vfs_bio.c revision 285402
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*
33 * this file contains a new buffer I/O scheme implementing a coherent
34 * VM object and buffer cache scheme.  Pains have been taken to make
35 * sure that the performance degradation associated with schemes such
36 * as this is not realized.
37 *
38 * Author:  John S. Dyson
39 * Significant help during the development and debugging phases
40 * had been provided by David Greenman, also of the FreeBSD core team.
41 *
42 * see man buf(9) for more info.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_bio.c 285402 2015-07-11 19:11:40Z kib $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/conf.h>
52#include <sys/buf.h>
53#include <sys/devicestat.h>
54#include <sys/eventhandler.h>
55#include <sys/fail.h>
56#include <sys/limits.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/kthread.h>
63#include <sys/proc.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sysctl.h>
67#include <sys/vmem.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70#include <geom/geom.h>
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_page.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_map.h>
79#include "opt_compat.h"
80#include "opt_swap.h"
81
82static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
83
84struct	bio_ops bioops;		/* I/O operation notification */
85
86struct	buf_ops buf_ops_bio = {
87	.bop_name	=	"buf_ops_bio",
88	.bop_write	=	bufwrite,
89	.bop_strategy	=	bufstrategy,
90	.bop_sync	=	bufsync,
91	.bop_bdflush	=	bufbdflush,
92};
93
94/*
95 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
96 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
97 */
98struct buf *buf;		/* buffer header pool */
99caddr_t unmapped_buf;
100
101/* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
102struct proc *bufdaemonproc;
103
104static int inmem(struct vnode *vp, daddr_t blkno);
105static void vm_hold_free_pages(struct buf *bp, int newbsize);
106static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
107		vm_offset_t to);
108static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
109static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
110		vm_page_t m);
111static void vfs_clean_pages_dirty_buf(struct buf *bp);
112static void vfs_setdirty_locked_object(struct buf *bp);
113static void vfs_vmio_release(struct buf *bp);
114static int vfs_bio_clcheck(struct vnode *vp, int size,
115		daddr_t lblkno, daddr_t blkno);
116static int buf_flush(struct vnode *vp, int);
117static int flushbufqueues(struct vnode *, int, int);
118static void buf_daemon(void);
119static void bremfreel(struct buf *bp);
120static __inline void bd_wakeup(void);
121#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
122    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
123static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
124#endif
125
126int vmiodirenable = TRUE;
127SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
128    "Use the VM system for directory writes");
129long runningbufspace;
130SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
131    "Amount of presently outstanding async buffer io");
132static long bufspace;
133#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
134    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
135SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
136    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
137#else
138SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
139    "Virtual memory used for buffers");
140#endif
141static long unmapped_bufspace;
142SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
143    &unmapped_bufspace, 0,
144    "Amount of unmapped buffers, inclusive in the bufspace");
145static long maxbufspace;
146SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
147    "Maximum allowed value of bufspace (including buf_daemon)");
148static long bufmallocspace;
149SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
150    "Amount of malloced memory for buffers");
151static long maxbufmallocspace;
152SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
153    "Maximum amount of malloced memory for buffers");
154static long lobufspace;
155SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
156    "Minimum amount of buffers we want to have");
157long hibufspace;
158SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
159    "Maximum allowed value of bufspace (excluding buf_daemon)");
160static int bufreusecnt;
161SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
162    "Number of times we have reused a buffer");
163static int buffreekvacnt;
164SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
165    "Number of times we have freed the KVA space from some buffer");
166static int bufdefragcnt;
167SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
168    "Number of times we have had to repeat buffer allocation to defragment");
169static long lorunningspace;
170SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
171    "Minimum preferred space used for in-progress I/O");
172static long hirunningspace;
173SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174    "Maximum amount of space to use for in-progress I/O");
175int dirtybufferflushes;
176SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
177    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
178int bdwriteskip;
179SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
180    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
181int altbufferflushes;
182SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
183    0, "Number of fsync flushes to limit dirty buffers");
184static int recursiveflushes;
185SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
186    0, "Number of flushes skipped due to being recursive");
187static int numdirtybuffers;
188SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
189    "Number of buffers that are dirty (has unwritten changes) at the moment");
190static int lodirtybuffers;
191SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
192    "How many buffers we want to have free before bufdaemon can sleep");
193static int hidirtybuffers;
194SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
195    "When the number of dirty buffers is considered severe");
196int dirtybufthresh;
197SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
198    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
199static int numfreebuffers;
200SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
201    "Number of free buffers");
202static int lofreebuffers;
203SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
204   "XXX Unused");
205static int hifreebuffers;
206SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
207   "XXX Complicatedly unused");
208static int getnewbufcalls;
209SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
210   "Number of calls to getnewbuf");
211static int getnewbufrestarts;
212SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
213    "Number of times getnewbuf has had to restart a buffer aquisition");
214static int mappingrestarts;
215SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
216    "Number of times getblk has had to restart a buffer mapping for "
217    "unmapped buffer");
218static int flushbufqtarget = 100;
219SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
220    "Amount of work to do in flushbufqueues when helping bufdaemon");
221static long notbufdflushes;
222SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
223    "Number of dirty buffer flushes done by the bufdaemon helpers");
224static long barrierwrites;
225SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
226    "Number of barrier writes");
227SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
228    &unmapped_buf_allowed, 0,
229    "Permit the use of the unmapped i/o");
230
231/*
232 * Lock for the non-dirty bufqueues
233 */
234static struct mtx_padalign bqclean;
235
236/*
237 * Lock for the dirty queue.
238 */
239static struct mtx_padalign bqdirty;
240
241/*
242 * This lock synchronizes access to bd_request.
243 */
244static struct mtx_padalign bdlock;
245
246/*
247 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248 * waitrunningbufspace().
249 */
250static struct mtx_padalign rbreqlock;
251
252/*
253 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
254 */
255static struct rwlock_padalign nblock;
256
257/*
258 * Lock that protects bdirtywait.
259 */
260static struct mtx_padalign bdirtylock;
261
262/*
263 * Wakeup point for bufdaemon, as well as indicator of whether it is already
264 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
265 * is idling.
266 */
267static int bd_request;
268
269/*
270 * Request for the buf daemon to write more buffers than is indicated by
271 * lodirtybuf.  This may be necessary to push out excess dependencies or
272 * defragment the address space where a simple count of the number of dirty
273 * buffers is insufficient to characterize the demand for flushing them.
274 */
275static int bd_speedupreq;
276
277/*
278 * bogus page -- for I/O to/from partially complete buffers
279 * this is a temporary solution to the problem, but it is not
280 * really that bad.  it would be better to split the buffer
281 * for input in the case of buffers partially already in memory,
282 * but the code is intricate enough already.
283 */
284vm_page_t bogus_page;
285
286/*
287 * Synchronization (sleep/wakeup) variable for active buffer space requests.
288 * Set when wait starts, cleared prior to wakeup().
289 * Used in runningbufwakeup() and waitrunningbufspace().
290 */
291static int runningbufreq;
292
293/*
294 * Synchronization (sleep/wakeup) variable for buffer requests.
295 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
296 * by and/or.
297 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
298 * getnewbuf(), and getblk().
299 */
300static volatile int needsbuffer;
301
302/*
303 * Synchronization for bwillwrite() waiters.
304 */
305static int bdirtywait;
306
307/*
308 * Definitions for the buffer free lists.
309 */
310#define BUFFER_QUEUES	5	/* number of free buffer queues */
311
312#define QUEUE_NONE	0	/* on no queue */
313#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
314#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
315#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
316#define QUEUE_EMPTY	4	/* empty buffer headers */
317#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
318
319/* Queues for free buffers with various properties */
320static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
321#ifdef INVARIANTS
322static int bq_len[BUFFER_QUEUES];
323#endif
324
325/*
326 * Single global constant for BUF_WMESG, to avoid getting multiple references.
327 * buf_wmesg is referred from macros.
328 */
329const char *buf_wmesg = BUF_WMESG;
330
331#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
332#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
333#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
334
335#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
336    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
337static int
338sysctl_bufspace(SYSCTL_HANDLER_ARGS)
339{
340	long lvalue;
341	int ivalue;
342
343	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
344		return (sysctl_handle_long(oidp, arg1, arg2, req));
345	lvalue = *(long *)arg1;
346	if (lvalue > INT_MAX)
347		/* On overflow, still write out a long to trigger ENOMEM. */
348		return (sysctl_handle_long(oidp, &lvalue, 0, req));
349	ivalue = lvalue;
350	return (sysctl_handle_int(oidp, &ivalue, 0, req));
351}
352#endif
353
354/*
355 *	bqlock:
356 *
357 *	Return the appropriate queue lock based on the index.
358 */
359static inline struct mtx *
360bqlock(int qindex)
361{
362
363	if (qindex == QUEUE_DIRTY)
364		return (struct mtx *)(&bqdirty);
365	return (struct mtx *)(&bqclean);
366}
367
368/*
369 *	bdirtywakeup:
370 *
371 *	Wakeup any bwillwrite() waiters.
372 */
373static void
374bdirtywakeup(void)
375{
376	mtx_lock(&bdirtylock);
377	if (bdirtywait) {
378		bdirtywait = 0;
379		wakeup(&bdirtywait);
380	}
381	mtx_unlock(&bdirtylock);
382}
383
384/*
385 *	bdirtysub:
386 *
387 *	Decrement the numdirtybuffers count by one and wakeup any
388 *	threads blocked in bwillwrite().
389 */
390static void
391bdirtysub(void)
392{
393
394	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
395	    (lodirtybuffers + hidirtybuffers) / 2)
396		bdirtywakeup();
397}
398
399/*
400 *	bdirtyadd:
401 *
402 *	Increment the numdirtybuffers count by one and wakeup the buf
403 *	daemon if needed.
404 */
405static void
406bdirtyadd(void)
407{
408
409	/*
410	 * Only do the wakeup once as we cross the boundary.  The
411	 * buf daemon will keep running until the condition clears.
412	 */
413	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
414	    (lodirtybuffers + hidirtybuffers) / 2)
415		bd_wakeup();
416}
417
418/*
419 *	bufspacewakeup:
420 *
421 *	Called when buffer space is potentially available for recovery.
422 *	getnewbuf() will block on this flag when it is unable to free
423 *	sufficient buffer space.  Buffer space becomes recoverable when
424 *	bp's get placed back in the queues.
425 */
426
427static __inline void
428bufspacewakeup(void)
429{
430	int need_wakeup, on;
431
432	/*
433	 * If someone is waiting for BUF space, wake them up.  Even
434	 * though we haven't freed the kva space yet, the waiting
435	 * process will be able to now.
436	 */
437	rw_rlock(&nblock);
438	for (;;) {
439		need_wakeup = 0;
440		on = needsbuffer;
441		if ((on & VFS_BIO_NEED_BUFSPACE) == 0)
442			break;
443		need_wakeup = 1;
444		if (atomic_cmpset_rel_int(&needsbuffer, on,
445		    on & ~VFS_BIO_NEED_BUFSPACE))
446			break;
447	}
448	if (need_wakeup)
449		wakeup(__DEVOLATILE(void *, &needsbuffer));
450	rw_runlock(&nblock);
451}
452
453/*
454 *	runningwakeup:
455 *
456 *	Wake up processes that are waiting on asynchronous writes to fall
457 *	below lorunningspace.
458 */
459static void
460runningwakeup(void)
461{
462
463	mtx_lock(&rbreqlock);
464	if (runningbufreq) {
465		runningbufreq = 0;
466		wakeup(&runningbufreq);
467	}
468	mtx_unlock(&rbreqlock);
469}
470
471/*
472 *	runningbufwakeup:
473 *
474 *	Decrement the outstanding write count according.
475 */
476void
477runningbufwakeup(struct buf *bp)
478{
479	long space, bspace;
480
481	bspace = bp->b_runningbufspace;
482	if (bspace == 0)
483		return;
484	space = atomic_fetchadd_long(&runningbufspace, -bspace);
485	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
486	    space, bspace));
487	bp->b_runningbufspace = 0;
488	/*
489	 * Only acquire the lock and wakeup on the transition from exceeding
490	 * the threshold to falling below it.
491	 */
492	if (space < lorunningspace)
493		return;
494	if (space - bspace > lorunningspace)
495		return;
496	runningwakeup();
497}
498
499/*
500 *	bufcountadd:
501 *
502 *	Called when a buffer has been added to one of the free queues to
503 *	account for the buffer and to wakeup anyone waiting for free buffers.
504 *	This typically occurs when large amounts of metadata are being handled
505 *	by the buffer cache ( else buffer space runs out first, usually ).
506 */
507static __inline void
508bufcountadd(struct buf *bp)
509{
510	int mask, need_wakeup, old, on;
511
512	KASSERT((bp->b_flags & B_INFREECNT) == 0,
513	    ("buf %p already counted as free", bp));
514	bp->b_flags |= B_INFREECNT;
515	old = atomic_fetchadd_int(&numfreebuffers, 1);
516	KASSERT(old >= 0 && old < nbuf,
517	    ("numfreebuffers climbed to %d", old + 1));
518	mask = VFS_BIO_NEED_ANY;
519	if (numfreebuffers >= hifreebuffers)
520		mask |= VFS_BIO_NEED_FREE;
521	rw_rlock(&nblock);
522	for (;;) {
523		need_wakeup = 0;
524		on = needsbuffer;
525		if (on == 0)
526			break;
527		need_wakeup = 1;
528		if (atomic_cmpset_rel_int(&needsbuffer, on, on & ~mask))
529			break;
530	}
531	if (need_wakeup)
532		wakeup(__DEVOLATILE(void *, &needsbuffer));
533	rw_runlock(&nblock);
534}
535
536/*
537 *	bufcountsub:
538 *
539 *	Decrement the numfreebuffers count as needed.
540 */
541static void
542bufcountsub(struct buf *bp)
543{
544	int old;
545
546	/*
547	 * Fixup numfreebuffers count.  If the buffer is invalid or not
548	 * delayed-write, the buffer was free and we must decrement
549	 * numfreebuffers.
550	 */
551	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
552		KASSERT((bp->b_flags & B_INFREECNT) != 0,
553		    ("buf %p not counted in numfreebuffers", bp));
554		bp->b_flags &= ~B_INFREECNT;
555		old = atomic_fetchadd_int(&numfreebuffers, -1);
556		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
557	}
558}
559
560/*
561 *	waitrunningbufspace()
562 *
563 *	runningbufspace is a measure of the amount of I/O currently
564 *	running.  This routine is used in async-write situations to
565 *	prevent creating huge backups of pending writes to a device.
566 *	Only asynchronous writes are governed by this function.
567 *
568 *	This does NOT turn an async write into a sync write.  It waits
569 *	for earlier writes to complete and generally returns before the
570 *	caller's write has reached the device.
571 */
572void
573waitrunningbufspace(void)
574{
575
576	mtx_lock(&rbreqlock);
577	while (runningbufspace > hirunningspace) {
578		runningbufreq = 1;
579		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
580	}
581	mtx_unlock(&rbreqlock);
582}
583
584
585/*
586 *	vfs_buf_test_cache:
587 *
588 *	Called when a buffer is extended.  This function clears the B_CACHE
589 *	bit if the newly extended portion of the buffer does not contain
590 *	valid data.
591 */
592static __inline
593void
594vfs_buf_test_cache(struct buf *bp,
595		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
596		  vm_page_t m)
597{
598
599	VM_OBJECT_ASSERT_LOCKED(m->object);
600	if (bp->b_flags & B_CACHE) {
601		int base = (foff + off) & PAGE_MASK;
602		if (vm_page_is_valid(m, base, size) == 0)
603			bp->b_flags &= ~B_CACHE;
604	}
605}
606
607/* Wake up the buffer daemon if necessary */
608static __inline void
609bd_wakeup(void)
610{
611
612	mtx_lock(&bdlock);
613	if (bd_request == 0) {
614		bd_request = 1;
615		wakeup(&bd_request);
616	}
617	mtx_unlock(&bdlock);
618}
619
620/*
621 * bd_speedup - speedup the buffer cache flushing code
622 */
623void
624bd_speedup(void)
625{
626	int needwake;
627
628	mtx_lock(&bdlock);
629	needwake = 0;
630	if (bd_speedupreq == 0 || bd_request == 0)
631		needwake = 1;
632	bd_speedupreq = 1;
633	bd_request = 1;
634	if (needwake)
635		wakeup(&bd_request);
636	mtx_unlock(&bdlock);
637}
638
639#ifndef NSWBUF_MIN
640#define	NSWBUF_MIN	16
641#endif
642
643#ifdef __i386__
644#define	TRANSIENT_DENOM	5
645#else
646#define	TRANSIENT_DENOM 10
647#endif
648
649/*
650 * Calculating buffer cache scaling values and reserve space for buffer
651 * headers.  This is called during low level kernel initialization and
652 * may be called more then once.  We CANNOT write to the memory area
653 * being reserved at this time.
654 */
655caddr_t
656kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
657{
658	int tuned_nbuf;
659	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
660
661	/*
662	 * physmem_est is in pages.  Convert it to kilobytes (assumes
663	 * PAGE_SIZE is >= 1K)
664	 */
665	physmem_est = physmem_est * (PAGE_SIZE / 1024);
666
667	/*
668	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
669	 * For the first 64MB of ram nominally allocate sufficient buffers to
670	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
671	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
672	 * the buffer cache we limit the eventual kva reservation to
673	 * maxbcache bytes.
674	 *
675	 * factor represents the 1/4 x ram conversion.
676	 */
677	if (nbuf == 0) {
678		int factor = 4 * BKVASIZE / 1024;
679
680		nbuf = 50;
681		if (physmem_est > 4096)
682			nbuf += min((physmem_est - 4096) / factor,
683			    65536 / factor);
684		if (physmem_est > 65536)
685			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
686			    32 * 1024 * 1024 / (factor * 5));
687
688		if (maxbcache && nbuf > maxbcache / BKVASIZE)
689			nbuf = maxbcache / BKVASIZE;
690		tuned_nbuf = 1;
691	} else
692		tuned_nbuf = 0;
693
694	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
695	maxbuf = (LONG_MAX / 3) / BKVASIZE;
696	if (nbuf > maxbuf) {
697		if (!tuned_nbuf)
698			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
699			    maxbuf);
700		nbuf = maxbuf;
701	}
702
703	/*
704	 * Ideal allocation size for the transient bio submap if 10%
705	 * of the maximal space buffer map.  This roughly corresponds
706	 * to the amount of the buffer mapped for typical UFS load.
707	 *
708	 * Clip the buffer map to reserve space for the transient
709	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
710	 * maximum buffer map extent on the platform.
711	 *
712	 * The fall-back to the maxbuf in case of maxbcache unset,
713	 * allows to not trim the buffer KVA for the architectures
714	 * with ample KVA space.
715	 */
716	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
717		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
718		buf_sz = (long)nbuf * BKVASIZE;
719		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
720		    (TRANSIENT_DENOM - 1)) {
721			/*
722			 * There is more KVA than memory.  Do not
723			 * adjust buffer map size, and assign the rest
724			 * of maxbuf to transient map.
725			 */
726			biotmap_sz = maxbuf_sz - buf_sz;
727		} else {
728			/*
729			 * Buffer map spans all KVA we could afford on
730			 * this platform.  Give 10% (20% on i386) of
731			 * the buffer map to the transient bio map.
732			 */
733			biotmap_sz = buf_sz / TRANSIENT_DENOM;
734			buf_sz -= biotmap_sz;
735		}
736		if (biotmap_sz / INT_MAX > MAXPHYS)
737			bio_transient_maxcnt = INT_MAX;
738		else
739			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
740		/*
741		 * Artifically limit to 1024 simultaneous in-flight I/Os
742		 * using the transient mapping.
743		 */
744		if (bio_transient_maxcnt > 1024)
745			bio_transient_maxcnt = 1024;
746		if (tuned_nbuf)
747			nbuf = buf_sz / BKVASIZE;
748	}
749
750	/*
751	 * swbufs are used as temporary holders for I/O, such as paging I/O.
752	 * We have no less then 16 and no more then 256.
753	 */
754	nswbuf = min(nbuf / 4, 256);
755	TUNABLE_INT_FETCH("kern.nswbuf", &nswbuf);
756	if (nswbuf < NSWBUF_MIN)
757		nswbuf = NSWBUF_MIN;
758
759	/*
760	 * Reserve space for the buffer cache buffers
761	 */
762	swbuf = (void *)v;
763	v = (caddr_t)(swbuf + nswbuf);
764	buf = (void *)v;
765	v = (caddr_t)(buf + nbuf);
766
767	return(v);
768}
769
770/* Initialize the buffer subsystem.  Called before use of any buffers. */
771void
772bufinit(void)
773{
774	struct buf *bp;
775	int i;
776
777	CTASSERT(MAXBCACHEBUF >= MAXBSIZE);
778	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
779	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
780	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
781	rw_init(&nblock, "needsbuffer lock");
782	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
783	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
784
785	/* next, make a null set of free lists */
786	for (i = 0; i < BUFFER_QUEUES; i++)
787		TAILQ_INIT(&bufqueues[i]);
788
789	/* finally, initialize each buffer header and stick on empty q */
790	for (i = 0; i < nbuf; i++) {
791		bp = &buf[i];
792		bzero(bp, sizeof *bp);
793		bp->b_flags = B_INVAL | B_INFREECNT;
794		bp->b_rcred = NOCRED;
795		bp->b_wcred = NOCRED;
796		bp->b_qindex = QUEUE_EMPTY;
797		bp->b_xflags = 0;
798		LIST_INIT(&bp->b_dep);
799		BUF_LOCKINIT(bp);
800		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
801#ifdef INVARIANTS
802		bq_len[QUEUE_EMPTY]++;
803#endif
804	}
805
806	/*
807	 * maxbufspace is the absolute maximum amount of buffer space we are
808	 * allowed to reserve in KVM and in real terms.  The absolute maximum
809	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
810	 * used by most other processes.  The differential is required to
811	 * ensure that buf_daemon is able to run when other processes might
812	 * be blocked waiting for buffer space.
813	 *
814	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
815	 * this may result in KVM fragmentation which is not handled optimally
816	 * by the system.
817	 */
818	maxbufspace = (long)nbuf * BKVASIZE;
819	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBCACHEBUF * 10);
820	lobufspace = hibufspace - MAXBCACHEBUF;
821
822	/*
823	 * Note: The 16 MiB upper limit for hirunningspace was chosen
824	 * arbitrarily and may need further tuning. It corresponds to
825	 * 128 outstanding write IO requests (if IO size is 128 KiB),
826	 * which fits with many RAID controllers' tagged queuing limits.
827	 * The lower 1 MiB limit is the historical upper limit for
828	 * hirunningspace.
829	 */
830	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBCACHEBUF),
831	    16 * 1024 * 1024), 1024 * 1024);
832	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBCACHEBUF);
833
834/*
835 * Limit the amount of malloc memory since it is wired permanently into
836 * the kernel space.  Even though this is accounted for in the buffer
837 * allocation, we don't want the malloced region to grow uncontrolled.
838 * The malloc scheme improves memory utilization significantly on average
839 * (small) directories.
840 */
841	maxbufmallocspace = hibufspace / 20;
842
843/*
844 * Reduce the chance of a deadlock occuring by limiting the number
845 * of delayed-write dirty buffers we allow to stack up.
846 */
847	hidirtybuffers = nbuf / 4 + 20;
848	dirtybufthresh = hidirtybuffers * 9 / 10;
849	numdirtybuffers = 0;
850/*
851 * To support extreme low-memory systems, make sure hidirtybuffers cannot
852 * eat up all available buffer space.  This occurs when our minimum cannot
853 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
854 * BKVASIZE'd buffers.
855 */
856	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
857		hidirtybuffers >>= 1;
858	}
859	lodirtybuffers = hidirtybuffers / 2;
860
861/*
862 * Try to keep the number of free buffers in the specified range,
863 * and give special processes (e.g. like buf_daemon) access to an
864 * emergency reserve.
865 */
866	lofreebuffers = nbuf / 18 + 5;
867	hifreebuffers = 2 * lofreebuffers;
868	numfreebuffers = nbuf;
869
870	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
871	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
872	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
873}
874
875#ifdef INVARIANTS
876static inline void
877vfs_buf_check_mapped(struct buf *bp)
878{
879
880	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
881	    ("mapped buf %p %x", bp, bp->b_flags));
882	KASSERT(bp->b_kvabase != unmapped_buf,
883	    ("mapped buf: b_kvabase was not updated %p", bp));
884	KASSERT(bp->b_data != unmapped_buf,
885	    ("mapped buf: b_data was not updated %p", bp));
886}
887
888static inline void
889vfs_buf_check_unmapped(struct buf *bp)
890{
891
892	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
893	    ("unmapped buf %p %x", bp, bp->b_flags));
894	KASSERT(bp->b_kvabase == unmapped_buf,
895	    ("unmapped buf: corrupted b_kvabase %p", bp));
896	KASSERT(bp->b_data == unmapped_buf,
897	    ("unmapped buf: corrupted b_data %p", bp));
898}
899
900#define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
901#define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
902#else
903#define	BUF_CHECK_MAPPED(bp) do {} while (0)
904#define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
905#endif
906
907static void
908bpmap_qenter(struct buf *bp)
909{
910
911	BUF_CHECK_MAPPED(bp);
912
913	/*
914	 * bp->b_data is relative to bp->b_offset, but
915	 * bp->b_offset may be offset into the first page.
916	 */
917	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
918	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
919	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
920	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
921}
922
923/*
924 * bfreekva() - free the kva allocation for a buffer.
925 *
926 *	Since this call frees up buffer space, we call bufspacewakeup().
927 */
928static void
929bfreekva(struct buf *bp)
930{
931
932	if (bp->b_kvasize == 0)
933		return;
934
935	atomic_add_int(&buffreekvacnt, 1);
936	atomic_subtract_long(&bufspace, bp->b_kvasize);
937	if ((bp->b_flags & B_UNMAPPED) == 0) {
938		BUF_CHECK_MAPPED(bp);
939		vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase,
940		    bp->b_kvasize);
941	} else {
942		BUF_CHECK_UNMAPPED(bp);
943		if ((bp->b_flags & B_KVAALLOC) != 0) {
944			vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc,
945			    bp->b_kvasize);
946		}
947		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
948		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
949	}
950	bp->b_kvasize = 0;
951	bufspacewakeup();
952}
953
954/*
955 *	binsfree:
956 *
957 *	Insert the buffer into the appropriate free list.
958 */
959static void
960binsfree(struct buf *bp, int qindex)
961{
962	struct mtx *olock, *nlock;
963
964	BUF_ASSERT_XLOCKED(bp);
965
966	nlock = bqlock(qindex);
967	/* Handle delayed bremfree() processing. */
968	if (bp->b_flags & B_REMFREE) {
969		olock = bqlock(bp->b_qindex);
970		mtx_lock(olock);
971		bremfreel(bp);
972		if (olock != nlock) {
973			mtx_unlock(olock);
974			mtx_lock(nlock);
975		}
976	} else
977		mtx_lock(nlock);
978
979	if (bp->b_qindex != QUEUE_NONE)
980		panic("binsfree: free buffer onto another queue???");
981
982	bp->b_qindex = qindex;
983	if (bp->b_flags & B_AGE)
984		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
985	else
986		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
987#ifdef INVARIANTS
988	bq_len[bp->b_qindex]++;
989#endif
990	mtx_unlock(nlock);
991
992	/*
993	 * Something we can maybe free or reuse.
994	 */
995	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
996		bufspacewakeup();
997
998	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
999		bufcountadd(bp);
1000}
1001
1002/*
1003 *	bremfree:
1004 *
1005 *	Mark the buffer for removal from the appropriate free list.
1006 *
1007 */
1008void
1009bremfree(struct buf *bp)
1010{
1011
1012	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1013	KASSERT((bp->b_flags & B_REMFREE) == 0,
1014	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1015	KASSERT(bp->b_qindex != QUEUE_NONE,
1016	    ("bremfree: buffer %p not on a queue.", bp));
1017	BUF_ASSERT_XLOCKED(bp);
1018
1019	bp->b_flags |= B_REMFREE;
1020	bufcountsub(bp);
1021}
1022
1023/*
1024 *	bremfreef:
1025 *
1026 *	Force an immediate removal from a free list.  Used only in nfs when
1027 *	it abuses the b_freelist pointer.
1028 */
1029void
1030bremfreef(struct buf *bp)
1031{
1032	struct mtx *qlock;
1033
1034	qlock = bqlock(bp->b_qindex);
1035	mtx_lock(qlock);
1036	bremfreel(bp);
1037	mtx_unlock(qlock);
1038}
1039
1040/*
1041 *	bremfreel:
1042 *
1043 *	Removes a buffer from the free list, must be called with the
1044 *	correct qlock held.
1045 */
1046static void
1047bremfreel(struct buf *bp)
1048{
1049
1050	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1051	    bp, bp->b_vp, bp->b_flags);
1052	KASSERT(bp->b_qindex != QUEUE_NONE,
1053	    ("bremfreel: buffer %p not on a queue.", bp));
1054	BUF_ASSERT_XLOCKED(bp);
1055	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1056
1057	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1058#ifdef INVARIANTS
1059	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1060	    bp->b_qindex));
1061	bq_len[bp->b_qindex]--;
1062#endif
1063	bp->b_qindex = QUEUE_NONE;
1064	/*
1065	 * If this was a delayed bremfree() we only need to remove the buffer
1066	 * from the queue and return the stats are already done.
1067	 */
1068	if (bp->b_flags & B_REMFREE) {
1069		bp->b_flags &= ~B_REMFREE;
1070		return;
1071	}
1072	bufcountsub(bp);
1073}
1074
1075/*
1076 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1077 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1078 * the buffer is valid and we do not have to do anything.
1079 */
1080void
1081breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1082    int cnt, struct ucred * cred)
1083{
1084	struct buf *rabp;
1085	int i;
1086
1087	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1088		if (inmem(vp, *rablkno))
1089			continue;
1090		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1091
1092		if ((rabp->b_flags & B_CACHE) == 0) {
1093			if (!TD_IS_IDLETHREAD(curthread))
1094				curthread->td_ru.ru_inblock++;
1095			rabp->b_flags |= B_ASYNC;
1096			rabp->b_flags &= ~B_INVAL;
1097			rabp->b_ioflags &= ~BIO_ERROR;
1098			rabp->b_iocmd = BIO_READ;
1099			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1100				rabp->b_rcred = crhold(cred);
1101			vfs_busy_pages(rabp, 0);
1102			BUF_KERNPROC(rabp);
1103			rabp->b_iooffset = dbtob(rabp->b_blkno);
1104			bstrategy(rabp);
1105		} else {
1106			brelse(rabp);
1107		}
1108	}
1109}
1110
1111/*
1112 * Entry point for bread() and breadn() via #defines in sys/buf.h.
1113 *
1114 * Get a buffer with the specified data.  Look in the cache first.  We
1115 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1116 * is set, the buffer is valid and we do not have to do anything, see
1117 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1118 */
1119int
1120breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1121    int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1122{
1123	struct buf *bp;
1124	int rv = 0, readwait = 0;
1125
1126	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1127	/*
1128	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1129	 */
1130	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1131	if (bp == NULL)
1132		return (EBUSY);
1133
1134	/* if not found in cache, do some I/O */
1135	if ((bp->b_flags & B_CACHE) == 0) {
1136		if (!TD_IS_IDLETHREAD(curthread))
1137			curthread->td_ru.ru_inblock++;
1138		bp->b_iocmd = BIO_READ;
1139		bp->b_flags &= ~B_INVAL;
1140		bp->b_ioflags &= ~BIO_ERROR;
1141		if (bp->b_rcred == NOCRED && cred != NOCRED)
1142			bp->b_rcred = crhold(cred);
1143		vfs_busy_pages(bp, 0);
1144		bp->b_iooffset = dbtob(bp->b_blkno);
1145		bstrategy(bp);
1146		++readwait;
1147	}
1148
1149	breada(vp, rablkno, rabsize, cnt, cred);
1150
1151	if (readwait) {
1152		rv = bufwait(bp);
1153	}
1154	return (rv);
1155}
1156
1157/*
1158 * Write, release buffer on completion.  (Done by iodone
1159 * if async).  Do not bother writing anything if the buffer
1160 * is invalid.
1161 *
1162 * Note that we set B_CACHE here, indicating that buffer is
1163 * fully valid and thus cacheable.  This is true even of NFS
1164 * now so we set it generally.  This could be set either here
1165 * or in biodone() since the I/O is synchronous.  We put it
1166 * here.
1167 */
1168int
1169bufwrite(struct buf *bp)
1170{
1171	int oldflags;
1172	struct vnode *vp;
1173	long space;
1174	int vp_md;
1175
1176	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1177	if (bp->b_flags & B_INVAL) {
1178		brelse(bp);
1179		return (0);
1180	}
1181
1182	if (bp->b_flags & B_BARRIER)
1183		barrierwrites++;
1184
1185	oldflags = bp->b_flags;
1186
1187	BUF_ASSERT_HELD(bp);
1188
1189	if (bp->b_pin_count > 0)
1190		bunpin_wait(bp);
1191
1192	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1193	    ("FFS background buffer should not get here %p", bp));
1194
1195	vp = bp->b_vp;
1196	if (vp)
1197		vp_md = vp->v_vflag & VV_MD;
1198	else
1199		vp_md = 0;
1200
1201	/*
1202	 * Mark the buffer clean.  Increment the bufobj write count
1203	 * before bundirty() call, to prevent other thread from seeing
1204	 * empty dirty list and zero counter for writes in progress,
1205	 * falsely indicating that the bufobj is clean.
1206	 */
1207	bufobj_wref(bp->b_bufobj);
1208	bundirty(bp);
1209
1210	bp->b_flags &= ~B_DONE;
1211	bp->b_ioflags &= ~BIO_ERROR;
1212	bp->b_flags |= B_CACHE;
1213	bp->b_iocmd = BIO_WRITE;
1214
1215	vfs_busy_pages(bp, 1);
1216
1217	/*
1218	 * Normal bwrites pipeline writes
1219	 */
1220	bp->b_runningbufspace = bp->b_bufsize;
1221	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1222
1223	if (!TD_IS_IDLETHREAD(curthread))
1224		curthread->td_ru.ru_oublock++;
1225	if (oldflags & B_ASYNC)
1226		BUF_KERNPROC(bp);
1227	bp->b_iooffset = dbtob(bp->b_blkno);
1228	bstrategy(bp);
1229
1230	if ((oldflags & B_ASYNC) == 0) {
1231		int rtval = bufwait(bp);
1232		brelse(bp);
1233		return (rtval);
1234	} else if (space > hirunningspace) {
1235		/*
1236		 * don't allow the async write to saturate the I/O
1237		 * system.  We will not deadlock here because
1238		 * we are blocking waiting for I/O that is already in-progress
1239		 * to complete. We do not block here if it is the update
1240		 * or syncer daemon trying to clean up as that can lead
1241		 * to deadlock.
1242		 */
1243		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1244			waitrunningbufspace();
1245	}
1246
1247	return (0);
1248}
1249
1250void
1251bufbdflush(struct bufobj *bo, struct buf *bp)
1252{
1253	struct buf *nbp;
1254
1255	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1256		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1257		altbufferflushes++;
1258	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1259		BO_LOCK(bo);
1260		/*
1261		 * Try to find a buffer to flush.
1262		 */
1263		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1264			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1265			    BUF_LOCK(nbp,
1266				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1267				continue;
1268			if (bp == nbp)
1269				panic("bdwrite: found ourselves");
1270			BO_UNLOCK(bo);
1271			/* Don't countdeps with the bo lock held. */
1272			if (buf_countdeps(nbp, 0)) {
1273				BO_LOCK(bo);
1274				BUF_UNLOCK(nbp);
1275				continue;
1276			}
1277			if (nbp->b_flags & B_CLUSTEROK) {
1278				vfs_bio_awrite(nbp);
1279			} else {
1280				bremfree(nbp);
1281				bawrite(nbp);
1282			}
1283			dirtybufferflushes++;
1284			break;
1285		}
1286		if (nbp == NULL)
1287			BO_UNLOCK(bo);
1288	}
1289}
1290
1291/*
1292 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1293 * anything if the buffer is marked invalid.
1294 *
1295 * Note that since the buffer must be completely valid, we can safely
1296 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1297 * biodone() in order to prevent getblk from writing the buffer
1298 * out synchronously.
1299 */
1300void
1301bdwrite(struct buf *bp)
1302{
1303	struct thread *td = curthread;
1304	struct vnode *vp;
1305	struct bufobj *bo;
1306
1307	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1308	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1309	KASSERT((bp->b_flags & B_BARRIER) == 0,
1310	    ("Barrier request in delayed write %p", bp));
1311	BUF_ASSERT_HELD(bp);
1312
1313	if (bp->b_flags & B_INVAL) {
1314		brelse(bp);
1315		return;
1316	}
1317
1318	/*
1319	 * If we have too many dirty buffers, don't create any more.
1320	 * If we are wildly over our limit, then force a complete
1321	 * cleanup. Otherwise, just keep the situation from getting
1322	 * out of control. Note that we have to avoid a recursive
1323	 * disaster and not try to clean up after our own cleanup!
1324	 */
1325	vp = bp->b_vp;
1326	bo = bp->b_bufobj;
1327	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1328		td->td_pflags |= TDP_INBDFLUSH;
1329		BO_BDFLUSH(bo, bp);
1330		td->td_pflags &= ~TDP_INBDFLUSH;
1331	} else
1332		recursiveflushes++;
1333
1334	bdirty(bp);
1335	/*
1336	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1337	 * true even of NFS now.
1338	 */
1339	bp->b_flags |= B_CACHE;
1340
1341	/*
1342	 * This bmap keeps the system from needing to do the bmap later,
1343	 * perhaps when the system is attempting to do a sync.  Since it
1344	 * is likely that the indirect block -- or whatever other datastructure
1345	 * that the filesystem needs is still in memory now, it is a good
1346	 * thing to do this.  Note also, that if the pageout daemon is
1347	 * requesting a sync -- there might not be enough memory to do
1348	 * the bmap then...  So, this is important to do.
1349	 */
1350	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1351		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1352	}
1353
1354	/*
1355	 * Set the *dirty* buffer range based upon the VM system dirty
1356	 * pages.
1357	 *
1358	 * Mark the buffer pages as clean.  We need to do this here to
1359	 * satisfy the vnode_pager and the pageout daemon, so that it
1360	 * thinks that the pages have been "cleaned".  Note that since
1361	 * the pages are in a delayed write buffer -- the VFS layer
1362	 * "will" see that the pages get written out on the next sync,
1363	 * or perhaps the cluster will be completed.
1364	 */
1365	vfs_clean_pages_dirty_buf(bp);
1366	bqrelse(bp);
1367
1368	/*
1369	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1370	 * due to the softdep code.
1371	 */
1372}
1373
1374/*
1375 *	bdirty:
1376 *
1377 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1378 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1379 *	itself to properly update it in the dirty/clean lists.  We mark it
1380 *	B_DONE to ensure that any asynchronization of the buffer properly
1381 *	clears B_DONE ( else a panic will occur later ).
1382 *
1383 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1384 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1385 *	should only be called if the buffer is known-good.
1386 *
1387 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1388 *	count.
1389 *
1390 *	The buffer must be on QUEUE_NONE.
1391 */
1392void
1393bdirty(struct buf *bp)
1394{
1395
1396	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1397	    bp, bp->b_vp, bp->b_flags);
1398	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1399	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1400	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1401	BUF_ASSERT_HELD(bp);
1402	bp->b_flags &= ~(B_RELBUF);
1403	bp->b_iocmd = BIO_WRITE;
1404
1405	if ((bp->b_flags & B_DELWRI) == 0) {
1406		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1407		reassignbuf(bp);
1408		bdirtyadd();
1409	}
1410}
1411
1412/*
1413 *	bundirty:
1414 *
1415 *	Clear B_DELWRI for buffer.
1416 *
1417 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1418 *	count.
1419 *
1420 *	The buffer must be on QUEUE_NONE.
1421 */
1422
1423void
1424bundirty(struct buf *bp)
1425{
1426
1427	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1428	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1429	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1430	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1431	BUF_ASSERT_HELD(bp);
1432
1433	if (bp->b_flags & B_DELWRI) {
1434		bp->b_flags &= ~B_DELWRI;
1435		reassignbuf(bp);
1436		bdirtysub();
1437	}
1438	/*
1439	 * Since it is now being written, we can clear its deferred write flag.
1440	 */
1441	bp->b_flags &= ~B_DEFERRED;
1442}
1443
1444/*
1445 *	bawrite:
1446 *
1447 *	Asynchronous write.  Start output on a buffer, but do not wait for
1448 *	it to complete.  The buffer is released when the output completes.
1449 *
1450 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1451 *	B_INVAL buffers.  Not us.
1452 */
1453void
1454bawrite(struct buf *bp)
1455{
1456
1457	bp->b_flags |= B_ASYNC;
1458	(void) bwrite(bp);
1459}
1460
1461/*
1462 *	babarrierwrite:
1463 *
1464 *	Asynchronous barrier write.  Start output on a buffer, but do not
1465 *	wait for it to complete.  Place a write barrier after this write so
1466 *	that this buffer and all buffers written before it are committed to
1467 *	the disk before any buffers written after this write are committed
1468 *	to the disk.  The buffer is released when the output completes.
1469 */
1470void
1471babarrierwrite(struct buf *bp)
1472{
1473
1474	bp->b_flags |= B_ASYNC | B_BARRIER;
1475	(void) bwrite(bp);
1476}
1477
1478/*
1479 *	bbarrierwrite:
1480 *
1481 *	Synchronous barrier write.  Start output on a buffer and wait for
1482 *	it to complete.  Place a write barrier after this write so that
1483 *	this buffer and all buffers written before it are committed to
1484 *	the disk before any buffers written after this write are committed
1485 *	to the disk.  The buffer is released when the output completes.
1486 */
1487int
1488bbarrierwrite(struct buf *bp)
1489{
1490
1491	bp->b_flags |= B_BARRIER;
1492	return (bwrite(bp));
1493}
1494
1495/*
1496 *	bwillwrite:
1497 *
1498 *	Called prior to the locking of any vnodes when we are expecting to
1499 *	write.  We do not want to starve the buffer cache with too many
1500 *	dirty buffers so we block here.  By blocking prior to the locking
1501 *	of any vnodes we attempt to avoid the situation where a locked vnode
1502 *	prevents the various system daemons from flushing related buffers.
1503 */
1504void
1505bwillwrite(void)
1506{
1507
1508	if (numdirtybuffers >= hidirtybuffers) {
1509		mtx_lock(&bdirtylock);
1510		while (numdirtybuffers >= hidirtybuffers) {
1511			bdirtywait = 1;
1512			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1513			    "flswai", 0);
1514		}
1515		mtx_unlock(&bdirtylock);
1516	}
1517}
1518
1519/*
1520 * Return true if we have too many dirty buffers.
1521 */
1522int
1523buf_dirty_count_severe(void)
1524{
1525
1526	return(numdirtybuffers >= hidirtybuffers);
1527}
1528
1529static __noinline int
1530buf_vm_page_count_severe(void)
1531{
1532
1533	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1534
1535	return vm_page_count_severe();
1536}
1537
1538/*
1539 *	brelse:
1540 *
1541 *	Release a busy buffer and, if requested, free its resources.  The
1542 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1543 *	to be accessed later as a cache entity or reused for other purposes.
1544 */
1545void
1546brelse(struct buf *bp)
1547{
1548	int qindex;
1549
1550	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1551	    bp, bp->b_vp, bp->b_flags);
1552	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1553	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1554
1555	if (BUF_LOCKRECURSED(bp)) {
1556		/*
1557		 * Do not process, in particular, do not handle the
1558		 * B_INVAL/B_RELBUF and do not release to free list.
1559		 */
1560		BUF_UNLOCK(bp);
1561		return;
1562	}
1563
1564	if (bp->b_flags & B_MANAGED) {
1565		bqrelse(bp);
1566		return;
1567	}
1568
1569	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
1570		BO_LOCK(bp->b_bufobj);
1571		bp->b_vflags &= ~BV_BKGRDERR;
1572		BO_UNLOCK(bp->b_bufobj);
1573		bdirty(bp);
1574	}
1575	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1576	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1577		/*
1578		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1579		 * pages from being scrapped.  If the error is anything
1580		 * other than an I/O error (EIO), assume that retrying
1581		 * is futile.
1582		 */
1583		bp->b_ioflags &= ~BIO_ERROR;
1584		bdirty(bp);
1585	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1586	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1587		/*
1588		 * Either a failed I/O or we were asked to free or not
1589		 * cache the buffer.
1590		 */
1591		bp->b_flags |= B_INVAL;
1592		if (!LIST_EMPTY(&bp->b_dep))
1593			buf_deallocate(bp);
1594		if (bp->b_flags & B_DELWRI)
1595			bdirtysub();
1596		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1597		if ((bp->b_flags & B_VMIO) == 0) {
1598			if (bp->b_bufsize)
1599				allocbuf(bp, 0);
1600			if (bp->b_vp)
1601				brelvp(bp);
1602		}
1603	}
1604
1605	/*
1606	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1607	 * is called with B_DELWRI set, the underlying pages may wind up
1608	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1609	 * because pages associated with a B_DELWRI bp are marked clean.
1610	 *
1611	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1612	 * if B_DELWRI is set.
1613	 *
1614	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1615	 * on pages to return pages to the VM page queues.
1616	 */
1617	if (bp->b_flags & B_DELWRI)
1618		bp->b_flags &= ~B_RELBUF;
1619	else if (buf_vm_page_count_severe()) {
1620		/*
1621		 * BKGRDINPROG can only be set with the buf and bufobj
1622		 * locks both held.  We tolerate a race to clear it here.
1623		 */
1624		if (!(bp->b_vflags & BV_BKGRDINPROG))
1625			bp->b_flags |= B_RELBUF;
1626	}
1627
1628	/*
1629	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1630	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1631	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1632	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1633	 *
1634	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1635	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1636	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1637	 *
1638	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1639	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1640	 * the commit state and we cannot afford to lose the buffer. If the
1641	 * buffer has a background write in progress, we need to keep it
1642	 * around to prevent it from being reconstituted and starting a second
1643	 * background write.
1644	 */
1645	if ((bp->b_flags & B_VMIO)
1646	    && !(bp->b_vp->v_mount != NULL &&
1647		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1648		 !vn_isdisk(bp->b_vp, NULL) &&
1649		 (bp->b_flags & B_DELWRI))
1650	    ) {
1651
1652		int i, j, resid;
1653		vm_page_t m;
1654		off_t foff;
1655		vm_pindex_t poff;
1656		vm_object_t obj;
1657
1658		obj = bp->b_bufobj->bo_object;
1659
1660		/*
1661		 * Get the base offset and length of the buffer.  Note that
1662		 * in the VMIO case if the buffer block size is not
1663		 * page-aligned then b_data pointer may not be page-aligned.
1664		 * But our b_pages[] array *IS* page aligned.
1665		 *
1666		 * block sizes less then DEV_BSIZE (usually 512) are not
1667		 * supported due to the page granularity bits (m->valid,
1668		 * m->dirty, etc...).
1669		 *
1670		 * See man buf(9) for more information
1671		 */
1672		resid = bp->b_bufsize;
1673		foff = bp->b_offset;
1674		for (i = 0; i < bp->b_npages; i++) {
1675			int had_bogus = 0;
1676
1677			m = bp->b_pages[i];
1678
1679			/*
1680			 * If we hit a bogus page, fixup *all* the bogus pages
1681			 * now.
1682			 */
1683			if (m == bogus_page) {
1684				poff = OFF_TO_IDX(bp->b_offset);
1685				had_bogus = 1;
1686
1687				VM_OBJECT_RLOCK(obj);
1688				for (j = i; j < bp->b_npages; j++) {
1689					vm_page_t mtmp;
1690					mtmp = bp->b_pages[j];
1691					if (mtmp == bogus_page) {
1692						mtmp = vm_page_lookup(obj, poff + j);
1693						if (!mtmp) {
1694							panic("brelse: page missing\n");
1695						}
1696						bp->b_pages[j] = mtmp;
1697					}
1698				}
1699				VM_OBJECT_RUNLOCK(obj);
1700
1701				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1702					BUF_CHECK_MAPPED(bp);
1703					pmap_qenter(
1704					    trunc_page((vm_offset_t)bp->b_data),
1705					    bp->b_pages, bp->b_npages);
1706				}
1707				m = bp->b_pages[i];
1708			}
1709			if ((bp->b_flags & B_NOCACHE) ||
1710			    (bp->b_ioflags & BIO_ERROR &&
1711			     bp->b_iocmd == BIO_READ)) {
1712				int poffset = foff & PAGE_MASK;
1713				int presid = resid > (PAGE_SIZE - poffset) ?
1714					(PAGE_SIZE - poffset) : resid;
1715
1716				KASSERT(presid >= 0, ("brelse: extra page"));
1717				VM_OBJECT_WLOCK(obj);
1718				while (vm_page_xbusied(m)) {
1719					vm_page_lock(m);
1720					VM_OBJECT_WUNLOCK(obj);
1721					vm_page_busy_sleep(m, "mbncsh");
1722					VM_OBJECT_WLOCK(obj);
1723				}
1724				if (pmap_page_wired_mappings(m) == 0)
1725					vm_page_set_invalid(m, poffset, presid);
1726				VM_OBJECT_WUNLOCK(obj);
1727				if (had_bogus)
1728					printf("avoided corruption bug in bogus_page/brelse code\n");
1729			}
1730			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1731			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1732		}
1733		if (bp->b_flags & (B_INVAL | B_RELBUF))
1734			vfs_vmio_release(bp);
1735
1736	} else if (bp->b_flags & B_VMIO) {
1737
1738		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1739			vfs_vmio_release(bp);
1740		}
1741
1742	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1743		if (bp->b_bufsize != 0)
1744			allocbuf(bp, 0);
1745		if (bp->b_vp != NULL)
1746			brelvp(bp);
1747	}
1748
1749	/*
1750	 * If the buffer has junk contents signal it and eventually
1751	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1752	 * doesn't find it.
1753	 */
1754	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1755	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1756		bp->b_flags |= B_INVAL;
1757	if (bp->b_flags & B_INVAL) {
1758		if (bp->b_flags & B_DELWRI)
1759			bundirty(bp);
1760		if (bp->b_vp)
1761			brelvp(bp);
1762	}
1763
1764	/* buffers with no memory */
1765	if (bp->b_bufsize == 0) {
1766		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1767		if (bp->b_vflags & BV_BKGRDINPROG)
1768			panic("losing buffer 1");
1769		if (bp->b_kvasize)
1770			qindex = QUEUE_EMPTYKVA;
1771		else
1772			qindex = QUEUE_EMPTY;
1773		bp->b_flags |= B_AGE;
1774	/* buffers with junk contents */
1775	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1776	    (bp->b_ioflags & BIO_ERROR)) {
1777		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1778		if (bp->b_vflags & BV_BKGRDINPROG)
1779			panic("losing buffer 2");
1780		qindex = QUEUE_CLEAN;
1781		bp->b_flags |= B_AGE;
1782	/* remaining buffers */
1783	} else if (bp->b_flags & B_DELWRI)
1784		qindex = QUEUE_DIRTY;
1785	else
1786		qindex = QUEUE_CLEAN;
1787
1788	binsfree(bp, qindex);
1789
1790	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1791	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1792		panic("brelse: not dirty");
1793	/* unlock */
1794	BUF_UNLOCK(bp);
1795}
1796
1797/*
1798 * Release a buffer back to the appropriate queue but do not try to free
1799 * it.  The buffer is expected to be used again soon.
1800 *
1801 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1802 * biodone() to requeue an async I/O on completion.  It is also used when
1803 * known good buffers need to be requeued but we think we may need the data
1804 * again soon.
1805 *
1806 * XXX we should be able to leave the B_RELBUF hint set on completion.
1807 */
1808void
1809bqrelse(struct buf *bp)
1810{
1811	int qindex;
1812
1813	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1814	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1815	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1816
1817	if (BUF_LOCKRECURSED(bp)) {
1818		/* do not release to free list */
1819		BUF_UNLOCK(bp);
1820		return;
1821	}
1822	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1823
1824	if (bp->b_flags & B_MANAGED) {
1825		if (bp->b_flags & B_REMFREE)
1826			bremfreef(bp);
1827		goto out;
1828	}
1829
1830	/* buffers with stale but valid contents */
1831	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
1832	    BV_BKGRDERR)) == BV_BKGRDERR) {
1833		BO_LOCK(bp->b_bufobj);
1834		bp->b_vflags &= ~BV_BKGRDERR;
1835		BO_UNLOCK(bp->b_bufobj);
1836		qindex = QUEUE_DIRTY;
1837	} else {
1838		if ((bp->b_flags & B_DELWRI) == 0 &&
1839		    (bp->b_xflags & BX_VNDIRTY))
1840			panic("bqrelse: not dirty");
1841		/*
1842		 * BKGRDINPROG can only be set with the buf and bufobj
1843		 * locks both held.  We tolerate a race to clear it here.
1844		 */
1845		if (buf_vm_page_count_severe() &&
1846		    (bp->b_vflags & BV_BKGRDINPROG) == 0) {
1847			/*
1848			 * We are too low on memory, we have to try to free
1849			 * the buffer (most importantly: the wired pages
1850			 * making up its backing store) *now*.
1851			 */
1852			brelse(bp);
1853			return;
1854		}
1855		qindex = QUEUE_CLEAN;
1856	}
1857	binsfree(bp, qindex);
1858
1859out:
1860	/* unlock */
1861	BUF_UNLOCK(bp);
1862}
1863
1864/* Give pages used by the bp back to the VM system (where possible) */
1865static void
1866vfs_vmio_release(struct buf *bp)
1867{
1868	vm_object_t obj;
1869	vm_page_t m;
1870	int i;
1871
1872	if ((bp->b_flags & B_UNMAPPED) == 0) {
1873		BUF_CHECK_MAPPED(bp);
1874		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1875	} else
1876		BUF_CHECK_UNMAPPED(bp);
1877	obj = bp->b_bufobj->bo_object;
1878	if (obj != NULL)
1879		VM_OBJECT_WLOCK(obj);
1880	for (i = 0; i < bp->b_npages; i++) {
1881		m = bp->b_pages[i];
1882		bp->b_pages[i] = NULL;
1883		/*
1884		 * In order to keep page LRU ordering consistent, put
1885		 * everything on the inactive queue.
1886		 */
1887		vm_page_lock(m);
1888		vm_page_unwire(m, 0);
1889
1890		/*
1891		 * Might as well free the page if we can and it has
1892		 * no valid data.  We also free the page if the
1893		 * buffer was used for direct I/O
1894		 */
1895		if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1896			if (m->wire_count == 0 && !vm_page_busied(m))
1897				vm_page_free(m);
1898		} else if (bp->b_flags & B_DIRECT)
1899			vm_page_try_to_free(m);
1900		else if (buf_vm_page_count_severe())
1901			vm_page_try_to_cache(m);
1902		vm_page_unlock(m);
1903	}
1904	if (obj != NULL)
1905		VM_OBJECT_WUNLOCK(obj);
1906
1907	if (bp->b_bufsize) {
1908		bufspacewakeup();
1909		bp->b_bufsize = 0;
1910	}
1911	bp->b_npages = 0;
1912	bp->b_flags &= ~B_VMIO;
1913	if (bp->b_vp)
1914		brelvp(bp);
1915}
1916
1917/*
1918 * Check to see if a block at a particular lbn is available for a clustered
1919 * write.
1920 */
1921static int
1922vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1923{
1924	struct buf *bpa;
1925	int match;
1926
1927	match = 0;
1928
1929	/* If the buf isn't in core skip it */
1930	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1931		return (0);
1932
1933	/* If the buf is busy we don't want to wait for it */
1934	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1935		return (0);
1936
1937	/* Only cluster with valid clusterable delayed write buffers */
1938	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1939	    (B_DELWRI | B_CLUSTEROK))
1940		goto done;
1941
1942	if (bpa->b_bufsize != size)
1943		goto done;
1944
1945	/*
1946	 * Check to see if it is in the expected place on disk and that the
1947	 * block has been mapped.
1948	 */
1949	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1950		match = 1;
1951done:
1952	BUF_UNLOCK(bpa);
1953	return (match);
1954}
1955
1956/*
1957 *	vfs_bio_awrite:
1958 *
1959 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1960 *	This is much better then the old way of writing only one buffer at
1961 *	a time.  Note that we may not be presented with the buffers in the
1962 *	correct order, so we search for the cluster in both directions.
1963 */
1964int
1965vfs_bio_awrite(struct buf *bp)
1966{
1967	struct bufobj *bo;
1968	int i;
1969	int j;
1970	daddr_t lblkno = bp->b_lblkno;
1971	struct vnode *vp = bp->b_vp;
1972	int ncl;
1973	int nwritten;
1974	int size;
1975	int maxcl;
1976	int gbflags;
1977
1978	bo = &vp->v_bufobj;
1979	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1980	/*
1981	 * right now we support clustered writing only to regular files.  If
1982	 * we find a clusterable block we could be in the middle of a cluster
1983	 * rather then at the beginning.
1984	 */
1985	if ((vp->v_type == VREG) &&
1986	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1987	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1988
1989		size = vp->v_mount->mnt_stat.f_iosize;
1990		maxcl = MAXPHYS / size;
1991
1992		BO_RLOCK(bo);
1993		for (i = 1; i < maxcl; i++)
1994			if (vfs_bio_clcheck(vp, size, lblkno + i,
1995			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1996				break;
1997
1998		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1999			if (vfs_bio_clcheck(vp, size, lblkno - j,
2000			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
2001				break;
2002		BO_RUNLOCK(bo);
2003		--j;
2004		ncl = i + j;
2005		/*
2006		 * this is a possible cluster write
2007		 */
2008		if (ncl != 1) {
2009			BUF_UNLOCK(bp);
2010			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
2011			    gbflags);
2012			return (nwritten);
2013		}
2014	}
2015	bremfree(bp);
2016	bp->b_flags |= B_ASYNC;
2017	/*
2018	 * default (old) behavior, writing out only one block
2019	 *
2020	 * XXX returns b_bufsize instead of b_bcount for nwritten?
2021	 */
2022	nwritten = bp->b_bufsize;
2023	(void) bwrite(bp);
2024
2025	return (nwritten);
2026}
2027
2028static void
2029setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
2030{
2031
2032	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2033	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
2034	if ((gbflags & GB_UNMAPPED) == 0) {
2035		bp->b_kvabase = (caddr_t)addr;
2036	} else if ((gbflags & GB_KVAALLOC) != 0) {
2037		KASSERT((gbflags & GB_UNMAPPED) != 0,
2038		    ("GB_KVAALLOC without GB_UNMAPPED"));
2039		bp->b_kvaalloc = (caddr_t)addr;
2040		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2041		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2042	}
2043	bp->b_kvasize = maxsize;
2044}
2045
2046/*
2047 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
2048 * needed.
2049 */
2050static int
2051allocbufkva(struct buf *bp, int maxsize, int gbflags)
2052{
2053	vm_offset_t addr;
2054
2055	bfreekva(bp);
2056	addr = 0;
2057
2058	if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) {
2059		/*
2060		 * Buffer map is too fragmented.  Request the caller
2061		 * to defragment the map.
2062		 */
2063		atomic_add_int(&bufdefragcnt, 1);
2064		return (1);
2065	}
2066	setbufkva(bp, addr, maxsize, gbflags);
2067	atomic_add_long(&bufspace, bp->b_kvasize);
2068	return (0);
2069}
2070
2071/*
2072 * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2073 * locked vnode is supplied.
2074 */
2075static void
2076getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2077    int defrag)
2078{
2079	struct thread *td;
2080	char *waitmsg;
2081	int error, fl, flags, norunbuf;
2082
2083	mtx_assert(&bqclean, MA_OWNED);
2084
2085	if (defrag) {
2086		flags = VFS_BIO_NEED_BUFSPACE;
2087		waitmsg = "nbufkv";
2088	} else if (bufspace >= hibufspace) {
2089		waitmsg = "nbufbs";
2090		flags = VFS_BIO_NEED_BUFSPACE;
2091	} else {
2092		waitmsg = "newbuf";
2093		flags = VFS_BIO_NEED_ANY;
2094	}
2095	atomic_set_int(&needsbuffer, flags);
2096	mtx_unlock(&bqclean);
2097
2098	bd_speedup();	/* heeeelp */
2099	if ((gbflags & GB_NOWAIT_BD) != 0)
2100		return;
2101
2102	td = curthread;
2103	rw_wlock(&nblock);
2104	while ((needsbuffer & flags) != 0) {
2105		if (vp != NULL && vp->v_type != VCHR &&
2106		    (td->td_pflags & TDP_BUFNEED) == 0) {
2107			rw_wunlock(&nblock);
2108			/*
2109			 * getblk() is called with a vnode locked, and
2110			 * some majority of the dirty buffers may as
2111			 * well belong to the vnode.  Flushing the
2112			 * buffers there would make a progress that
2113			 * cannot be achieved by the buf_daemon, that
2114			 * cannot lock the vnode.
2115			 */
2116			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2117			    (td->td_pflags & TDP_NORUNNINGBUF);
2118
2119			/*
2120			 * Play bufdaemon.  The getnewbuf() function
2121			 * may be called while the thread owns lock
2122			 * for another dirty buffer for the same
2123			 * vnode, which makes it impossible to use
2124			 * VOP_FSYNC() there, due to the buffer lock
2125			 * recursion.
2126			 */
2127			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2128			fl = buf_flush(vp, flushbufqtarget);
2129			td->td_pflags &= norunbuf;
2130			rw_wlock(&nblock);
2131			if (fl != 0)
2132				continue;
2133			if ((needsbuffer & flags) == 0)
2134				break;
2135		}
2136		error = rw_sleep(__DEVOLATILE(void *, &needsbuffer), &nblock,
2137		    (PRIBIO + 4) | slpflag, waitmsg, slptimeo);
2138		if (error != 0)
2139			break;
2140	}
2141	rw_wunlock(&nblock);
2142}
2143
2144static void
2145getnewbuf_reuse_bp(struct buf *bp, int qindex)
2146{
2147
2148	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2149	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2150	     bp->b_kvasize, bp->b_bufsize, qindex);
2151	mtx_assert(&bqclean, MA_NOTOWNED);
2152
2153	/*
2154	 * Note: we no longer distinguish between VMIO and non-VMIO
2155	 * buffers.
2156	 */
2157	KASSERT((bp->b_flags & B_DELWRI) == 0,
2158	    ("delwri buffer %p found in queue %d", bp, qindex));
2159
2160	if (qindex == QUEUE_CLEAN) {
2161		if (bp->b_flags & B_VMIO) {
2162			bp->b_flags &= ~B_ASYNC;
2163			vfs_vmio_release(bp);
2164		}
2165		if (bp->b_vp != NULL)
2166			brelvp(bp);
2167	}
2168
2169	/*
2170	 * Get the rest of the buffer freed up.  b_kva* is still valid
2171	 * after this operation.
2172	 */
2173
2174	if (bp->b_rcred != NOCRED) {
2175		crfree(bp->b_rcred);
2176		bp->b_rcred = NOCRED;
2177	}
2178	if (bp->b_wcred != NOCRED) {
2179		crfree(bp->b_wcred);
2180		bp->b_wcred = NOCRED;
2181	}
2182	if (!LIST_EMPTY(&bp->b_dep))
2183		buf_deallocate(bp);
2184	if (bp->b_vflags & BV_BKGRDINPROG)
2185		panic("losing buffer 3");
2186	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2187	    bp, bp->b_vp, qindex));
2188	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2189	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2190
2191	if (bp->b_bufsize)
2192		allocbuf(bp, 0);
2193
2194	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2195	bp->b_ioflags = 0;
2196	bp->b_xflags = 0;
2197	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2198	    ("buf %p still counted as free?", bp));
2199	bp->b_vflags = 0;
2200	bp->b_vp = NULL;
2201	bp->b_blkno = bp->b_lblkno = 0;
2202	bp->b_offset = NOOFFSET;
2203	bp->b_iodone = 0;
2204	bp->b_error = 0;
2205	bp->b_resid = 0;
2206	bp->b_bcount = 0;
2207	bp->b_npages = 0;
2208	bp->b_dirtyoff = bp->b_dirtyend = 0;
2209	bp->b_bufobj = NULL;
2210	bp->b_pin_count = 0;
2211	bp->b_fsprivate1 = NULL;
2212	bp->b_fsprivate2 = NULL;
2213	bp->b_fsprivate3 = NULL;
2214
2215	LIST_INIT(&bp->b_dep);
2216}
2217
2218static int flushingbufs;
2219
2220static struct buf *
2221getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2222{
2223	struct buf *bp, *nbp;
2224	int nqindex, qindex, pass;
2225
2226	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2227
2228	pass = 1;
2229restart:
2230	atomic_add_int(&getnewbufrestarts, 1);
2231
2232	/*
2233	 * Setup for scan.  If we do not have enough free buffers,
2234	 * we setup a degenerate case that immediately fails.  Note
2235	 * that if we are specially marked process, we are allowed to
2236	 * dip into our reserves.
2237	 *
2238	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2239	 * for the allocation of the mapped buffer.  For unmapped, the
2240	 * easiest is to start with EMPTY outright.
2241	 *
2242	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2243	 * However, there are a number of cases (defragging, reusing, ...)
2244	 * where we cannot backup.
2245	 */
2246	nbp = NULL;
2247	mtx_lock(&bqclean);
2248	if (!defrag && unmapped) {
2249		nqindex = QUEUE_EMPTY;
2250		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2251	}
2252	if (nbp == NULL) {
2253		nqindex = QUEUE_EMPTYKVA;
2254		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2255	}
2256
2257	/*
2258	 * If no EMPTYKVA buffers and we are either defragging or
2259	 * reusing, locate a CLEAN buffer to free or reuse.  If
2260	 * bufspace useage is low skip this step so we can allocate a
2261	 * new buffer.
2262	 */
2263	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2264		nqindex = QUEUE_CLEAN;
2265		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2266	}
2267
2268	/*
2269	 * If we could not find or were not allowed to reuse a CLEAN
2270	 * buffer, check to see if it is ok to use an EMPTY buffer.
2271	 * We can only use an EMPTY buffer if allocating its KVA would
2272	 * not otherwise run us out of buffer space.  No KVA is needed
2273	 * for the unmapped allocation.
2274	 */
2275	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2276	    metadata)) {
2277		nqindex = QUEUE_EMPTY;
2278		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2279	}
2280
2281	/*
2282	 * All available buffers might be clean, retry ignoring the
2283	 * lobufspace as the last resort.
2284	 */
2285	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2286		nqindex = QUEUE_CLEAN;
2287		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2288	}
2289
2290	/*
2291	 * Run scan, possibly freeing data and/or kva mappings on the fly
2292	 * depending.
2293	 */
2294	while ((bp = nbp) != NULL) {
2295		qindex = nqindex;
2296
2297		/*
2298		 * Calculate next bp (we can only use it if we do not
2299		 * block or do other fancy things).
2300		 */
2301		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2302			switch (qindex) {
2303			case QUEUE_EMPTY:
2304				nqindex = QUEUE_EMPTYKVA;
2305				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2306				if (nbp != NULL)
2307					break;
2308				/* FALLTHROUGH */
2309			case QUEUE_EMPTYKVA:
2310				nqindex = QUEUE_CLEAN;
2311				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2312				if (nbp != NULL)
2313					break;
2314				/* FALLTHROUGH */
2315			case QUEUE_CLEAN:
2316				if (metadata && pass == 1) {
2317					pass = 2;
2318					nqindex = QUEUE_EMPTY;
2319					nbp = TAILQ_FIRST(
2320					    &bufqueues[QUEUE_EMPTY]);
2321				}
2322				/*
2323				 * nbp is NULL.
2324				 */
2325				break;
2326			}
2327		}
2328		/*
2329		 * If we are defragging then we need a buffer with
2330		 * b_kvasize != 0.  XXX this situation should no longer
2331		 * occur, if defrag is non-zero the buffer's b_kvasize
2332		 * should also be non-zero at this point.  XXX
2333		 */
2334		if (defrag && bp->b_kvasize == 0) {
2335			printf("Warning: defrag empty buffer %p\n", bp);
2336			continue;
2337		}
2338
2339		/*
2340		 * Start freeing the bp.  This is somewhat involved.  nbp
2341		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2342		 */
2343		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2344			continue;
2345		/*
2346		 * BKGRDINPROG can only be set with the buf and bufobj
2347		 * locks both held.  We tolerate a race to clear it here.
2348		 */
2349		if (bp->b_vflags & BV_BKGRDINPROG) {
2350			BUF_UNLOCK(bp);
2351			continue;
2352		}
2353
2354		/*
2355		 * Requeue the background write buffer with error.
2356		 */
2357		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
2358			bremfreel(bp);
2359			mtx_unlock(&bqclean);
2360			bqrelse(bp);
2361			continue;
2362		}
2363
2364		KASSERT(bp->b_qindex == qindex,
2365		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2366
2367		bremfreel(bp);
2368		mtx_unlock(&bqclean);
2369		/*
2370		 * NOTE:  nbp is now entirely invalid.  We can only restart
2371		 * the scan from this point on.
2372		 */
2373
2374		getnewbuf_reuse_bp(bp, qindex);
2375		mtx_assert(&bqclean, MA_NOTOWNED);
2376
2377		/*
2378		 * If we are defragging then free the buffer.
2379		 */
2380		if (defrag) {
2381			bp->b_flags |= B_INVAL;
2382			bfreekva(bp);
2383			brelse(bp);
2384			defrag = 0;
2385			goto restart;
2386		}
2387
2388		/*
2389		 * Notify any waiters for the buffer lock about
2390		 * identity change by freeing the buffer.
2391		 */
2392		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2393			bp->b_flags |= B_INVAL;
2394			bfreekva(bp);
2395			brelse(bp);
2396			goto restart;
2397		}
2398
2399		if (metadata)
2400			break;
2401
2402		/*
2403		 * If we are overcomitted then recover the buffer and its
2404		 * KVM space.  This occurs in rare situations when multiple
2405		 * processes are blocked in getnewbuf() or allocbuf().
2406		 */
2407		if (bufspace >= hibufspace)
2408			flushingbufs = 1;
2409		if (flushingbufs && bp->b_kvasize != 0) {
2410			bp->b_flags |= B_INVAL;
2411			bfreekva(bp);
2412			brelse(bp);
2413			goto restart;
2414		}
2415		if (bufspace < lobufspace)
2416			flushingbufs = 0;
2417		break;
2418	}
2419	return (bp);
2420}
2421
2422/*
2423 *	getnewbuf:
2424 *
2425 *	Find and initialize a new buffer header, freeing up existing buffers
2426 *	in the bufqueues as necessary.  The new buffer is returned locked.
2427 *
2428 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2429 *	buffer away, the caller must set B_INVAL prior to calling brelse().
2430 *
2431 *	We block if:
2432 *		We have insufficient buffer headers
2433 *		We have insufficient buffer space
2434 *		buffer_arena is too fragmented ( space reservation fails )
2435 *		If we have to flush dirty buffers ( but we try to avoid this )
2436 */
2437static struct buf *
2438getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2439    int gbflags)
2440{
2441	struct buf *bp;
2442	int defrag, metadata;
2443
2444	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2445	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2446	if (!unmapped_buf_allowed)
2447		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2448
2449	defrag = 0;
2450	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2451	    vp->v_type == VCHR)
2452		metadata = 1;
2453	else
2454		metadata = 0;
2455	/*
2456	 * We can't afford to block since we might be holding a vnode lock,
2457	 * which may prevent system daemons from running.  We deal with
2458	 * low-memory situations by proactively returning memory and running
2459	 * async I/O rather then sync I/O.
2460	 */
2461	atomic_add_int(&getnewbufcalls, 1);
2462	atomic_subtract_int(&getnewbufrestarts, 1);
2463restart:
2464	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2465	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2466	if (bp != NULL)
2467		defrag = 0;
2468
2469	/*
2470	 * If we exhausted our list, sleep as appropriate.  We may have to
2471	 * wakeup various daemons and write out some dirty buffers.
2472	 *
2473	 * Generally we are sleeping due to insufficient buffer space.
2474	 */
2475	if (bp == NULL) {
2476		mtx_assert(&bqclean, MA_OWNED);
2477		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2478		mtx_assert(&bqclean, MA_NOTOWNED);
2479	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2480		mtx_assert(&bqclean, MA_NOTOWNED);
2481
2482		bfreekva(bp);
2483		bp->b_flags |= B_UNMAPPED;
2484		bp->b_kvabase = bp->b_data = unmapped_buf;
2485		bp->b_kvasize = maxsize;
2486		atomic_add_long(&bufspace, bp->b_kvasize);
2487		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2488		atomic_add_int(&bufreusecnt, 1);
2489	} else {
2490		mtx_assert(&bqclean, MA_NOTOWNED);
2491
2492		/*
2493		 * We finally have a valid bp.  We aren't quite out of the
2494		 * woods, we still have to reserve kva space.  In order
2495		 * to keep fragmentation sane we only allocate kva in
2496		 * BKVASIZE chunks.
2497		 */
2498		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2499
2500		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2501		    B_KVAALLOC)) == B_UNMAPPED) {
2502			if (allocbufkva(bp, maxsize, gbflags)) {
2503				defrag = 1;
2504				bp->b_flags |= B_INVAL;
2505				brelse(bp);
2506				goto restart;
2507			}
2508			atomic_add_int(&bufreusecnt, 1);
2509		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2510		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2511			/*
2512			 * If the reused buffer has KVA allocated,
2513			 * reassign b_kvaalloc to b_kvabase.
2514			 */
2515			bp->b_kvabase = bp->b_kvaalloc;
2516			bp->b_flags &= ~B_KVAALLOC;
2517			atomic_subtract_long(&unmapped_bufspace,
2518			    bp->b_kvasize);
2519			atomic_add_int(&bufreusecnt, 1);
2520		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2521		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2522		    GB_KVAALLOC)) {
2523			/*
2524			 * The case of reused buffer already have KVA
2525			 * mapped, but the request is for unmapped
2526			 * buffer with KVA allocated.
2527			 */
2528			bp->b_kvaalloc = bp->b_kvabase;
2529			bp->b_data = bp->b_kvabase = unmapped_buf;
2530			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2531			atomic_add_long(&unmapped_bufspace,
2532			    bp->b_kvasize);
2533			atomic_add_int(&bufreusecnt, 1);
2534		}
2535		if ((gbflags & GB_UNMAPPED) == 0) {
2536			bp->b_saveaddr = bp->b_kvabase;
2537			bp->b_data = bp->b_saveaddr;
2538			bp->b_flags &= ~B_UNMAPPED;
2539			BUF_CHECK_MAPPED(bp);
2540		}
2541	}
2542	return (bp);
2543}
2544
2545/*
2546 *	buf_daemon:
2547 *
2548 *	buffer flushing daemon.  Buffers are normally flushed by the
2549 *	update daemon but if it cannot keep up this process starts to
2550 *	take the load in an attempt to prevent getnewbuf() from blocking.
2551 */
2552
2553static struct kproc_desc buf_kp = {
2554	"bufdaemon",
2555	buf_daemon,
2556	&bufdaemonproc
2557};
2558SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2559
2560static int
2561buf_flush(struct vnode *vp, int target)
2562{
2563	int flushed;
2564
2565	flushed = flushbufqueues(vp, target, 0);
2566	if (flushed == 0) {
2567		/*
2568		 * Could not find any buffers without rollback
2569		 * dependencies, so just write the first one
2570		 * in the hopes of eventually making progress.
2571		 */
2572		if (vp != NULL && target > 2)
2573			target /= 2;
2574		flushbufqueues(vp, target, 1);
2575	}
2576	return (flushed);
2577}
2578
2579static void
2580buf_daemon()
2581{
2582	int lodirty;
2583
2584	/*
2585	 * This process needs to be suspended prior to shutdown sync.
2586	 */
2587	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2588	    SHUTDOWN_PRI_LAST);
2589
2590	/*
2591	 * This process is allowed to take the buffer cache to the limit
2592	 */
2593	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2594	mtx_lock(&bdlock);
2595	for (;;) {
2596		bd_request = 0;
2597		mtx_unlock(&bdlock);
2598
2599		kproc_suspend_check(bufdaemonproc);
2600		lodirty = lodirtybuffers;
2601		if (bd_speedupreq) {
2602			lodirty = numdirtybuffers / 2;
2603			bd_speedupreq = 0;
2604		}
2605		/*
2606		 * Do the flush.  Limit the amount of in-transit I/O we
2607		 * allow to build up, otherwise we would completely saturate
2608		 * the I/O system.
2609		 */
2610		while (numdirtybuffers > lodirty) {
2611			if (buf_flush(NULL, numdirtybuffers - lodirty) == 0)
2612				break;
2613			kern_yield(PRI_USER);
2614		}
2615
2616		/*
2617		 * Only clear bd_request if we have reached our low water
2618		 * mark.  The buf_daemon normally waits 1 second and
2619		 * then incrementally flushes any dirty buffers that have
2620		 * built up, within reason.
2621		 *
2622		 * If we were unable to hit our low water mark and couldn't
2623		 * find any flushable buffers, we sleep for a short period
2624		 * to avoid endless loops on unlockable buffers.
2625		 */
2626		mtx_lock(&bdlock);
2627		if (numdirtybuffers <= lodirtybuffers) {
2628			/*
2629			 * We reached our low water mark, reset the
2630			 * request and sleep until we are needed again.
2631			 * The sleep is just so the suspend code works.
2632			 */
2633			bd_request = 0;
2634			/*
2635			 * Do an extra wakeup in case dirty threshold
2636			 * changed via sysctl and the explicit transition
2637			 * out of shortfall was missed.
2638			 */
2639			bdirtywakeup();
2640			if (runningbufspace <= lorunningspace)
2641				runningwakeup();
2642			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2643		} else {
2644			/*
2645			 * We couldn't find any flushable dirty buffers but
2646			 * still have too many dirty buffers, we
2647			 * have to sleep and try again.  (rare)
2648			 */
2649			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2650		}
2651	}
2652}
2653
2654/*
2655 *	flushbufqueues:
2656 *
2657 *	Try to flush a buffer in the dirty queue.  We must be careful to
2658 *	free up B_INVAL buffers instead of write them, which NFS is
2659 *	particularly sensitive to.
2660 */
2661static int flushwithdeps = 0;
2662SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2663    0, "Number of buffers flushed with dependecies that require rollbacks");
2664
2665static int
2666flushbufqueues(struct vnode *lvp, int target, int flushdeps)
2667{
2668	struct buf *sentinel;
2669	struct vnode *vp;
2670	struct mount *mp;
2671	struct buf *bp;
2672	int hasdeps;
2673	int flushed;
2674	int queue;
2675	int error;
2676	bool unlock;
2677
2678	flushed = 0;
2679	queue = QUEUE_DIRTY;
2680	bp = NULL;
2681	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2682	sentinel->b_qindex = QUEUE_SENTINEL;
2683	mtx_lock(&bqdirty);
2684	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2685	mtx_unlock(&bqdirty);
2686	while (flushed != target) {
2687		maybe_yield();
2688		mtx_lock(&bqdirty);
2689		bp = TAILQ_NEXT(sentinel, b_freelist);
2690		if (bp != NULL) {
2691			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2692			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2693			    b_freelist);
2694		} else {
2695			mtx_unlock(&bqdirty);
2696			break;
2697		}
2698		/*
2699		 * Skip sentinels inserted by other invocations of the
2700		 * flushbufqueues(), taking care to not reorder them.
2701		 *
2702		 * Only flush the buffers that belong to the
2703		 * vnode locked by the curthread.
2704		 */
2705		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
2706		    bp->b_vp != lvp)) {
2707			mtx_unlock(&bqdirty);
2708 			continue;
2709		}
2710		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2711		mtx_unlock(&bqdirty);
2712		if (error != 0)
2713			continue;
2714		if (bp->b_pin_count > 0) {
2715			BUF_UNLOCK(bp);
2716			continue;
2717		}
2718		/*
2719		 * BKGRDINPROG can only be set with the buf and bufobj
2720		 * locks both held.  We tolerate a race to clear it here.
2721		 */
2722		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2723		    (bp->b_flags & B_DELWRI) == 0) {
2724			BUF_UNLOCK(bp);
2725			continue;
2726		}
2727		if (bp->b_flags & B_INVAL) {
2728			bremfreef(bp);
2729			brelse(bp);
2730			flushed++;
2731			continue;
2732		}
2733
2734		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2735			if (flushdeps == 0) {
2736				BUF_UNLOCK(bp);
2737				continue;
2738			}
2739			hasdeps = 1;
2740		} else
2741			hasdeps = 0;
2742		/*
2743		 * We must hold the lock on a vnode before writing
2744		 * one of its buffers. Otherwise we may confuse, or
2745		 * in the case of a snapshot vnode, deadlock the
2746		 * system.
2747		 *
2748		 * The lock order here is the reverse of the normal
2749		 * of vnode followed by buf lock.  This is ok because
2750		 * the NOWAIT will prevent deadlock.
2751		 */
2752		vp = bp->b_vp;
2753		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2754			BUF_UNLOCK(bp);
2755			continue;
2756		}
2757		if (lvp == NULL) {
2758			unlock = true;
2759			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2760		} else {
2761			ASSERT_VOP_LOCKED(vp, "getbuf");
2762			unlock = false;
2763			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2764			    vn_lock(vp, LK_TRYUPGRADE);
2765		}
2766		if (error == 0) {
2767			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2768			    bp, bp->b_vp, bp->b_flags);
2769			if (curproc == bufdaemonproc) {
2770				vfs_bio_awrite(bp);
2771			} else {
2772				bremfree(bp);
2773				bwrite(bp);
2774				notbufdflushes++;
2775			}
2776			vn_finished_write(mp);
2777			if (unlock)
2778				VOP_UNLOCK(vp, 0);
2779			flushwithdeps += hasdeps;
2780			flushed++;
2781
2782			/*
2783			 * Sleeping on runningbufspace while holding
2784			 * vnode lock leads to deadlock.
2785			 */
2786			if (curproc == bufdaemonproc &&
2787			    runningbufspace > hirunningspace)
2788				waitrunningbufspace();
2789			continue;
2790		}
2791		vn_finished_write(mp);
2792		BUF_UNLOCK(bp);
2793	}
2794	mtx_lock(&bqdirty);
2795	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2796	mtx_unlock(&bqdirty);
2797	free(sentinel, M_TEMP);
2798	return (flushed);
2799}
2800
2801/*
2802 * Check to see if a block is currently memory resident.
2803 */
2804struct buf *
2805incore(struct bufobj *bo, daddr_t blkno)
2806{
2807	struct buf *bp;
2808
2809	BO_RLOCK(bo);
2810	bp = gbincore(bo, blkno);
2811	BO_RUNLOCK(bo);
2812	return (bp);
2813}
2814
2815/*
2816 * Returns true if no I/O is needed to access the
2817 * associated VM object.  This is like incore except
2818 * it also hunts around in the VM system for the data.
2819 */
2820
2821static int
2822inmem(struct vnode * vp, daddr_t blkno)
2823{
2824	vm_object_t obj;
2825	vm_offset_t toff, tinc, size;
2826	vm_page_t m;
2827	vm_ooffset_t off;
2828
2829	ASSERT_VOP_LOCKED(vp, "inmem");
2830
2831	if (incore(&vp->v_bufobj, blkno))
2832		return 1;
2833	if (vp->v_mount == NULL)
2834		return 0;
2835	obj = vp->v_object;
2836	if (obj == NULL)
2837		return (0);
2838
2839	size = PAGE_SIZE;
2840	if (size > vp->v_mount->mnt_stat.f_iosize)
2841		size = vp->v_mount->mnt_stat.f_iosize;
2842	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2843
2844	VM_OBJECT_RLOCK(obj);
2845	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2846		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2847		if (!m)
2848			goto notinmem;
2849		tinc = size;
2850		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2851			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2852		if (vm_page_is_valid(m,
2853		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2854			goto notinmem;
2855	}
2856	VM_OBJECT_RUNLOCK(obj);
2857	return 1;
2858
2859notinmem:
2860	VM_OBJECT_RUNLOCK(obj);
2861	return (0);
2862}
2863
2864/*
2865 * Set the dirty range for a buffer based on the status of the dirty
2866 * bits in the pages comprising the buffer.  The range is limited
2867 * to the size of the buffer.
2868 *
2869 * Tell the VM system that the pages associated with this buffer
2870 * are clean.  This is used for delayed writes where the data is
2871 * going to go to disk eventually without additional VM intevention.
2872 *
2873 * Note that while we only really need to clean through to b_bcount, we
2874 * just go ahead and clean through to b_bufsize.
2875 */
2876static void
2877vfs_clean_pages_dirty_buf(struct buf *bp)
2878{
2879	vm_ooffset_t foff, noff, eoff;
2880	vm_page_t m;
2881	int i;
2882
2883	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2884		return;
2885
2886	foff = bp->b_offset;
2887	KASSERT(bp->b_offset != NOOFFSET,
2888	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2889
2890	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2891	vfs_drain_busy_pages(bp);
2892	vfs_setdirty_locked_object(bp);
2893	for (i = 0; i < bp->b_npages; i++) {
2894		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2895		eoff = noff;
2896		if (eoff > bp->b_offset + bp->b_bufsize)
2897			eoff = bp->b_offset + bp->b_bufsize;
2898		m = bp->b_pages[i];
2899		vfs_page_set_validclean(bp, foff, m);
2900		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2901		foff = noff;
2902	}
2903	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2904}
2905
2906static void
2907vfs_setdirty_locked_object(struct buf *bp)
2908{
2909	vm_object_t object;
2910	int i;
2911
2912	object = bp->b_bufobj->bo_object;
2913	VM_OBJECT_ASSERT_WLOCKED(object);
2914
2915	/*
2916	 * We qualify the scan for modified pages on whether the
2917	 * object has been flushed yet.
2918	 */
2919	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2920		vm_offset_t boffset;
2921		vm_offset_t eoffset;
2922
2923		/*
2924		 * test the pages to see if they have been modified directly
2925		 * by users through the VM system.
2926		 */
2927		for (i = 0; i < bp->b_npages; i++)
2928			vm_page_test_dirty(bp->b_pages[i]);
2929
2930		/*
2931		 * Calculate the encompassing dirty range, boffset and eoffset,
2932		 * (eoffset - boffset) bytes.
2933		 */
2934
2935		for (i = 0; i < bp->b_npages; i++) {
2936			if (bp->b_pages[i]->dirty)
2937				break;
2938		}
2939		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2940
2941		for (i = bp->b_npages - 1; i >= 0; --i) {
2942			if (bp->b_pages[i]->dirty) {
2943				break;
2944			}
2945		}
2946		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2947
2948		/*
2949		 * Fit it to the buffer.
2950		 */
2951
2952		if (eoffset > bp->b_bcount)
2953			eoffset = bp->b_bcount;
2954
2955		/*
2956		 * If we have a good dirty range, merge with the existing
2957		 * dirty range.
2958		 */
2959
2960		if (boffset < eoffset) {
2961			if (bp->b_dirtyoff > boffset)
2962				bp->b_dirtyoff = boffset;
2963			if (bp->b_dirtyend < eoffset)
2964				bp->b_dirtyend = eoffset;
2965		}
2966	}
2967}
2968
2969/*
2970 * Allocate the KVA mapping for an existing buffer. It handles the
2971 * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2972 * KVA which is not mapped (B_KVAALLOC).
2973 */
2974static void
2975bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2976{
2977	struct buf *scratch_bp;
2978	int bsize, maxsize, need_mapping, need_kva;
2979	off_t offset;
2980
2981	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2982	    (gbflags & GB_UNMAPPED) == 0;
2983	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2984	    (gbflags & GB_KVAALLOC) != 0;
2985	if (!need_mapping && !need_kva)
2986		return;
2987
2988	BUF_CHECK_UNMAPPED(bp);
2989
2990	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2991		/*
2992		 * Buffer is not mapped, but the KVA was already
2993		 * reserved at the time of the instantiation.  Use the
2994		 * allocated space.
2995		 */
2996		bp->b_flags &= ~B_KVAALLOC;
2997		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2998		bp->b_kvabase = bp->b_kvaalloc;
2999		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
3000		goto has_addr;
3001	}
3002
3003	/*
3004	 * Calculate the amount of the address space we would reserve
3005	 * if the buffer was mapped.
3006	 */
3007	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3008	offset = blkno * bsize;
3009	maxsize = size + (offset & PAGE_MASK);
3010	maxsize = imax(maxsize, bsize);
3011
3012mapping_loop:
3013	if (allocbufkva(bp, maxsize, gbflags)) {
3014		/*
3015		 * Request defragmentation. getnewbuf() returns us the
3016		 * allocated space by the scratch buffer KVA.
3017		 */
3018		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
3019		    (GB_UNMAPPED | GB_KVAALLOC));
3020		if (scratch_bp == NULL) {
3021			if ((gbflags & GB_NOWAIT_BD) != 0) {
3022				/*
3023				 * XXXKIB: defragmentation cannot
3024				 * succeed, not sure what else to do.
3025				 */
3026				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
3027			}
3028			atomic_add_int(&mappingrestarts, 1);
3029			goto mapping_loop;
3030		}
3031		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
3032		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
3033		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
3034		    scratch_bp->b_kvasize, gbflags);
3035
3036		/* Get rid of the scratch buffer. */
3037		scratch_bp->b_kvasize = 0;
3038		scratch_bp->b_flags |= B_INVAL;
3039		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
3040		brelse(scratch_bp);
3041	}
3042	if (!need_mapping)
3043		return;
3044
3045has_addr:
3046	bp->b_saveaddr = bp->b_kvabase;
3047	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
3048	bp->b_flags &= ~B_UNMAPPED;
3049	BUF_CHECK_MAPPED(bp);
3050	bpmap_qenter(bp);
3051}
3052
3053/*
3054 *	getblk:
3055 *
3056 *	Get a block given a specified block and offset into a file/device.
3057 *	The buffers B_DONE bit will be cleared on return, making it almost
3058 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3059 *	return.  The caller should clear B_INVAL prior to initiating a
3060 *	READ.
3061 *
3062 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3063 *	an existing buffer.
3064 *
3065 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3066 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3067 *	and then cleared based on the backing VM.  If the previous buffer is
3068 *	non-0-sized but invalid, B_CACHE will be cleared.
3069 *
3070 *	If getblk() must create a new buffer, the new buffer is returned with
3071 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3072 *	case it is returned with B_INVAL clear and B_CACHE set based on the
3073 *	backing VM.
3074 *
3075 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3076 *	B_CACHE bit is clear.
3077 *
3078 *	What this means, basically, is that the caller should use B_CACHE to
3079 *	determine whether the buffer is fully valid or not and should clear
3080 *	B_INVAL prior to issuing a read.  If the caller intends to validate
3081 *	the buffer by loading its data area with something, the caller needs
3082 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3083 *	the caller should set B_CACHE ( as an optimization ), else the caller
3084 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3085 *	a write attempt or if it was a successfull read.  If the caller
3086 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3087 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3088 */
3089struct buf *
3090getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3091    int flags)
3092{
3093	struct buf *bp;
3094	struct bufobj *bo;
3095	int bsize, error, maxsize, vmio;
3096	off_t offset;
3097
3098	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3099	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3100	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3101	ASSERT_VOP_LOCKED(vp, "getblk");
3102	if (size > MAXBCACHEBUF)
3103		panic("getblk: size(%d) > MAXBCACHEBUF(%d)\n", size,
3104		    MAXBCACHEBUF);
3105	if (!unmapped_buf_allowed)
3106		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3107
3108	bo = &vp->v_bufobj;
3109loop:
3110	BO_RLOCK(bo);
3111	bp = gbincore(bo, blkno);
3112	if (bp != NULL) {
3113		int lockflags;
3114		/*
3115		 * Buffer is in-core.  If the buffer is not busy nor managed,
3116		 * it must be on a queue.
3117		 */
3118		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3119
3120		if (flags & GB_LOCK_NOWAIT)
3121			lockflags |= LK_NOWAIT;
3122
3123		error = BUF_TIMELOCK(bp, lockflags,
3124		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3125
3126		/*
3127		 * If we slept and got the lock we have to restart in case
3128		 * the buffer changed identities.
3129		 */
3130		if (error == ENOLCK)
3131			goto loop;
3132		/* We timed out or were interrupted. */
3133		else if (error)
3134			return (NULL);
3135		/* If recursed, assume caller knows the rules. */
3136		else if (BUF_LOCKRECURSED(bp))
3137			goto end;
3138
3139		/*
3140		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3141		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3142		 * and for a VMIO buffer B_CACHE is adjusted according to the
3143		 * backing VM cache.
3144		 */
3145		if (bp->b_flags & B_INVAL)
3146			bp->b_flags &= ~B_CACHE;
3147		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3148			bp->b_flags |= B_CACHE;
3149		if (bp->b_flags & B_MANAGED)
3150			MPASS(bp->b_qindex == QUEUE_NONE);
3151		else
3152			bremfree(bp);
3153
3154		/*
3155		 * check for size inconsistencies for non-VMIO case.
3156		 */
3157		if (bp->b_bcount != size) {
3158			if ((bp->b_flags & B_VMIO) == 0 ||
3159			    (size > bp->b_kvasize)) {
3160				if (bp->b_flags & B_DELWRI) {
3161					/*
3162					 * If buffer is pinned and caller does
3163					 * not want sleep  waiting for it to be
3164					 * unpinned, bail out
3165					 * */
3166					if (bp->b_pin_count > 0) {
3167						if (flags & GB_LOCK_NOWAIT) {
3168							bqrelse(bp);
3169							return (NULL);
3170						} else {
3171							bunpin_wait(bp);
3172						}
3173					}
3174					bp->b_flags |= B_NOCACHE;
3175					bwrite(bp);
3176				} else {
3177					if (LIST_EMPTY(&bp->b_dep)) {
3178						bp->b_flags |= B_RELBUF;
3179						brelse(bp);
3180					} else {
3181						bp->b_flags |= B_NOCACHE;
3182						bwrite(bp);
3183					}
3184				}
3185				goto loop;
3186			}
3187		}
3188
3189		/*
3190		 * Handle the case of unmapped buffer which should
3191		 * become mapped, or the buffer for which KVA
3192		 * reservation is requested.
3193		 */
3194		bp_unmapped_get_kva(bp, blkno, size, flags);
3195
3196		/*
3197		 * If the size is inconsistant in the VMIO case, we can resize
3198		 * the buffer.  This might lead to B_CACHE getting set or
3199		 * cleared.  If the size has not changed, B_CACHE remains
3200		 * unchanged from its previous state.
3201		 */
3202		if (bp->b_bcount != size)
3203			allocbuf(bp, size);
3204
3205		KASSERT(bp->b_offset != NOOFFSET,
3206		    ("getblk: no buffer offset"));
3207
3208		/*
3209		 * A buffer with B_DELWRI set and B_CACHE clear must
3210		 * be committed before we can return the buffer in
3211		 * order to prevent the caller from issuing a read
3212		 * ( due to B_CACHE not being set ) and overwriting
3213		 * it.
3214		 *
3215		 * Most callers, including NFS and FFS, need this to
3216		 * operate properly either because they assume they
3217		 * can issue a read if B_CACHE is not set, or because
3218		 * ( for example ) an uncached B_DELWRI might loop due
3219		 * to softupdates re-dirtying the buffer.  In the latter
3220		 * case, B_CACHE is set after the first write completes,
3221		 * preventing further loops.
3222		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3223		 * above while extending the buffer, we cannot allow the
3224		 * buffer to remain with B_CACHE set after the write
3225		 * completes or it will represent a corrupt state.  To
3226		 * deal with this we set B_NOCACHE to scrap the buffer
3227		 * after the write.
3228		 *
3229		 * We might be able to do something fancy, like setting
3230		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3231		 * so the below call doesn't set B_CACHE, but that gets real
3232		 * confusing.  This is much easier.
3233		 */
3234
3235		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3236			bp->b_flags |= B_NOCACHE;
3237			bwrite(bp);
3238			goto loop;
3239		}
3240		bp->b_flags &= ~B_DONE;
3241	} else {
3242		/*
3243		 * Buffer is not in-core, create new buffer.  The buffer
3244		 * returned by getnewbuf() is locked.  Note that the returned
3245		 * buffer is also considered valid (not marked B_INVAL).
3246		 */
3247		BO_RUNLOCK(bo);
3248		/*
3249		 * If the user does not want us to create the buffer, bail out
3250		 * here.
3251		 */
3252		if (flags & GB_NOCREAT)
3253			return NULL;
3254		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3255			return NULL;
3256
3257		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3258		offset = blkno * bsize;
3259		vmio = vp->v_object != NULL;
3260		if (vmio) {
3261			maxsize = size + (offset & PAGE_MASK);
3262		} else {
3263			maxsize = size;
3264			/* Do not allow non-VMIO notmapped buffers. */
3265			flags &= ~GB_UNMAPPED;
3266		}
3267		maxsize = imax(maxsize, bsize);
3268
3269		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3270		if (bp == NULL) {
3271			if (slpflag || slptimeo)
3272				return NULL;
3273			goto loop;
3274		}
3275
3276		/*
3277		 * This code is used to make sure that a buffer is not
3278		 * created while the getnewbuf routine is blocked.
3279		 * This can be a problem whether the vnode is locked or not.
3280		 * If the buffer is created out from under us, we have to
3281		 * throw away the one we just created.
3282		 *
3283		 * Note: this must occur before we associate the buffer
3284		 * with the vp especially considering limitations in
3285		 * the splay tree implementation when dealing with duplicate
3286		 * lblkno's.
3287		 */
3288		BO_LOCK(bo);
3289		if (gbincore(bo, blkno)) {
3290			BO_UNLOCK(bo);
3291			bp->b_flags |= B_INVAL;
3292			brelse(bp);
3293			goto loop;
3294		}
3295
3296		/*
3297		 * Insert the buffer into the hash, so that it can
3298		 * be found by incore.
3299		 */
3300		bp->b_blkno = bp->b_lblkno = blkno;
3301		bp->b_offset = offset;
3302		bgetvp(vp, bp);
3303		BO_UNLOCK(bo);
3304
3305		/*
3306		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3307		 * buffer size starts out as 0, B_CACHE will be set by
3308		 * allocbuf() for the VMIO case prior to it testing the
3309		 * backing store for validity.
3310		 */
3311
3312		if (vmio) {
3313			bp->b_flags |= B_VMIO;
3314			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3315			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3316			    bp, vp->v_object, bp->b_bufobj->bo_object));
3317		} else {
3318			bp->b_flags &= ~B_VMIO;
3319			KASSERT(bp->b_bufobj->bo_object == NULL,
3320			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3321			    bp, bp->b_bufobj->bo_object));
3322			BUF_CHECK_MAPPED(bp);
3323		}
3324
3325		allocbuf(bp, size);
3326		bp->b_flags &= ~B_DONE;
3327	}
3328	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3329	BUF_ASSERT_HELD(bp);
3330end:
3331	KASSERT(bp->b_bufobj == bo,
3332	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3333	return (bp);
3334}
3335
3336/*
3337 * Get an empty, disassociated buffer of given size.  The buffer is initially
3338 * set to B_INVAL.
3339 */
3340struct buf *
3341geteblk(int size, int flags)
3342{
3343	struct buf *bp;
3344	int maxsize;
3345
3346	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3347	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3348		if ((flags & GB_NOWAIT_BD) &&
3349		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3350			return (NULL);
3351	}
3352	allocbuf(bp, size);
3353	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3354	BUF_ASSERT_HELD(bp);
3355	return (bp);
3356}
3357
3358
3359/*
3360 * This code constitutes the buffer memory from either anonymous system
3361 * memory (in the case of non-VMIO operations) or from an associated
3362 * VM object (in the case of VMIO operations).  This code is able to
3363 * resize a buffer up or down.
3364 *
3365 * Note that this code is tricky, and has many complications to resolve
3366 * deadlock or inconsistant data situations.  Tread lightly!!!
3367 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3368 * the caller.  Calling this code willy nilly can result in the loss of data.
3369 *
3370 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3371 * B_CACHE for the non-VMIO case.
3372 */
3373
3374int
3375allocbuf(struct buf *bp, int size)
3376{
3377	int newbsize, mbsize;
3378	int i;
3379
3380	BUF_ASSERT_HELD(bp);
3381
3382	if (bp->b_kvasize < size)
3383		panic("allocbuf: buffer too small");
3384
3385	if ((bp->b_flags & B_VMIO) == 0) {
3386		caddr_t origbuf;
3387		int origbufsize;
3388		/*
3389		 * Just get anonymous memory from the kernel.  Don't
3390		 * mess with B_CACHE.
3391		 */
3392		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3393		if (bp->b_flags & B_MALLOC)
3394			newbsize = mbsize;
3395		else
3396			newbsize = round_page(size);
3397
3398		if (newbsize < bp->b_bufsize) {
3399			/*
3400			 * malloced buffers are not shrunk
3401			 */
3402			if (bp->b_flags & B_MALLOC) {
3403				if (newbsize) {
3404					bp->b_bcount = size;
3405				} else {
3406					free(bp->b_data, M_BIOBUF);
3407					if (bp->b_bufsize) {
3408						atomic_subtract_long(
3409						    &bufmallocspace,
3410						    bp->b_bufsize);
3411						bufspacewakeup();
3412						bp->b_bufsize = 0;
3413					}
3414					bp->b_saveaddr = bp->b_kvabase;
3415					bp->b_data = bp->b_saveaddr;
3416					bp->b_bcount = 0;
3417					bp->b_flags &= ~B_MALLOC;
3418				}
3419				return 1;
3420			}
3421			vm_hold_free_pages(bp, newbsize);
3422		} else if (newbsize > bp->b_bufsize) {
3423			/*
3424			 * We only use malloced memory on the first allocation.
3425			 * and revert to page-allocated memory when the buffer
3426			 * grows.
3427			 */
3428			/*
3429			 * There is a potential smp race here that could lead
3430			 * to bufmallocspace slightly passing the max.  It
3431			 * is probably extremely rare and not worth worrying
3432			 * over.
3433			 */
3434			if ( (bufmallocspace < maxbufmallocspace) &&
3435				(bp->b_bufsize == 0) &&
3436				(mbsize <= PAGE_SIZE/2)) {
3437
3438				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3439				bp->b_bufsize = mbsize;
3440				bp->b_bcount = size;
3441				bp->b_flags |= B_MALLOC;
3442				atomic_add_long(&bufmallocspace, mbsize);
3443				return 1;
3444			}
3445			origbuf = NULL;
3446			origbufsize = 0;
3447			/*
3448			 * If the buffer is growing on its other-than-first allocation,
3449			 * then we revert to the page-allocation scheme.
3450			 */
3451			if (bp->b_flags & B_MALLOC) {
3452				origbuf = bp->b_data;
3453				origbufsize = bp->b_bufsize;
3454				bp->b_data = bp->b_kvabase;
3455				if (bp->b_bufsize) {
3456					atomic_subtract_long(&bufmallocspace,
3457					    bp->b_bufsize);
3458					bufspacewakeup();
3459					bp->b_bufsize = 0;
3460				}
3461				bp->b_flags &= ~B_MALLOC;
3462				newbsize = round_page(newbsize);
3463			}
3464			vm_hold_load_pages(
3465			    bp,
3466			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3467			    (vm_offset_t) bp->b_data + newbsize);
3468			if (origbuf) {
3469				bcopy(origbuf, bp->b_data, origbufsize);
3470				free(origbuf, M_BIOBUF);
3471			}
3472		}
3473	} else {
3474		int desiredpages;
3475
3476		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3477		desiredpages = (size == 0) ? 0 :
3478			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3479
3480		if (bp->b_flags & B_MALLOC)
3481			panic("allocbuf: VMIO buffer can't be malloced");
3482		/*
3483		 * Set B_CACHE initially if buffer is 0 length or will become
3484		 * 0-length.
3485		 */
3486		if (size == 0 || bp->b_bufsize == 0)
3487			bp->b_flags |= B_CACHE;
3488
3489		if (newbsize < bp->b_bufsize) {
3490			/*
3491			 * DEV_BSIZE aligned new buffer size is less then the
3492			 * DEV_BSIZE aligned existing buffer size.  Figure out
3493			 * if we have to remove any pages.
3494			 */
3495			if (desiredpages < bp->b_npages) {
3496				vm_page_t m;
3497
3498				if ((bp->b_flags & B_UNMAPPED) == 0) {
3499					BUF_CHECK_MAPPED(bp);
3500					pmap_qremove((vm_offset_t)trunc_page(
3501					    (vm_offset_t)bp->b_data) +
3502					    (desiredpages << PAGE_SHIFT),
3503					    (bp->b_npages - desiredpages));
3504				} else
3505					BUF_CHECK_UNMAPPED(bp);
3506				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3507				for (i = desiredpages; i < bp->b_npages; i++) {
3508					/*
3509					 * the page is not freed here -- it
3510					 * is the responsibility of
3511					 * vnode_pager_setsize
3512					 */
3513					m = bp->b_pages[i];
3514					KASSERT(m != bogus_page,
3515					    ("allocbuf: bogus page found"));
3516					while (vm_page_sleep_if_busy(m,
3517					    "biodep"))
3518						continue;
3519
3520					bp->b_pages[i] = NULL;
3521					vm_page_lock(m);
3522					vm_page_unwire(m, 0);
3523					vm_page_unlock(m);
3524				}
3525				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3526				bp->b_npages = desiredpages;
3527			}
3528		} else if (size > bp->b_bcount) {
3529			/*
3530			 * We are growing the buffer, possibly in a
3531			 * byte-granular fashion.
3532			 */
3533			vm_object_t obj;
3534			vm_offset_t toff;
3535			vm_offset_t tinc;
3536
3537			/*
3538			 * Step 1, bring in the VM pages from the object,
3539			 * allocating them if necessary.  We must clear
3540			 * B_CACHE if these pages are not valid for the
3541			 * range covered by the buffer.
3542			 */
3543
3544			obj = bp->b_bufobj->bo_object;
3545
3546			VM_OBJECT_WLOCK(obj);
3547			while (bp->b_npages < desiredpages) {
3548				vm_page_t m;
3549
3550				/*
3551				 * We must allocate system pages since blocking
3552				 * here could interfere with paging I/O, no
3553				 * matter which process we are.
3554				 *
3555				 * Only exclusive busy can be tested here.
3556				 * Blocking on shared busy might lead to
3557				 * deadlocks once allocbuf() is called after
3558				 * pages are vfs_busy_pages().
3559				 */
3560				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3561				    bp->b_npages, VM_ALLOC_NOBUSY |
3562				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3563				    VM_ALLOC_IGN_SBUSY |
3564				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3565				if (m->valid == 0)
3566					bp->b_flags &= ~B_CACHE;
3567				bp->b_pages[bp->b_npages] = m;
3568				++bp->b_npages;
3569			}
3570
3571			/*
3572			 * Step 2.  We've loaded the pages into the buffer,
3573			 * we have to figure out if we can still have B_CACHE
3574			 * set.  Note that B_CACHE is set according to the
3575			 * byte-granular range ( bcount and size ), new the
3576			 * aligned range ( newbsize ).
3577			 *
3578			 * The VM test is against m->valid, which is DEV_BSIZE
3579			 * aligned.  Needless to say, the validity of the data
3580			 * needs to also be DEV_BSIZE aligned.  Note that this
3581			 * fails with NFS if the server or some other client
3582			 * extends the file's EOF.  If our buffer is resized,
3583			 * B_CACHE may remain set! XXX
3584			 */
3585
3586			toff = bp->b_bcount;
3587			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3588
3589			while ((bp->b_flags & B_CACHE) && toff < size) {
3590				vm_pindex_t pi;
3591
3592				if (tinc > (size - toff))
3593					tinc = size - toff;
3594
3595				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3596				    PAGE_SHIFT;
3597
3598				vfs_buf_test_cache(
3599				    bp,
3600				    bp->b_offset,
3601				    toff,
3602				    tinc,
3603				    bp->b_pages[pi]
3604				);
3605				toff += tinc;
3606				tinc = PAGE_SIZE;
3607			}
3608			VM_OBJECT_WUNLOCK(obj);
3609
3610			/*
3611			 * Step 3, fixup the KVM pmap.
3612			 */
3613			if ((bp->b_flags & B_UNMAPPED) == 0)
3614				bpmap_qenter(bp);
3615			else
3616				BUF_CHECK_UNMAPPED(bp);
3617		}
3618	}
3619	if (newbsize < bp->b_bufsize)
3620		bufspacewakeup();
3621	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3622	bp->b_bcount = size;		/* requested buffer size	*/
3623	return 1;
3624}
3625
3626extern int inflight_transient_maps;
3627
3628void
3629biodone(struct bio *bp)
3630{
3631	struct mtx *mtxp;
3632	void (*done)(struct bio *);
3633	vm_offset_t start, end;
3634
3635	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3636		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3637		bp->bio_flags |= BIO_UNMAPPED;
3638		start = trunc_page((vm_offset_t)bp->bio_data);
3639		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3640		pmap_qremove(start, OFF_TO_IDX(end - start));
3641		vmem_free(transient_arena, start, end - start);
3642		atomic_add_int(&inflight_transient_maps, -1);
3643	}
3644	done = bp->bio_done;
3645	if (done == NULL) {
3646		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3647		mtx_lock(mtxp);
3648		bp->bio_flags |= BIO_DONE;
3649		wakeup(bp);
3650		mtx_unlock(mtxp);
3651	} else {
3652		bp->bio_flags |= BIO_DONE;
3653		done(bp);
3654	}
3655}
3656
3657/*
3658 * Wait for a BIO to finish.
3659 */
3660int
3661biowait(struct bio *bp, const char *wchan)
3662{
3663	struct mtx *mtxp;
3664
3665	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3666	mtx_lock(mtxp);
3667	while ((bp->bio_flags & BIO_DONE) == 0)
3668		msleep(bp, mtxp, PRIBIO, wchan, 0);
3669	mtx_unlock(mtxp);
3670	if (bp->bio_error != 0)
3671		return (bp->bio_error);
3672	if (!(bp->bio_flags & BIO_ERROR))
3673		return (0);
3674	return (EIO);
3675}
3676
3677void
3678biofinish(struct bio *bp, struct devstat *stat, int error)
3679{
3680
3681	if (error) {
3682		bp->bio_error = error;
3683		bp->bio_flags |= BIO_ERROR;
3684	}
3685	if (stat != NULL)
3686		devstat_end_transaction_bio(stat, bp);
3687	biodone(bp);
3688}
3689
3690/*
3691 *	bufwait:
3692 *
3693 *	Wait for buffer I/O completion, returning error status.  The buffer
3694 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3695 *	error and cleared.
3696 */
3697int
3698bufwait(struct buf *bp)
3699{
3700	if (bp->b_iocmd == BIO_READ)
3701		bwait(bp, PRIBIO, "biord");
3702	else
3703		bwait(bp, PRIBIO, "biowr");
3704	if (bp->b_flags & B_EINTR) {
3705		bp->b_flags &= ~B_EINTR;
3706		return (EINTR);
3707	}
3708	if (bp->b_ioflags & BIO_ERROR) {
3709		return (bp->b_error ? bp->b_error : EIO);
3710	} else {
3711		return (0);
3712	}
3713}
3714
3715 /*
3716  * Call back function from struct bio back up to struct buf.
3717  */
3718static void
3719bufdonebio(struct bio *bip)
3720{
3721	struct buf *bp;
3722
3723	bp = bip->bio_caller2;
3724	bp->b_resid = bp->b_bcount - bip->bio_completed;
3725	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3726	bp->b_ioflags = bip->bio_flags;
3727	bp->b_error = bip->bio_error;
3728	if (bp->b_error)
3729		bp->b_ioflags |= BIO_ERROR;
3730	bufdone(bp);
3731	g_destroy_bio(bip);
3732}
3733
3734void
3735dev_strategy(struct cdev *dev, struct buf *bp)
3736{
3737	struct cdevsw *csw;
3738	int ref;
3739
3740	KASSERT(dev->si_refcount > 0,
3741	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3742	    devtoname(dev), dev));
3743
3744	csw = dev_refthread(dev, &ref);
3745	dev_strategy_csw(dev, csw, bp);
3746	dev_relthread(dev, ref);
3747}
3748
3749void
3750dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3751{
3752	struct bio *bip;
3753
3754	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3755	    ("b_iocmd botch"));
3756	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3757	    dev->si_threadcount > 0,
3758	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3759	    dev));
3760	if (csw == NULL) {
3761		bp->b_error = ENXIO;
3762		bp->b_ioflags = BIO_ERROR;
3763		bufdone(bp);
3764		return;
3765	}
3766	for (;;) {
3767		bip = g_new_bio();
3768		if (bip != NULL)
3769			break;
3770		/* Try again later */
3771		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3772	}
3773	bip->bio_cmd = bp->b_iocmd;
3774	bip->bio_offset = bp->b_iooffset;
3775	bip->bio_length = bp->b_bcount;
3776	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3777	bdata2bio(bp, bip);
3778	bip->bio_done = bufdonebio;
3779	bip->bio_caller2 = bp;
3780	bip->bio_dev = dev;
3781	(*csw->d_strategy)(bip);
3782}
3783
3784/*
3785 *	bufdone:
3786 *
3787 *	Finish I/O on a buffer, optionally calling a completion function.
3788 *	This is usually called from an interrupt so process blocking is
3789 *	not allowed.
3790 *
3791 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3792 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3793 *	assuming B_INVAL is clear.
3794 *
3795 *	For the VMIO case, we set B_CACHE if the op was a read and no
3796 *	read error occured, or if the op was a write.  B_CACHE is never
3797 *	set if the buffer is invalid or otherwise uncacheable.
3798 *
3799 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3800 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3801 *	in the biodone routine.
3802 */
3803void
3804bufdone(struct buf *bp)
3805{
3806	struct bufobj *dropobj;
3807	void    (*biodone)(struct buf *);
3808
3809	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3810	dropobj = NULL;
3811
3812	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3813	BUF_ASSERT_HELD(bp);
3814
3815	runningbufwakeup(bp);
3816	if (bp->b_iocmd == BIO_WRITE)
3817		dropobj = bp->b_bufobj;
3818	/* call optional completion function if requested */
3819	if (bp->b_iodone != NULL) {
3820		biodone = bp->b_iodone;
3821		bp->b_iodone = NULL;
3822		(*biodone) (bp);
3823		if (dropobj)
3824			bufobj_wdrop(dropobj);
3825		return;
3826	}
3827
3828	bufdone_finish(bp);
3829
3830	if (dropobj)
3831		bufobj_wdrop(dropobj);
3832}
3833
3834void
3835bufdone_finish(struct buf *bp)
3836{
3837	BUF_ASSERT_HELD(bp);
3838
3839	if (!LIST_EMPTY(&bp->b_dep))
3840		buf_complete(bp);
3841
3842	if (bp->b_flags & B_VMIO) {
3843		vm_ooffset_t foff;
3844		vm_page_t m;
3845		vm_object_t obj;
3846		struct vnode *vp;
3847		int bogus, i, iosize;
3848
3849		obj = bp->b_bufobj->bo_object;
3850		KASSERT(obj->paging_in_progress >= bp->b_npages,
3851		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3852		    obj->paging_in_progress, bp->b_npages));
3853
3854		vp = bp->b_vp;
3855		KASSERT(vp->v_holdcnt > 0,
3856		    ("biodone_finish: vnode %p has zero hold count", vp));
3857		KASSERT(vp->v_object != NULL,
3858		    ("biodone_finish: vnode %p has no vm_object", vp));
3859
3860		foff = bp->b_offset;
3861		KASSERT(bp->b_offset != NOOFFSET,
3862		    ("biodone_finish: bp %p has no buffer offset", bp));
3863
3864		/*
3865		 * Set B_CACHE if the op was a normal read and no error
3866		 * occured.  B_CACHE is set for writes in the b*write()
3867		 * routines.
3868		 */
3869		iosize = bp->b_bcount - bp->b_resid;
3870		if (bp->b_iocmd == BIO_READ &&
3871		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3872		    !(bp->b_ioflags & BIO_ERROR)) {
3873			bp->b_flags |= B_CACHE;
3874		}
3875		bogus = 0;
3876		VM_OBJECT_WLOCK(obj);
3877		for (i = 0; i < bp->b_npages; i++) {
3878			int bogusflag = 0;
3879			int resid;
3880
3881			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3882			if (resid > iosize)
3883				resid = iosize;
3884
3885			/*
3886			 * cleanup bogus pages, restoring the originals
3887			 */
3888			m = bp->b_pages[i];
3889			if (m == bogus_page) {
3890				bogus = bogusflag = 1;
3891				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3892				if (m == NULL)
3893					panic("biodone: page disappeared!");
3894				bp->b_pages[i] = m;
3895			}
3896			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3897			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3898			    (intmax_t)foff, (uintmax_t)m->pindex));
3899
3900			/*
3901			 * In the write case, the valid and clean bits are
3902			 * already changed correctly ( see bdwrite() ), so we
3903			 * only need to do this here in the read case.
3904			 */
3905			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3906				KASSERT((m->dirty & vm_page_bits(foff &
3907				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3908				    " page %p has unexpected dirty bits", m));
3909				vfs_page_set_valid(bp, foff, m);
3910			}
3911
3912			vm_page_sunbusy(m);
3913			vm_object_pip_subtract(obj, 1);
3914			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3915			iosize -= resid;
3916		}
3917		vm_object_pip_wakeupn(obj, 0);
3918		VM_OBJECT_WUNLOCK(obj);
3919		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3920			BUF_CHECK_MAPPED(bp);
3921			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3922			    bp->b_pages, bp->b_npages);
3923		}
3924	}
3925
3926	/*
3927	 * For asynchronous completions, release the buffer now. The brelse
3928	 * will do a wakeup there if necessary - so no need to do a wakeup
3929	 * here in the async case. The sync case always needs to do a wakeup.
3930	 */
3931
3932	if (bp->b_flags & B_ASYNC) {
3933		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3934			brelse(bp);
3935		else
3936			bqrelse(bp);
3937	} else
3938		bdone(bp);
3939}
3940
3941/*
3942 * This routine is called in lieu of iodone in the case of
3943 * incomplete I/O.  This keeps the busy status for pages
3944 * consistant.
3945 */
3946void
3947vfs_unbusy_pages(struct buf *bp)
3948{
3949	int i;
3950	vm_object_t obj;
3951	vm_page_t m;
3952
3953	runningbufwakeup(bp);
3954	if (!(bp->b_flags & B_VMIO))
3955		return;
3956
3957	obj = bp->b_bufobj->bo_object;
3958	VM_OBJECT_WLOCK(obj);
3959	for (i = 0; i < bp->b_npages; i++) {
3960		m = bp->b_pages[i];
3961		if (m == bogus_page) {
3962			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3963			if (!m)
3964				panic("vfs_unbusy_pages: page missing\n");
3965			bp->b_pages[i] = m;
3966			if ((bp->b_flags & B_UNMAPPED) == 0) {
3967				BUF_CHECK_MAPPED(bp);
3968				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3969				    bp->b_pages, bp->b_npages);
3970			} else
3971				BUF_CHECK_UNMAPPED(bp);
3972		}
3973		vm_object_pip_subtract(obj, 1);
3974		vm_page_sunbusy(m);
3975	}
3976	vm_object_pip_wakeupn(obj, 0);
3977	VM_OBJECT_WUNLOCK(obj);
3978}
3979
3980/*
3981 * vfs_page_set_valid:
3982 *
3983 *	Set the valid bits in a page based on the supplied offset.   The
3984 *	range is restricted to the buffer's size.
3985 *
3986 *	This routine is typically called after a read completes.
3987 */
3988static void
3989vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3990{
3991	vm_ooffset_t eoff;
3992
3993	/*
3994	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3995	 * page boundary and eoff is not greater than the end of the buffer.
3996	 * The end of the buffer, in this case, is our file EOF, not the
3997	 * allocation size of the buffer.
3998	 */
3999	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4000	if (eoff > bp->b_offset + bp->b_bcount)
4001		eoff = bp->b_offset + bp->b_bcount;
4002
4003	/*
4004	 * Set valid range.  This is typically the entire buffer and thus the
4005	 * entire page.
4006	 */
4007	if (eoff > off)
4008		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4009}
4010
4011/*
4012 * vfs_page_set_validclean:
4013 *
4014 *	Set the valid bits and clear the dirty bits in a page based on the
4015 *	supplied offset.   The range is restricted to the buffer's size.
4016 */
4017static void
4018vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4019{
4020	vm_ooffset_t soff, eoff;
4021
4022	/*
4023	 * Start and end offsets in buffer.  eoff - soff may not cross a
4024	 * page boundry or cross the end of the buffer.  The end of the
4025	 * buffer, in this case, is our file EOF, not the allocation size
4026	 * of the buffer.
4027	 */
4028	soff = off;
4029	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4030	if (eoff > bp->b_offset + bp->b_bcount)
4031		eoff = bp->b_offset + bp->b_bcount;
4032
4033	/*
4034	 * Set valid range.  This is typically the entire buffer and thus the
4035	 * entire page.
4036	 */
4037	if (eoff > soff) {
4038		vm_page_set_validclean(
4039		    m,
4040		   (vm_offset_t) (soff & PAGE_MASK),
4041		   (vm_offset_t) (eoff - soff)
4042		);
4043	}
4044}
4045
4046/*
4047 * Ensure that all buffer pages are not exclusive busied.  If any page is
4048 * exclusive busy, drain it.
4049 */
4050void
4051vfs_drain_busy_pages(struct buf *bp)
4052{
4053	vm_page_t m;
4054	int i, last_busied;
4055
4056	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
4057	last_busied = 0;
4058	for (i = 0; i < bp->b_npages; i++) {
4059		m = bp->b_pages[i];
4060		if (vm_page_xbusied(m)) {
4061			for (; last_busied < i; last_busied++)
4062				vm_page_sbusy(bp->b_pages[last_busied]);
4063			while (vm_page_xbusied(m)) {
4064				vm_page_lock(m);
4065				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4066				vm_page_busy_sleep(m, "vbpage");
4067				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4068			}
4069		}
4070	}
4071	for (i = 0; i < last_busied; i++)
4072		vm_page_sunbusy(bp->b_pages[i]);
4073}
4074
4075/*
4076 * This routine is called before a device strategy routine.
4077 * It is used to tell the VM system that paging I/O is in
4078 * progress, and treat the pages associated with the buffer
4079 * almost as being exclusive busy.  Also the object paging_in_progress
4080 * flag is handled to make sure that the object doesn't become
4081 * inconsistant.
4082 *
4083 * Since I/O has not been initiated yet, certain buffer flags
4084 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4085 * and should be ignored.
4086 */
4087void
4088vfs_busy_pages(struct buf *bp, int clear_modify)
4089{
4090	int i, bogus;
4091	vm_object_t obj;
4092	vm_ooffset_t foff;
4093	vm_page_t m;
4094
4095	if (!(bp->b_flags & B_VMIO))
4096		return;
4097
4098	obj = bp->b_bufobj->bo_object;
4099	foff = bp->b_offset;
4100	KASSERT(bp->b_offset != NOOFFSET,
4101	    ("vfs_busy_pages: no buffer offset"));
4102	VM_OBJECT_WLOCK(obj);
4103	vfs_drain_busy_pages(bp);
4104	if (bp->b_bufsize != 0)
4105		vfs_setdirty_locked_object(bp);
4106	bogus = 0;
4107	for (i = 0; i < bp->b_npages; i++) {
4108		m = bp->b_pages[i];
4109
4110		if ((bp->b_flags & B_CLUSTER) == 0) {
4111			vm_object_pip_add(obj, 1);
4112			vm_page_sbusy(m);
4113		}
4114		/*
4115		 * When readying a buffer for a read ( i.e
4116		 * clear_modify == 0 ), it is important to do
4117		 * bogus_page replacement for valid pages in
4118		 * partially instantiated buffers.  Partially
4119		 * instantiated buffers can, in turn, occur when
4120		 * reconstituting a buffer from its VM backing store
4121		 * base.  We only have to do this if B_CACHE is
4122		 * clear ( which causes the I/O to occur in the
4123		 * first place ).  The replacement prevents the read
4124		 * I/O from overwriting potentially dirty VM-backed
4125		 * pages.  XXX bogus page replacement is, uh, bogus.
4126		 * It may not work properly with small-block devices.
4127		 * We need to find a better way.
4128		 */
4129		if (clear_modify) {
4130			pmap_remove_write(m);
4131			vfs_page_set_validclean(bp, foff, m);
4132		} else if (m->valid == VM_PAGE_BITS_ALL &&
4133		    (bp->b_flags & B_CACHE) == 0) {
4134			bp->b_pages[i] = bogus_page;
4135			bogus++;
4136		}
4137		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4138	}
4139	VM_OBJECT_WUNLOCK(obj);
4140	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4141		BUF_CHECK_MAPPED(bp);
4142		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4143		    bp->b_pages, bp->b_npages);
4144	}
4145}
4146
4147/*
4148 *	vfs_bio_set_valid:
4149 *
4150 *	Set the range within the buffer to valid.  The range is
4151 *	relative to the beginning of the buffer, b_offset.  Note that
4152 *	b_offset itself may be offset from the beginning of the first
4153 *	page.
4154 */
4155void
4156vfs_bio_set_valid(struct buf *bp, int base, int size)
4157{
4158	int i, n;
4159	vm_page_t m;
4160
4161	if (!(bp->b_flags & B_VMIO))
4162		return;
4163
4164	/*
4165	 * Fixup base to be relative to beginning of first page.
4166	 * Set initial n to be the maximum number of bytes in the
4167	 * first page that can be validated.
4168	 */
4169	base += (bp->b_offset & PAGE_MASK);
4170	n = PAGE_SIZE - (base & PAGE_MASK);
4171
4172	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4173	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4174		m = bp->b_pages[i];
4175		if (n > size)
4176			n = size;
4177		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4178		base += n;
4179		size -= n;
4180		n = PAGE_SIZE;
4181	}
4182	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4183}
4184
4185/*
4186 *	vfs_bio_clrbuf:
4187 *
4188 *	If the specified buffer is a non-VMIO buffer, clear the entire
4189 *	buffer.  If the specified buffer is a VMIO buffer, clear and
4190 *	validate only the previously invalid portions of the buffer.
4191 *	This routine essentially fakes an I/O, so we need to clear
4192 *	BIO_ERROR and B_INVAL.
4193 *
4194 *	Note that while we only theoretically need to clear through b_bcount,
4195 *	we go ahead and clear through b_bufsize.
4196 */
4197void
4198vfs_bio_clrbuf(struct buf *bp)
4199{
4200	int i, j, mask, sa, ea, slide;
4201
4202	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4203		clrbuf(bp);
4204		return;
4205	}
4206	bp->b_flags &= ~B_INVAL;
4207	bp->b_ioflags &= ~BIO_ERROR;
4208	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4209	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4210	    (bp->b_offset & PAGE_MASK) == 0) {
4211		if (bp->b_pages[0] == bogus_page)
4212			goto unlock;
4213		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4214		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4215		if ((bp->b_pages[0]->valid & mask) == mask)
4216			goto unlock;
4217		if ((bp->b_pages[0]->valid & mask) == 0) {
4218			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4219			bp->b_pages[0]->valid |= mask;
4220			goto unlock;
4221		}
4222	}
4223	sa = bp->b_offset & PAGE_MASK;
4224	slide = 0;
4225	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4226		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4227		ea = slide & PAGE_MASK;
4228		if (ea == 0)
4229			ea = PAGE_SIZE;
4230		if (bp->b_pages[i] == bogus_page)
4231			continue;
4232		j = sa / DEV_BSIZE;
4233		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4234		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4235		if ((bp->b_pages[i]->valid & mask) == mask)
4236			continue;
4237		if ((bp->b_pages[i]->valid & mask) == 0)
4238			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4239		else {
4240			for (; sa < ea; sa += DEV_BSIZE, j++) {
4241				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4242					pmap_zero_page_area(bp->b_pages[i],
4243					    sa, DEV_BSIZE);
4244				}
4245			}
4246		}
4247		bp->b_pages[i]->valid |= mask;
4248	}
4249unlock:
4250	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4251	bp->b_resid = 0;
4252}
4253
4254void
4255vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4256{
4257	vm_page_t m;
4258	int i, n;
4259
4260	if ((bp->b_flags & B_UNMAPPED) == 0) {
4261		BUF_CHECK_MAPPED(bp);
4262		bzero(bp->b_data + base, size);
4263	} else {
4264		BUF_CHECK_UNMAPPED(bp);
4265		n = PAGE_SIZE - (base & PAGE_MASK);
4266		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4267			m = bp->b_pages[i];
4268			if (n > size)
4269				n = size;
4270			pmap_zero_page_area(m, base & PAGE_MASK, n);
4271			base += n;
4272			size -= n;
4273			n = PAGE_SIZE;
4274		}
4275	}
4276}
4277
4278/*
4279 * vm_hold_load_pages and vm_hold_free_pages get pages into
4280 * a buffers address space.  The pages are anonymous and are
4281 * not associated with a file object.
4282 */
4283static void
4284vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4285{
4286	vm_offset_t pg;
4287	vm_page_t p;
4288	int index;
4289
4290	BUF_CHECK_MAPPED(bp);
4291
4292	to = round_page(to);
4293	from = round_page(from);
4294	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4295
4296	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4297tryagain:
4298		/*
4299		 * note: must allocate system pages since blocking here
4300		 * could interfere with paging I/O, no matter which
4301		 * process we are.
4302		 */
4303		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4304		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4305		if (p == NULL) {
4306			VM_WAIT;
4307			goto tryagain;
4308		}
4309		pmap_qenter(pg, &p, 1);
4310		bp->b_pages[index] = p;
4311	}
4312	bp->b_npages = index;
4313}
4314
4315/* Return pages associated with this buf to the vm system */
4316static void
4317vm_hold_free_pages(struct buf *bp, int newbsize)
4318{
4319	vm_offset_t from;
4320	vm_page_t p;
4321	int index, newnpages;
4322
4323	BUF_CHECK_MAPPED(bp);
4324
4325	from = round_page((vm_offset_t)bp->b_data + newbsize);
4326	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4327	if (bp->b_npages > newnpages)
4328		pmap_qremove(from, bp->b_npages - newnpages);
4329	for (index = newnpages; index < bp->b_npages; index++) {
4330		p = bp->b_pages[index];
4331		bp->b_pages[index] = NULL;
4332		if (vm_page_sbusied(p))
4333			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4334			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4335		p->wire_count--;
4336		vm_page_free(p);
4337		atomic_subtract_int(&cnt.v_wire_count, 1);
4338	}
4339	bp->b_npages = newnpages;
4340}
4341
4342/*
4343 * Map an IO request into kernel virtual address space.
4344 *
4345 * All requests are (re)mapped into kernel VA space.
4346 * Notice that we use b_bufsize for the size of the buffer
4347 * to be mapped.  b_bcount might be modified by the driver.
4348 *
4349 * Note that even if the caller determines that the address space should
4350 * be valid, a race or a smaller-file mapped into a larger space may
4351 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4352 * check the return value.
4353 */
4354int
4355vmapbuf(struct buf *bp, int mapbuf)
4356{
4357	caddr_t kva;
4358	vm_prot_t prot;
4359	int pidx;
4360
4361	if (bp->b_bufsize < 0)
4362		return (-1);
4363	prot = VM_PROT_READ;
4364	if (bp->b_iocmd == BIO_READ)
4365		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4366	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4367	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4368	    btoc(MAXPHYS))) < 0)
4369		return (-1);
4370	bp->b_npages = pidx;
4371	if (mapbuf || !unmapped_buf_allowed) {
4372		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4373		kva = bp->b_saveaddr;
4374		bp->b_saveaddr = bp->b_data;
4375		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4376		bp->b_flags &= ~B_UNMAPPED;
4377	} else {
4378		bp->b_flags |= B_UNMAPPED;
4379		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4380		bp->b_saveaddr = bp->b_data;
4381		bp->b_data = unmapped_buf;
4382	}
4383	return(0);
4384}
4385
4386/*
4387 * Free the io map PTEs associated with this IO operation.
4388 * We also invalidate the TLB entries and restore the original b_addr.
4389 */
4390void
4391vunmapbuf(struct buf *bp)
4392{
4393	int npages;
4394
4395	npages = bp->b_npages;
4396	if (bp->b_flags & B_UNMAPPED)
4397		bp->b_flags &= ~B_UNMAPPED;
4398	else
4399		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4400	vm_page_unhold_pages(bp->b_pages, npages);
4401
4402	bp->b_data = bp->b_saveaddr;
4403}
4404
4405void
4406bdone(struct buf *bp)
4407{
4408	struct mtx *mtxp;
4409
4410	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4411	mtx_lock(mtxp);
4412	bp->b_flags |= B_DONE;
4413	wakeup(bp);
4414	mtx_unlock(mtxp);
4415}
4416
4417void
4418bwait(struct buf *bp, u_char pri, const char *wchan)
4419{
4420	struct mtx *mtxp;
4421
4422	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4423	mtx_lock(mtxp);
4424	while ((bp->b_flags & B_DONE) == 0)
4425		msleep(bp, mtxp, pri, wchan, 0);
4426	mtx_unlock(mtxp);
4427}
4428
4429int
4430bufsync(struct bufobj *bo, int waitfor)
4431{
4432
4433	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4434}
4435
4436void
4437bufstrategy(struct bufobj *bo, struct buf *bp)
4438{
4439	int i = 0;
4440	struct vnode *vp;
4441
4442	vp = bp->b_vp;
4443	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4444	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4445	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4446	i = VOP_STRATEGY(vp, bp);
4447	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4448}
4449
4450void
4451bufobj_wrefl(struct bufobj *bo)
4452{
4453
4454	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4455	ASSERT_BO_WLOCKED(bo);
4456	bo->bo_numoutput++;
4457}
4458
4459void
4460bufobj_wref(struct bufobj *bo)
4461{
4462
4463	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4464	BO_LOCK(bo);
4465	bo->bo_numoutput++;
4466	BO_UNLOCK(bo);
4467}
4468
4469void
4470bufobj_wdrop(struct bufobj *bo)
4471{
4472
4473	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4474	BO_LOCK(bo);
4475	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4476	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4477		bo->bo_flag &= ~BO_WWAIT;
4478		wakeup(&bo->bo_numoutput);
4479	}
4480	BO_UNLOCK(bo);
4481}
4482
4483int
4484bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4485{
4486	int error;
4487
4488	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4489	ASSERT_BO_WLOCKED(bo);
4490	error = 0;
4491	while (bo->bo_numoutput) {
4492		bo->bo_flag |= BO_WWAIT;
4493		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4494		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4495		if (error)
4496			break;
4497	}
4498	return (error);
4499}
4500
4501void
4502bpin(struct buf *bp)
4503{
4504	struct mtx *mtxp;
4505
4506	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4507	mtx_lock(mtxp);
4508	bp->b_pin_count++;
4509	mtx_unlock(mtxp);
4510}
4511
4512void
4513bunpin(struct buf *bp)
4514{
4515	struct mtx *mtxp;
4516
4517	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4518	mtx_lock(mtxp);
4519	if (--bp->b_pin_count == 0)
4520		wakeup(bp);
4521	mtx_unlock(mtxp);
4522}
4523
4524void
4525bunpin_wait(struct buf *bp)
4526{
4527	struct mtx *mtxp;
4528
4529	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4530	mtx_lock(mtxp);
4531	while (bp->b_pin_count > 0)
4532		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4533	mtx_unlock(mtxp);
4534}
4535
4536/*
4537 * Set bio_data or bio_ma for struct bio from the struct buf.
4538 */
4539void
4540bdata2bio(struct buf *bp, struct bio *bip)
4541{
4542
4543	if ((bp->b_flags & B_UNMAPPED) != 0) {
4544		KASSERT(unmapped_buf_allowed, ("unmapped"));
4545		bip->bio_ma = bp->b_pages;
4546		bip->bio_ma_n = bp->b_npages;
4547		bip->bio_data = unmapped_buf;
4548		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4549		bip->bio_flags |= BIO_UNMAPPED;
4550		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4551		    PAGE_SIZE == bp->b_npages,
4552		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4553		    (long long)bip->bio_length, bip->bio_ma_n));
4554	} else {
4555		bip->bio_data = bp->b_data;
4556		bip->bio_ma = NULL;
4557	}
4558}
4559
4560#include "opt_ddb.h"
4561#ifdef DDB
4562#include <ddb/ddb.h>
4563
4564/* DDB command to show buffer data */
4565DB_SHOW_COMMAND(buffer, db_show_buffer)
4566{
4567	/* get args */
4568	struct buf *bp = (struct buf *)addr;
4569
4570	if (!have_addr) {
4571		db_printf("usage: show buffer <addr>\n");
4572		return;
4573	}
4574
4575	db_printf("buf at %p\n", bp);
4576	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4577	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4578	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4579	db_printf(
4580	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4581	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4582	    "b_dep = %p\n",
4583	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4584	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4585	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4586	if (bp->b_npages) {
4587		int i;
4588		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4589		for (i = 0; i < bp->b_npages; i++) {
4590			vm_page_t m;
4591			m = bp->b_pages[i];
4592			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4593			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4594			if ((i + 1) < bp->b_npages)
4595				db_printf(",");
4596		}
4597		db_printf("\n");
4598	}
4599	db_printf(" ");
4600	BUF_LOCKPRINTINFO(bp);
4601}
4602
4603DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4604{
4605	struct buf *bp;
4606	int i;
4607
4608	for (i = 0; i < nbuf; i++) {
4609		bp = &buf[i];
4610		if (BUF_ISLOCKED(bp)) {
4611			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4612			db_printf("\n");
4613		}
4614	}
4615}
4616
4617DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4618{
4619	struct vnode *vp;
4620	struct buf *bp;
4621
4622	if (!have_addr) {
4623		db_printf("usage: show vnodebufs <addr>\n");
4624		return;
4625	}
4626	vp = (struct vnode *)addr;
4627	db_printf("Clean buffers:\n");
4628	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4629		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4630		db_printf("\n");
4631	}
4632	db_printf("Dirty buffers:\n");
4633	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4634		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4635		db_printf("\n");
4636	}
4637}
4638
4639DB_COMMAND(countfreebufs, db_coundfreebufs)
4640{
4641	struct buf *bp;
4642	int i, used = 0, nfree = 0;
4643
4644	if (have_addr) {
4645		db_printf("usage: countfreebufs\n");
4646		return;
4647	}
4648
4649	for (i = 0; i < nbuf; i++) {
4650		bp = &buf[i];
4651		if ((bp->b_flags & B_INFREECNT) != 0)
4652			nfree++;
4653		else
4654			used++;
4655	}
4656
4657	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4658	    nfree + used);
4659	db_printf("numfreebuffers is %d\n", numfreebuffers);
4660}
4661#endif /* DDB */
4662