va, tmpva, offset;
3072
3073	/*
3074	 * KSEG1 maps only first 512M of phys address space. For
3075	 * pa > 0x20000000 we should make proper mapping * using pmap_kenter.
3076	 */
3077	if (MIPS_DIRECT_MAPPABLE(pa + size - 1))
3078		return ((void *)MIPS_PHYS_TO_DIRECT_UNCACHED(pa));
3079	else {
3080		offset = pa & PAGE_MASK;
3081		size = roundup(size + offset, PAGE_SIZE);
3082
3083		va = kva_alloc(size);
3084		if (!va)
3085			panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3086		pa = trunc_page(pa);
3087		for (tmpva = va; size > 0;) {
3088			pmap_kenter_attr(tmpva, pa, PTE_C_UNCACHED);
3089			size -= PAGE_SIZE;
3090			tmpva += PAGE_SIZE;
3091			pa += PAGE_SIZE;
3092		}
3093	}
3094
3095	return ((void *)(va + offset));
3096}
3097
3098void
3099pmap_unmapdev(vm_offset_t va, vm_size_t size)
3100{
3101#ifndef __mips_n64
3102	vm_offset_t base, offset;
3103
3104	/* If the address is within KSEG1 then there is nothing to do */
3105	if (va >= MIPS_KSEG1_START && va <= MIPS_KSEG1_END)
3106		return;
3107
3108	base = trunc_page(va);
3109	offset = va & PAGE_MASK;
3110	size = roundup(size + offset, PAGE_SIZE);
3111	kva_free(base, size);
3112#endif
3113}
3114
3115/*
3116 * perform the pmap work for mincore
3117 */
3118int
3119pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
3120{
3121	pt_entry_t *ptep, pte;
3122	vm_paddr_t pa;
3123	vm_page_t m;
3124	int val;
3125
3126	PMAP_LOCK(pmap);
3127retry:
3128	ptep = pmap_pte(pmap, addr);
3129	pte = (ptep != NULL) ? *ptep : 0;
3130	if (!pte_test(&pte, PTE_V)) {
3131		val = 0;
3132		goto out;
3133	}
3134	val = MINCORE_INCORE;
3135	if (pte_test(&pte, PTE_D))
3136		val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
3137	pa = TLBLO_PTE_TO_PA(pte);
3138	if (pte_test(&pte, PTE_MANAGED)) {
3139		/*
3140		 * This may falsely report the given address as
3141		 * MINCORE_REFERENCED.  Unfortunately, due to the lack of
3142		 * per-PTE reference information, it is impossible to
3143		 * determine if the address is MINCORE_REFERENCED.
3144		 */
3145		m = PHYS_TO_VM_PAGE(pa);
3146		if ((m->aflags & PGA_REFERENCED) != 0)
3147			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
3148	}
3149	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
3150	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
3151	    pte_test(&pte, PTE_MANAGED)) {
3152		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
3153		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
3154			goto retry;
3155	} else
3156out:
3157		PA_UNLOCK_COND(*locked_pa);
3158	PMAP_UNLOCK(pmap);
3159	return (val);
3160}
3161
3162void
3163pmap_activate(struct thread *td)
3164{
3165	pmap_t pmap, oldpmap;
3166	struct proc *p = td->td_proc;
3167	u_int cpuid;
3168
3169	critical_enter();
3170
3171	pmap = vmspace_pmap(p->p_vmspace);
3172	oldpmap = PCPU_GET(curpmap);
3173	cpuid = PCPU_GET(cpuid);
3174
3175	if (oldpmap)
3176		CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
3177	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
3178	pmap_asid_alloc(pmap);
3179	if (td == curthread) {
3180		PCPU_SET(segbase, pmap->pm_segtab);
3181		mips_wr_entryhi(pmap->pm_asid[cpuid].asid);
3182	}
3183
3184	PCPU_SET(curpmap, pmap);
3185	critical_exit();
3186}
3187
3188void
3189pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3190{
3191}
3192
3193/*
3194 *	Increase the starting virtual address of the given mapping if a
3195 *	different alignment might result in more superpage mappings.
3196 */
3197void
3198pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
3199    vm_offset_t *addr, vm_size_t size)
3200{
3201	vm_offset_t superpage_offset;
3202
3203	if (size < NBSEG)
3204		return;
3205	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3206		offset += ptoa(object->pg_color);
3207	superpage_offset = offset & SEGMASK;
3208	if (size - ((NBSEG - superpage_offset) & SEGMASK) < NBSEG ||
3209	    (*addr & SEGMASK) == superpage_offset)
3210		return;
3211	if ((*addr & SEGMASK) < superpage_offset)
3212		*addr = (*addr & ~SEGMASK) + superpage_offset;
3213	else
3214		*addr = ((*addr + SEGMASK) & ~SEGMASK) + superpage_offset;
3215}
3216
3217#ifdef DDB
3218DB_SHOW_COMMAND(ptable, ddb_pid_dump)
3219{
3220	pmap_t pmap;
3221	struct thread *td = NULL;
3222	struct proc *p;
3223	int i, j, k;
3224	vm_paddr_t pa;
3225	vm_offset_t va;
3226
3227	if (have_addr) {
3228		td = db_lookup_thread(addr, TRUE);
3229		if (td == NULL) {
3230			db_printf("Invalid pid or tid");
3231			return;
3232		}
3233		p = td->td_proc;
3234		if (p->p_vmspace == NULL) {
3235			db_printf("No vmspace for process");
3236			return;
3237		}
3238			pmap = vmspace_pmap(p->p_vmspace);
3239	} else
3240		pmap = kernel_pmap;
3241
3242	db_printf("pmap:%p segtab:%p asid:%x generation:%x\n",
3243	    pmap, pmap->pm_segtab, pmap->pm_asid[0].asid,
3244	    pmap->pm_asid[0].gen);
3245	for (i = 0; i < NPDEPG; i++) {
3246		pd_entry_t *pdpe;
3247		pt_entry_t *pde;
3248		pt_entry_t pte;
3249
3250		pdpe = (pd_entry_t *)pmap->pm_segtab[i];
3251		if (pdpe == NULL)
3252			continue;
3253		db_printf("[%4d] %p\n", i, pdpe);
3254#ifdef __mips_n64
3255		for (j = 0; j < NPDEPG; j++) {
3256			pde = (pt_entry_t *)pdpe[j];
3257			if (pde == NULL)
3258				continue;
3259			db_printf("\t[%4d] %p\n", j, pde);
3260#else
3261		{
3262			j = 0;
3263			pde =  (pt_entry_t *)pdpe;
3264#endif
3265			for (k = 0; k < NPTEPG; k++) {
3266				pte = pde[k];
3267				if (pte == 0 || !pte_test(&pte, PTE_V))
3268					continue;
3269				pa = TLBLO_PTE_TO_PA(pte);
3270				va = ((u_long)i << SEGSHIFT) | (j << PDRSHIFT) | (k << PAGE_SHIFT);
3271				db_printf("\t\t[%04d] va: %p pte: %8jx pa:%jx\n",
3272				       k, (void *)va, (uintmax_t)pte, (uintmax_t)pa);
3273			}
3274		}
3275	}
3276}
3277#endif
3278
3279#if defined(DEBUG)
3280
3281static void pads(pmap_t pm);
3282void pmap_pvdump(vm_offset_t pa);
3283
3284/* print address space of pmap*/
3285static void
3286pads(pmap_t pm)
3287{
3288	unsigned va, i, j;
3289	pt_entry_t *ptep;
3290
3291	if (pm == kernel_pmap)
3292		return;
3293	for (i = 0; i < NPTEPG; i++)
3294		if (pm->pm_segtab[i])
3295			for (j = 0; j < NPTEPG; j++) {
3296				va = (i << SEGSHIFT) + (j << PAGE_SHIFT);
3297				if (pm == kernel_pmap && va < KERNBASE)
3298					continue;
3299				if (pm != kernel_pmap &&
3300				    va >= VM_MAXUSER_ADDRESS)
3301					continue;
3302				ptep = pmap_pte(pm, va);
3303				if (pte_test(ptep, PTE_V))
3304					printf("%x:%x ", va, *(int *)ptep);
3305			}
3306
3307}
3308
3309void
3310pmap_pvdump(vm_offset_t pa)
3311{
3312	register pv_entry_t pv;
3313	vm_page_t m;
3314
3315	printf("pa %x", pa);
3316	m = PHYS_TO_VM_PAGE(pa);
3317	for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3318	    pv = TAILQ_NEXT(pv, pv_list)) {
3319		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3320		pads(pv->pv_pmap);
3321	}
3322	printf(" ");
3323}
3324
3325/* N/C */
3326#endif
3327
3328
3329/*
3330 * Allocate TLB address space tag (called ASID or TLBPID) and return it.
3331 * It takes almost as much or more time to search the TLB for a
3332 * specific ASID and flush those entries as it does to flush the entire TLB.
3333 * Therefore, when we allocate a new ASID, we just take the next number. When
3334 * we run out of numbers, we flush the TLB, increment the generation count
3335 * and start over. ASID zero is reserved for kernel use.
3336 */
3337static void
3338pmap_asid_alloc(pmap)
3339	pmap_t pmap;
3340{
3341	if (pmap->pm_asid[PCPU_GET(cpuid)].asid != PMAP_ASID_RESERVED &&
3342	    pmap->pm_asid[PCPU_GET(cpuid)].gen == PCPU_GET(asid_generation));
3343	else {
3344		if (PCPU_GET(next_asid) == pmap_max_asid) {
3345			tlb_invalidate_all_user(NULL);
3346			PCPU_SET(asid_generation,
3347			    (PCPU_GET(asid_generation) + 1) & ASIDGEN_MASK);
3348			if (PCPU_GET(asid_generation) == 0) {
3349				PCPU_SET(asid_generation, 1);
3350			}
3351			PCPU_SET(next_asid, 1);	/* 0 means invalid */
3352		}
3353		pmap->pm_asid[PCPU_GET(cpuid)].asid = PCPU_GET(next_asid);
3354		pmap->pm_asid[PCPU_GET(cpuid)].gen = PCPU_GET(asid_generation);
3355		PCPU_SET(next_asid, PCPU_GET(next_asid) + 1);
3356	}
3357}
3358
3359static pt_entry_t
3360init_pte_prot(vm_page_t m, vm_prot_t access, vm_prot_t prot)
3361{
3362	pt_entry_t rw;
3363
3364	if (!(prot & VM_PROT_WRITE))
3365		rw = PTE_V | PTE_RO;
3366	else if ((m->oflags & VPO_UNMANAGED) == 0) {
3367		if ((access & VM_PROT_WRITE) != 0)
3368			rw = PTE_V | PTE_D;
3369		else
3370			rw = PTE_V;
3371	} else
3372		/* Needn't emulate a modified bit for unmanaged pages. */
3373		rw = PTE_V | PTE_D;
3374	return (rw);
3375}
3376
3377/*
3378 * pmap_emulate_modified : do dirty bit emulation
3379 *
3380 * On SMP, update just the local TLB, other CPUs will update their
3381 * TLBs from PTE lazily, if they get the exception.
3382 * Returns 0 in case of sucess, 1 if the page is read only and we
3383 * need to fault.
3384 */
3385int
3386pmap_emulate_modified(pmap_t pmap, vm_offset_t va)
3387{
3388	pt_entry_t *pte;
3389
3390	PMAP_LOCK(pmap);
3391	pte = pmap_pte(pmap, va);
3392	if (pte == NULL)
3393		panic("pmap_emulate_modified: can't find PTE");
3394#ifdef SMP
3395	/* It is possible that some other CPU changed m-bit */
3396	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D)) {
3397		tlb_update(pmap, va, *pte);
3398		PMAP_UNLOCK(pmap);
3399		return (0);
3400	}
3401#else
3402	if (!pte_test(pte, PTE_V) || pte_test(pte, PTE_D))
3403		panic("pmap_emulate_modified: invalid pte");
3404#endif
3405	if (pte_test(pte, PTE_RO)) {
3406		PMAP_UNLOCK(pmap);
3407		return (1);
3408	}
3409	pte_set(pte, PTE_D);
3410	tlb_update(pmap, va, *pte);
3411	if (!pte_test(pte, PTE_MANAGED))
3412		panic("pmap_emulate_modified: unmanaged page");
3413	PMAP_UNLOCK(pmap);
3414	return (0);
3415}
3416
3417/*
3418 *	Routine:	pmap_kextract
3419 *	Function:
3420 *		Extract the physical page address associated
3421 *		virtual address.
3422 */
3423vm_paddr_t
3424pmap_kextract(vm_offset_t va)
3425{
3426	int mapped;
3427
3428	/*
3429	 * First, the direct-mapped regions.
3430	 */
3431#if defined(__mips_n64)
3432	if (va >= MIPS_XKPHYS_START && va < MIPS_XKPHYS_END)
3433		return (MIPS_XKPHYS_TO_PHYS(va));
3434#endif
3435	if (va >= MIPS_KSEG0_START && va < MIPS_KSEG0_END)
3436		return (MIPS_KSEG0_TO_PHYS(va));
3437
3438	if (va >= MIPS_KSEG1_START && va < MIPS_KSEG1_END)
3439		return (MIPS_KSEG1_TO_PHYS(va));
3440
3441	/*
3442	 * User virtual addresses.
3443	 */
3444	if (va < VM_MAXUSER_ADDRESS) {
3445		pt_entry_t *ptep;
3446
3447		if (curproc && curproc->p_vmspace) {
3448			ptep = pmap_pte(&curproc->p_vmspace->vm_pmap, va);
3449			if (ptep) {
3450				return (TLBLO_PTE_TO_PA(*ptep) |
3451				    (va & PAGE_MASK));
3452			}
3453			return (0);
3454		}
3455	}
3456
3457	/*
3458	 * Should be kernel virtual here, otherwise fail
3459	 */
3460	mapped = (va >= MIPS_KSEG2_START || va < MIPS_KSEG2_END);
3461#if defined(__mips_n64)
3462	mapped = mapped || (va >= MIPS_XKSEG_START || va < MIPS_XKSEG_END);
3463#endif
3464	/*
3465	 * Kernel virtual.
3466	 */
3467
3468	if (mapped) {
3469		pt_entry_t *ptep;
3470
3471		/* Is the kernel pmap initialized? */
3472		if (!CPU_EMPTY(&kernel_pmap->pm_active)) {
3473			/* It's inside the virtual address range */
3474			ptep = pmap_pte(kernel_pmap, va);
3475			if (ptep) {
3476				return (TLBLO_PTE_TO_PA(*ptep) |
3477				    (va & PAGE_MASK));
3478			}
3479		}
3480		return (0);
3481	}
3482
3483	panic("%s for unknown address space %p.", __func__, (void *)va);
3484}
3485
3486
3487void
3488pmap_flush_pvcache(vm_page_t m)
3489{
3490	pv_entry_t pv;
3491
3492	if (m != NULL) {
3493		for (pv = TAILQ_FIRST(&m->md.pv_list); pv;
3494		    pv = TAILQ_NEXT(pv, pv_list)) {
3495			mips_dcache_wbinv_range_index(pv->pv_va, PAGE_SIZE);
3496		}
3497	}
3498}
3499