if_arge.c revision 265999
1/*-
2 * Copyright (c) 2009, Oleksandr Tymoshenko
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/mips/atheros/if_arge.c 265999 2014-05-14 01:35:43Z ian $");
30
31/*
32 * AR71XX gigabit ethernet driver
33 */
34#ifdef HAVE_KERNEL_OPTION_HEADERS
35#include "opt_device_polling.h"
36#endif
37
38#include "opt_arge.h"
39
40#include <sys/param.h>
41#include <sys/endian.h>
42#include <sys/systm.h>
43#include <sys/sockio.h>
44#include <sys/mbuf.h>
45#include <sys/malloc.h>
46#include <sys/kernel.h>
47#include <sys/module.h>
48#include <sys/socket.h>
49#include <sys/taskqueue.h>
50#include <sys/sysctl.h>
51
52#include <net/if.h>
53#include <net/if_arp.h>
54#include <net/ethernet.h>
55#include <net/if_dl.h>
56#include <net/if_media.h>
57#include <net/if_types.h>
58
59#include <net/bpf.h>
60
61#include <machine/bus.h>
62#include <machine/cache.h>
63#include <machine/resource.h>
64#include <vm/vm_param.h>
65#include <vm/vm.h>
66#include <vm/pmap.h>
67#include <machine/pmap.h>
68#include <sys/bus.h>
69#include <sys/rman.h>
70
71#include <dev/mii/mii.h>
72#include <dev/mii/miivar.h>
73
74#include <dev/pci/pcireg.h>
75#include <dev/pci/pcivar.h>
76
77#include "opt_arge.h"
78
79#if defined(ARGE_MDIO)
80#include <dev/etherswitch/mdio.h>
81#include <dev/etherswitch/miiproxy.h>
82#include "mdio_if.h"
83#endif
84
85
86MODULE_DEPEND(arge, ether, 1, 1, 1);
87MODULE_DEPEND(arge, miibus, 1, 1, 1);
88MODULE_VERSION(arge, 1);
89
90#include "miibus_if.h"
91
92#include <mips/atheros/ar71xxreg.h>
93#include <mips/atheros/if_argevar.h>
94#include <mips/atheros/ar71xx_setup.h>
95#include <mips/atheros/ar71xx_cpudef.h>
96
97typedef enum {
98	ARGE_DBG_MII 	=	0x00000001,
99	ARGE_DBG_INTR	=	0x00000002,
100	ARGE_DBG_TX	=	0x00000004,
101	ARGE_DBG_RX	=	0x00000008,
102	ARGE_DBG_ERR	=	0x00000010,
103	ARGE_DBG_RESET	=	0x00000020,
104	ARGE_DBG_PLL	=	0x00000040,
105} arge_debug_flags;
106
107static const char * arge_miicfg_str[] = {
108	"NONE",
109	"GMII",
110	"MII",
111	"RGMII",
112	"RMII"
113};
114
115#ifdef ARGE_DEBUG
116#define	ARGEDEBUG(_sc, _m, ...) 					\
117	do {								\
118		if ((_m) & (_sc)->arge_debug)				\
119			device_printf((_sc)->arge_dev, __VA_ARGS__);	\
120	} while (0)
121#else
122#define	ARGEDEBUG(_sc, _m, ...)
123#endif
124
125static int arge_attach(device_t);
126static int arge_detach(device_t);
127static void arge_flush_ddr(struct arge_softc *);
128static int arge_ifmedia_upd(struct ifnet *);
129static void arge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
130static int arge_ioctl(struct ifnet *, u_long, caddr_t);
131static void arge_init(void *);
132static void arge_init_locked(struct arge_softc *);
133static void arge_link_task(void *, int);
134static void arge_update_link_locked(struct arge_softc *sc);
135static void arge_set_pll(struct arge_softc *, int, int);
136static int arge_miibus_readreg(device_t, int, int);
137static void arge_miibus_statchg(device_t);
138static int arge_miibus_writereg(device_t, int, int, int);
139static int arge_probe(device_t);
140static void arge_reset_dma(struct arge_softc *);
141static int arge_resume(device_t);
142static int arge_rx_ring_init(struct arge_softc *);
143static void arge_rx_ring_free(struct arge_softc *sc);
144static int arge_tx_ring_init(struct arge_softc *);
145static void arge_tx_ring_free(struct arge_softc *);
146#ifdef DEVICE_POLLING
147static int arge_poll(struct ifnet *, enum poll_cmd, int);
148#endif
149static int arge_shutdown(device_t);
150static void arge_start(struct ifnet *);
151static void arge_start_locked(struct ifnet *);
152static void arge_stop(struct arge_softc *);
153static int arge_suspend(device_t);
154
155static int arge_rx_locked(struct arge_softc *);
156static void arge_tx_locked(struct arge_softc *);
157static void arge_intr(void *);
158static int arge_intr_filter(void *);
159static void arge_tick(void *);
160
161static void arge_hinted_child(device_t bus, const char *dname, int dunit);
162
163/*
164 * ifmedia callbacks for multiPHY MAC
165 */
166void arge_multiphy_mediastatus(struct ifnet *, struct ifmediareq *);
167int arge_multiphy_mediachange(struct ifnet *);
168
169static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
170static int arge_dma_alloc(struct arge_softc *);
171static void arge_dma_free(struct arge_softc *);
172static int arge_newbuf(struct arge_softc *, int);
173static __inline void arge_fixup_rx(struct mbuf *);
174
175static device_method_t arge_methods[] = {
176	/* Device interface */
177	DEVMETHOD(device_probe,		arge_probe),
178	DEVMETHOD(device_attach,	arge_attach),
179	DEVMETHOD(device_detach,	arge_detach),
180	DEVMETHOD(device_suspend,	arge_suspend),
181	DEVMETHOD(device_resume,	arge_resume),
182	DEVMETHOD(device_shutdown,	arge_shutdown),
183
184	/* MII interface */
185	DEVMETHOD(miibus_readreg,	arge_miibus_readreg),
186	DEVMETHOD(miibus_writereg,	arge_miibus_writereg),
187	DEVMETHOD(miibus_statchg,	arge_miibus_statchg),
188
189	/* bus interface */
190	DEVMETHOD(bus_add_child,	device_add_child_ordered),
191	DEVMETHOD(bus_hinted_child,	arge_hinted_child),
192
193	DEVMETHOD_END
194};
195
196static driver_t arge_driver = {
197	"arge",
198	arge_methods,
199	sizeof(struct arge_softc)
200};
201
202static devclass_t arge_devclass;
203
204DRIVER_MODULE(arge, nexus, arge_driver, arge_devclass, 0, 0);
205DRIVER_MODULE(miibus, arge, miibus_driver, miibus_devclass, 0, 0);
206
207#if defined(ARGE_MDIO)
208static int argemdio_probe(device_t);
209static int argemdio_attach(device_t);
210static int argemdio_detach(device_t);
211
212/*
213 * Declare an additional, separate driver for accessing the MDIO bus.
214 */
215static device_method_t argemdio_methods[] = {
216	/* Device interface */
217	DEVMETHOD(device_probe,		argemdio_probe),
218	DEVMETHOD(device_attach,	argemdio_attach),
219	DEVMETHOD(device_detach,	argemdio_detach),
220
221	/* bus interface */
222	DEVMETHOD(bus_add_child,	device_add_child_ordered),
223
224	/* MDIO access */
225	DEVMETHOD(mdio_readreg,		arge_miibus_readreg),
226	DEVMETHOD(mdio_writereg,	arge_miibus_writereg),
227};
228
229DEFINE_CLASS_0(argemdio, argemdio_driver, argemdio_methods,
230    sizeof(struct arge_softc));
231static devclass_t argemdio_devclass;
232
233DRIVER_MODULE(miiproxy, arge, miiproxy_driver, miiproxy_devclass, 0, 0);
234DRIVER_MODULE(argemdio, nexus, argemdio_driver, argemdio_devclass, 0, 0);
235DRIVER_MODULE(mdio, argemdio, mdio_driver, mdio_devclass, 0, 0);
236#endif
237
238/*
239 * RedBoot passes MAC address to entry point as environment
240 * variable. platfrom_start parses it and stores in this variable
241 */
242extern uint32_t ar711_base_mac[ETHER_ADDR_LEN];
243
244static struct mtx miibus_mtx;
245
246MTX_SYSINIT(miibus_mtx, &miibus_mtx, "arge mii lock", MTX_DEF);
247
248/*
249 * Flushes all
250 */
251static void
252arge_flush_ddr(struct arge_softc *sc)
253{
254
255	ar71xx_device_flush_ddr_ge(sc->arge_mac_unit);
256}
257
258static int
259arge_probe(device_t dev)
260{
261
262	device_set_desc(dev, "Atheros AR71xx built-in ethernet interface");
263	return (BUS_PROBE_NOWILDCARD);
264}
265
266static void
267arge_attach_sysctl(device_t dev)
268{
269	struct arge_softc *sc = device_get_softc(dev);
270	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
271	struct sysctl_oid *tree = device_get_sysctl_tree(dev);
272
273#ifdef	ARGE_DEBUG
274	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
275		"debug", CTLFLAG_RW, &sc->arge_debug, 0,
276		"arge interface debugging flags");
277#endif
278
279	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
280		"tx_pkts_aligned", CTLFLAG_RW, &sc->stats.tx_pkts_aligned, 0,
281		"number of TX aligned packets");
282
283	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
284		"tx_pkts_unaligned", CTLFLAG_RW, &sc->stats.tx_pkts_unaligned,
285		0, "number of TX unaligned packets");
286
287#ifdef	ARGE_DEBUG
288	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_prod",
289	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_prod, 0, "");
290	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cons",
291	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_cons, 0, "");
292	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_cnt",
293	    CTLFLAG_RW, &sc->arge_cdata.arge_tx_cnt, 0, "");
294#endif
295}
296
297static void
298arge_reset_mac(struct arge_softc *sc)
299{
300	uint32_t reg;
301
302	/* Step 1. Soft-reset MAC */
303	ARGE_SET_BITS(sc, AR71XX_MAC_CFG1, MAC_CFG1_SOFT_RESET);
304	DELAY(20);
305
306	/* Step 2. Punt the MAC core from the central reset register */
307	ar71xx_device_stop(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC :
308	    RST_RESET_GE1_MAC);
309	DELAY(100);
310	ar71xx_device_start(sc->arge_mac_unit == 0 ? RST_RESET_GE0_MAC :
311	    RST_RESET_GE1_MAC);
312
313	/* Step 3. Reconfigure MAC block */
314	ARGE_WRITE(sc, AR71XX_MAC_CFG1,
315		MAC_CFG1_SYNC_RX | MAC_CFG1_RX_ENABLE |
316		MAC_CFG1_SYNC_TX | MAC_CFG1_TX_ENABLE);
317
318	reg = ARGE_READ(sc, AR71XX_MAC_CFG2);
319	reg |= MAC_CFG2_ENABLE_PADCRC | MAC_CFG2_LENGTH_FIELD ;
320	ARGE_WRITE(sc, AR71XX_MAC_CFG2, reg);
321
322	ARGE_WRITE(sc, AR71XX_MAC_MAX_FRAME_LEN, 1536);
323}
324
325static void
326arge_reset_miibus(struct arge_softc *sc)
327{
328
329	/* Reset MII bus */
330	ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_RESET);
331	DELAY(100);
332	ARGE_WRITE(sc, AR71XX_MAC_MII_CFG, MAC_MII_CFG_CLOCK_DIV_28);
333	DELAY(100);
334}
335
336static void
337arge_fetch_pll_config(struct arge_softc *sc)
338{
339	long int val;
340
341	if (resource_long_value(device_get_name(sc->arge_dev),
342	    device_get_unit(sc->arge_dev),
343	    "pll_10", &val) == 0) {
344		sc->arge_pllcfg.pll_10 = val;
345		device_printf(sc->arge_dev, "%s: pll_10 = 0x%x\n",
346		    __func__, (int) val);
347	}
348	if (resource_long_value(device_get_name(sc->arge_dev),
349	    device_get_unit(sc->arge_dev),
350	    "pll_100", &val) == 0) {
351		sc->arge_pllcfg.pll_100 = val;
352		device_printf(sc->arge_dev, "%s: pll_100 = 0x%x\n",
353		    __func__, (int) val);
354	}
355	if (resource_long_value(device_get_name(sc->arge_dev),
356	    device_get_unit(sc->arge_dev),
357	    "pll_1000", &val) == 0) {
358		sc->arge_pllcfg.pll_1000 = val;
359		device_printf(sc->arge_dev, "%s: pll_1000 = 0x%x\n",
360		    __func__, (int) val);
361	}
362}
363
364static int
365arge_attach(device_t dev)
366{
367	struct ifnet		*ifp;
368	struct arge_softc	*sc;
369	int			error = 0, rid;
370	uint32_t		rnd;
371	int			is_base_mac_empty, i;
372	uint32_t		hint;
373	long			eeprom_mac_addr = 0;
374	int			miicfg = 0;
375	int			readascii = 0;
376
377	sc = device_get_softc(dev);
378	sc->arge_dev = dev;
379	sc->arge_mac_unit = device_get_unit(dev);
380
381	/*
382	 * Some units (eg the TP-Link WR-1043ND) do not have a convenient
383	 * EEPROM location to read the ethernet MAC address from.
384	 * OpenWRT simply snaffles it from a fixed location.
385	 *
386	 * Since multiple units seem to use this feature, include
387	 * a method of setting the MAC address based on an flash location
388	 * in CPU address space.
389	 *
390	 * Some vendors have decided to store the mac address as a literal
391	 * string of 18 characters in xx:xx:xx:xx:xx:xx format instead of
392	 * an array of numbers.  Expose a hint to turn on this conversion
393	 * feature via strtol()
394	 */
395	 if (resource_long_value(device_get_name(dev), device_get_unit(dev),
396	    "eeprommac", &eeprom_mac_addr) == 0) {
397		int i;
398		const char *mac =
399		    (const char *) MIPS_PHYS_TO_KSEG1(eeprom_mac_addr);
400		device_printf(dev, "Overriding MAC from EEPROM\n");
401		if (resource_int_value(device_get_name(dev), device_get_unit(dev),
402			"readascii", &readascii) == 0) {
403			device_printf(dev, "Vendor stores MAC in ASCII format\n");
404			for (i = 0; i < 6; i++) {
405				ar711_base_mac[i] = strtol(&(mac[i*3]), NULL, 16);
406			}
407		} else {
408			for (i = 0; i < 6; i++) {
409				ar711_base_mac[i] = mac[i];
410			}
411		}
412	}
413
414	KASSERT(((sc->arge_mac_unit == 0) || (sc->arge_mac_unit == 1)),
415	    ("if_arge: Only MAC0 and MAC1 supported"));
416
417	/*
418	 * Fetch the PLL configuration.
419	 */
420	arge_fetch_pll_config(sc);
421
422	/*
423	 * Get the MII configuration, if applicable.
424	 */
425	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
426	    "miimode", &miicfg) == 0) {
427		/* XXX bounds check? */
428		device_printf(dev, "%s: overriding MII mode to '%s'\n",
429		    __func__, arge_miicfg_str[miicfg]);
430		sc->arge_miicfg = miicfg;
431	}
432
433	/*
434	 *  Get which PHY of 5 available we should use for this unit
435	 */
436	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
437	    "phymask", &sc->arge_phymask) != 0) {
438		/*
439		 * Use port 4 (WAN) for GE0. For any other port use
440		 * its PHY the same as its unit number
441		 */
442		if (sc->arge_mac_unit == 0)
443			sc->arge_phymask = (1 << 4);
444		else
445			/* Use all phys up to 4 */
446			sc->arge_phymask = (1 << 4) - 1;
447
448		device_printf(dev, "No PHY specified, using mask %d\n", sc->arge_phymask);
449	}
450
451	/*
452	 *  Get default media & duplex mode, by default its Base100T
453	 *  and full duplex
454	 */
455	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
456	    "media", &hint) != 0)
457		hint = 0;
458
459	if (hint == 1000)
460		sc->arge_media_type = IFM_1000_T;
461	else
462		sc->arge_media_type = IFM_100_TX;
463
464	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
465	    "fduplex", &hint) != 0)
466		hint = 1;
467
468	if (hint)
469		sc->arge_duplex_mode = IFM_FDX;
470	else
471		sc->arge_duplex_mode = 0;
472
473	mtx_init(&sc->arge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
474	    MTX_DEF);
475	callout_init_mtx(&sc->arge_stat_callout, &sc->arge_mtx, 0);
476	TASK_INIT(&sc->arge_link_task, 0, arge_link_task, sc);
477
478	/* Map control/status registers. */
479	sc->arge_rid = 0;
480	sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
481	    &sc->arge_rid, RF_ACTIVE | RF_SHAREABLE);
482
483	if (sc->arge_res == NULL) {
484		device_printf(dev, "couldn't map memory\n");
485		error = ENXIO;
486		goto fail;
487	}
488
489	/* Allocate interrupts */
490	rid = 0;
491	sc->arge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
492	    RF_SHAREABLE | RF_ACTIVE);
493
494	if (sc->arge_irq == NULL) {
495		device_printf(dev, "couldn't map interrupt\n");
496		error = ENXIO;
497		goto fail;
498	}
499
500	/* Allocate ifnet structure. */
501	ifp = sc->arge_ifp = if_alloc(IFT_ETHER);
502
503	if (ifp == NULL) {
504		device_printf(dev, "couldn't allocate ifnet structure\n");
505		error = ENOSPC;
506		goto fail;
507	}
508
509	ifp->if_softc = sc;
510	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
511	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
512	ifp->if_ioctl = arge_ioctl;
513	ifp->if_start = arge_start;
514	ifp->if_init = arge_init;
515	sc->arge_if_flags = ifp->if_flags;
516
517	/* XXX: add real size */
518	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
519	ifp->if_snd.ifq_maxlen = ifqmaxlen;
520	IFQ_SET_READY(&ifp->if_snd);
521
522	ifp->if_capenable = ifp->if_capabilities;
523#ifdef DEVICE_POLLING
524	ifp->if_capabilities |= IFCAP_POLLING;
525#endif
526
527	is_base_mac_empty = 1;
528	for (i = 0; i < ETHER_ADDR_LEN; i++) {
529		sc->arge_eaddr[i] = ar711_base_mac[i] & 0xff;
530		if (sc->arge_eaddr[i] != 0)
531			is_base_mac_empty = 0;
532	}
533
534	if (is_base_mac_empty) {
535		/*
536		 * No MAC address configured. Generate the random one.
537		 */
538		if  (bootverbose)
539			device_printf(dev,
540			    "Generating random ethernet address.\n");
541
542		rnd = arc4random();
543		sc->arge_eaddr[0] = 'b';
544		sc->arge_eaddr[1] = 's';
545		sc->arge_eaddr[2] = 'd';
546		sc->arge_eaddr[3] = (rnd >> 24) & 0xff;
547		sc->arge_eaddr[4] = (rnd >> 16) & 0xff;
548		sc->arge_eaddr[5] = (rnd >> 8) & 0xff;
549	}
550	if (sc->arge_mac_unit != 0)
551		sc->arge_eaddr[5] +=  sc->arge_mac_unit;
552
553	if (arge_dma_alloc(sc) != 0) {
554		error = ENXIO;
555		goto fail;
556	}
557
558	/*
559	 * Don't do this for the MDIO bus case - it's already done
560	 * as part of the MDIO bus attachment.
561	 */
562#if !defined(ARGE_MDIO)
563	/* Initialize the MAC block */
564	arge_reset_mac(sc);
565	arge_reset_miibus(sc);
566#endif
567
568	/* Configure MII mode, just for convienence */
569	if (sc->arge_miicfg != 0)
570		ar71xx_device_set_mii_if(sc->arge_mac_unit, sc->arge_miicfg);
571
572	/*
573	 * Set all Ethernet address registers to the same initial values
574	 * set all four addresses to 66-88-aa-cc-dd-ee
575	 */
576	ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR1, (sc->arge_eaddr[2] << 24)
577	    | (sc->arge_eaddr[3] << 16) | (sc->arge_eaddr[4] << 8)
578	    | sc->arge_eaddr[5]);
579	ARGE_WRITE(sc, AR71XX_MAC_STA_ADDR2, (sc->arge_eaddr[0] << 8)
580	    | sc->arge_eaddr[1]);
581
582	ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG0,
583	    FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT);
584
585	switch (ar71xx_soc) {
586		case AR71XX_SOC_AR7240:
587		case AR71XX_SOC_AR7241:
588		case AR71XX_SOC_AR7242:
589		case AR71XX_SOC_AR9330:
590		case AR71XX_SOC_AR9331:
591			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0010ffff);
592			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x015500aa);
593			break;
594		default:
595			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG1, 0x0fff0000);
596			ARGE_WRITE(sc, AR71XX_MAC_FIFO_CFG2, 0x00001fff);
597	}
598
599	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMATCH,
600	    FIFO_RX_FILTMATCH_DEFAULT);
601
602	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
603	    FIFO_RX_FILTMASK_DEFAULT);
604
605#if defined(ARGE_MDIO)
606	sc->arge_miiproxy = mii_attach_proxy(sc->arge_dev);
607#endif
608
609	device_printf(sc->arge_dev, "finishing attachment, phymask %04x"
610	    ", proxy %s \n", sc->arge_phymask, sc->arge_miiproxy == NULL ?
611	    "null" : "set");
612	for (i = 0; i < ARGE_NPHY; i++) {
613		if (((1 << i) & sc->arge_phymask) != 0) {
614			error = mii_attach(sc->arge_miiproxy != NULL ?
615			    sc->arge_miiproxy : sc->arge_dev,
616			    &sc->arge_miibus, sc->arge_ifp,
617			    arge_ifmedia_upd, arge_ifmedia_sts,
618			    BMSR_DEFCAPMASK, i, MII_OFFSET_ANY, 0);
619			if (error != 0) {
620				device_printf(sc->arge_dev, "unable to attach"
621				    " PHY %d: %d\n", i, error);
622				goto fail;
623			}
624		}
625	}
626	if (sc->arge_miibus == NULL) {
627		/* no PHY, so use hard-coded values */
628		ifmedia_init(&sc->arge_ifmedia, 0,
629		    arge_multiphy_mediachange,
630		    arge_multiphy_mediastatus);
631		ifmedia_add(&sc->arge_ifmedia,
632		    IFM_ETHER | sc->arge_media_type  | sc->arge_duplex_mode,
633		    0, NULL);
634		ifmedia_set(&sc->arge_ifmedia,
635		    IFM_ETHER | sc->arge_media_type  | sc->arge_duplex_mode);
636		arge_set_pll(sc, sc->arge_media_type, sc->arge_duplex_mode);
637	}
638
639	/* Call MI attach routine. */
640	ether_ifattach(sc->arge_ifp, sc->arge_eaddr);
641
642	/* Hook interrupt last to avoid having to lock softc */
643	error = bus_setup_intr(sc->arge_dev, sc->arge_irq, INTR_TYPE_NET | INTR_MPSAFE,
644	    arge_intr_filter, arge_intr, sc, &sc->arge_intrhand);
645
646	if (error) {
647		device_printf(sc->arge_dev, "couldn't set up irq\n");
648		ether_ifdetach(sc->arge_ifp);
649		goto fail;
650	}
651
652	/* setup sysctl variables */
653	arge_attach_sysctl(sc->arge_dev);
654
655fail:
656	if (error)
657		arge_detach(dev);
658
659	return (error);
660}
661
662static int
663arge_detach(device_t dev)
664{
665	struct arge_softc	*sc = device_get_softc(dev);
666	struct ifnet		*ifp = sc->arge_ifp;
667
668	KASSERT(mtx_initialized(&sc->arge_mtx),
669	    ("arge mutex not initialized"));
670
671	/* These should only be active if attach succeeded */
672	if (device_is_attached(dev)) {
673		ARGE_LOCK(sc);
674		sc->arge_detach = 1;
675#ifdef DEVICE_POLLING
676		if (ifp->if_capenable & IFCAP_POLLING)
677			ether_poll_deregister(ifp);
678#endif
679
680		arge_stop(sc);
681		ARGE_UNLOCK(sc);
682		taskqueue_drain(taskqueue_swi, &sc->arge_link_task);
683		ether_ifdetach(ifp);
684	}
685
686	if (sc->arge_miibus)
687		device_delete_child(dev, sc->arge_miibus);
688
689	if (sc->arge_miiproxy)
690		device_delete_child(dev, sc->arge_miiproxy);
691
692	bus_generic_detach(dev);
693
694	if (sc->arge_intrhand)
695		bus_teardown_intr(dev, sc->arge_irq, sc->arge_intrhand);
696
697	if (sc->arge_res)
698		bus_release_resource(dev, SYS_RES_MEMORY, sc->arge_rid,
699		    sc->arge_res);
700
701	if (ifp)
702		if_free(ifp);
703
704	arge_dma_free(sc);
705
706	mtx_destroy(&sc->arge_mtx);
707
708	return (0);
709
710}
711
712static int
713arge_suspend(device_t dev)
714{
715
716	panic("%s", __func__);
717	return 0;
718}
719
720static int
721arge_resume(device_t dev)
722{
723
724	panic("%s", __func__);
725	return 0;
726}
727
728static int
729arge_shutdown(device_t dev)
730{
731	struct arge_softc	*sc;
732
733	sc = device_get_softc(dev);
734
735	ARGE_LOCK(sc);
736	arge_stop(sc);
737	ARGE_UNLOCK(sc);
738
739	return (0);
740}
741
742static void
743arge_hinted_child(device_t bus, const char *dname, int dunit)
744{
745	BUS_ADD_CHILD(bus, 0, dname, dunit);
746	device_printf(bus, "hinted child %s%d\n", dname, dunit);
747}
748
749static int
750arge_miibus_readreg(device_t dev, int phy, int reg)
751{
752	struct arge_softc * sc = device_get_softc(dev);
753	int i, result;
754	uint32_t addr = (phy << MAC_MII_PHY_ADDR_SHIFT)
755	    | (reg & MAC_MII_REG_MASK);
756
757	mtx_lock(&miibus_mtx);
758	ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
759	ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_ADDR, addr);
760	ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_READ);
761
762	i = ARGE_MII_TIMEOUT;
763	while ((ARGE_MDIO_READ(sc, AR71XX_MAC_MII_INDICATOR) &
764	    MAC_MII_INDICATOR_BUSY) && (i--))
765		DELAY(5);
766
767	if (i < 0) {
768		mtx_unlock(&miibus_mtx);
769		ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
770		/* XXX: return ERRNO istead? */
771		return (-1);
772	}
773
774	result = ARGE_MDIO_READ(sc, AR71XX_MAC_MII_STATUS) & MAC_MII_STATUS_MASK;
775	ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CMD, MAC_MII_CMD_WRITE);
776	mtx_unlock(&miibus_mtx);
777
778	ARGEDEBUG(sc, ARGE_DBG_MII,
779	    "%s: phy=%d, reg=%02x, value[%08x]=%04x\n",
780	    __func__, phy, reg, addr, result);
781
782	return (result);
783}
784
785static int
786arge_miibus_writereg(device_t dev, int phy, int reg, int data)
787{
788	struct arge_softc * sc = device_get_softc(dev);
789	int i;
790	uint32_t addr =
791	    (phy << MAC_MII_PHY_ADDR_SHIFT) | (reg & MAC_MII_REG_MASK);
792
793	ARGEDEBUG(sc, ARGE_DBG_MII, "%s: phy=%d, reg=%02x, value=%04x\n", __func__,
794	    phy, reg, data);
795
796	mtx_lock(&miibus_mtx);
797	ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_ADDR, addr);
798	ARGE_MDIO_WRITE(sc, AR71XX_MAC_MII_CONTROL, data);
799
800	i = ARGE_MII_TIMEOUT;
801	while ((ARGE_MDIO_READ(sc, AR71XX_MAC_MII_INDICATOR) &
802	    MAC_MII_INDICATOR_BUSY) && (i--))
803		DELAY(5);
804
805	mtx_unlock(&miibus_mtx);
806
807	if (i < 0) {
808		ARGEDEBUG(sc, ARGE_DBG_MII, "%s timedout\n", __func__);
809		/* XXX: return ERRNO istead? */
810		return (-1);
811	}
812
813	return (0);
814}
815
816static void
817arge_miibus_statchg(device_t dev)
818{
819	struct arge_softc	*sc;
820
821	sc = device_get_softc(dev);
822	taskqueue_enqueue(taskqueue_swi, &sc->arge_link_task);
823}
824
825static void
826arge_link_task(void *arg, int pending)
827{
828	struct arge_softc	*sc;
829	sc = (struct arge_softc *)arg;
830
831	ARGE_LOCK(sc);
832	arge_update_link_locked(sc);
833	ARGE_UNLOCK(sc);
834}
835
836static void
837arge_update_link_locked(struct arge_softc *sc)
838{
839	struct mii_data		*mii;
840	struct ifnet		*ifp;
841	uint32_t		media, duplex;
842
843	mii = device_get_softc(sc->arge_miibus);
844	ifp = sc->arge_ifp;
845	if (mii == NULL || ifp == NULL ||
846	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
847		return;
848	}
849
850	if (mii->mii_media_status & IFM_ACTIVE) {
851
852		media = IFM_SUBTYPE(mii->mii_media_active);
853		if (media != IFM_NONE) {
854			sc->arge_link_status = 1;
855			duplex = mii->mii_media_active & IFM_GMASK;
856			ARGEDEBUG(sc, ARGE_DBG_MII, "%s: media=%d, duplex=%d\n",
857			    __func__,
858			    media,
859			    duplex);
860			arge_set_pll(sc, media, duplex);
861		}
862	} else {
863		sc->arge_link_status = 0;
864	}
865}
866
867static void
868arge_set_pll(struct arge_softc *sc, int media, int duplex)
869{
870	uint32_t		cfg, ifcontrol, rx_filtmask;
871	uint32_t		fifo_tx, pll;
872	int if_speed;
873
874	ARGEDEBUG(sc, ARGE_DBG_PLL, "set_pll(%04x, %s)\n", media,
875	    duplex == IFM_FDX ? "full" : "half");
876	cfg = ARGE_READ(sc, AR71XX_MAC_CFG2);
877	cfg &= ~(MAC_CFG2_IFACE_MODE_1000
878	    | MAC_CFG2_IFACE_MODE_10_100
879	    | MAC_CFG2_FULL_DUPLEX);
880
881	if (duplex == IFM_FDX)
882		cfg |= MAC_CFG2_FULL_DUPLEX;
883
884	ifcontrol = ARGE_READ(sc, AR71XX_MAC_IFCONTROL);
885	ifcontrol &= ~MAC_IFCONTROL_SPEED;
886	rx_filtmask =
887	    ARGE_READ(sc, AR71XX_MAC_FIFO_RX_FILTMASK);
888	rx_filtmask &= ~FIFO_RX_MASK_BYTE_MODE;
889
890	switch(media) {
891	case IFM_10_T:
892		cfg |= MAC_CFG2_IFACE_MODE_10_100;
893		if_speed = 10;
894		break;
895	case IFM_100_TX:
896		cfg |= MAC_CFG2_IFACE_MODE_10_100;
897		ifcontrol |= MAC_IFCONTROL_SPEED;
898		if_speed = 100;
899		break;
900	case IFM_1000_T:
901	case IFM_1000_SX:
902		cfg |= MAC_CFG2_IFACE_MODE_1000;
903		rx_filtmask |= FIFO_RX_MASK_BYTE_MODE;
904		if_speed = 1000;
905		break;
906	default:
907		if_speed = 100;
908		device_printf(sc->arge_dev,
909		    "Unknown media %d\n", media);
910	}
911
912	ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: if_speed=%d\n", __func__, if_speed);
913
914	switch (ar71xx_soc) {
915		case AR71XX_SOC_AR7240:
916		case AR71XX_SOC_AR7241:
917		case AR71XX_SOC_AR7242:
918		case AR71XX_SOC_AR9330:
919		case AR71XX_SOC_AR9331:
920			fifo_tx = 0x01f00140;
921			break;
922		case AR71XX_SOC_AR9130:
923		case AR71XX_SOC_AR9132:
924			fifo_tx = 0x00780fff;
925			break;
926		default:
927			fifo_tx = 0x008001ff;
928	}
929
930	ARGE_WRITE(sc, AR71XX_MAC_CFG2, cfg);
931	ARGE_WRITE(sc, AR71XX_MAC_IFCONTROL, ifcontrol);
932	ARGE_WRITE(sc, AR71XX_MAC_FIFO_RX_FILTMASK,
933	    rx_filtmask);
934	ARGE_WRITE(sc, AR71XX_MAC_FIFO_TX_THRESHOLD, fifo_tx);
935
936	/* fetch PLL registers */
937	pll = ar71xx_device_get_eth_pll(sc->arge_mac_unit, if_speed);
938	ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: pll=0x%x\n", __func__, pll);
939
940	/* Override if required by platform data */
941	if (if_speed == 10 && sc->arge_pllcfg.pll_10 != 0)
942		pll = sc->arge_pllcfg.pll_10;
943	else if (if_speed == 100 && sc->arge_pllcfg.pll_100 != 0)
944		pll = sc->arge_pllcfg.pll_100;
945	else if (if_speed == 1000 && sc->arge_pllcfg.pll_1000 != 0)
946		pll = sc->arge_pllcfg.pll_1000;
947	ARGEDEBUG(sc, ARGE_DBG_PLL, "%s: final pll=0x%x\n", __func__, pll);
948
949	/* XXX ensure pll != 0 */
950	ar71xx_device_set_pll_ge(sc->arge_mac_unit, if_speed, pll);
951
952	/* set MII registers */
953	/*
954	 * This was introduced to match what the Linux ag71xx ethernet
955	 * driver does.  For the AR71xx case, it does set the port
956	 * MII speed.  However, if this is done, non-gigabit speeds
957	 * are not at all reliable when speaking via RGMII through
958	 * 'bridge' PHY port that's pretending to be a local PHY.
959	 *
960	 * Until that gets root caused, and until an AR71xx + normal
961	 * PHY board is tested, leave this disabled.
962	 */
963#if 0
964	ar71xx_device_set_mii_speed(sc->arge_mac_unit, if_speed);
965#endif
966}
967
968
969static void
970arge_reset_dma(struct arge_softc *sc)
971{
972	ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, 0);
973	ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, 0);
974
975	ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, 0);
976	ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, 0);
977
978	/* Clear all possible RX interrupts */
979	while(ARGE_READ(sc, AR71XX_DMA_RX_STATUS) & DMA_RX_STATUS_PKT_RECVD)
980		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
981
982	/*
983	 * Clear all possible TX interrupts
984	 */
985	while(ARGE_READ(sc, AR71XX_DMA_TX_STATUS) & DMA_TX_STATUS_PKT_SENT)
986		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
987
988	/*
989	 * Now Rx/Tx errors
990	 */
991	ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS,
992	    DMA_RX_STATUS_BUS_ERROR | DMA_RX_STATUS_OVERFLOW);
993	ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS,
994	    DMA_TX_STATUS_BUS_ERROR | DMA_TX_STATUS_UNDERRUN);
995
996	/*
997	 * Force a DDR flush so any pending data is properly
998	 * flushed to RAM before underlying buffers are freed.
999	 */
1000	arge_flush_ddr(sc);
1001}
1002
1003
1004
1005static void
1006arge_init(void *xsc)
1007{
1008	struct arge_softc	 *sc = xsc;
1009
1010	ARGE_LOCK(sc);
1011	arge_init_locked(sc);
1012	ARGE_UNLOCK(sc);
1013}
1014
1015static void
1016arge_init_locked(struct arge_softc *sc)
1017{
1018	struct ifnet		*ifp = sc->arge_ifp;
1019	struct mii_data		*mii;
1020
1021	ARGE_LOCK_ASSERT(sc);
1022
1023	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1024		return;
1025
1026	/* Init circular RX list. */
1027	if (arge_rx_ring_init(sc) != 0) {
1028		device_printf(sc->arge_dev,
1029		    "initialization failed: no memory for rx buffers\n");
1030		arge_stop(sc);
1031		return;
1032	}
1033
1034	/* Init tx descriptors. */
1035	arge_tx_ring_init(sc);
1036
1037	arge_reset_dma(sc);
1038
1039	if (sc->arge_miibus) {
1040		mii = device_get_softc(sc->arge_miibus);
1041		mii_mediachg(mii);
1042	}
1043	else {
1044		/*
1045		 * Sun always shines over multiPHY interface
1046		 */
1047		sc->arge_link_status = 1;
1048	}
1049
1050	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1051	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1052
1053	if (sc->arge_miibus) {
1054		callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
1055		arge_update_link_locked(sc);
1056	}
1057
1058	ARGE_WRITE(sc, AR71XX_DMA_TX_DESC, ARGE_TX_RING_ADDR(sc, 0));
1059	ARGE_WRITE(sc, AR71XX_DMA_RX_DESC, ARGE_RX_RING_ADDR(sc, 0));
1060
1061	/* Start listening */
1062	ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
1063
1064	/* Enable interrupts */
1065	ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
1066}
1067
1068/*
1069 * Return whether the mbuf chain is correctly aligned
1070 * for the arge TX engine.
1071 *
1072 * The TX engine requires each fragment to be aligned to a
1073 * 4 byte boundary and the size of each fragment except
1074 * the last to be a multiple of 4 bytes.
1075 */
1076static int
1077arge_mbuf_chain_is_tx_aligned(struct mbuf *m0)
1078{
1079	struct mbuf *m;
1080
1081	for (m = m0; m != NULL; m = m->m_next) {
1082		if((mtod(m, intptr_t) & 3) != 0)
1083			return 0;
1084		if ((m->m_next != NULL) && ((m->m_len & 0x03) != 0))
1085			return 0;
1086	}
1087	return 1;
1088}
1089
1090/*
1091 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1092 * pointers to the fragment pointers.
1093 */
1094static int
1095arge_encap(struct arge_softc *sc, struct mbuf **m_head)
1096{
1097	struct arge_txdesc	*txd;
1098	struct arge_desc	*desc, *prev_desc;
1099	bus_dma_segment_t	txsegs[ARGE_MAXFRAGS];
1100	int			error, i, nsegs, prod, prev_prod;
1101	struct mbuf		*m;
1102
1103	ARGE_LOCK_ASSERT(sc);
1104
1105	/*
1106	 * Fix mbuf chain, all fragments should be 4 bytes aligned and
1107	 * even 4 bytes
1108	 */
1109	m = *m_head;
1110	if (! arge_mbuf_chain_is_tx_aligned(m)) {
1111		sc->stats.tx_pkts_unaligned++;
1112		m = m_defrag(*m_head, M_NOWAIT);
1113		if (m == NULL) {
1114			*m_head = NULL;
1115			return (ENOBUFS);
1116		}
1117		*m_head = m;
1118	} else
1119		sc->stats.tx_pkts_aligned++;
1120
1121	prod = sc->arge_cdata.arge_tx_prod;
1122	txd = &sc->arge_cdata.arge_txdesc[prod];
1123	error = bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_tx_tag,
1124	    txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1125
1126	if (error == EFBIG) {
1127		panic("EFBIG");
1128	} else if (error != 0)
1129		return (error);
1130
1131	if (nsegs == 0) {
1132		m_freem(*m_head);
1133		*m_head = NULL;
1134		return (EIO);
1135	}
1136
1137	/* Check number of available descriptors. */
1138	if (sc->arge_cdata.arge_tx_cnt + nsegs >= (ARGE_TX_RING_COUNT - 1)) {
1139		bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
1140		return (ENOBUFS);
1141	}
1142
1143	txd->tx_m = *m_head;
1144	bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
1145	    BUS_DMASYNC_PREWRITE);
1146
1147	/*
1148	 * Make a list of descriptors for this packet. DMA controller will
1149	 * walk through it while arge_link is not zero.
1150	 */
1151	prev_prod = prod;
1152	desc = prev_desc = NULL;
1153	for (i = 0; i < nsegs; i++) {
1154		desc = &sc->arge_rdata.arge_tx_ring[prod];
1155		desc->packet_ctrl = ARGE_DMASIZE(txsegs[i].ds_len);
1156
1157		if (txsegs[i].ds_addr & 3)
1158			panic("TX packet address unaligned\n");
1159
1160		desc->packet_addr = txsegs[i].ds_addr;
1161
1162		/* link with previous descriptor */
1163		if (prev_desc)
1164			prev_desc->packet_ctrl |= ARGE_DESC_MORE;
1165
1166		sc->arge_cdata.arge_tx_cnt++;
1167		prev_desc = desc;
1168		ARGE_INC(prod, ARGE_TX_RING_COUNT);
1169	}
1170
1171	/* Update producer index. */
1172	sc->arge_cdata.arge_tx_prod = prod;
1173
1174	/* Sync descriptors. */
1175	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1176	    sc->arge_cdata.arge_tx_ring_map,
1177	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1178
1179	/* Start transmitting */
1180	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: setting DMA_TX_CONTROL_EN\n",
1181	    __func__);
1182	ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL, DMA_TX_CONTROL_EN);
1183	return (0);
1184}
1185
1186static void
1187arge_start(struct ifnet *ifp)
1188{
1189	struct arge_softc	 *sc;
1190
1191	sc = ifp->if_softc;
1192
1193	ARGE_LOCK(sc);
1194	arge_start_locked(ifp);
1195	ARGE_UNLOCK(sc);
1196}
1197
1198static void
1199arge_start_locked(struct ifnet *ifp)
1200{
1201	struct arge_softc	*sc;
1202	struct mbuf		*m_head;
1203	int			enq = 0;
1204
1205	sc = ifp->if_softc;
1206
1207	ARGE_LOCK_ASSERT(sc);
1208
1209	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: beginning\n", __func__);
1210
1211	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1212	    IFF_DRV_RUNNING || sc->arge_link_status == 0 )
1213		return;
1214
1215	/*
1216	 * Before we go any further, check whether we're already full.
1217	 * The below check errors out immediately if the ring is full
1218	 * and never gets a chance to set this flag. Although it's
1219	 * likely never needed, this at least avoids an unexpected
1220	 * situation.
1221	 */
1222	if (sc->arge_cdata.arge_tx_cnt >= ARGE_TX_RING_COUNT - 2) {
1223		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1224		ARGEDEBUG(sc, ARGE_DBG_ERR,
1225		    "%s: tx_cnt %d >= max %d; setting IFF_DRV_OACTIVE\n",
1226		    __func__, sc->arge_cdata.arge_tx_cnt,
1227		    ARGE_TX_RING_COUNT - 2);
1228		return;
1229	}
1230
1231	arge_flush_ddr(sc);
1232
1233	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1234	    sc->arge_cdata.arge_tx_cnt < ARGE_TX_RING_COUNT - 2; ) {
1235		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1236		if (m_head == NULL)
1237			break;
1238
1239
1240		/*
1241		 * Pack the data into the transmit ring.
1242		 */
1243		if (arge_encap(sc, &m_head)) {
1244			if (m_head == NULL)
1245				break;
1246			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1247			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1248			break;
1249		}
1250
1251		enq++;
1252		/*
1253		 * If there's a BPF listener, bounce a copy of this frame
1254		 * to him.
1255		 */
1256		ETHER_BPF_MTAP(ifp, m_head);
1257	}
1258	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: finished; queued %d packets\n",
1259	    __func__, enq);
1260}
1261
1262static void
1263arge_stop(struct arge_softc *sc)
1264{
1265	struct ifnet	    *ifp;
1266
1267	ARGE_LOCK_ASSERT(sc);
1268
1269	ifp = sc->arge_ifp;
1270	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1271	if (sc->arge_miibus)
1272		callout_stop(&sc->arge_stat_callout);
1273
1274	/* mask out interrupts */
1275	ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1276
1277	arge_reset_dma(sc);
1278
1279	/* Flush FIFO and free any existing mbufs */
1280	arge_flush_ddr(sc);
1281	arge_rx_ring_free(sc);
1282	arge_tx_ring_free(sc);
1283}
1284
1285
1286static int
1287arge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1288{
1289	struct arge_softc		*sc = ifp->if_softc;
1290	struct ifreq		*ifr = (struct ifreq *) data;
1291	struct mii_data		*mii;
1292	int			error;
1293#ifdef DEVICE_POLLING
1294	int			mask;
1295#endif
1296
1297	switch (command) {
1298	case SIOCSIFFLAGS:
1299		ARGE_LOCK(sc);
1300		if ((ifp->if_flags & IFF_UP) != 0) {
1301			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1302				if (((ifp->if_flags ^ sc->arge_if_flags)
1303				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1304					/* XXX: handle promisc & multi flags */
1305				}
1306
1307			} else {
1308				if (!sc->arge_detach)
1309					arge_init_locked(sc);
1310			}
1311		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1312			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1313			arge_stop(sc);
1314		}
1315		sc->arge_if_flags = ifp->if_flags;
1316		ARGE_UNLOCK(sc);
1317		error = 0;
1318		break;
1319	case SIOCADDMULTI:
1320	case SIOCDELMULTI:
1321		/* XXX: implement SIOCDELMULTI */
1322		error = 0;
1323		break;
1324	case SIOCGIFMEDIA:
1325	case SIOCSIFMEDIA:
1326		if (sc->arge_miibus) {
1327			mii = device_get_softc(sc->arge_miibus);
1328			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
1329			    command);
1330		}
1331		else
1332			error = ifmedia_ioctl(ifp, ifr, &sc->arge_ifmedia,
1333			    command);
1334		break;
1335	case SIOCSIFCAP:
1336		/* XXX: Check other capabilities */
1337#ifdef DEVICE_POLLING
1338		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
1339		if (mask & IFCAP_POLLING) {
1340			if (ifr->ifr_reqcap & IFCAP_POLLING) {
1341				ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
1342				error = ether_poll_register(arge_poll, ifp);
1343				if (error)
1344					return error;
1345				ARGE_LOCK(sc);
1346				ifp->if_capenable |= IFCAP_POLLING;
1347				ARGE_UNLOCK(sc);
1348			} else {
1349				ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
1350				error = ether_poll_deregister(ifp);
1351				ARGE_LOCK(sc);
1352				ifp->if_capenable &= ~IFCAP_POLLING;
1353				ARGE_UNLOCK(sc);
1354			}
1355		}
1356		error = 0;
1357		break;
1358#endif
1359	default:
1360		error = ether_ioctl(ifp, command, data);
1361		break;
1362	}
1363
1364	return (error);
1365}
1366
1367/*
1368 * Set media options.
1369 */
1370static int
1371arge_ifmedia_upd(struct ifnet *ifp)
1372{
1373	struct arge_softc		*sc;
1374	struct mii_data		*mii;
1375	struct mii_softc	*miisc;
1376	int			error;
1377
1378	sc = ifp->if_softc;
1379	ARGE_LOCK(sc);
1380	mii = device_get_softc(sc->arge_miibus);
1381	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1382		PHY_RESET(miisc);
1383	error = mii_mediachg(mii);
1384	ARGE_UNLOCK(sc);
1385
1386	return (error);
1387}
1388
1389/*
1390 * Report current media status.
1391 */
1392static void
1393arge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1394{
1395	struct arge_softc		*sc = ifp->if_softc;
1396	struct mii_data		*mii;
1397
1398	mii = device_get_softc(sc->arge_miibus);
1399	ARGE_LOCK(sc);
1400	mii_pollstat(mii);
1401	ifmr->ifm_active = mii->mii_media_active;
1402	ifmr->ifm_status = mii->mii_media_status;
1403	ARGE_UNLOCK(sc);
1404}
1405
1406struct arge_dmamap_arg {
1407	bus_addr_t	arge_busaddr;
1408};
1409
1410static void
1411arge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1412{
1413	struct arge_dmamap_arg	*ctx;
1414
1415	if (error != 0)
1416		return;
1417	ctx = arg;
1418	ctx->arge_busaddr = segs[0].ds_addr;
1419}
1420
1421static int
1422arge_dma_alloc(struct arge_softc *sc)
1423{
1424	struct arge_dmamap_arg	ctx;
1425	struct arge_txdesc	*txd;
1426	struct arge_rxdesc	*rxd;
1427	int			error, i;
1428
1429	/* Create parent DMA tag. */
1430	error = bus_dma_tag_create(
1431	    bus_get_dma_tag(sc->arge_dev),	/* parent */
1432	    1, 0,			/* alignment, boundary */
1433	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1434	    BUS_SPACE_MAXADDR,		/* highaddr */
1435	    NULL, NULL,			/* filter, filterarg */
1436	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1437	    0,				/* nsegments */
1438	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1439	    0,				/* flags */
1440	    NULL, NULL,			/* lockfunc, lockarg */
1441	    &sc->arge_cdata.arge_parent_tag);
1442	if (error != 0) {
1443		device_printf(sc->arge_dev,
1444		    "failed to create parent DMA tag\n");
1445		goto fail;
1446	}
1447	/* Create tag for Tx ring. */
1448	error = bus_dma_tag_create(
1449	    sc->arge_cdata.arge_parent_tag,	/* parent */
1450	    ARGE_RING_ALIGN, 0,		/* alignment, boundary */
1451	    BUS_SPACE_MAXADDR,		/* lowaddr */
1452	    BUS_SPACE_MAXADDR,		/* highaddr */
1453	    NULL, NULL,			/* filter, filterarg */
1454	    ARGE_TX_DMA_SIZE,		/* maxsize */
1455	    1,				/* nsegments */
1456	    ARGE_TX_DMA_SIZE,		/* maxsegsize */
1457	    0,				/* flags */
1458	    NULL, NULL,			/* lockfunc, lockarg */
1459	    &sc->arge_cdata.arge_tx_ring_tag);
1460	if (error != 0) {
1461		device_printf(sc->arge_dev,
1462		    "failed to create Tx ring DMA tag\n");
1463		goto fail;
1464	}
1465
1466	/* Create tag for Rx ring. */
1467	error = bus_dma_tag_create(
1468	    sc->arge_cdata.arge_parent_tag,	/* parent */
1469	    ARGE_RING_ALIGN, 0,		/* alignment, boundary */
1470	    BUS_SPACE_MAXADDR,		/* lowaddr */
1471	    BUS_SPACE_MAXADDR,		/* highaddr */
1472	    NULL, NULL,			/* filter, filterarg */
1473	    ARGE_RX_DMA_SIZE,		/* maxsize */
1474	    1,				/* nsegments */
1475	    ARGE_RX_DMA_SIZE,		/* maxsegsize */
1476	    0,				/* flags */
1477	    NULL, NULL,			/* lockfunc, lockarg */
1478	    &sc->arge_cdata.arge_rx_ring_tag);
1479	if (error != 0) {
1480		device_printf(sc->arge_dev,
1481		    "failed to create Rx ring DMA tag\n");
1482		goto fail;
1483	}
1484
1485	/* Create tag for Tx buffers. */
1486	error = bus_dma_tag_create(
1487	    sc->arge_cdata.arge_parent_tag,	/* parent */
1488	    sizeof(uint32_t), 0,	/* alignment, boundary */
1489	    BUS_SPACE_MAXADDR,		/* lowaddr */
1490	    BUS_SPACE_MAXADDR,		/* highaddr */
1491	    NULL, NULL,			/* filter, filterarg */
1492	    MCLBYTES * ARGE_MAXFRAGS,	/* maxsize */
1493	    ARGE_MAXFRAGS,		/* nsegments */
1494	    MCLBYTES,			/* maxsegsize */
1495	    0,				/* flags */
1496	    NULL, NULL,			/* lockfunc, lockarg */
1497	    &sc->arge_cdata.arge_tx_tag);
1498	if (error != 0) {
1499		device_printf(sc->arge_dev, "failed to create Tx DMA tag\n");
1500		goto fail;
1501	}
1502
1503	/* Create tag for Rx buffers. */
1504	error = bus_dma_tag_create(
1505	    sc->arge_cdata.arge_parent_tag,	/* parent */
1506	    ARGE_RX_ALIGN, 0,		/* alignment, boundary */
1507	    BUS_SPACE_MAXADDR,		/* lowaddr */
1508	    BUS_SPACE_MAXADDR,		/* highaddr */
1509	    NULL, NULL,			/* filter, filterarg */
1510	    MCLBYTES,			/* maxsize */
1511	    ARGE_MAXFRAGS,		/* nsegments */
1512	    MCLBYTES,			/* maxsegsize */
1513	    0,				/* flags */
1514	    NULL, NULL,			/* lockfunc, lockarg */
1515	    &sc->arge_cdata.arge_rx_tag);
1516	if (error != 0) {
1517		device_printf(sc->arge_dev, "failed to create Rx DMA tag\n");
1518		goto fail;
1519	}
1520
1521	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1522	error = bus_dmamem_alloc(sc->arge_cdata.arge_tx_ring_tag,
1523	    (void **)&sc->arge_rdata.arge_tx_ring, BUS_DMA_WAITOK |
1524	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
1525	    &sc->arge_cdata.arge_tx_ring_map);
1526	if (error != 0) {
1527		device_printf(sc->arge_dev,
1528		    "failed to allocate DMA'able memory for Tx ring\n");
1529		goto fail;
1530	}
1531
1532	ctx.arge_busaddr = 0;
1533	error = bus_dmamap_load(sc->arge_cdata.arge_tx_ring_tag,
1534	    sc->arge_cdata.arge_tx_ring_map, sc->arge_rdata.arge_tx_ring,
1535	    ARGE_TX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
1536	if (error != 0 || ctx.arge_busaddr == 0) {
1537		device_printf(sc->arge_dev,
1538		    "failed to load DMA'able memory for Tx ring\n");
1539		goto fail;
1540	}
1541	sc->arge_rdata.arge_tx_ring_paddr = ctx.arge_busaddr;
1542
1543	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1544	error = bus_dmamem_alloc(sc->arge_cdata.arge_rx_ring_tag,
1545	    (void **)&sc->arge_rdata.arge_rx_ring, BUS_DMA_WAITOK |
1546	    BUS_DMA_COHERENT | BUS_DMA_ZERO,
1547	    &sc->arge_cdata.arge_rx_ring_map);
1548	if (error != 0) {
1549		device_printf(sc->arge_dev,
1550		    "failed to allocate DMA'able memory for Rx ring\n");
1551		goto fail;
1552	}
1553
1554	ctx.arge_busaddr = 0;
1555	error = bus_dmamap_load(sc->arge_cdata.arge_rx_ring_tag,
1556	    sc->arge_cdata.arge_rx_ring_map, sc->arge_rdata.arge_rx_ring,
1557	    ARGE_RX_DMA_SIZE, arge_dmamap_cb, &ctx, 0);
1558	if (error != 0 || ctx.arge_busaddr == 0) {
1559		device_printf(sc->arge_dev,
1560		    "failed to load DMA'able memory for Rx ring\n");
1561		goto fail;
1562	}
1563	sc->arge_rdata.arge_rx_ring_paddr = ctx.arge_busaddr;
1564
1565	/* Create DMA maps for Tx buffers. */
1566	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1567		txd = &sc->arge_cdata.arge_txdesc[i];
1568		txd->tx_m = NULL;
1569		txd->tx_dmamap = NULL;
1570		error = bus_dmamap_create(sc->arge_cdata.arge_tx_tag, 0,
1571		    &txd->tx_dmamap);
1572		if (error != 0) {
1573			device_printf(sc->arge_dev,
1574			    "failed to create Tx dmamap\n");
1575			goto fail;
1576		}
1577	}
1578	/* Create DMA maps for Rx buffers. */
1579	if ((error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
1580	    &sc->arge_cdata.arge_rx_sparemap)) != 0) {
1581		device_printf(sc->arge_dev,
1582		    "failed to create spare Rx dmamap\n");
1583		goto fail;
1584	}
1585	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1586		rxd = &sc->arge_cdata.arge_rxdesc[i];
1587		rxd->rx_m = NULL;
1588		rxd->rx_dmamap = NULL;
1589		error = bus_dmamap_create(sc->arge_cdata.arge_rx_tag, 0,
1590		    &rxd->rx_dmamap);
1591		if (error != 0) {
1592			device_printf(sc->arge_dev,
1593			    "failed to create Rx dmamap\n");
1594			goto fail;
1595		}
1596	}
1597
1598fail:
1599	return (error);
1600}
1601
1602static void
1603arge_dma_free(struct arge_softc *sc)
1604{
1605	struct arge_txdesc	*txd;
1606	struct arge_rxdesc	*rxd;
1607	int			i;
1608
1609	/* Tx ring. */
1610	if (sc->arge_cdata.arge_tx_ring_tag) {
1611		if (sc->arge_cdata.arge_tx_ring_map)
1612			bus_dmamap_unload(sc->arge_cdata.arge_tx_ring_tag,
1613			    sc->arge_cdata.arge_tx_ring_map);
1614		if (sc->arge_cdata.arge_tx_ring_map &&
1615		    sc->arge_rdata.arge_tx_ring)
1616			bus_dmamem_free(sc->arge_cdata.arge_tx_ring_tag,
1617			    sc->arge_rdata.arge_tx_ring,
1618			    sc->arge_cdata.arge_tx_ring_map);
1619		sc->arge_rdata.arge_tx_ring = NULL;
1620		sc->arge_cdata.arge_tx_ring_map = NULL;
1621		bus_dma_tag_destroy(sc->arge_cdata.arge_tx_ring_tag);
1622		sc->arge_cdata.arge_tx_ring_tag = NULL;
1623	}
1624	/* Rx ring. */
1625	if (sc->arge_cdata.arge_rx_ring_tag) {
1626		if (sc->arge_cdata.arge_rx_ring_map)
1627			bus_dmamap_unload(sc->arge_cdata.arge_rx_ring_tag,
1628			    sc->arge_cdata.arge_rx_ring_map);
1629		if (sc->arge_cdata.arge_rx_ring_map &&
1630		    sc->arge_rdata.arge_rx_ring)
1631			bus_dmamem_free(sc->arge_cdata.arge_rx_ring_tag,
1632			    sc->arge_rdata.arge_rx_ring,
1633			    sc->arge_cdata.arge_rx_ring_map);
1634		sc->arge_rdata.arge_rx_ring = NULL;
1635		sc->arge_cdata.arge_rx_ring_map = NULL;
1636		bus_dma_tag_destroy(sc->arge_cdata.arge_rx_ring_tag);
1637		sc->arge_cdata.arge_rx_ring_tag = NULL;
1638	}
1639	/* Tx buffers. */
1640	if (sc->arge_cdata.arge_tx_tag) {
1641		for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1642			txd = &sc->arge_cdata.arge_txdesc[i];
1643			if (txd->tx_dmamap) {
1644				bus_dmamap_destroy(sc->arge_cdata.arge_tx_tag,
1645				    txd->tx_dmamap);
1646				txd->tx_dmamap = NULL;
1647			}
1648		}
1649		bus_dma_tag_destroy(sc->arge_cdata.arge_tx_tag);
1650		sc->arge_cdata.arge_tx_tag = NULL;
1651	}
1652	/* Rx buffers. */
1653	if (sc->arge_cdata.arge_rx_tag) {
1654		for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1655			rxd = &sc->arge_cdata.arge_rxdesc[i];
1656			if (rxd->rx_dmamap) {
1657				bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
1658				    rxd->rx_dmamap);
1659				rxd->rx_dmamap = NULL;
1660			}
1661		}
1662		if (sc->arge_cdata.arge_rx_sparemap) {
1663			bus_dmamap_destroy(sc->arge_cdata.arge_rx_tag,
1664			    sc->arge_cdata.arge_rx_sparemap);
1665			sc->arge_cdata.arge_rx_sparemap = 0;
1666		}
1667		bus_dma_tag_destroy(sc->arge_cdata.arge_rx_tag);
1668		sc->arge_cdata.arge_rx_tag = NULL;
1669	}
1670
1671	if (sc->arge_cdata.arge_parent_tag) {
1672		bus_dma_tag_destroy(sc->arge_cdata.arge_parent_tag);
1673		sc->arge_cdata.arge_parent_tag = NULL;
1674	}
1675}
1676
1677/*
1678 * Initialize the transmit descriptors.
1679 */
1680static int
1681arge_tx_ring_init(struct arge_softc *sc)
1682{
1683	struct arge_ring_data	*rd;
1684	struct arge_txdesc	*txd;
1685	bus_addr_t		addr;
1686	int			i;
1687
1688	sc->arge_cdata.arge_tx_prod = 0;
1689	sc->arge_cdata.arge_tx_cons = 0;
1690	sc->arge_cdata.arge_tx_cnt = 0;
1691
1692	rd = &sc->arge_rdata;
1693	bzero(rd->arge_tx_ring, sizeof(rd->arge_tx_ring));
1694	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1695		if (i == ARGE_TX_RING_COUNT - 1)
1696			addr = ARGE_TX_RING_ADDR(sc, 0);
1697		else
1698			addr = ARGE_TX_RING_ADDR(sc, i + 1);
1699		rd->arge_tx_ring[i].packet_ctrl = ARGE_DESC_EMPTY;
1700		rd->arge_tx_ring[i].next_desc = addr;
1701		txd = &sc->arge_cdata.arge_txdesc[i];
1702		txd->tx_m = NULL;
1703	}
1704
1705	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1706	    sc->arge_cdata.arge_tx_ring_map,
1707	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1708
1709	return (0);
1710}
1711
1712/*
1713 * Free the Tx ring, unload any pending dma transaction and free the mbuf.
1714 */
1715static void
1716arge_tx_ring_free(struct arge_softc *sc)
1717{
1718	struct arge_txdesc	*txd;
1719	int			i;
1720
1721	/* Free the Tx buffers. */
1722	for (i = 0; i < ARGE_TX_RING_COUNT; i++) {
1723		txd = &sc->arge_cdata.arge_txdesc[i];
1724		if (txd->tx_dmamap) {
1725			bus_dmamap_sync(sc->arge_cdata.arge_tx_tag,
1726			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1727			bus_dmamap_unload(sc->arge_cdata.arge_tx_tag,
1728			    txd->tx_dmamap);
1729		}
1730		if (txd->tx_m)
1731			m_freem(txd->tx_m);
1732		txd->tx_m = NULL;
1733	}
1734}
1735
1736/*
1737 * Initialize the RX descriptors and allocate mbufs for them. Note that
1738 * we arrange the descriptors in a closed ring, so that the last descriptor
1739 * points back to the first.
1740 */
1741static int
1742arge_rx_ring_init(struct arge_softc *sc)
1743{
1744	struct arge_ring_data	*rd;
1745	struct arge_rxdesc	*rxd;
1746	bus_addr_t		addr;
1747	int			i;
1748
1749	sc->arge_cdata.arge_rx_cons = 0;
1750
1751	rd = &sc->arge_rdata;
1752	bzero(rd->arge_rx_ring, sizeof(rd->arge_rx_ring));
1753	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1754		rxd = &sc->arge_cdata.arge_rxdesc[i];
1755		if (rxd->rx_m != NULL) {
1756			device_printf(sc->arge_dev,
1757			    "%s: ring[%d] rx_m wasn't free?\n",
1758			    __func__,
1759			    i);
1760		}
1761		rxd->rx_m = NULL;
1762		rxd->desc = &rd->arge_rx_ring[i];
1763		if (i == ARGE_RX_RING_COUNT - 1)
1764			addr = ARGE_RX_RING_ADDR(sc, 0);
1765		else
1766			addr = ARGE_RX_RING_ADDR(sc, i + 1);
1767		rd->arge_rx_ring[i].next_desc = addr;
1768		if (arge_newbuf(sc, i) != 0) {
1769			return (ENOBUFS);
1770		}
1771	}
1772
1773	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1774	    sc->arge_cdata.arge_rx_ring_map,
1775	    BUS_DMASYNC_PREWRITE);
1776
1777	return (0);
1778}
1779
1780/*
1781 * Free all the buffers in the RX ring.
1782 *
1783 * TODO: ensure that DMA is disabled and no pending DMA
1784 * is lurking in the FIFO.
1785 */
1786static void
1787arge_rx_ring_free(struct arge_softc *sc)
1788{
1789	int i;
1790	struct arge_rxdesc	*rxd;
1791
1792	ARGE_LOCK_ASSERT(sc);
1793
1794	for (i = 0; i < ARGE_RX_RING_COUNT; i++) {
1795		rxd = &sc->arge_cdata.arge_rxdesc[i];
1796		/* Unmap the mbuf */
1797		if (rxd->rx_m != NULL) {
1798			bus_dmamap_unload(sc->arge_cdata.arge_rx_tag,
1799			    rxd->rx_dmamap);
1800			m_free(rxd->rx_m);
1801			rxd->rx_m = NULL;
1802		}
1803	}
1804}
1805
1806/*
1807 * Initialize an RX descriptor and attach an MBUF cluster.
1808 */
1809static int
1810arge_newbuf(struct arge_softc *sc, int idx)
1811{
1812	struct arge_desc		*desc;
1813	struct arge_rxdesc	*rxd;
1814	struct mbuf		*m;
1815	bus_dma_segment_t	segs[1];
1816	bus_dmamap_t		map;
1817	int			nsegs;
1818
1819	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1820	if (m == NULL)
1821		return (ENOBUFS);
1822	m->m_len = m->m_pkthdr.len = MCLBYTES;
1823	m_adj(m, sizeof(uint64_t));
1824
1825	if (bus_dmamap_load_mbuf_sg(sc->arge_cdata.arge_rx_tag,
1826	    sc->arge_cdata.arge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1827		m_freem(m);
1828		return (ENOBUFS);
1829	}
1830	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1831
1832	rxd = &sc->arge_cdata.arge_rxdesc[idx];
1833	if (rxd->rx_m != NULL) {
1834		bus_dmamap_unload(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap);
1835	}
1836	map = rxd->rx_dmamap;
1837	rxd->rx_dmamap = sc->arge_cdata.arge_rx_sparemap;
1838	sc->arge_cdata.arge_rx_sparemap = map;
1839	rxd->rx_m = m;
1840	desc = rxd->desc;
1841	if (segs[0].ds_addr & 3)
1842		panic("RX packet address unaligned");
1843	desc->packet_addr = segs[0].ds_addr;
1844	desc->packet_ctrl = ARGE_DESC_EMPTY | ARGE_DMASIZE(segs[0].ds_len);
1845
1846	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1847	    sc->arge_cdata.arge_rx_ring_map,
1848	    BUS_DMASYNC_PREWRITE);
1849
1850	return (0);
1851}
1852
1853static __inline void
1854arge_fixup_rx(struct mbuf *m)
1855{
1856	int		i;
1857	uint16_t	*src, *dst;
1858
1859	src = mtod(m, uint16_t *);
1860	dst = src - 1;
1861
1862	for (i = 0; i < m->m_len / sizeof(uint16_t); i++) {
1863		*dst++ = *src++;
1864	}
1865
1866	if (m->m_len % sizeof(uint16_t))
1867		*(uint8_t *)dst = *(uint8_t *)src;
1868
1869	m->m_data -= ETHER_ALIGN;
1870}
1871
1872#ifdef DEVICE_POLLING
1873static int
1874arge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1875{
1876	struct arge_softc *sc = ifp->if_softc;
1877	int rx_npkts = 0;
1878
1879	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1880		ARGE_LOCK(sc);
1881		arge_tx_locked(sc);
1882		rx_npkts = arge_rx_locked(sc);
1883		ARGE_UNLOCK(sc);
1884	}
1885
1886	return (rx_npkts);
1887}
1888#endif /* DEVICE_POLLING */
1889
1890
1891static void
1892arge_tx_locked(struct arge_softc *sc)
1893{
1894	struct arge_txdesc	*txd;
1895	struct arge_desc	*cur_tx;
1896	struct ifnet		*ifp;
1897	uint32_t		ctrl;
1898	int			cons, prod;
1899
1900	ARGE_LOCK_ASSERT(sc);
1901
1902	cons = sc->arge_cdata.arge_tx_cons;
1903	prod = sc->arge_cdata.arge_tx_prod;
1904
1905	ARGEDEBUG(sc, ARGE_DBG_TX, "%s: cons=%d, prod=%d\n", __func__, cons,
1906	    prod);
1907
1908	if (cons == prod)
1909		return;
1910
1911	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1912	    sc->arge_cdata.arge_tx_ring_map,
1913	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1914
1915	ifp = sc->arge_ifp;
1916	/*
1917	 * Go through our tx list and free mbufs for those
1918	 * frames that have been transmitted.
1919	 */
1920	for (; cons != prod; ARGE_INC(cons, ARGE_TX_RING_COUNT)) {
1921		cur_tx = &sc->arge_rdata.arge_tx_ring[cons];
1922		ctrl = cur_tx->packet_ctrl;
1923		/* Check if descriptor has "finished" flag */
1924		if ((ctrl & ARGE_DESC_EMPTY) == 0)
1925			break;
1926
1927		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_PKT_SENT);
1928
1929		sc->arge_cdata.arge_tx_cnt--;
1930		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1931
1932		txd = &sc->arge_cdata.arge_txdesc[cons];
1933
1934		ifp->if_opackets++;
1935
1936		bus_dmamap_sync(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap,
1937		    BUS_DMASYNC_POSTWRITE);
1938		bus_dmamap_unload(sc->arge_cdata.arge_tx_tag, txd->tx_dmamap);
1939
1940		/* Free only if it's first descriptor in list */
1941		if (txd->tx_m)
1942			m_freem(txd->tx_m);
1943		txd->tx_m = NULL;
1944
1945		/* reset descriptor */
1946		cur_tx->packet_addr = 0;
1947	}
1948
1949	sc->arge_cdata.arge_tx_cons = cons;
1950
1951	bus_dmamap_sync(sc->arge_cdata.arge_tx_ring_tag,
1952	    sc->arge_cdata.arge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1953}
1954
1955
1956static int
1957arge_rx_locked(struct arge_softc *sc)
1958{
1959	struct arge_rxdesc	*rxd;
1960	struct ifnet		*ifp = sc->arge_ifp;
1961	int			cons, prog, packet_len, i;
1962	struct arge_desc	*cur_rx;
1963	struct mbuf		*m;
1964	int			rx_npkts = 0;
1965
1966	ARGE_LOCK_ASSERT(sc);
1967
1968	cons = sc->arge_cdata.arge_rx_cons;
1969
1970	bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
1971	    sc->arge_cdata.arge_rx_ring_map,
1972	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1973
1974	for (prog = 0; prog < ARGE_RX_RING_COUNT;
1975	    ARGE_INC(cons, ARGE_RX_RING_COUNT)) {
1976		cur_rx = &sc->arge_rdata.arge_rx_ring[cons];
1977		rxd = &sc->arge_cdata.arge_rxdesc[cons];
1978		m = rxd->rx_m;
1979
1980		if ((cur_rx->packet_ctrl & ARGE_DESC_EMPTY) != 0)
1981		       break;
1982
1983		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_PKT_RECVD);
1984
1985		prog++;
1986
1987		packet_len = ARGE_DMASIZE(cur_rx->packet_ctrl);
1988		bus_dmamap_sync(sc->arge_cdata.arge_rx_tag, rxd->rx_dmamap,
1989		    BUS_DMASYNC_POSTREAD);
1990		m = rxd->rx_m;
1991
1992		arge_fixup_rx(m);
1993		m->m_pkthdr.rcvif = ifp;
1994		/* Skip 4 bytes of CRC */
1995		m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN;
1996		ifp->if_ipackets++;
1997		rx_npkts++;
1998
1999		ARGE_UNLOCK(sc);
2000		(*ifp->if_input)(ifp, m);
2001		ARGE_LOCK(sc);
2002		cur_rx->packet_addr = 0;
2003	}
2004
2005	if (prog > 0) {
2006
2007		i = sc->arge_cdata.arge_rx_cons;
2008		for (; prog > 0 ; prog--) {
2009			if (arge_newbuf(sc, i) != 0) {
2010				device_printf(sc->arge_dev,
2011				    "Failed to allocate buffer\n");
2012				break;
2013			}
2014			ARGE_INC(i, ARGE_RX_RING_COUNT);
2015		}
2016
2017		bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag,
2018		    sc->arge_cdata.arge_rx_ring_map,
2019		    BUS_DMASYNC_PREWRITE);
2020
2021		sc->arge_cdata.arge_rx_cons = cons;
2022	}
2023
2024	return (rx_npkts);
2025}
2026
2027static int
2028arge_intr_filter(void *arg)
2029{
2030	struct arge_softc	*sc = arg;
2031	uint32_t		status, ints;
2032
2033	status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
2034	ints = ARGE_READ(sc, AR71XX_DMA_INTR);
2035
2036	ARGEDEBUG(sc, ARGE_DBG_INTR, "int mask(filter) = %b\n", ints,
2037	    "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
2038	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
2039	ARGEDEBUG(sc, ARGE_DBG_INTR, "status(filter) = %b\n", status,
2040	    "\20\10RX_BUS_ERROR\7RX_OVERFLOW\5RX_PKT_RCVD"
2041	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
2042
2043	if (status & DMA_INTR_ALL) {
2044		sc->arge_intr_status |= status;
2045		ARGE_WRITE(sc, AR71XX_DMA_INTR, 0);
2046		return (FILTER_SCHEDULE_THREAD);
2047	}
2048
2049	sc->arge_intr_status = 0;
2050	return (FILTER_STRAY);
2051}
2052
2053static void
2054arge_intr(void *arg)
2055{
2056	struct arge_softc	*sc = arg;
2057	uint32_t		status;
2058	struct ifnet		*ifp = sc->arge_ifp;
2059
2060	status = ARGE_READ(sc, AR71XX_DMA_INTR_STATUS);
2061	status |= sc->arge_intr_status;
2062
2063	ARGEDEBUG(sc, ARGE_DBG_INTR, "int status(intr) = %b\n", status,
2064	    "\20\10\7RX_OVERFLOW\5RX_PKT_RCVD"
2065	    "\4TX_BUS_ERROR\2TX_UNDERRUN\1TX_PKT_SENT");
2066
2067	/*
2068	 * Is it our interrupt at all?
2069	 */
2070	if (status == 0)
2071		return;
2072
2073	if (status & DMA_INTR_RX_BUS_ERROR) {
2074		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_BUS_ERROR);
2075		device_printf(sc->arge_dev, "RX bus error");
2076		return;
2077	}
2078
2079	if (status & DMA_INTR_TX_BUS_ERROR) {
2080		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_BUS_ERROR);
2081		device_printf(sc->arge_dev, "TX bus error");
2082		return;
2083	}
2084
2085	ARGE_LOCK(sc);
2086
2087	if (status & DMA_INTR_RX_PKT_RCVD)
2088		arge_rx_locked(sc);
2089
2090	/*
2091	 * RX overrun disables the receiver.
2092	 * Clear indication and re-enable rx.
2093	 */
2094	if ( status & DMA_INTR_RX_OVERFLOW) {
2095		ARGE_WRITE(sc, AR71XX_DMA_RX_STATUS, DMA_RX_STATUS_OVERFLOW);
2096		ARGE_WRITE(sc, AR71XX_DMA_RX_CONTROL, DMA_RX_CONTROL_EN);
2097		sc->stats.rx_overflow++;
2098	}
2099
2100	if (status & DMA_INTR_TX_PKT_SENT)
2101		arge_tx_locked(sc);
2102	/*
2103	 * Underrun turns off TX. Clear underrun indication.
2104	 * If there's anything left in the ring, reactivate the tx.
2105	 */
2106	if (status & DMA_INTR_TX_UNDERRUN) {
2107		ARGE_WRITE(sc, AR71XX_DMA_TX_STATUS, DMA_TX_STATUS_UNDERRUN);
2108		sc->stats.tx_underflow++;
2109		ARGEDEBUG(sc, ARGE_DBG_TX, "%s: TX underrun; tx_cnt=%d\n",
2110		    __func__, sc->arge_cdata.arge_tx_cnt);
2111		if (sc->arge_cdata.arge_tx_cnt > 0 ) {
2112			ARGE_WRITE(sc, AR71XX_DMA_TX_CONTROL,
2113			    DMA_TX_CONTROL_EN);
2114		}
2115	}
2116
2117	/*
2118	 * If we've finished TXing and there's space for more packets
2119	 * to be queued for TX, do so. Otherwise we may end up in a
2120	 * situation where the interface send queue was filled
2121	 * whilst the hardware queue was full, then the hardware
2122	 * queue was drained by the interface send queue wasn't,
2123	 * and thus if_start() is never called to kick-start
2124	 * the send process (and all subsequent packets are simply
2125	 * discarded.
2126	 *
2127	 * XXX TODO: make sure that the hardware deals nicely
2128	 * with the possibility of the queue being enabled above
2129	 * after a TX underrun, then having the hardware queue added
2130	 * to below.
2131	 */
2132	if (status & (DMA_INTR_TX_PKT_SENT | DMA_INTR_TX_UNDERRUN) &&
2133	    (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
2134		if (!IFQ_IS_EMPTY(&ifp->if_snd))
2135			arge_start_locked(ifp);
2136	}
2137
2138	/*
2139	 * We handled all bits, clear status
2140	 */
2141	sc->arge_intr_status = 0;
2142	ARGE_UNLOCK(sc);
2143	/*
2144	 * re-enable all interrupts
2145	 */
2146	ARGE_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL);
2147}
2148
2149
2150static void
2151arge_tick(void *xsc)
2152{
2153	struct arge_softc	*sc = xsc;
2154	struct mii_data		*mii;
2155
2156	ARGE_LOCK_ASSERT(sc);
2157
2158	if (sc->arge_miibus) {
2159		mii = device_get_softc(sc->arge_miibus);
2160		mii_tick(mii);
2161		callout_reset(&sc->arge_stat_callout, hz, arge_tick, sc);
2162	}
2163}
2164
2165int
2166arge_multiphy_mediachange(struct ifnet *ifp)
2167{
2168	struct arge_softc *sc = ifp->if_softc;
2169	struct ifmedia *ifm = &sc->arge_ifmedia;
2170	struct ifmedia_entry *ife = ifm->ifm_cur;
2171
2172	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2173		return (EINVAL);
2174
2175	if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
2176		device_printf(sc->arge_dev,
2177		    "AUTO is not supported for multiphy MAC");
2178		return (EINVAL);
2179	}
2180
2181	/*
2182	 * Ignore everything
2183	 */
2184	return (0);
2185}
2186
2187void
2188arge_multiphy_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2189{
2190	struct arge_softc *sc = ifp->if_softc;
2191
2192	ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
2193	ifmr->ifm_active = IFM_ETHER | sc->arge_media_type |
2194	    sc->arge_duplex_mode;
2195}
2196
2197#if defined(ARGE_MDIO)
2198static int
2199argemdio_probe(device_t dev)
2200{
2201	device_set_desc(dev, "Atheros AR71xx built-in ethernet interface, MDIO controller");
2202	return (0);
2203}
2204
2205static int
2206argemdio_attach(device_t dev)
2207{
2208	struct arge_softc	*sc;
2209	int			error = 0;
2210
2211	sc = device_get_softc(dev);
2212	sc->arge_dev = dev;
2213	sc->arge_mac_unit = device_get_unit(dev);
2214	sc->arge_rid = 0;
2215	sc->arge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2216	    &sc->arge_rid, RF_ACTIVE | RF_SHAREABLE);
2217	if (sc->arge_res == NULL) {
2218		device_printf(dev, "couldn't map memory\n");
2219		error = ENXIO;
2220		goto fail;
2221	}
2222
2223	/* Reset MAC - required for AR71xx MDIO to successfully occur */
2224	arge_reset_mac(sc);
2225	/* Reset MII bus */
2226	arge_reset_miibus(sc);
2227
2228	bus_generic_probe(dev);
2229	bus_enumerate_hinted_children(dev);
2230	error = bus_generic_attach(dev);
2231fail:
2232	return (error);
2233}
2234
2235static int
2236argemdio_detach(device_t dev)
2237{
2238	return (0);
2239}
2240
2241#endif
2242