vfs_bio.c revision 267494
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*
33 * this file contains a new buffer I/O scheme implementing a coherent
34 * VM object and buffer cache scheme.  Pains have been taken to make
35 * sure that the performance degradation associated with schemes such
36 * as this is not realized.
37 *
38 * Author:  John S. Dyson
39 * Significant help during the development and debugging phases
40 * had been provided by David Greenman, also of the FreeBSD core team.
41 *
42 * see man buf(9) for more info.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_bio.c 267494 2014-06-15 05:15:38Z kib $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/conf.h>
52#include <sys/buf.h>
53#include <sys/devicestat.h>
54#include <sys/eventhandler.h>
55#include <sys/fail.h>
56#include <sys/limits.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/kthread.h>
63#include <sys/proc.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sysctl.h>
67#include <sys/vmem.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70#include <geom/geom.h>
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_page.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_map.h>
79#include "opt_compat.h"
80#include "opt_swap.h"
81
82static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
83
84struct	bio_ops bioops;		/* I/O operation notification */
85
86struct	buf_ops buf_ops_bio = {
87	.bop_name	=	"buf_ops_bio",
88	.bop_write	=	bufwrite,
89	.bop_strategy	=	bufstrategy,
90	.bop_sync	=	bufsync,
91	.bop_bdflush	=	bufbdflush,
92};
93
94/*
95 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
96 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
97 */
98struct buf *buf;		/* buffer header pool */
99caddr_t unmapped_buf;
100
101static struct proc *bufdaemonproc;
102
103static int inmem(struct vnode *vp, daddr_t blkno);
104static void vm_hold_free_pages(struct buf *bp, int newbsize);
105static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
106		vm_offset_t to);
107static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
108static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
109		vm_page_t m);
110static void vfs_clean_pages_dirty_buf(struct buf *bp);
111static void vfs_setdirty_locked_object(struct buf *bp);
112static void vfs_vmio_release(struct buf *bp);
113static int vfs_bio_clcheck(struct vnode *vp, int size,
114		daddr_t lblkno, daddr_t blkno);
115static int buf_flush(int);
116static int flushbufqueues(int, int);
117static void buf_daemon(void);
118static void bremfreel(struct buf *bp);
119static __inline void bd_wakeup(void);
120#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
121    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
122static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
123#endif
124
125int vmiodirenable = TRUE;
126SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
127    "Use the VM system for directory writes");
128long runningbufspace;
129SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
130    "Amount of presently outstanding async buffer io");
131static long bufspace;
132#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
133    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
134SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
135    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
136#else
137SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
138    "Virtual memory used for buffers");
139#endif
140static long unmapped_bufspace;
141SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
142    &unmapped_bufspace, 0,
143    "Amount of unmapped buffers, inclusive in the bufspace");
144static long maxbufspace;
145SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
146    "Maximum allowed value of bufspace (including buf_daemon)");
147static long bufmallocspace;
148SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
149    "Amount of malloced memory for buffers");
150static long maxbufmallocspace;
151SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
152    "Maximum amount of malloced memory for buffers");
153static long lobufspace;
154SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
155    "Minimum amount of buffers we want to have");
156long hibufspace;
157SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
158    "Maximum allowed value of bufspace (excluding buf_daemon)");
159static int bufreusecnt;
160SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
161    "Number of times we have reused a buffer");
162static int buffreekvacnt;
163SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
164    "Number of times we have freed the KVA space from some buffer");
165static int bufdefragcnt;
166SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
167    "Number of times we have had to repeat buffer allocation to defragment");
168static long lorunningspace;
169SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
170    "Minimum preferred space used for in-progress I/O");
171static long hirunningspace;
172SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
173    "Maximum amount of space to use for in-progress I/O");
174int dirtybufferflushes;
175SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
176    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
177int bdwriteskip;
178SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
179    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
180int altbufferflushes;
181SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
182    0, "Number of fsync flushes to limit dirty buffers");
183static int recursiveflushes;
184SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
185    0, "Number of flushes skipped due to being recursive");
186static int numdirtybuffers;
187SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
188    "Number of buffers that are dirty (has unwritten changes) at the moment");
189static int lodirtybuffers;
190SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
191    "How many buffers we want to have free before bufdaemon can sleep");
192static int hidirtybuffers;
193SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
194    "When the number of dirty buffers is considered severe");
195int dirtybufthresh;
196SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
197    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
198static int numfreebuffers;
199SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
200    "Number of free buffers");
201static int lofreebuffers;
202SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
203   "XXX Unused");
204static int hifreebuffers;
205SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
206   "XXX Complicatedly unused");
207static int getnewbufcalls;
208SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
209   "Number of calls to getnewbuf");
210static int getnewbufrestarts;
211SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
212    "Number of times getnewbuf has had to restart a buffer aquisition");
213static int mappingrestarts;
214SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
215    "Number of times getblk has had to restart a buffer mapping for "
216    "unmapped buffer");
217static int flushbufqtarget = 100;
218SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
219    "Amount of work to do in flushbufqueues when helping bufdaemon");
220static long notbufdflushes;
221SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
222    "Number of dirty buffer flushes done by the bufdaemon helpers");
223static long barrierwrites;
224SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
225    "Number of barrier writes");
226SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
227    &unmapped_buf_allowed, 0,
228    "Permit the use of the unmapped i/o");
229
230/*
231 * Lock for the non-dirty bufqueues
232 */
233static struct mtx_padalign bqclean;
234
235/*
236 * Lock for the dirty queue.
237 */
238static struct mtx_padalign bqdirty;
239
240/*
241 * This lock synchronizes access to bd_request.
242 */
243static struct mtx_padalign bdlock;
244
245/*
246 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
247 * waitrunningbufspace().
248 */
249static struct mtx_padalign rbreqlock;
250
251/*
252 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
253 */
254static struct mtx_padalign nblock;
255
256/*
257 * Lock that protects bdirtywait.
258 */
259static struct mtx_padalign bdirtylock;
260
261/*
262 * Wakeup point for bufdaemon, as well as indicator of whether it is already
263 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
264 * is idling.
265 */
266static int bd_request;
267
268/*
269 * Request for the buf daemon to write more buffers than is indicated by
270 * lodirtybuf.  This may be necessary to push out excess dependencies or
271 * defragment the address space where a simple count of the number of dirty
272 * buffers is insufficient to characterize the demand for flushing them.
273 */
274static int bd_speedupreq;
275
276/*
277 * bogus page -- for I/O to/from partially complete buffers
278 * this is a temporary solution to the problem, but it is not
279 * really that bad.  it would be better to split the buffer
280 * for input in the case of buffers partially already in memory,
281 * but the code is intricate enough already.
282 */
283vm_page_t bogus_page;
284
285/*
286 * Synchronization (sleep/wakeup) variable for active buffer space requests.
287 * Set when wait starts, cleared prior to wakeup().
288 * Used in runningbufwakeup() and waitrunningbufspace().
289 */
290static int runningbufreq;
291
292/*
293 * Synchronization (sleep/wakeup) variable for buffer requests.
294 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
295 * by and/or.
296 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
297 * getnewbuf(), and getblk().
298 */
299static int needsbuffer;
300
301/*
302 * Synchronization for bwillwrite() waiters.
303 */
304static int bdirtywait;
305
306/*
307 * Definitions for the buffer free lists.
308 */
309#define BUFFER_QUEUES	5	/* number of free buffer queues */
310
311#define QUEUE_NONE	0	/* on no queue */
312#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
313#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
314#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
315#define QUEUE_EMPTY	4	/* empty buffer headers */
316#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
317
318/* Queues for free buffers with various properties */
319static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
320#ifdef INVARIANTS
321static int bq_len[BUFFER_QUEUES];
322#endif
323
324/*
325 * Single global constant for BUF_WMESG, to avoid getting multiple references.
326 * buf_wmesg is referred from macros.
327 */
328const char *buf_wmesg = BUF_WMESG;
329
330#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
331#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
332#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
333
334#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
335    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
336static int
337sysctl_bufspace(SYSCTL_HANDLER_ARGS)
338{
339	long lvalue;
340	int ivalue;
341
342	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
343		return (sysctl_handle_long(oidp, arg1, arg2, req));
344	lvalue = *(long *)arg1;
345	if (lvalue > INT_MAX)
346		/* On overflow, still write out a long to trigger ENOMEM. */
347		return (sysctl_handle_long(oidp, &lvalue, 0, req));
348	ivalue = lvalue;
349	return (sysctl_handle_int(oidp, &ivalue, 0, req));
350}
351#endif
352
353/*
354 *	bqlock:
355 *
356 *	Return the appropriate queue lock based on the index.
357 */
358static inline struct mtx *
359bqlock(int qindex)
360{
361
362	if (qindex == QUEUE_DIRTY)
363		return (struct mtx *)(&bqdirty);
364	return (struct mtx *)(&bqclean);
365}
366
367/*
368 *	bdirtywakeup:
369 *
370 *	Wakeup any bwillwrite() waiters.
371 */
372static void
373bdirtywakeup(void)
374{
375	mtx_lock(&bdirtylock);
376	if (bdirtywait) {
377		bdirtywait = 0;
378		wakeup(&bdirtywait);
379	}
380	mtx_unlock(&bdirtylock);
381}
382
383/*
384 *	bdirtysub:
385 *
386 *	Decrement the numdirtybuffers count by one and wakeup any
387 *	threads blocked in bwillwrite().
388 */
389static void
390bdirtysub(void)
391{
392
393	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
394	    (lodirtybuffers + hidirtybuffers) / 2)
395		bdirtywakeup();
396}
397
398/*
399 *	bdirtyadd:
400 *
401 *	Increment the numdirtybuffers count by one and wakeup the buf
402 *	daemon if needed.
403 */
404static void
405bdirtyadd(void)
406{
407
408	/*
409	 * Only do the wakeup once as we cross the boundary.  The
410	 * buf daemon will keep running until the condition clears.
411	 */
412	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
413	    (lodirtybuffers + hidirtybuffers) / 2)
414		bd_wakeup();
415}
416
417/*
418 *	bufspacewakeup:
419 *
420 *	Called when buffer space is potentially available for recovery.
421 *	getnewbuf() will block on this flag when it is unable to free
422 *	sufficient buffer space.  Buffer space becomes recoverable when
423 *	bp's get placed back in the queues.
424 */
425
426static __inline void
427bufspacewakeup(void)
428{
429
430	/*
431	 * If someone is waiting for BUF space, wake them up.  Even
432	 * though we haven't freed the kva space yet, the waiting
433	 * process will be able to now.
434	 */
435	mtx_lock(&nblock);
436	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
437		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
438		wakeup(&needsbuffer);
439	}
440	mtx_unlock(&nblock);
441}
442
443/*
444 *	runningwakeup:
445 *
446 *	Wake up processes that are waiting on asynchronous writes to fall
447 *	below lorunningspace.
448 */
449static void
450runningwakeup(void)
451{
452
453	mtx_lock(&rbreqlock);
454	if (runningbufreq) {
455		runningbufreq = 0;
456		wakeup(&runningbufreq);
457	}
458	mtx_unlock(&rbreqlock);
459}
460
461/*
462 *	runningbufwakeup:
463 *
464 *	Decrement the outstanding write count according.
465 */
466void
467runningbufwakeup(struct buf *bp)
468{
469	long space, bspace;
470
471	bspace = bp->b_runningbufspace;
472	if (bspace == 0)
473		return;
474	space = atomic_fetchadd_long(&runningbufspace, -bspace);
475	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
476	    space, bspace));
477	bp->b_runningbufspace = 0;
478	/*
479	 * Only acquire the lock and wakeup on the transition from exceeding
480	 * the threshold to falling below it.
481	 */
482	if (space < lorunningspace)
483		return;
484	if (space - bspace > lorunningspace)
485		return;
486	runningwakeup();
487}
488
489/*
490 *	bufcountadd:
491 *
492 *	Called when a buffer has been added to one of the free queues to
493 *	account for the buffer and to wakeup anyone waiting for free buffers.
494 *	This typically occurs when large amounts of metadata are being handled
495 *	by the buffer cache ( else buffer space runs out first, usually ).
496 */
497static __inline void
498bufcountadd(struct buf *bp)
499{
500	int old;
501
502	KASSERT((bp->b_flags & B_INFREECNT) == 0,
503	    ("buf %p already counted as free", bp));
504	bp->b_flags |= B_INFREECNT;
505	old = atomic_fetchadd_int(&numfreebuffers, 1);
506	KASSERT(old >= 0 && old < nbuf,
507	    ("numfreebuffers climbed to %d", old + 1));
508	mtx_lock(&nblock);
509	if (needsbuffer) {
510		needsbuffer &= ~VFS_BIO_NEED_ANY;
511		if (numfreebuffers >= hifreebuffers)
512			needsbuffer &= ~VFS_BIO_NEED_FREE;
513		wakeup(&needsbuffer);
514	}
515	mtx_unlock(&nblock);
516}
517
518/*
519 *	bufcountsub:
520 *
521 *	Decrement the numfreebuffers count as needed.
522 */
523static void
524bufcountsub(struct buf *bp)
525{
526	int old;
527
528	/*
529	 * Fixup numfreebuffers count.  If the buffer is invalid or not
530	 * delayed-write, the buffer was free and we must decrement
531	 * numfreebuffers.
532	 */
533	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
534		KASSERT((bp->b_flags & B_INFREECNT) != 0,
535		    ("buf %p not counted in numfreebuffers", bp));
536		bp->b_flags &= ~B_INFREECNT;
537		old = atomic_fetchadd_int(&numfreebuffers, -1);
538		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
539	}
540}
541
542/*
543 *	waitrunningbufspace()
544 *
545 *	runningbufspace is a measure of the amount of I/O currently
546 *	running.  This routine is used in async-write situations to
547 *	prevent creating huge backups of pending writes to a device.
548 *	Only asynchronous writes are governed by this function.
549 *
550 *	This does NOT turn an async write into a sync write.  It waits
551 *	for earlier writes to complete and generally returns before the
552 *	caller's write has reached the device.
553 */
554void
555waitrunningbufspace(void)
556{
557
558	mtx_lock(&rbreqlock);
559	while (runningbufspace > hirunningspace) {
560		runningbufreq = 1;
561		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
562	}
563	mtx_unlock(&rbreqlock);
564}
565
566
567/*
568 *	vfs_buf_test_cache:
569 *
570 *	Called when a buffer is extended.  This function clears the B_CACHE
571 *	bit if the newly extended portion of the buffer does not contain
572 *	valid data.
573 */
574static __inline
575void
576vfs_buf_test_cache(struct buf *bp,
577		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
578		  vm_page_t m)
579{
580
581	VM_OBJECT_ASSERT_LOCKED(m->object);
582	if (bp->b_flags & B_CACHE) {
583		int base = (foff + off) & PAGE_MASK;
584		if (vm_page_is_valid(m, base, size) == 0)
585			bp->b_flags &= ~B_CACHE;
586	}
587}
588
589/* Wake up the buffer daemon if necessary */
590static __inline void
591bd_wakeup(void)
592{
593
594	mtx_lock(&bdlock);
595	if (bd_request == 0) {
596		bd_request = 1;
597		wakeup(&bd_request);
598	}
599	mtx_unlock(&bdlock);
600}
601
602/*
603 * bd_speedup - speedup the buffer cache flushing code
604 */
605void
606bd_speedup(void)
607{
608	int needwake;
609
610	mtx_lock(&bdlock);
611	needwake = 0;
612	if (bd_speedupreq == 0 || bd_request == 0)
613		needwake = 1;
614	bd_speedupreq = 1;
615	bd_request = 1;
616	if (needwake)
617		wakeup(&bd_request);
618	mtx_unlock(&bdlock);
619}
620
621#ifdef __i386__
622#define	TRANSIENT_DENOM	5
623#else
624#define	TRANSIENT_DENOM 10
625#endif
626
627/*
628 * Calculating buffer cache scaling values and reserve space for buffer
629 * headers.  This is called during low level kernel initialization and
630 * may be called more then once.  We CANNOT write to the memory area
631 * being reserved at this time.
632 */
633caddr_t
634kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
635{
636	int tuned_nbuf;
637	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
638
639	/*
640	 * physmem_est is in pages.  Convert it to kilobytes (assumes
641	 * PAGE_SIZE is >= 1K)
642	 */
643	physmem_est = physmem_est * (PAGE_SIZE / 1024);
644
645	/*
646	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
647	 * For the first 64MB of ram nominally allocate sufficient buffers to
648	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
649	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
650	 * the buffer cache we limit the eventual kva reservation to
651	 * maxbcache bytes.
652	 *
653	 * factor represents the 1/4 x ram conversion.
654	 */
655	if (nbuf == 0) {
656		int factor = 4 * BKVASIZE / 1024;
657
658		nbuf = 50;
659		if (physmem_est > 4096)
660			nbuf += min((physmem_est - 4096) / factor,
661			    65536 / factor);
662		if (physmem_est > 65536)
663			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
664			    32 * 1024 * 1024 / (factor * 5));
665
666		if (maxbcache && nbuf > maxbcache / BKVASIZE)
667			nbuf = maxbcache / BKVASIZE;
668		tuned_nbuf = 1;
669	} else
670		tuned_nbuf = 0;
671
672	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
673	maxbuf = (LONG_MAX / 3) / BKVASIZE;
674	if (nbuf > maxbuf) {
675		if (!tuned_nbuf)
676			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
677			    maxbuf);
678		nbuf = maxbuf;
679	}
680
681	/*
682	 * Ideal allocation size for the transient bio submap if 10%
683	 * of the maximal space buffer map.  This roughly corresponds
684	 * to the amount of the buffer mapped for typical UFS load.
685	 *
686	 * Clip the buffer map to reserve space for the transient
687	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
688	 * maximum buffer map extent on the platform.
689	 *
690	 * The fall-back to the maxbuf in case of maxbcache unset,
691	 * allows to not trim the buffer KVA for the architectures
692	 * with ample KVA space.
693	 */
694	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
695		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
696		buf_sz = (long)nbuf * BKVASIZE;
697		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
698		    (TRANSIENT_DENOM - 1)) {
699			/*
700			 * There is more KVA than memory.  Do not
701			 * adjust buffer map size, and assign the rest
702			 * of maxbuf to transient map.
703			 */
704			biotmap_sz = maxbuf_sz - buf_sz;
705		} else {
706			/*
707			 * Buffer map spans all KVA we could afford on
708			 * this platform.  Give 10% (20% on i386) of
709			 * the buffer map to the transient bio map.
710			 */
711			biotmap_sz = buf_sz / TRANSIENT_DENOM;
712			buf_sz -= biotmap_sz;
713		}
714		if (biotmap_sz / INT_MAX > MAXPHYS)
715			bio_transient_maxcnt = INT_MAX;
716		else
717			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
718		/*
719		 * Artifically limit to 1024 simultaneous in-flight I/Os
720		 * using the transient mapping.
721		 */
722		if (bio_transient_maxcnt > 1024)
723			bio_transient_maxcnt = 1024;
724		if (tuned_nbuf)
725			nbuf = buf_sz / BKVASIZE;
726	}
727
728	/*
729	 * swbufs are used as temporary holders for I/O, such as paging I/O.
730	 * We have no less then 16 and no more then 256.
731	 */
732	nswbuf = max(min(nbuf/4, 256), 16);
733#ifdef NSWBUF_MIN
734	if (nswbuf < NSWBUF_MIN)
735		nswbuf = NSWBUF_MIN;
736#endif
737
738	/*
739	 * Reserve space for the buffer cache buffers
740	 */
741	swbuf = (void *)v;
742	v = (caddr_t)(swbuf + nswbuf);
743	buf = (void *)v;
744	v = (caddr_t)(buf + nbuf);
745
746	return(v);
747}
748
749/* Initialize the buffer subsystem.  Called before use of any buffers. */
750void
751bufinit(void)
752{
753	struct buf *bp;
754	int i;
755
756	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
757	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
758	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
759	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
760	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
761	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
762
763	/* next, make a null set of free lists */
764	for (i = 0; i < BUFFER_QUEUES; i++)
765		TAILQ_INIT(&bufqueues[i]);
766
767	/* finally, initialize each buffer header and stick on empty q */
768	for (i = 0; i < nbuf; i++) {
769		bp = &buf[i];
770		bzero(bp, sizeof *bp);
771		bp->b_flags = B_INVAL | B_INFREECNT;
772		bp->b_rcred = NOCRED;
773		bp->b_wcred = NOCRED;
774		bp->b_qindex = QUEUE_EMPTY;
775		bp->b_xflags = 0;
776		LIST_INIT(&bp->b_dep);
777		BUF_LOCKINIT(bp);
778		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
779#ifdef INVARIANTS
780		bq_len[QUEUE_EMPTY]++;
781#endif
782	}
783
784	/*
785	 * maxbufspace is the absolute maximum amount of buffer space we are
786	 * allowed to reserve in KVM and in real terms.  The absolute maximum
787	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
788	 * used by most other processes.  The differential is required to
789	 * ensure that buf_daemon is able to run when other processes might
790	 * be blocked waiting for buffer space.
791	 *
792	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
793	 * this may result in KVM fragmentation which is not handled optimally
794	 * by the system.
795	 */
796	maxbufspace = (long)nbuf * BKVASIZE;
797	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
798	lobufspace = hibufspace - MAXBSIZE;
799
800	/*
801	 * Note: The 16 MiB upper limit for hirunningspace was chosen
802	 * arbitrarily and may need further tuning. It corresponds to
803	 * 128 outstanding write IO requests (if IO size is 128 KiB),
804	 * which fits with many RAID controllers' tagged queuing limits.
805	 * The lower 1 MiB limit is the historical upper limit for
806	 * hirunningspace.
807	 */
808	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
809	    16 * 1024 * 1024), 1024 * 1024);
810	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
811
812/*
813 * Limit the amount of malloc memory since it is wired permanently into
814 * the kernel space.  Even though this is accounted for in the buffer
815 * allocation, we don't want the malloced region to grow uncontrolled.
816 * The malloc scheme improves memory utilization significantly on average
817 * (small) directories.
818 */
819	maxbufmallocspace = hibufspace / 20;
820
821/*
822 * Reduce the chance of a deadlock occuring by limiting the number
823 * of delayed-write dirty buffers we allow to stack up.
824 */
825	hidirtybuffers = nbuf / 4 + 20;
826	dirtybufthresh = hidirtybuffers * 9 / 10;
827	numdirtybuffers = 0;
828/*
829 * To support extreme low-memory systems, make sure hidirtybuffers cannot
830 * eat up all available buffer space.  This occurs when our minimum cannot
831 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
832 * BKVASIZE'd buffers.
833 */
834	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
835		hidirtybuffers >>= 1;
836	}
837	lodirtybuffers = hidirtybuffers / 2;
838
839/*
840 * Try to keep the number of free buffers in the specified range,
841 * and give special processes (e.g. like buf_daemon) access to an
842 * emergency reserve.
843 */
844	lofreebuffers = nbuf / 18 + 5;
845	hifreebuffers = 2 * lofreebuffers;
846	numfreebuffers = nbuf;
847
848	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
849	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
850	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
851}
852
853#ifdef INVARIANTS
854static inline void
855vfs_buf_check_mapped(struct buf *bp)
856{
857
858	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
859	    ("mapped buf %p %x", bp, bp->b_flags));
860	KASSERT(bp->b_kvabase != unmapped_buf,
861	    ("mapped buf: b_kvabase was not updated %p", bp));
862	KASSERT(bp->b_data != unmapped_buf,
863	    ("mapped buf: b_data was not updated %p", bp));
864}
865
866static inline void
867vfs_buf_check_unmapped(struct buf *bp)
868{
869
870	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
871	    ("unmapped buf %p %x", bp, bp->b_flags));
872	KASSERT(bp->b_kvabase == unmapped_buf,
873	    ("unmapped buf: corrupted b_kvabase %p", bp));
874	KASSERT(bp->b_data == unmapped_buf,
875	    ("unmapped buf: corrupted b_data %p", bp));
876}
877
878#define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
879#define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
880#else
881#define	BUF_CHECK_MAPPED(bp) do {} while (0)
882#define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
883#endif
884
885static void
886bpmap_qenter(struct buf *bp)
887{
888
889	BUF_CHECK_MAPPED(bp);
890
891	/*
892	 * bp->b_data is relative to bp->b_offset, but
893	 * bp->b_offset may be offset into the first page.
894	 */
895	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
896	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
897	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
898	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
899}
900
901/*
902 * bfreekva() - free the kva allocation for a buffer.
903 *
904 *	Since this call frees up buffer space, we call bufspacewakeup().
905 */
906static void
907bfreekva(struct buf *bp)
908{
909
910	if (bp->b_kvasize == 0)
911		return;
912
913	atomic_add_int(&buffreekvacnt, 1);
914	atomic_subtract_long(&bufspace, bp->b_kvasize);
915	if ((bp->b_flags & B_UNMAPPED) == 0) {
916		BUF_CHECK_MAPPED(bp);
917		vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase,
918		    bp->b_kvasize);
919	} else {
920		BUF_CHECK_UNMAPPED(bp);
921		if ((bp->b_flags & B_KVAALLOC) != 0) {
922			vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc,
923			    bp->b_kvasize);
924		}
925		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
926		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
927	}
928	bp->b_kvasize = 0;
929	bufspacewakeup();
930}
931
932/*
933 *	binsfree:
934 *
935 *	Insert the buffer into the appropriate free list.
936 */
937static void
938binsfree(struct buf *bp, int qindex)
939{
940	struct mtx *olock, *nlock;
941
942	BUF_ASSERT_XLOCKED(bp);
943
944	olock = bqlock(bp->b_qindex);
945	nlock = bqlock(qindex);
946	mtx_lock(olock);
947	/* Handle delayed bremfree() processing. */
948	if (bp->b_flags & B_REMFREE)
949		bremfreel(bp);
950
951	if (bp->b_qindex != QUEUE_NONE)
952		panic("binsfree: free buffer onto another queue???");
953
954	bp->b_qindex = qindex;
955	if (olock != nlock) {
956		mtx_unlock(olock);
957		mtx_lock(nlock);
958	}
959	if (bp->b_flags & B_AGE)
960		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
961	else
962		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
963#ifdef INVARIANTS
964	bq_len[bp->b_qindex]++;
965#endif
966	mtx_unlock(nlock);
967
968	/*
969	 * Something we can maybe free or reuse.
970	 */
971	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
972		bufspacewakeup();
973
974	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
975		bufcountadd(bp);
976}
977
978/*
979 *	bremfree:
980 *
981 *	Mark the buffer for removal from the appropriate free list.
982 *
983 */
984void
985bremfree(struct buf *bp)
986{
987
988	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
989	KASSERT((bp->b_flags & B_REMFREE) == 0,
990	    ("bremfree: buffer %p already marked for delayed removal.", bp));
991	KASSERT(bp->b_qindex != QUEUE_NONE,
992	    ("bremfree: buffer %p not on a queue.", bp));
993	BUF_ASSERT_XLOCKED(bp);
994
995	bp->b_flags |= B_REMFREE;
996	bufcountsub(bp);
997}
998
999/*
1000 *	bremfreef:
1001 *
1002 *	Force an immediate removal from a free list.  Used only in nfs when
1003 *	it abuses the b_freelist pointer.
1004 */
1005void
1006bremfreef(struct buf *bp)
1007{
1008	struct mtx *qlock;
1009
1010	qlock = bqlock(bp->b_qindex);
1011	mtx_lock(qlock);
1012	bremfreel(bp);
1013	mtx_unlock(qlock);
1014}
1015
1016/*
1017 *	bremfreel:
1018 *
1019 *	Removes a buffer from the free list, must be called with the
1020 *	correct qlock held.
1021 */
1022static void
1023bremfreel(struct buf *bp)
1024{
1025
1026	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1027	    bp, bp->b_vp, bp->b_flags);
1028	KASSERT(bp->b_qindex != QUEUE_NONE,
1029	    ("bremfreel: buffer %p not on a queue.", bp));
1030	BUF_ASSERT_XLOCKED(bp);
1031	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1032
1033	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1034#ifdef INVARIANTS
1035	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1036	    bp->b_qindex));
1037	bq_len[bp->b_qindex]--;
1038#endif
1039	bp->b_qindex = QUEUE_NONE;
1040	/*
1041	 * If this was a delayed bremfree() we only need to remove the buffer
1042	 * from the queue and return the stats are already done.
1043	 */
1044	if (bp->b_flags & B_REMFREE) {
1045		bp->b_flags &= ~B_REMFREE;
1046		return;
1047	}
1048	bufcountsub(bp);
1049}
1050
1051/*
1052 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1053 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1054 * the buffer is valid and we do not have to do anything.
1055 */
1056void
1057breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1058    int cnt, struct ucred * cred)
1059{
1060	struct buf *rabp;
1061	int i;
1062
1063	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1064		if (inmem(vp, *rablkno))
1065			continue;
1066		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1067
1068		if ((rabp->b_flags & B_CACHE) == 0) {
1069			if (!TD_IS_IDLETHREAD(curthread))
1070				curthread->td_ru.ru_inblock++;
1071			rabp->b_flags |= B_ASYNC;
1072			rabp->b_flags &= ~B_INVAL;
1073			rabp->b_ioflags &= ~BIO_ERROR;
1074			rabp->b_iocmd = BIO_READ;
1075			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1076				rabp->b_rcred = crhold(cred);
1077			vfs_busy_pages(rabp, 0);
1078			BUF_KERNPROC(rabp);
1079			rabp->b_iooffset = dbtob(rabp->b_blkno);
1080			bstrategy(rabp);
1081		} else {
1082			brelse(rabp);
1083		}
1084	}
1085}
1086
1087/*
1088 * Entry point for bread() and breadn() via #defines in sys/buf.h.
1089 *
1090 * Get a buffer with the specified data.  Look in the cache first.  We
1091 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1092 * is set, the buffer is valid and we do not have to do anything, see
1093 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1094 */
1095int
1096breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1097    int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1098{
1099	struct buf *bp;
1100	int rv = 0, readwait = 0;
1101
1102	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1103	/*
1104	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1105	 */
1106	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1107	if (bp == NULL)
1108		return (EBUSY);
1109
1110	/* if not found in cache, do some I/O */
1111	if ((bp->b_flags & B_CACHE) == 0) {
1112		if (!TD_IS_IDLETHREAD(curthread))
1113			curthread->td_ru.ru_inblock++;
1114		bp->b_iocmd = BIO_READ;
1115		bp->b_flags &= ~B_INVAL;
1116		bp->b_ioflags &= ~BIO_ERROR;
1117		if (bp->b_rcred == NOCRED && cred != NOCRED)
1118			bp->b_rcred = crhold(cred);
1119		vfs_busy_pages(bp, 0);
1120		bp->b_iooffset = dbtob(bp->b_blkno);
1121		bstrategy(bp);
1122		++readwait;
1123	}
1124
1125	breada(vp, rablkno, rabsize, cnt, cred);
1126
1127	if (readwait) {
1128		rv = bufwait(bp);
1129	}
1130	return (rv);
1131}
1132
1133/*
1134 * Write, release buffer on completion.  (Done by iodone
1135 * if async).  Do not bother writing anything if the buffer
1136 * is invalid.
1137 *
1138 * Note that we set B_CACHE here, indicating that buffer is
1139 * fully valid and thus cacheable.  This is true even of NFS
1140 * now so we set it generally.  This could be set either here
1141 * or in biodone() since the I/O is synchronous.  We put it
1142 * here.
1143 */
1144int
1145bufwrite(struct buf *bp)
1146{
1147	int oldflags;
1148	struct vnode *vp;
1149	long space;
1150	int vp_md;
1151
1152	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1153	if (bp->b_flags & B_INVAL) {
1154		brelse(bp);
1155		return (0);
1156	}
1157
1158	if (bp->b_flags & B_BARRIER)
1159		barrierwrites++;
1160
1161	oldflags = bp->b_flags;
1162
1163	BUF_ASSERT_HELD(bp);
1164
1165	if (bp->b_pin_count > 0)
1166		bunpin_wait(bp);
1167
1168	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1169	    ("FFS background buffer should not get here %p", bp));
1170
1171	vp = bp->b_vp;
1172	if (vp)
1173		vp_md = vp->v_vflag & VV_MD;
1174	else
1175		vp_md = 0;
1176
1177	/*
1178	 * Mark the buffer clean.  Increment the bufobj write count
1179	 * before bundirty() call, to prevent other thread from seeing
1180	 * empty dirty list and zero counter for writes in progress,
1181	 * falsely indicating that the bufobj is clean.
1182	 */
1183	bufobj_wref(bp->b_bufobj);
1184	bundirty(bp);
1185
1186	bp->b_flags &= ~B_DONE;
1187	bp->b_ioflags &= ~BIO_ERROR;
1188	bp->b_flags |= B_CACHE;
1189	bp->b_iocmd = BIO_WRITE;
1190
1191	vfs_busy_pages(bp, 1);
1192
1193	/*
1194	 * Normal bwrites pipeline writes
1195	 */
1196	bp->b_runningbufspace = bp->b_bufsize;
1197	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1198
1199	if (!TD_IS_IDLETHREAD(curthread))
1200		curthread->td_ru.ru_oublock++;
1201	if (oldflags & B_ASYNC)
1202		BUF_KERNPROC(bp);
1203	bp->b_iooffset = dbtob(bp->b_blkno);
1204	bstrategy(bp);
1205
1206	if ((oldflags & B_ASYNC) == 0) {
1207		int rtval = bufwait(bp);
1208		brelse(bp);
1209		return (rtval);
1210	} else if (space > hirunningspace) {
1211		/*
1212		 * don't allow the async write to saturate the I/O
1213		 * system.  We will not deadlock here because
1214		 * we are blocking waiting for I/O that is already in-progress
1215		 * to complete. We do not block here if it is the update
1216		 * or syncer daemon trying to clean up as that can lead
1217		 * to deadlock.
1218		 */
1219		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1220			waitrunningbufspace();
1221	}
1222
1223	return (0);
1224}
1225
1226void
1227bufbdflush(struct bufobj *bo, struct buf *bp)
1228{
1229	struct buf *nbp;
1230
1231	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1232		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1233		altbufferflushes++;
1234	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1235		BO_LOCK(bo);
1236		/*
1237		 * Try to find a buffer to flush.
1238		 */
1239		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1240			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1241			    BUF_LOCK(nbp,
1242				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1243				continue;
1244			if (bp == nbp)
1245				panic("bdwrite: found ourselves");
1246			BO_UNLOCK(bo);
1247			/* Don't countdeps with the bo lock held. */
1248			if (buf_countdeps(nbp, 0)) {
1249				BO_LOCK(bo);
1250				BUF_UNLOCK(nbp);
1251				continue;
1252			}
1253			if (nbp->b_flags & B_CLUSTEROK) {
1254				vfs_bio_awrite(nbp);
1255			} else {
1256				bremfree(nbp);
1257				bawrite(nbp);
1258			}
1259			dirtybufferflushes++;
1260			break;
1261		}
1262		if (nbp == NULL)
1263			BO_UNLOCK(bo);
1264	}
1265}
1266
1267/*
1268 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1269 * anything if the buffer is marked invalid.
1270 *
1271 * Note that since the buffer must be completely valid, we can safely
1272 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1273 * biodone() in order to prevent getblk from writing the buffer
1274 * out synchronously.
1275 */
1276void
1277bdwrite(struct buf *bp)
1278{
1279	struct thread *td = curthread;
1280	struct vnode *vp;
1281	struct bufobj *bo;
1282
1283	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1284	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1285	KASSERT((bp->b_flags & B_BARRIER) == 0,
1286	    ("Barrier request in delayed write %p", bp));
1287	BUF_ASSERT_HELD(bp);
1288
1289	if (bp->b_flags & B_INVAL) {
1290		brelse(bp);
1291		return;
1292	}
1293
1294	/*
1295	 * If we have too many dirty buffers, don't create any more.
1296	 * If we are wildly over our limit, then force a complete
1297	 * cleanup. Otherwise, just keep the situation from getting
1298	 * out of control. Note that we have to avoid a recursive
1299	 * disaster and not try to clean up after our own cleanup!
1300	 */
1301	vp = bp->b_vp;
1302	bo = bp->b_bufobj;
1303	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1304		td->td_pflags |= TDP_INBDFLUSH;
1305		BO_BDFLUSH(bo, bp);
1306		td->td_pflags &= ~TDP_INBDFLUSH;
1307	} else
1308		recursiveflushes++;
1309
1310	bdirty(bp);
1311	/*
1312	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1313	 * true even of NFS now.
1314	 */
1315	bp->b_flags |= B_CACHE;
1316
1317	/*
1318	 * This bmap keeps the system from needing to do the bmap later,
1319	 * perhaps when the system is attempting to do a sync.  Since it
1320	 * is likely that the indirect block -- or whatever other datastructure
1321	 * that the filesystem needs is still in memory now, it is a good
1322	 * thing to do this.  Note also, that if the pageout daemon is
1323	 * requesting a sync -- there might not be enough memory to do
1324	 * the bmap then...  So, this is important to do.
1325	 */
1326	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1327		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1328	}
1329
1330	/*
1331	 * Set the *dirty* buffer range based upon the VM system dirty
1332	 * pages.
1333	 *
1334	 * Mark the buffer pages as clean.  We need to do this here to
1335	 * satisfy the vnode_pager and the pageout daemon, so that it
1336	 * thinks that the pages have been "cleaned".  Note that since
1337	 * the pages are in a delayed write buffer -- the VFS layer
1338	 * "will" see that the pages get written out on the next sync,
1339	 * or perhaps the cluster will be completed.
1340	 */
1341	vfs_clean_pages_dirty_buf(bp);
1342	bqrelse(bp);
1343
1344	/*
1345	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1346	 * due to the softdep code.
1347	 */
1348}
1349
1350/*
1351 *	bdirty:
1352 *
1353 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1354 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1355 *	itself to properly update it in the dirty/clean lists.  We mark it
1356 *	B_DONE to ensure that any asynchronization of the buffer properly
1357 *	clears B_DONE ( else a panic will occur later ).
1358 *
1359 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1360 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1361 *	should only be called if the buffer is known-good.
1362 *
1363 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1364 *	count.
1365 *
1366 *	The buffer must be on QUEUE_NONE.
1367 */
1368void
1369bdirty(struct buf *bp)
1370{
1371
1372	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1373	    bp, bp->b_vp, bp->b_flags);
1374	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1375	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1376	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1377	BUF_ASSERT_HELD(bp);
1378	bp->b_flags &= ~(B_RELBUF);
1379	bp->b_iocmd = BIO_WRITE;
1380
1381	if ((bp->b_flags & B_DELWRI) == 0) {
1382		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1383		reassignbuf(bp);
1384		bdirtyadd();
1385	}
1386}
1387
1388/*
1389 *	bundirty:
1390 *
1391 *	Clear B_DELWRI for buffer.
1392 *
1393 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1394 *	count.
1395 *
1396 *	The buffer must be on QUEUE_NONE.
1397 */
1398
1399void
1400bundirty(struct buf *bp)
1401{
1402
1403	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1404	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1405	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1406	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1407	BUF_ASSERT_HELD(bp);
1408
1409	if (bp->b_flags & B_DELWRI) {
1410		bp->b_flags &= ~B_DELWRI;
1411		reassignbuf(bp);
1412		bdirtysub();
1413	}
1414	/*
1415	 * Since it is now being written, we can clear its deferred write flag.
1416	 */
1417	bp->b_flags &= ~B_DEFERRED;
1418}
1419
1420/*
1421 *	bawrite:
1422 *
1423 *	Asynchronous write.  Start output on a buffer, but do not wait for
1424 *	it to complete.  The buffer is released when the output completes.
1425 *
1426 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1427 *	B_INVAL buffers.  Not us.
1428 */
1429void
1430bawrite(struct buf *bp)
1431{
1432
1433	bp->b_flags |= B_ASYNC;
1434	(void) bwrite(bp);
1435}
1436
1437/*
1438 *	babarrierwrite:
1439 *
1440 *	Asynchronous barrier write.  Start output on a buffer, but do not
1441 *	wait for it to complete.  Place a write barrier after this write so
1442 *	that this buffer and all buffers written before it are committed to
1443 *	the disk before any buffers written after this write are committed
1444 *	to the disk.  The buffer is released when the output completes.
1445 */
1446void
1447babarrierwrite(struct buf *bp)
1448{
1449
1450	bp->b_flags |= B_ASYNC | B_BARRIER;
1451	(void) bwrite(bp);
1452}
1453
1454/*
1455 *	bbarrierwrite:
1456 *
1457 *	Synchronous barrier write.  Start output on a buffer and wait for
1458 *	it to complete.  Place a write barrier after this write so that
1459 *	this buffer and all buffers written before it are committed to
1460 *	the disk before any buffers written after this write are committed
1461 *	to the disk.  The buffer is released when the output completes.
1462 */
1463int
1464bbarrierwrite(struct buf *bp)
1465{
1466
1467	bp->b_flags |= B_BARRIER;
1468	return (bwrite(bp));
1469}
1470
1471/*
1472 *	bwillwrite:
1473 *
1474 *	Called prior to the locking of any vnodes when we are expecting to
1475 *	write.  We do not want to starve the buffer cache with too many
1476 *	dirty buffers so we block here.  By blocking prior to the locking
1477 *	of any vnodes we attempt to avoid the situation where a locked vnode
1478 *	prevents the various system daemons from flushing related buffers.
1479 */
1480void
1481bwillwrite(void)
1482{
1483
1484	if (numdirtybuffers >= hidirtybuffers) {
1485		mtx_lock(&bdirtylock);
1486		while (numdirtybuffers >= hidirtybuffers) {
1487			bdirtywait = 1;
1488			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1489			    "flswai", 0);
1490		}
1491		mtx_unlock(&bdirtylock);
1492	}
1493}
1494
1495/*
1496 * Return true if we have too many dirty buffers.
1497 */
1498int
1499buf_dirty_count_severe(void)
1500{
1501
1502	return(numdirtybuffers >= hidirtybuffers);
1503}
1504
1505static __noinline int
1506buf_vm_page_count_severe(void)
1507{
1508
1509	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1510
1511	return vm_page_count_severe();
1512}
1513
1514/*
1515 *	brelse:
1516 *
1517 *	Release a busy buffer and, if requested, free its resources.  The
1518 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1519 *	to be accessed later as a cache entity or reused for other purposes.
1520 */
1521void
1522brelse(struct buf *bp)
1523{
1524	int qindex;
1525
1526	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1527	    bp, bp->b_vp, bp->b_flags);
1528	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1529	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1530
1531	if (BUF_LOCKRECURSED(bp)) {
1532		/*
1533		 * Do not process, in particular, do not handle the
1534		 * B_INVAL/B_RELBUF and do not release to free list.
1535		 */
1536		BUF_UNLOCK(bp);
1537		return;
1538	}
1539
1540	if (bp->b_flags & B_MANAGED) {
1541		bqrelse(bp);
1542		return;
1543	}
1544
1545	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1546	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1547		/*
1548		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1549		 * pages from being scrapped.  If the error is anything
1550		 * other than an I/O error (EIO), assume that retrying
1551		 * is futile.
1552		 */
1553		bp->b_ioflags &= ~BIO_ERROR;
1554		bdirty(bp);
1555	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1556	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1557		/*
1558		 * Either a failed I/O or we were asked to free or not
1559		 * cache the buffer.
1560		 */
1561		bp->b_flags |= B_INVAL;
1562		if (!LIST_EMPTY(&bp->b_dep))
1563			buf_deallocate(bp);
1564		if (bp->b_flags & B_DELWRI)
1565			bdirtysub();
1566		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1567		if ((bp->b_flags & B_VMIO) == 0) {
1568			if (bp->b_bufsize)
1569				allocbuf(bp, 0);
1570			if (bp->b_vp)
1571				brelvp(bp);
1572		}
1573	}
1574
1575	/*
1576	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1577	 * is called with B_DELWRI set, the underlying pages may wind up
1578	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1579	 * because pages associated with a B_DELWRI bp are marked clean.
1580	 *
1581	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1582	 * if B_DELWRI is set.
1583	 *
1584	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1585	 * on pages to return pages to the VM page queues.
1586	 */
1587	if (bp->b_flags & B_DELWRI)
1588		bp->b_flags &= ~B_RELBUF;
1589	else if (buf_vm_page_count_severe()) {
1590		/*
1591		 * BKGRDINPROG can only be set with the buf and bufobj
1592		 * locks both held.  We tolerate a race to clear it here.
1593		 */
1594		if (!(bp->b_vflags & BV_BKGRDINPROG))
1595			bp->b_flags |= B_RELBUF;
1596	}
1597
1598	/*
1599	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1600	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1601	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1602	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1603	 *
1604	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1605	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1606	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1607	 *
1608	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1609	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1610	 * the commit state and we cannot afford to lose the buffer. If the
1611	 * buffer has a background write in progress, we need to keep it
1612	 * around to prevent it from being reconstituted and starting a second
1613	 * background write.
1614	 */
1615	if ((bp->b_flags & B_VMIO)
1616	    && !(bp->b_vp->v_mount != NULL &&
1617		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1618		 !vn_isdisk(bp->b_vp, NULL) &&
1619		 (bp->b_flags & B_DELWRI))
1620	    ) {
1621
1622		int i, j, resid;
1623		vm_page_t m;
1624		off_t foff;
1625		vm_pindex_t poff;
1626		vm_object_t obj;
1627
1628		obj = bp->b_bufobj->bo_object;
1629
1630		/*
1631		 * Get the base offset and length of the buffer.  Note that
1632		 * in the VMIO case if the buffer block size is not
1633		 * page-aligned then b_data pointer may not be page-aligned.
1634		 * But our b_pages[] array *IS* page aligned.
1635		 *
1636		 * block sizes less then DEV_BSIZE (usually 512) are not
1637		 * supported due to the page granularity bits (m->valid,
1638		 * m->dirty, etc...).
1639		 *
1640		 * See man buf(9) for more information
1641		 */
1642		resid = bp->b_bufsize;
1643		foff = bp->b_offset;
1644		for (i = 0; i < bp->b_npages; i++) {
1645			int had_bogus = 0;
1646
1647			m = bp->b_pages[i];
1648
1649			/*
1650			 * If we hit a bogus page, fixup *all* the bogus pages
1651			 * now.
1652			 */
1653			if (m == bogus_page) {
1654				poff = OFF_TO_IDX(bp->b_offset);
1655				had_bogus = 1;
1656
1657				VM_OBJECT_RLOCK(obj);
1658				for (j = i; j < bp->b_npages; j++) {
1659					vm_page_t mtmp;
1660					mtmp = bp->b_pages[j];
1661					if (mtmp == bogus_page) {
1662						mtmp = vm_page_lookup(obj, poff + j);
1663						if (!mtmp) {
1664							panic("brelse: page missing\n");
1665						}
1666						bp->b_pages[j] = mtmp;
1667					}
1668				}
1669				VM_OBJECT_RUNLOCK(obj);
1670
1671				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1672					BUF_CHECK_MAPPED(bp);
1673					pmap_qenter(
1674					    trunc_page((vm_offset_t)bp->b_data),
1675					    bp->b_pages, bp->b_npages);
1676				}
1677				m = bp->b_pages[i];
1678			}
1679			if ((bp->b_flags & B_NOCACHE) ||
1680			    (bp->b_ioflags & BIO_ERROR &&
1681			     bp->b_iocmd == BIO_READ)) {
1682				int poffset = foff & PAGE_MASK;
1683				int presid = resid > (PAGE_SIZE - poffset) ?
1684					(PAGE_SIZE - poffset) : resid;
1685
1686				KASSERT(presid >= 0, ("brelse: extra page"));
1687				VM_OBJECT_WLOCK(obj);
1688				while (vm_page_xbusied(m)) {
1689					vm_page_lock(m);
1690					VM_OBJECT_WUNLOCK(obj);
1691					vm_page_busy_sleep(m, "mbncsh");
1692					VM_OBJECT_WLOCK(obj);
1693				}
1694				if (pmap_page_wired_mappings(m) == 0)
1695					vm_page_set_invalid(m, poffset, presid);
1696				VM_OBJECT_WUNLOCK(obj);
1697				if (had_bogus)
1698					printf("avoided corruption bug in bogus_page/brelse code\n");
1699			}
1700			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1701			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1702		}
1703		if (bp->b_flags & (B_INVAL | B_RELBUF))
1704			vfs_vmio_release(bp);
1705
1706	} else if (bp->b_flags & B_VMIO) {
1707
1708		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1709			vfs_vmio_release(bp);
1710		}
1711
1712	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1713		if (bp->b_bufsize != 0)
1714			allocbuf(bp, 0);
1715		if (bp->b_vp != NULL)
1716			brelvp(bp);
1717	}
1718
1719	/*
1720	 * If the buffer has junk contents signal it and eventually
1721	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1722	 * doesn't find it.
1723	 */
1724	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1725	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1726		bp->b_flags |= B_INVAL;
1727	if (bp->b_flags & B_INVAL) {
1728		if (bp->b_flags & B_DELWRI)
1729			bundirty(bp);
1730		if (bp->b_vp)
1731			brelvp(bp);
1732	}
1733
1734	/* buffers with no memory */
1735	if (bp->b_bufsize == 0) {
1736		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1737		if (bp->b_vflags & BV_BKGRDINPROG)
1738			panic("losing buffer 1");
1739		if (bp->b_kvasize)
1740			qindex = QUEUE_EMPTYKVA;
1741		else
1742			qindex = QUEUE_EMPTY;
1743		bp->b_flags |= B_AGE;
1744	/* buffers with junk contents */
1745	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1746	    (bp->b_ioflags & BIO_ERROR)) {
1747		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1748		if (bp->b_vflags & BV_BKGRDINPROG)
1749			panic("losing buffer 2");
1750		qindex = QUEUE_CLEAN;
1751		bp->b_flags |= B_AGE;
1752	/* remaining buffers */
1753	} else if (bp->b_flags & B_DELWRI)
1754		qindex = QUEUE_DIRTY;
1755	else
1756		qindex = QUEUE_CLEAN;
1757
1758	binsfree(bp, qindex);
1759
1760	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1761	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1762		panic("brelse: not dirty");
1763	/* unlock */
1764	BUF_UNLOCK(bp);
1765}
1766
1767/*
1768 * Release a buffer back to the appropriate queue but do not try to free
1769 * it.  The buffer is expected to be used again soon.
1770 *
1771 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1772 * biodone() to requeue an async I/O on completion.  It is also used when
1773 * known good buffers need to be requeued but we think we may need the data
1774 * again soon.
1775 *
1776 * XXX we should be able to leave the B_RELBUF hint set on completion.
1777 */
1778void
1779bqrelse(struct buf *bp)
1780{
1781	int qindex;
1782
1783	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1784	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1785	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1786
1787	if (BUF_LOCKRECURSED(bp)) {
1788		/* do not release to free list */
1789		BUF_UNLOCK(bp);
1790		return;
1791	}
1792	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1793
1794	if (bp->b_flags & B_MANAGED) {
1795		if (bp->b_flags & B_REMFREE)
1796			bremfreef(bp);
1797		goto out;
1798	}
1799
1800	/* buffers with stale but valid contents */
1801	if (bp->b_flags & B_DELWRI) {
1802		qindex = QUEUE_DIRTY;
1803	} else {
1804		if ((bp->b_flags & B_DELWRI) == 0 &&
1805		    (bp->b_xflags & BX_VNDIRTY))
1806			panic("bqrelse: not dirty");
1807		/*
1808		 * BKGRDINPROG can only be set with the buf and bufobj
1809		 * locks both held.  We tolerate a race to clear it here.
1810		 */
1811		if (buf_vm_page_count_severe() &&
1812		    (bp->b_vflags & BV_BKGRDINPROG) == 0) {
1813			/*
1814			 * We are too low on memory, we have to try to free
1815			 * the buffer (most importantly: the wired pages
1816			 * making up its backing store) *now*.
1817			 */
1818			brelse(bp);
1819			return;
1820		}
1821		qindex = QUEUE_CLEAN;
1822	}
1823	binsfree(bp, qindex);
1824
1825out:
1826	/* unlock */
1827	BUF_UNLOCK(bp);
1828}
1829
1830/* Give pages used by the bp back to the VM system (where possible) */
1831static void
1832vfs_vmio_release(struct buf *bp)
1833{
1834	int i;
1835	vm_page_t m;
1836
1837	if ((bp->b_flags & B_UNMAPPED) == 0) {
1838		BUF_CHECK_MAPPED(bp);
1839		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1840	} else
1841		BUF_CHECK_UNMAPPED(bp);
1842	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
1843	for (i = 0; i < bp->b_npages; i++) {
1844		m = bp->b_pages[i];
1845		bp->b_pages[i] = NULL;
1846		/*
1847		 * In order to keep page LRU ordering consistent, put
1848		 * everything on the inactive queue.
1849		 */
1850		vm_page_lock(m);
1851		vm_page_unwire(m, 0);
1852
1853		/*
1854		 * Might as well free the page if we can and it has
1855		 * no valid data.  We also free the page if the
1856		 * buffer was used for direct I/O
1857		 */
1858		if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1859			if (m->wire_count == 0 && !vm_page_busied(m))
1860				vm_page_free(m);
1861		} else if (bp->b_flags & B_DIRECT)
1862			vm_page_try_to_free(m);
1863		else if (buf_vm_page_count_severe())
1864			vm_page_try_to_cache(m);
1865		vm_page_unlock(m);
1866	}
1867	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
1868
1869	if (bp->b_bufsize) {
1870		bufspacewakeup();
1871		bp->b_bufsize = 0;
1872	}
1873	bp->b_npages = 0;
1874	bp->b_flags &= ~B_VMIO;
1875	if (bp->b_vp)
1876		brelvp(bp);
1877}
1878
1879/*
1880 * Check to see if a block at a particular lbn is available for a clustered
1881 * write.
1882 */
1883static int
1884vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1885{
1886	struct buf *bpa;
1887	int match;
1888
1889	match = 0;
1890
1891	/* If the buf isn't in core skip it */
1892	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1893		return (0);
1894
1895	/* If the buf is busy we don't want to wait for it */
1896	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1897		return (0);
1898
1899	/* Only cluster with valid clusterable delayed write buffers */
1900	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1901	    (B_DELWRI | B_CLUSTEROK))
1902		goto done;
1903
1904	if (bpa->b_bufsize != size)
1905		goto done;
1906
1907	/*
1908	 * Check to see if it is in the expected place on disk and that the
1909	 * block has been mapped.
1910	 */
1911	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1912		match = 1;
1913done:
1914	BUF_UNLOCK(bpa);
1915	return (match);
1916}
1917
1918/*
1919 *	vfs_bio_awrite:
1920 *
1921 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1922 *	This is much better then the old way of writing only one buffer at
1923 *	a time.  Note that we may not be presented with the buffers in the
1924 *	correct order, so we search for the cluster in both directions.
1925 */
1926int
1927vfs_bio_awrite(struct buf *bp)
1928{
1929	struct bufobj *bo;
1930	int i;
1931	int j;
1932	daddr_t lblkno = bp->b_lblkno;
1933	struct vnode *vp = bp->b_vp;
1934	int ncl;
1935	int nwritten;
1936	int size;
1937	int maxcl;
1938	int gbflags;
1939
1940	bo = &vp->v_bufobj;
1941	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1942	/*
1943	 * right now we support clustered writing only to regular files.  If
1944	 * we find a clusterable block we could be in the middle of a cluster
1945	 * rather then at the beginning.
1946	 */
1947	if ((vp->v_type == VREG) &&
1948	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1949	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1950
1951		size = vp->v_mount->mnt_stat.f_iosize;
1952		maxcl = MAXPHYS / size;
1953
1954		BO_RLOCK(bo);
1955		for (i = 1; i < maxcl; i++)
1956			if (vfs_bio_clcheck(vp, size, lblkno + i,
1957			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1958				break;
1959
1960		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1961			if (vfs_bio_clcheck(vp, size, lblkno - j,
1962			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1963				break;
1964		BO_RUNLOCK(bo);
1965		--j;
1966		ncl = i + j;
1967		/*
1968		 * this is a possible cluster write
1969		 */
1970		if (ncl != 1) {
1971			BUF_UNLOCK(bp);
1972			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
1973			    gbflags);
1974			return (nwritten);
1975		}
1976	}
1977	bremfree(bp);
1978	bp->b_flags |= B_ASYNC;
1979	/*
1980	 * default (old) behavior, writing out only one block
1981	 *
1982	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1983	 */
1984	nwritten = bp->b_bufsize;
1985	(void) bwrite(bp);
1986
1987	return (nwritten);
1988}
1989
1990static void
1991setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
1992{
1993
1994	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
1995	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
1996	if ((gbflags & GB_UNMAPPED) == 0) {
1997		bp->b_kvabase = (caddr_t)addr;
1998	} else if ((gbflags & GB_KVAALLOC) != 0) {
1999		KASSERT((gbflags & GB_UNMAPPED) != 0,
2000		    ("GB_KVAALLOC without GB_UNMAPPED"));
2001		bp->b_kvaalloc = (caddr_t)addr;
2002		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2003		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2004	}
2005	bp->b_kvasize = maxsize;
2006}
2007
2008/*
2009 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
2010 * needed.
2011 */
2012static int
2013allocbufkva(struct buf *bp, int maxsize, int gbflags)
2014{
2015	vm_offset_t addr;
2016
2017	bfreekva(bp);
2018	addr = 0;
2019
2020	if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) {
2021		/*
2022		 * Buffer map is too fragmented.  Request the caller
2023		 * to defragment the map.
2024		 */
2025		atomic_add_int(&bufdefragcnt, 1);
2026		return (1);
2027	}
2028	setbufkva(bp, addr, maxsize, gbflags);
2029	atomic_add_long(&bufspace, bp->b_kvasize);
2030	return (0);
2031}
2032
2033/*
2034 * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2035 * locked vnode is supplied.
2036 */
2037static void
2038getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2039    int defrag)
2040{
2041	struct thread *td;
2042	char *waitmsg;
2043	int cnt, error, flags, norunbuf, wait;
2044
2045	mtx_assert(&bqclean, MA_OWNED);
2046
2047	if (defrag) {
2048		flags = VFS_BIO_NEED_BUFSPACE;
2049		waitmsg = "nbufkv";
2050	} else if (bufspace >= hibufspace) {
2051		waitmsg = "nbufbs";
2052		flags = VFS_BIO_NEED_BUFSPACE;
2053	} else {
2054		waitmsg = "newbuf";
2055		flags = VFS_BIO_NEED_ANY;
2056	}
2057	mtx_lock(&nblock);
2058	needsbuffer |= flags;
2059	mtx_unlock(&nblock);
2060	mtx_unlock(&bqclean);
2061
2062	bd_speedup();	/* heeeelp */
2063	if ((gbflags & GB_NOWAIT_BD) != 0)
2064		return;
2065
2066	td = curthread;
2067	cnt = 0;
2068	wait = MNT_NOWAIT;
2069	mtx_lock(&nblock);
2070	while (needsbuffer & flags) {
2071		if (vp != NULL && vp->v_type != VCHR &&
2072		    (td->td_pflags & TDP_BUFNEED) == 0) {
2073			mtx_unlock(&nblock);
2074
2075			/*
2076			 * getblk() is called with a vnode locked, and
2077			 * some majority of the dirty buffers may as
2078			 * well belong to the vnode.  Flushing the
2079			 * buffers there would make a progress that
2080			 * cannot be achieved by the buf_daemon, that
2081			 * cannot lock the vnode.
2082			 */
2083			if (cnt++ > 2)
2084				wait = MNT_WAIT;
2085			ASSERT_VOP_LOCKED(vp, "bufd_helper");
2086			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2087			    vn_lock(vp, LK_TRYUPGRADE);
2088			if (error == 0) {
2089				/* play bufdaemon */
2090				norunbuf = curthread_pflags_set(TDP_BUFNEED |
2091				    TDP_NORUNNINGBUF);
2092				VOP_FSYNC(vp, wait, td);
2093				atomic_add_long(&notbufdflushes, 1);
2094				curthread_pflags_restore(norunbuf);
2095			}
2096			mtx_lock(&nblock);
2097			if ((needsbuffer & flags) == 0)
2098				break;
2099		}
2100		if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
2101		    waitmsg, slptimeo))
2102			break;
2103	}
2104	mtx_unlock(&nblock);
2105}
2106
2107static void
2108getnewbuf_reuse_bp(struct buf *bp, int qindex)
2109{
2110
2111	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2112	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2113	     bp->b_kvasize, bp->b_bufsize, qindex);
2114	mtx_assert(&bqclean, MA_NOTOWNED);
2115
2116	/*
2117	 * Note: we no longer distinguish between VMIO and non-VMIO
2118	 * buffers.
2119	 */
2120	KASSERT((bp->b_flags & B_DELWRI) == 0,
2121	    ("delwri buffer %p found in queue %d", bp, qindex));
2122
2123	if (qindex == QUEUE_CLEAN) {
2124		if (bp->b_flags & B_VMIO) {
2125			bp->b_flags &= ~B_ASYNC;
2126			vfs_vmio_release(bp);
2127		}
2128		if (bp->b_vp != NULL)
2129			brelvp(bp);
2130	}
2131
2132	/*
2133	 * Get the rest of the buffer freed up.  b_kva* is still valid
2134	 * after this operation.
2135	 */
2136
2137	if (bp->b_rcred != NOCRED) {
2138		crfree(bp->b_rcred);
2139		bp->b_rcred = NOCRED;
2140	}
2141	if (bp->b_wcred != NOCRED) {
2142		crfree(bp->b_wcred);
2143		bp->b_wcred = NOCRED;
2144	}
2145	if (!LIST_EMPTY(&bp->b_dep))
2146		buf_deallocate(bp);
2147	if (bp->b_vflags & BV_BKGRDINPROG)
2148		panic("losing buffer 3");
2149	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2150	    bp, bp->b_vp, qindex));
2151	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2152	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2153
2154	if (bp->b_bufsize)
2155		allocbuf(bp, 0);
2156
2157	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2158	bp->b_ioflags = 0;
2159	bp->b_xflags = 0;
2160	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2161	    ("buf %p still counted as free?", bp));
2162	bp->b_vflags = 0;
2163	bp->b_vp = NULL;
2164	bp->b_blkno = bp->b_lblkno = 0;
2165	bp->b_offset = NOOFFSET;
2166	bp->b_iodone = 0;
2167	bp->b_error = 0;
2168	bp->b_resid = 0;
2169	bp->b_bcount = 0;
2170	bp->b_npages = 0;
2171	bp->b_dirtyoff = bp->b_dirtyend = 0;
2172	bp->b_bufobj = NULL;
2173	bp->b_pin_count = 0;
2174	bp->b_fsprivate1 = NULL;
2175	bp->b_fsprivate2 = NULL;
2176	bp->b_fsprivate3 = NULL;
2177
2178	LIST_INIT(&bp->b_dep);
2179}
2180
2181static int flushingbufs;
2182
2183static struct buf *
2184getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2185{
2186	struct buf *bp, *nbp;
2187	int nqindex, qindex, pass;
2188
2189	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2190
2191	pass = 1;
2192restart:
2193	atomic_add_int(&getnewbufrestarts, 1);
2194
2195	/*
2196	 * Setup for scan.  If we do not have enough free buffers,
2197	 * we setup a degenerate case that immediately fails.  Note
2198	 * that if we are specially marked process, we are allowed to
2199	 * dip into our reserves.
2200	 *
2201	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2202	 * for the allocation of the mapped buffer.  For unmapped, the
2203	 * easiest is to start with EMPTY outright.
2204	 *
2205	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2206	 * However, there are a number of cases (defragging, reusing, ...)
2207	 * where we cannot backup.
2208	 */
2209	nbp = NULL;
2210	mtx_lock(&bqclean);
2211	if (!defrag && unmapped) {
2212		nqindex = QUEUE_EMPTY;
2213		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2214	}
2215	if (nbp == NULL) {
2216		nqindex = QUEUE_EMPTYKVA;
2217		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2218	}
2219
2220	/*
2221	 * If no EMPTYKVA buffers and we are either defragging or
2222	 * reusing, locate a CLEAN buffer to free or reuse.  If
2223	 * bufspace useage is low skip this step so we can allocate a
2224	 * new buffer.
2225	 */
2226	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2227		nqindex = QUEUE_CLEAN;
2228		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2229	}
2230
2231	/*
2232	 * If we could not find or were not allowed to reuse a CLEAN
2233	 * buffer, check to see if it is ok to use an EMPTY buffer.
2234	 * We can only use an EMPTY buffer if allocating its KVA would
2235	 * not otherwise run us out of buffer space.  No KVA is needed
2236	 * for the unmapped allocation.
2237	 */
2238	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2239	    metadata)) {
2240		nqindex = QUEUE_EMPTY;
2241		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2242	}
2243
2244	/*
2245	 * All available buffers might be clean, retry ignoring the
2246	 * lobufspace as the last resort.
2247	 */
2248	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2249		nqindex = QUEUE_CLEAN;
2250		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2251	}
2252
2253	/*
2254	 * Run scan, possibly freeing data and/or kva mappings on the fly
2255	 * depending.
2256	 */
2257	while ((bp = nbp) != NULL) {
2258		qindex = nqindex;
2259
2260		/*
2261		 * Calculate next bp (we can only use it if we do not
2262		 * block or do other fancy things).
2263		 */
2264		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2265			switch (qindex) {
2266			case QUEUE_EMPTY:
2267				nqindex = QUEUE_EMPTYKVA;
2268				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2269				if (nbp != NULL)
2270					break;
2271				/* FALLTHROUGH */
2272			case QUEUE_EMPTYKVA:
2273				nqindex = QUEUE_CLEAN;
2274				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2275				if (nbp != NULL)
2276					break;
2277				/* FALLTHROUGH */
2278			case QUEUE_CLEAN:
2279				if (metadata && pass == 1) {
2280					pass = 2;
2281					nqindex = QUEUE_EMPTY;
2282					nbp = TAILQ_FIRST(
2283					    &bufqueues[QUEUE_EMPTY]);
2284				}
2285				/*
2286				 * nbp is NULL.
2287				 */
2288				break;
2289			}
2290		}
2291		/*
2292		 * If we are defragging then we need a buffer with
2293		 * b_kvasize != 0.  XXX this situation should no longer
2294		 * occur, if defrag is non-zero the buffer's b_kvasize
2295		 * should also be non-zero at this point.  XXX
2296		 */
2297		if (defrag && bp->b_kvasize == 0) {
2298			printf("Warning: defrag empty buffer %p\n", bp);
2299			continue;
2300		}
2301
2302		/*
2303		 * Start freeing the bp.  This is somewhat involved.  nbp
2304		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2305		 */
2306		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2307			continue;
2308		/*
2309		 * BKGRDINPROG can only be set with the buf and bufobj
2310		 * locks both held.  We tolerate a race to clear it here.
2311		 */
2312		if (bp->b_vflags & BV_BKGRDINPROG) {
2313			BUF_UNLOCK(bp);
2314			continue;
2315		}
2316
2317		KASSERT(bp->b_qindex == qindex,
2318		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2319
2320		bremfreel(bp);
2321		mtx_unlock(&bqclean);
2322		/*
2323		 * NOTE:  nbp is now entirely invalid.  We can only restart
2324		 * the scan from this point on.
2325		 */
2326
2327		getnewbuf_reuse_bp(bp, qindex);
2328		mtx_assert(&bqclean, MA_NOTOWNED);
2329
2330		/*
2331		 * If we are defragging then free the buffer.
2332		 */
2333		if (defrag) {
2334			bp->b_flags |= B_INVAL;
2335			bfreekva(bp);
2336			brelse(bp);
2337			defrag = 0;
2338			goto restart;
2339		}
2340
2341		/*
2342		 * Notify any waiters for the buffer lock about
2343		 * identity change by freeing the buffer.
2344		 */
2345		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2346			bp->b_flags |= B_INVAL;
2347			bfreekva(bp);
2348			brelse(bp);
2349			goto restart;
2350		}
2351
2352		if (metadata)
2353			break;
2354
2355		/*
2356		 * If we are overcomitted then recover the buffer and its
2357		 * KVM space.  This occurs in rare situations when multiple
2358		 * processes are blocked in getnewbuf() or allocbuf().
2359		 */
2360		if (bufspace >= hibufspace)
2361			flushingbufs = 1;
2362		if (flushingbufs && bp->b_kvasize != 0) {
2363			bp->b_flags |= B_INVAL;
2364			bfreekva(bp);
2365			brelse(bp);
2366			goto restart;
2367		}
2368		if (bufspace < lobufspace)
2369			flushingbufs = 0;
2370		break;
2371	}
2372	return (bp);
2373}
2374
2375/*
2376 *	getnewbuf:
2377 *
2378 *	Find and initialize a new buffer header, freeing up existing buffers
2379 *	in the bufqueues as necessary.  The new buffer is returned locked.
2380 *
2381 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2382 *	buffer away, the caller must set B_INVAL prior to calling brelse().
2383 *
2384 *	We block if:
2385 *		We have insufficient buffer headers
2386 *		We have insufficient buffer space
2387 *		buffer_arena is too fragmented ( space reservation fails )
2388 *		If we have to flush dirty buffers ( but we try to avoid this )
2389 */
2390static struct buf *
2391getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2392    int gbflags)
2393{
2394	struct buf *bp;
2395	int defrag, metadata;
2396
2397	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2398	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2399	if (!unmapped_buf_allowed)
2400		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2401
2402	defrag = 0;
2403	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2404	    vp->v_type == VCHR)
2405		metadata = 1;
2406	else
2407		metadata = 0;
2408	/*
2409	 * We can't afford to block since we might be holding a vnode lock,
2410	 * which may prevent system daemons from running.  We deal with
2411	 * low-memory situations by proactively returning memory and running
2412	 * async I/O rather then sync I/O.
2413	 */
2414	atomic_add_int(&getnewbufcalls, 1);
2415	atomic_subtract_int(&getnewbufrestarts, 1);
2416restart:
2417	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2418	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2419	if (bp != NULL)
2420		defrag = 0;
2421
2422	/*
2423	 * If we exhausted our list, sleep as appropriate.  We may have to
2424	 * wakeup various daemons and write out some dirty buffers.
2425	 *
2426	 * Generally we are sleeping due to insufficient buffer space.
2427	 */
2428	if (bp == NULL) {
2429		mtx_assert(&bqclean, MA_OWNED);
2430		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2431		mtx_assert(&bqclean, MA_NOTOWNED);
2432	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2433		mtx_assert(&bqclean, MA_NOTOWNED);
2434
2435		bfreekva(bp);
2436		bp->b_flags |= B_UNMAPPED;
2437		bp->b_kvabase = bp->b_data = unmapped_buf;
2438		bp->b_kvasize = maxsize;
2439		atomic_add_long(&bufspace, bp->b_kvasize);
2440		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2441		atomic_add_int(&bufreusecnt, 1);
2442	} else {
2443		mtx_assert(&bqclean, MA_NOTOWNED);
2444
2445		/*
2446		 * We finally have a valid bp.  We aren't quite out of the
2447		 * woods, we still have to reserve kva space.  In order
2448		 * to keep fragmentation sane we only allocate kva in
2449		 * BKVASIZE chunks.
2450		 */
2451		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2452
2453		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2454		    B_KVAALLOC)) == B_UNMAPPED) {
2455			if (allocbufkva(bp, maxsize, gbflags)) {
2456				defrag = 1;
2457				bp->b_flags |= B_INVAL;
2458				brelse(bp);
2459				goto restart;
2460			}
2461			atomic_add_int(&bufreusecnt, 1);
2462		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2463		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2464			/*
2465			 * If the reused buffer has KVA allocated,
2466			 * reassign b_kvaalloc to b_kvabase.
2467			 */
2468			bp->b_kvabase = bp->b_kvaalloc;
2469			bp->b_flags &= ~B_KVAALLOC;
2470			atomic_subtract_long(&unmapped_bufspace,
2471			    bp->b_kvasize);
2472			atomic_add_int(&bufreusecnt, 1);
2473		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2474		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2475		    GB_KVAALLOC)) {
2476			/*
2477			 * The case of reused buffer already have KVA
2478			 * mapped, but the request is for unmapped
2479			 * buffer with KVA allocated.
2480			 */
2481			bp->b_kvaalloc = bp->b_kvabase;
2482			bp->b_data = bp->b_kvabase = unmapped_buf;
2483			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2484			atomic_add_long(&unmapped_bufspace,
2485			    bp->b_kvasize);
2486			atomic_add_int(&bufreusecnt, 1);
2487		}
2488		if ((gbflags & GB_UNMAPPED) == 0) {
2489			bp->b_saveaddr = bp->b_kvabase;
2490			bp->b_data = bp->b_saveaddr;
2491			bp->b_flags &= ~B_UNMAPPED;
2492			BUF_CHECK_MAPPED(bp);
2493		}
2494	}
2495	return (bp);
2496}
2497
2498/*
2499 *	buf_daemon:
2500 *
2501 *	buffer flushing daemon.  Buffers are normally flushed by the
2502 *	update daemon but if it cannot keep up this process starts to
2503 *	take the load in an attempt to prevent getnewbuf() from blocking.
2504 */
2505
2506static struct kproc_desc buf_kp = {
2507	"bufdaemon",
2508	buf_daemon,
2509	&bufdaemonproc
2510};
2511SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2512
2513static int
2514buf_flush(int target)
2515{
2516	int flushed;
2517
2518	flushed = flushbufqueues(target, 0);
2519	if (flushed == 0) {
2520		/*
2521		 * Could not find any buffers without rollback
2522		 * dependencies, so just write the first one
2523		 * in the hopes of eventually making progress.
2524		 */
2525		flushed = flushbufqueues(target, 1);
2526	}
2527	return (flushed);
2528}
2529
2530static void
2531buf_daemon()
2532{
2533	int lodirty;
2534
2535	/*
2536	 * This process needs to be suspended prior to shutdown sync.
2537	 */
2538	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2539	    SHUTDOWN_PRI_LAST);
2540
2541	/*
2542	 * This process is allowed to take the buffer cache to the limit
2543	 */
2544	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2545	mtx_lock(&bdlock);
2546	for (;;) {
2547		bd_request = 0;
2548		mtx_unlock(&bdlock);
2549
2550		kproc_suspend_check(bufdaemonproc);
2551		lodirty = lodirtybuffers;
2552		if (bd_speedupreq) {
2553			lodirty = numdirtybuffers / 2;
2554			bd_speedupreq = 0;
2555		}
2556		/*
2557		 * Do the flush.  Limit the amount of in-transit I/O we
2558		 * allow to build up, otherwise we would completely saturate
2559		 * the I/O system.
2560		 */
2561		while (numdirtybuffers > lodirty) {
2562			if (buf_flush(numdirtybuffers - lodirty) == 0)
2563				break;
2564			kern_yield(PRI_USER);
2565		}
2566
2567		/*
2568		 * Only clear bd_request if we have reached our low water
2569		 * mark.  The buf_daemon normally waits 1 second and
2570		 * then incrementally flushes any dirty buffers that have
2571		 * built up, within reason.
2572		 *
2573		 * If we were unable to hit our low water mark and couldn't
2574		 * find any flushable buffers, we sleep for a short period
2575		 * to avoid endless loops on unlockable buffers.
2576		 */
2577		mtx_lock(&bdlock);
2578		if (numdirtybuffers <= lodirtybuffers) {
2579			/*
2580			 * We reached our low water mark, reset the
2581			 * request and sleep until we are needed again.
2582			 * The sleep is just so the suspend code works.
2583			 */
2584			bd_request = 0;
2585			/*
2586			 * Do an extra wakeup in case dirty threshold
2587			 * changed via sysctl and the explicit transition
2588			 * out of shortfall was missed.
2589			 */
2590			bdirtywakeup();
2591			if (runningbufspace <= lorunningspace)
2592				runningwakeup();
2593			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2594		} else {
2595			/*
2596			 * We couldn't find any flushable dirty buffers but
2597			 * still have too many dirty buffers, we
2598			 * have to sleep and try again.  (rare)
2599			 */
2600			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2601		}
2602	}
2603}
2604
2605/*
2606 *	flushbufqueues:
2607 *
2608 *	Try to flush a buffer in the dirty queue.  We must be careful to
2609 *	free up B_INVAL buffers instead of write them, which NFS is
2610 *	particularly sensitive to.
2611 */
2612static int flushwithdeps = 0;
2613SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2614    0, "Number of buffers flushed with dependecies that require rollbacks");
2615
2616static int
2617flushbufqueues(int target, int flushdeps)
2618{
2619	struct buf *sentinel;
2620	struct vnode *vp;
2621	struct mount *mp;
2622	struct buf *bp;
2623	int hasdeps;
2624	int flushed;
2625	int queue;
2626	int error;
2627
2628	flushed = 0;
2629	queue = QUEUE_DIRTY;
2630	bp = NULL;
2631	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2632	sentinel->b_qindex = QUEUE_SENTINEL;
2633	mtx_lock(&bqdirty);
2634	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2635	mtx_unlock(&bqdirty);
2636	while (flushed != target) {
2637		maybe_yield();
2638		mtx_lock(&bqdirty);
2639		bp = TAILQ_NEXT(sentinel, b_freelist);
2640		if (bp != NULL) {
2641			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2642			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2643			    b_freelist);
2644		} else {
2645			mtx_unlock(&bqdirty);
2646			break;
2647		}
2648		KASSERT(bp->b_qindex != QUEUE_SENTINEL,
2649		    ("parallel calls to flushbufqueues() bp %p", bp));
2650		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2651		mtx_unlock(&bqdirty);
2652		if (error != 0)
2653			continue;
2654		if (bp->b_pin_count > 0) {
2655			BUF_UNLOCK(bp);
2656			continue;
2657		}
2658		/*
2659		 * BKGRDINPROG can only be set with the buf and bufobj
2660		 * locks both held.  We tolerate a race to clear it here.
2661		 */
2662		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2663		    (bp->b_flags & B_DELWRI) == 0) {
2664			BUF_UNLOCK(bp);
2665			continue;
2666		}
2667		if (bp->b_flags & B_INVAL) {
2668			bremfreef(bp);
2669			brelse(bp);
2670			flushed++;
2671			continue;
2672		}
2673
2674		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2675			if (flushdeps == 0) {
2676				BUF_UNLOCK(bp);
2677				continue;
2678			}
2679			hasdeps = 1;
2680		} else
2681			hasdeps = 0;
2682		/*
2683		 * We must hold the lock on a vnode before writing
2684		 * one of its buffers. Otherwise we may confuse, or
2685		 * in the case of a snapshot vnode, deadlock the
2686		 * system.
2687		 *
2688		 * The lock order here is the reverse of the normal
2689		 * of vnode followed by buf lock.  This is ok because
2690		 * the NOWAIT will prevent deadlock.
2691		 */
2692		vp = bp->b_vp;
2693		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2694			BUF_UNLOCK(bp);
2695			continue;
2696		}
2697		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2698		if (error == 0) {
2699			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2700			    bp, bp->b_vp, bp->b_flags);
2701			vfs_bio_awrite(bp);
2702			vn_finished_write(mp);
2703			VOP_UNLOCK(vp, 0);
2704			flushwithdeps += hasdeps;
2705			flushed++;
2706			if (runningbufspace > hirunningspace)
2707				waitrunningbufspace();
2708			continue;
2709		}
2710		vn_finished_write(mp);
2711		BUF_UNLOCK(bp);
2712	}
2713	mtx_lock(&bqdirty);
2714	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2715	mtx_unlock(&bqdirty);
2716	free(sentinel, M_TEMP);
2717	return (flushed);
2718}
2719
2720/*
2721 * Check to see if a block is currently memory resident.
2722 */
2723struct buf *
2724incore(struct bufobj *bo, daddr_t blkno)
2725{
2726	struct buf *bp;
2727
2728	BO_RLOCK(bo);
2729	bp = gbincore(bo, blkno);
2730	BO_RUNLOCK(bo);
2731	return (bp);
2732}
2733
2734/*
2735 * Returns true if no I/O is needed to access the
2736 * associated VM object.  This is like incore except
2737 * it also hunts around in the VM system for the data.
2738 */
2739
2740static int
2741inmem(struct vnode * vp, daddr_t blkno)
2742{
2743	vm_object_t obj;
2744	vm_offset_t toff, tinc, size;
2745	vm_page_t m;
2746	vm_ooffset_t off;
2747
2748	ASSERT_VOP_LOCKED(vp, "inmem");
2749
2750	if (incore(&vp->v_bufobj, blkno))
2751		return 1;
2752	if (vp->v_mount == NULL)
2753		return 0;
2754	obj = vp->v_object;
2755	if (obj == NULL)
2756		return (0);
2757
2758	size = PAGE_SIZE;
2759	if (size > vp->v_mount->mnt_stat.f_iosize)
2760		size = vp->v_mount->mnt_stat.f_iosize;
2761	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2762
2763	VM_OBJECT_RLOCK(obj);
2764	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2765		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2766		if (!m)
2767			goto notinmem;
2768		tinc = size;
2769		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2770			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2771		if (vm_page_is_valid(m,
2772		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2773			goto notinmem;
2774	}
2775	VM_OBJECT_RUNLOCK(obj);
2776	return 1;
2777
2778notinmem:
2779	VM_OBJECT_RUNLOCK(obj);
2780	return (0);
2781}
2782
2783/*
2784 * Set the dirty range for a buffer based on the status of the dirty
2785 * bits in the pages comprising the buffer.  The range is limited
2786 * to the size of the buffer.
2787 *
2788 * Tell the VM system that the pages associated with this buffer
2789 * are clean.  This is used for delayed writes where the data is
2790 * going to go to disk eventually without additional VM intevention.
2791 *
2792 * Note that while we only really need to clean through to b_bcount, we
2793 * just go ahead and clean through to b_bufsize.
2794 */
2795static void
2796vfs_clean_pages_dirty_buf(struct buf *bp)
2797{
2798	vm_ooffset_t foff, noff, eoff;
2799	vm_page_t m;
2800	int i;
2801
2802	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2803		return;
2804
2805	foff = bp->b_offset;
2806	KASSERT(bp->b_offset != NOOFFSET,
2807	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2808
2809	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2810	vfs_drain_busy_pages(bp);
2811	vfs_setdirty_locked_object(bp);
2812	for (i = 0; i < bp->b_npages; i++) {
2813		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2814		eoff = noff;
2815		if (eoff > bp->b_offset + bp->b_bufsize)
2816			eoff = bp->b_offset + bp->b_bufsize;
2817		m = bp->b_pages[i];
2818		vfs_page_set_validclean(bp, foff, m);
2819		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2820		foff = noff;
2821	}
2822	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2823}
2824
2825static void
2826vfs_setdirty_locked_object(struct buf *bp)
2827{
2828	vm_object_t object;
2829	int i;
2830
2831	object = bp->b_bufobj->bo_object;
2832	VM_OBJECT_ASSERT_WLOCKED(object);
2833
2834	/*
2835	 * We qualify the scan for modified pages on whether the
2836	 * object has been flushed yet.
2837	 */
2838	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2839		vm_offset_t boffset;
2840		vm_offset_t eoffset;
2841
2842		/*
2843		 * test the pages to see if they have been modified directly
2844		 * by users through the VM system.
2845		 */
2846		for (i = 0; i < bp->b_npages; i++)
2847			vm_page_test_dirty(bp->b_pages[i]);
2848
2849		/*
2850		 * Calculate the encompassing dirty range, boffset and eoffset,
2851		 * (eoffset - boffset) bytes.
2852		 */
2853
2854		for (i = 0; i < bp->b_npages; i++) {
2855			if (bp->b_pages[i]->dirty)
2856				break;
2857		}
2858		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2859
2860		for (i = bp->b_npages - 1; i >= 0; --i) {
2861			if (bp->b_pages[i]->dirty) {
2862				break;
2863			}
2864		}
2865		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2866
2867		/*
2868		 * Fit it to the buffer.
2869		 */
2870
2871		if (eoffset > bp->b_bcount)
2872			eoffset = bp->b_bcount;
2873
2874		/*
2875		 * If we have a good dirty range, merge with the existing
2876		 * dirty range.
2877		 */
2878
2879		if (boffset < eoffset) {
2880			if (bp->b_dirtyoff > boffset)
2881				bp->b_dirtyoff = boffset;
2882			if (bp->b_dirtyend < eoffset)
2883				bp->b_dirtyend = eoffset;
2884		}
2885	}
2886}
2887
2888/*
2889 * Allocate the KVA mapping for an existing buffer. It handles the
2890 * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2891 * KVA which is not mapped (B_KVAALLOC).
2892 */
2893static void
2894bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2895{
2896	struct buf *scratch_bp;
2897	int bsize, maxsize, need_mapping, need_kva;
2898	off_t offset;
2899
2900	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2901	    (gbflags & GB_UNMAPPED) == 0;
2902	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2903	    (gbflags & GB_KVAALLOC) != 0;
2904	if (!need_mapping && !need_kva)
2905		return;
2906
2907	BUF_CHECK_UNMAPPED(bp);
2908
2909	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2910		/*
2911		 * Buffer is not mapped, but the KVA was already
2912		 * reserved at the time of the instantiation.  Use the
2913		 * allocated space.
2914		 */
2915		bp->b_flags &= ~B_KVAALLOC;
2916		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2917		bp->b_kvabase = bp->b_kvaalloc;
2918		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2919		goto has_addr;
2920	}
2921
2922	/*
2923	 * Calculate the amount of the address space we would reserve
2924	 * if the buffer was mapped.
2925	 */
2926	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2927	offset = blkno * bsize;
2928	maxsize = size + (offset & PAGE_MASK);
2929	maxsize = imax(maxsize, bsize);
2930
2931mapping_loop:
2932	if (allocbufkva(bp, maxsize, gbflags)) {
2933		/*
2934		 * Request defragmentation. getnewbuf() returns us the
2935		 * allocated space by the scratch buffer KVA.
2936		 */
2937		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2938		    (GB_UNMAPPED | GB_KVAALLOC));
2939		if (scratch_bp == NULL) {
2940			if ((gbflags & GB_NOWAIT_BD) != 0) {
2941				/*
2942				 * XXXKIB: defragmentation cannot
2943				 * succeed, not sure what else to do.
2944				 */
2945				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
2946			}
2947			atomic_add_int(&mappingrestarts, 1);
2948			goto mapping_loop;
2949		}
2950		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
2951		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
2952		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
2953		    scratch_bp->b_kvasize, gbflags);
2954
2955		/* Get rid of the scratch buffer. */
2956		scratch_bp->b_kvasize = 0;
2957		scratch_bp->b_flags |= B_INVAL;
2958		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
2959		brelse(scratch_bp);
2960	}
2961	if (!need_mapping)
2962		return;
2963
2964has_addr:
2965	bp->b_saveaddr = bp->b_kvabase;
2966	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
2967	bp->b_flags &= ~B_UNMAPPED;
2968	BUF_CHECK_MAPPED(bp);
2969	bpmap_qenter(bp);
2970}
2971
2972/*
2973 *	getblk:
2974 *
2975 *	Get a block given a specified block and offset into a file/device.
2976 *	The buffers B_DONE bit will be cleared on return, making it almost
2977 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2978 *	return.  The caller should clear B_INVAL prior to initiating a
2979 *	READ.
2980 *
2981 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2982 *	an existing buffer.
2983 *
2984 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2985 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2986 *	and then cleared based on the backing VM.  If the previous buffer is
2987 *	non-0-sized but invalid, B_CACHE will be cleared.
2988 *
2989 *	If getblk() must create a new buffer, the new buffer is returned with
2990 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2991 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2992 *	backing VM.
2993 *
2994 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2995 *	B_CACHE bit is clear.
2996 *
2997 *	What this means, basically, is that the caller should use B_CACHE to
2998 *	determine whether the buffer is fully valid or not and should clear
2999 *	B_INVAL prior to issuing a read.  If the caller intends to validate
3000 *	the buffer by loading its data area with something, the caller needs
3001 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3002 *	the caller should set B_CACHE ( as an optimization ), else the caller
3003 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3004 *	a write attempt or if it was a successfull read.  If the caller
3005 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3006 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3007 */
3008struct buf *
3009getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3010    int flags)
3011{
3012	struct buf *bp;
3013	struct bufobj *bo;
3014	int bsize, error, maxsize, vmio;
3015	off_t offset;
3016
3017	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3018	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3019	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3020	ASSERT_VOP_LOCKED(vp, "getblk");
3021	if (size > MAXBSIZE)
3022		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
3023	if (!unmapped_buf_allowed)
3024		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3025
3026	bo = &vp->v_bufobj;
3027loop:
3028	BO_RLOCK(bo);
3029	bp = gbincore(bo, blkno);
3030	if (bp != NULL) {
3031		int lockflags;
3032		/*
3033		 * Buffer is in-core.  If the buffer is not busy nor managed,
3034		 * it must be on a queue.
3035		 */
3036		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3037
3038		if (flags & GB_LOCK_NOWAIT)
3039			lockflags |= LK_NOWAIT;
3040
3041		error = BUF_TIMELOCK(bp, lockflags,
3042		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3043
3044		/*
3045		 * If we slept and got the lock we have to restart in case
3046		 * the buffer changed identities.
3047		 */
3048		if (error == ENOLCK)
3049			goto loop;
3050		/* We timed out or were interrupted. */
3051		else if (error)
3052			return (NULL);
3053		/* If recursed, assume caller knows the rules. */
3054		else if (BUF_LOCKRECURSED(bp))
3055			goto end;
3056
3057		/*
3058		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3059		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3060		 * and for a VMIO buffer B_CACHE is adjusted according to the
3061		 * backing VM cache.
3062		 */
3063		if (bp->b_flags & B_INVAL)
3064			bp->b_flags &= ~B_CACHE;
3065		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3066			bp->b_flags |= B_CACHE;
3067		if (bp->b_flags & B_MANAGED)
3068			MPASS(bp->b_qindex == QUEUE_NONE);
3069		else
3070			bremfree(bp);
3071
3072		/*
3073		 * check for size inconsistencies for non-VMIO case.
3074		 */
3075		if (bp->b_bcount != size) {
3076			if ((bp->b_flags & B_VMIO) == 0 ||
3077			    (size > bp->b_kvasize)) {
3078				if (bp->b_flags & B_DELWRI) {
3079					/*
3080					 * If buffer is pinned and caller does
3081					 * not want sleep  waiting for it to be
3082					 * unpinned, bail out
3083					 * */
3084					if (bp->b_pin_count > 0) {
3085						if (flags & GB_LOCK_NOWAIT) {
3086							bqrelse(bp);
3087							return (NULL);
3088						} else {
3089							bunpin_wait(bp);
3090						}
3091					}
3092					bp->b_flags |= B_NOCACHE;
3093					bwrite(bp);
3094				} else {
3095					if (LIST_EMPTY(&bp->b_dep)) {
3096						bp->b_flags |= B_RELBUF;
3097						brelse(bp);
3098					} else {
3099						bp->b_flags |= B_NOCACHE;
3100						bwrite(bp);
3101					}
3102				}
3103				goto loop;
3104			}
3105		}
3106
3107		/*
3108		 * Handle the case of unmapped buffer which should
3109		 * become mapped, or the buffer for which KVA
3110		 * reservation is requested.
3111		 */
3112		bp_unmapped_get_kva(bp, blkno, size, flags);
3113
3114		/*
3115		 * If the size is inconsistant in the VMIO case, we can resize
3116		 * the buffer.  This might lead to B_CACHE getting set or
3117		 * cleared.  If the size has not changed, B_CACHE remains
3118		 * unchanged from its previous state.
3119		 */
3120		if (bp->b_bcount != size)
3121			allocbuf(bp, size);
3122
3123		KASSERT(bp->b_offset != NOOFFSET,
3124		    ("getblk: no buffer offset"));
3125
3126		/*
3127		 * A buffer with B_DELWRI set and B_CACHE clear must
3128		 * be committed before we can return the buffer in
3129		 * order to prevent the caller from issuing a read
3130		 * ( due to B_CACHE not being set ) and overwriting
3131		 * it.
3132		 *
3133		 * Most callers, including NFS and FFS, need this to
3134		 * operate properly either because they assume they
3135		 * can issue a read if B_CACHE is not set, or because
3136		 * ( for example ) an uncached B_DELWRI might loop due
3137		 * to softupdates re-dirtying the buffer.  In the latter
3138		 * case, B_CACHE is set after the first write completes,
3139		 * preventing further loops.
3140		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3141		 * above while extending the buffer, we cannot allow the
3142		 * buffer to remain with B_CACHE set after the write
3143		 * completes or it will represent a corrupt state.  To
3144		 * deal with this we set B_NOCACHE to scrap the buffer
3145		 * after the write.
3146		 *
3147		 * We might be able to do something fancy, like setting
3148		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3149		 * so the below call doesn't set B_CACHE, but that gets real
3150		 * confusing.  This is much easier.
3151		 */
3152
3153		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3154			bp->b_flags |= B_NOCACHE;
3155			bwrite(bp);
3156			goto loop;
3157		}
3158		bp->b_flags &= ~B_DONE;
3159	} else {
3160		/*
3161		 * Buffer is not in-core, create new buffer.  The buffer
3162		 * returned by getnewbuf() is locked.  Note that the returned
3163		 * buffer is also considered valid (not marked B_INVAL).
3164		 */
3165		BO_RUNLOCK(bo);
3166		/*
3167		 * If the user does not want us to create the buffer, bail out
3168		 * here.
3169		 */
3170		if (flags & GB_NOCREAT)
3171			return NULL;
3172		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3173			return NULL;
3174
3175		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3176		offset = blkno * bsize;
3177		vmio = vp->v_object != NULL;
3178		if (vmio) {
3179			maxsize = size + (offset & PAGE_MASK);
3180		} else {
3181			maxsize = size;
3182			/* Do not allow non-VMIO notmapped buffers. */
3183			flags &= ~GB_UNMAPPED;
3184		}
3185		maxsize = imax(maxsize, bsize);
3186
3187		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3188		if (bp == NULL) {
3189			if (slpflag || slptimeo)
3190				return NULL;
3191			goto loop;
3192		}
3193
3194		/*
3195		 * This code is used to make sure that a buffer is not
3196		 * created while the getnewbuf routine is blocked.
3197		 * This can be a problem whether the vnode is locked or not.
3198		 * If the buffer is created out from under us, we have to
3199		 * throw away the one we just created.
3200		 *
3201		 * Note: this must occur before we associate the buffer
3202		 * with the vp especially considering limitations in
3203		 * the splay tree implementation when dealing with duplicate
3204		 * lblkno's.
3205		 */
3206		BO_LOCK(bo);
3207		if (gbincore(bo, blkno)) {
3208			BO_UNLOCK(bo);
3209			bp->b_flags |= B_INVAL;
3210			brelse(bp);
3211			goto loop;
3212		}
3213
3214		/*
3215		 * Insert the buffer into the hash, so that it can
3216		 * be found by incore.
3217		 */
3218		bp->b_blkno = bp->b_lblkno = blkno;
3219		bp->b_offset = offset;
3220		bgetvp(vp, bp);
3221		BO_UNLOCK(bo);
3222
3223		/*
3224		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3225		 * buffer size starts out as 0, B_CACHE will be set by
3226		 * allocbuf() for the VMIO case prior to it testing the
3227		 * backing store for validity.
3228		 */
3229
3230		if (vmio) {
3231			bp->b_flags |= B_VMIO;
3232			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3233			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3234			    bp, vp->v_object, bp->b_bufobj->bo_object));
3235		} else {
3236			bp->b_flags &= ~B_VMIO;
3237			KASSERT(bp->b_bufobj->bo_object == NULL,
3238			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3239			    bp, bp->b_bufobj->bo_object));
3240			BUF_CHECK_MAPPED(bp);
3241		}
3242
3243		allocbuf(bp, size);
3244		bp->b_flags &= ~B_DONE;
3245	}
3246	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3247	BUF_ASSERT_HELD(bp);
3248end:
3249	KASSERT(bp->b_bufobj == bo,
3250	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3251	return (bp);
3252}
3253
3254/*
3255 * Get an empty, disassociated buffer of given size.  The buffer is initially
3256 * set to B_INVAL.
3257 */
3258struct buf *
3259geteblk(int size, int flags)
3260{
3261	struct buf *bp;
3262	int maxsize;
3263
3264	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3265	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3266		if ((flags & GB_NOWAIT_BD) &&
3267		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3268			return (NULL);
3269	}
3270	allocbuf(bp, size);
3271	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3272	BUF_ASSERT_HELD(bp);
3273	return (bp);
3274}
3275
3276
3277/*
3278 * This code constitutes the buffer memory from either anonymous system
3279 * memory (in the case of non-VMIO operations) or from an associated
3280 * VM object (in the case of VMIO operations).  This code is able to
3281 * resize a buffer up or down.
3282 *
3283 * Note that this code is tricky, and has many complications to resolve
3284 * deadlock or inconsistant data situations.  Tread lightly!!!
3285 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3286 * the caller.  Calling this code willy nilly can result in the loss of data.
3287 *
3288 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3289 * B_CACHE for the non-VMIO case.
3290 */
3291
3292int
3293allocbuf(struct buf *bp, int size)
3294{
3295	int newbsize, mbsize;
3296	int i;
3297
3298	BUF_ASSERT_HELD(bp);
3299
3300	if (bp->b_kvasize < size)
3301		panic("allocbuf: buffer too small");
3302
3303	if ((bp->b_flags & B_VMIO) == 0) {
3304		caddr_t origbuf;
3305		int origbufsize;
3306		/*
3307		 * Just get anonymous memory from the kernel.  Don't
3308		 * mess with B_CACHE.
3309		 */
3310		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3311		if (bp->b_flags & B_MALLOC)
3312			newbsize = mbsize;
3313		else
3314			newbsize = round_page(size);
3315
3316		if (newbsize < bp->b_bufsize) {
3317			/*
3318			 * malloced buffers are not shrunk
3319			 */
3320			if (bp->b_flags & B_MALLOC) {
3321				if (newbsize) {
3322					bp->b_bcount = size;
3323				} else {
3324					free(bp->b_data, M_BIOBUF);
3325					if (bp->b_bufsize) {
3326						atomic_subtract_long(
3327						    &bufmallocspace,
3328						    bp->b_bufsize);
3329						bufspacewakeup();
3330						bp->b_bufsize = 0;
3331					}
3332					bp->b_saveaddr = bp->b_kvabase;
3333					bp->b_data = bp->b_saveaddr;
3334					bp->b_bcount = 0;
3335					bp->b_flags &= ~B_MALLOC;
3336				}
3337				return 1;
3338			}
3339			vm_hold_free_pages(bp, newbsize);
3340		} else if (newbsize > bp->b_bufsize) {
3341			/*
3342			 * We only use malloced memory on the first allocation.
3343			 * and revert to page-allocated memory when the buffer
3344			 * grows.
3345			 */
3346			/*
3347			 * There is a potential smp race here that could lead
3348			 * to bufmallocspace slightly passing the max.  It
3349			 * is probably extremely rare and not worth worrying
3350			 * over.
3351			 */
3352			if ( (bufmallocspace < maxbufmallocspace) &&
3353				(bp->b_bufsize == 0) &&
3354				(mbsize <= PAGE_SIZE/2)) {
3355
3356				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3357				bp->b_bufsize = mbsize;
3358				bp->b_bcount = size;
3359				bp->b_flags |= B_MALLOC;
3360				atomic_add_long(&bufmallocspace, mbsize);
3361				return 1;
3362			}
3363			origbuf = NULL;
3364			origbufsize = 0;
3365			/*
3366			 * If the buffer is growing on its other-than-first allocation,
3367			 * then we revert to the page-allocation scheme.
3368			 */
3369			if (bp->b_flags & B_MALLOC) {
3370				origbuf = bp->b_data;
3371				origbufsize = bp->b_bufsize;
3372				bp->b_data = bp->b_kvabase;
3373				if (bp->b_bufsize) {
3374					atomic_subtract_long(&bufmallocspace,
3375					    bp->b_bufsize);
3376					bufspacewakeup();
3377					bp->b_bufsize = 0;
3378				}
3379				bp->b_flags &= ~B_MALLOC;
3380				newbsize = round_page(newbsize);
3381			}
3382			vm_hold_load_pages(
3383			    bp,
3384			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3385			    (vm_offset_t) bp->b_data + newbsize);
3386			if (origbuf) {
3387				bcopy(origbuf, bp->b_data, origbufsize);
3388				free(origbuf, M_BIOBUF);
3389			}
3390		}
3391	} else {
3392		int desiredpages;
3393
3394		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3395		desiredpages = (size == 0) ? 0 :
3396			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3397
3398		if (bp->b_flags & B_MALLOC)
3399			panic("allocbuf: VMIO buffer can't be malloced");
3400		/*
3401		 * Set B_CACHE initially if buffer is 0 length or will become
3402		 * 0-length.
3403		 */
3404		if (size == 0 || bp->b_bufsize == 0)
3405			bp->b_flags |= B_CACHE;
3406
3407		if (newbsize < bp->b_bufsize) {
3408			/*
3409			 * DEV_BSIZE aligned new buffer size is less then the
3410			 * DEV_BSIZE aligned existing buffer size.  Figure out
3411			 * if we have to remove any pages.
3412			 */
3413			if (desiredpages < bp->b_npages) {
3414				vm_page_t m;
3415
3416				if ((bp->b_flags & B_UNMAPPED) == 0) {
3417					BUF_CHECK_MAPPED(bp);
3418					pmap_qremove((vm_offset_t)trunc_page(
3419					    (vm_offset_t)bp->b_data) +
3420					    (desiredpages << PAGE_SHIFT),
3421					    (bp->b_npages - desiredpages));
3422				} else
3423					BUF_CHECK_UNMAPPED(bp);
3424				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3425				for (i = desiredpages; i < bp->b_npages; i++) {
3426					/*
3427					 * the page is not freed here -- it
3428					 * is the responsibility of
3429					 * vnode_pager_setsize
3430					 */
3431					m = bp->b_pages[i];
3432					KASSERT(m != bogus_page,
3433					    ("allocbuf: bogus page found"));
3434					while (vm_page_sleep_if_busy(m,
3435					    "biodep"))
3436						continue;
3437
3438					bp->b_pages[i] = NULL;
3439					vm_page_lock(m);
3440					vm_page_unwire(m, 0);
3441					vm_page_unlock(m);
3442				}
3443				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3444				bp->b_npages = desiredpages;
3445			}
3446		} else if (size > bp->b_bcount) {
3447			/*
3448			 * We are growing the buffer, possibly in a
3449			 * byte-granular fashion.
3450			 */
3451			vm_object_t obj;
3452			vm_offset_t toff;
3453			vm_offset_t tinc;
3454
3455			/*
3456			 * Step 1, bring in the VM pages from the object,
3457			 * allocating them if necessary.  We must clear
3458			 * B_CACHE if these pages are not valid for the
3459			 * range covered by the buffer.
3460			 */
3461
3462			obj = bp->b_bufobj->bo_object;
3463
3464			VM_OBJECT_WLOCK(obj);
3465			while (bp->b_npages < desiredpages) {
3466				vm_page_t m;
3467
3468				/*
3469				 * We must allocate system pages since blocking
3470				 * here could interfere with paging I/O, no
3471				 * matter which process we are.
3472				 *
3473				 * Only exclusive busy can be tested here.
3474				 * Blocking on shared busy might lead to
3475				 * deadlocks once allocbuf() is called after
3476				 * pages are vfs_busy_pages().
3477				 */
3478				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3479				    bp->b_npages, VM_ALLOC_NOBUSY |
3480				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3481				    VM_ALLOC_IGN_SBUSY |
3482				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3483				if (m->valid == 0)
3484					bp->b_flags &= ~B_CACHE;
3485				bp->b_pages[bp->b_npages] = m;
3486				++bp->b_npages;
3487			}
3488
3489			/*
3490			 * Step 2.  We've loaded the pages into the buffer,
3491			 * we have to figure out if we can still have B_CACHE
3492			 * set.  Note that B_CACHE is set according to the
3493			 * byte-granular range ( bcount and size ), new the
3494			 * aligned range ( newbsize ).
3495			 *
3496			 * The VM test is against m->valid, which is DEV_BSIZE
3497			 * aligned.  Needless to say, the validity of the data
3498			 * needs to also be DEV_BSIZE aligned.  Note that this
3499			 * fails with NFS if the server or some other client
3500			 * extends the file's EOF.  If our buffer is resized,
3501			 * B_CACHE may remain set! XXX
3502			 */
3503
3504			toff = bp->b_bcount;
3505			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3506
3507			while ((bp->b_flags & B_CACHE) && toff < size) {
3508				vm_pindex_t pi;
3509
3510				if (tinc > (size - toff))
3511					tinc = size - toff;
3512
3513				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3514				    PAGE_SHIFT;
3515
3516				vfs_buf_test_cache(
3517				    bp,
3518				    bp->b_offset,
3519				    toff,
3520				    tinc,
3521				    bp->b_pages[pi]
3522				);
3523				toff += tinc;
3524				tinc = PAGE_SIZE;
3525			}
3526			VM_OBJECT_WUNLOCK(obj);
3527
3528			/*
3529			 * Step 3, fixup the KVM pmap.
3530			 */
3531			if ((bp->b_flags & B_UNMAPPED) == 0)
3532				bpmap_qenter(bp);
3533			else
3534				BUF_CHECK_UNMAPPED(bp);
3535		}
3536	}
3537	if (newbsize < bp->b_bufsize)
3538		bufspacewakeup();
3539	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3540	bp->b_bcount = size;		/* requested buffer size	*/
3541	return 1;
3542}
3543
3544extern int inflight_transient_maps;
3545
3546void
3547biodone(struct bio *bp)
3548{
3549	struct mtx *mtxp;
3550	void (*done)(struct bio *);
3551	vm_offset_t start, end;
3552
3553	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3554		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3555		bp->bio_flags |= BIO_UNMAPPED;
3556		start = trunc_page((vm_offset_t)bp->bio_data);
3557		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3558		pmap_qremove(start, OFF_TO_IDX(end - start));
3559		vmem_free(transient_arena, start, end - start);
3560		atomic_add_int(&inflight_transient_maps, -1);
3561	}
3562	done = bp->bio_done;
3563	if (done == NULL) {
3564		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3565		mtx_lock(mtxp);
3566		bp->bio_flags |= BIO_DONE;
3567		wakeup(bp);
3568		mtx_unlock(mtxp);
3569	} else {
3570		bp->bio_flags |= BIO_DONE;
3571		done(bp);
3572	}
3573}
3574
3575/*
3576 * Wait for a BIO to finish.
3577 */
3578int
3579biowait(struct bio *bp, const char *wchan)
3580{
3581	struct mtx *mtxp;
3582
3583	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3584	mtx_lock(mtxp);
3585	while ((bp->bio_flags & BIO_DONE) == 0)
3586		msleep(bp, mtxp, PRIBIO, wchan, 0);
3587	mtx_unlock(mtxp);
3588	if (bp->bio_error != 0)
3589		return (bp->bio_error);
3590	if (!(bp->bio_flags & BIO_ERROR))
3591		return (0);
3592	return (EIO);
3593}
3594
3595void
3596biofinish(struct bio *bp, struct devstat *stat, int error)
3597{
3598
3599	if (error) {
3600		bp->bio_error = error;
3601		bp->bio_flags |= BIO_ERROR;
3602	}
3603	if (stat != NULL)
3604		devstat_end_transaction_bio(stat, bp);
3605	biodone(bp);
3606}
3607
3608/*
3609 *	bufwait:
3610 *
3611 *	Wait for buffer I/O completion, returning error status.  The buffer
3612 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3613 *	error and cleared.
3614 */
3615int
3616bufwait(struct buf *bp)
3617{
3618	if (bp->b_iocmd == BIO_READ)
3619		bwait(bp, PRIBIO, "biord");
3620	else
3621		bwait(bp, PRIBIO, "biowr");
3622	if (bp->b_flags & B_EINTR) {
3623		bp->b_flags &= ~B_EINTR;
3624		return (EINTR);
3625	}
3626	if (bp->b_ioflags & BIO_ERROR) {
3627		return (bp->b_error ? bp->b_error : EIO);
3628	} else {
3629		return (0);
3630	}
3631}
3632
3633 /*
3634  * Call back function from struct bio back up to struct buf.
3635  */
3636static void
3637bufdonebio(struct bio *bip)
3638{
3639	struct buf *bp;
3640
3641	bp = bip->bio_caller2;
3642	bp->b_resid = bp->b_bcount - bip->bio_completed;
3643	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3644	bp->b_ioflags = bip->bio_flags;
3645	bp->b_error = bip->bio_error;
3646	if (bp->b_error)
3647		bp->b_ioflags |= BIO_ERROR;
3648	bufdone(bp);
3649	g_destroy_bio(bip);
3650}
3651
3652void
3653dev_strategy(struct cdev *dev, struct buf *bp)
3654{
3655	struct cdevsw *csw;
3656	int ref;
3657
3658	KASSERT(dev->si_refcount > 0,
3659	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3660	    devtoname(dev), dev));
3661
3662	csw = dev_refthread(dev, &ref);
3663	dev_strategy_csw(dev, csw, bp);
3664	dev_relthread(dev, ref);
3665}
3666
3667void
3668dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3669{
3670	struct bio *bip;
3671
3672	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3673	    ("b_iocmd botch"));
3674	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3675	    dev->si_threadcount > 0,
3676	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3677	    dev));
3678	if (csw == NULL) {
3679		bp->b_error = ENXIO;
3680		bp->b_ioflags = BIO_ERROR;
3681		bufdone(bp);
3682		return;
3683	}
3684	for (;;) {
3685		bip = g_new_bio();
3686		if (bip != NULL)
3687			break;
3688		/* Try again later */
3689		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3690	}
3691	bip->bio_cmd = bp->b_iocmd;
3692	bip->bio_offset = bp->b_iooffset;
3693	bip->bio_length = bp->b_bcount;
3694	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3695	bdata2bio(bp, bip);
3696	bip->bio_done = bufdonebio;
3697	bip->bio_caller2 = bp;
3698	bip->bio_dev = dev;
3699	(*csw->d_strategy)(bip);
3700}
3701
3702/*
3703 *	bufdone:
3704 *
3705 *	Finish I/O on a buffer, optionally calling a completion function.
3706 *	This is usually called from an interrupt so process blocking is
3707 *	not allowed.
3708 *
3709 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3710 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3711 *	assuming B_INVAL is clear.
3712 *
3713 *	For the VMIO case, we set B_CACHE if the op was a read and no
3714 *	read error occured, or if the op was a write.  B_CACHE is never
3715 *	set if the buffer is invalid or otherwise uncacheable.
3716 *
3717 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3718 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3719 *	in the biodone routine.
3720 */
3721void
3722bufdone(struct buf *bp)
3723{
3724	struct bufobj *dropobj;
3725	void    (*biodone)(struct buf *);
3726
3727	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3728	dropobj = NULL;
3729
3730	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3731	BUF_ASSERT_HELD(bp);
3732
3733	runningbufwakeup(bp);
3734	if (bp->b_iocmd == BIO_WRITE)
3735		dropobj = bp->b_bufobj;
3736	/* call optional completion function if requested */
3737	if (bp->b_iodone != NULL) {
3738		biodone = bp->b_iodone;
3739		bp->b_iodone = NULL;
3740		(*biodone) (bp);
3741		if (dropobj)
3742			bufobj_wdrop(dropobj);
3743		return;
3744	}
3745
3746	bufdone_finish(bp);
3747
3748	if (dropobj)
3749		bufobj_wdrop(dropobj);
3750}
3751
3752void
3753bufdone_finish(struct buf *bp)
3754{
3755	BUF_ASSERT_HELD(bp);
3756
3757	if (!LIST_EMPTY(&bp->b_dep))
3758		buf_complete(bp);
3759
3760	if (bp->b_flags & B_VMIO) {
3761		vm_ooffset_t foff;
3762		vm_page_t m;
3763		vm_object_t obj;
3764		struct vnode *vp;
3765		int bogus, i, iosize;
3766
3767		obj = bp->b_bufobj->bo_object;
3768		KASSERT(obj->paging_in_progress >= bp->b_npages,
3769		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3770		    obj->paging_in_progress, bp->b_npages));
3771
3772		vp = bp->b_vp;
3773		KASSERT(vp->v_holdcnt > 0,
3774		    ("biodone_finish: vnode %p has zero hold count", vp));
3775		KASSERT(vp->v_object != NULL,
3776		    ("biodone_finish: vnode %p has no vm_object", vp));
3777
3778		foff = bp->b_offset;
3779		KASSERT(bp->b_offset != NOOFFSET,
3780		    ("biodone_finish: bp %p has no buffer offset", bp));
3781
3782		/*
3783		 * Set B_CACHE if the op was a normal read and no error
3784		 * occured.  B_CACHE is set for writes in the b*write()
3785		 * routines.
3786		 */
3787		iosize = bp->b_bcount - bp->b_resid;
3788		if (bp->b_iocmd == BIO_READ &&
3789		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3790		    !(bp->b_ioflags & BIO_ERROR)) {
3791			bp->b_flags |= B_CACHE;
3792		}
3793		bogus = 0;
3794		VM_OBJECT_WLOCK(obj);
3795		for (i = 0; i < bp->b_npages; i++) {
3796			int bogusflag = 0;
3797			int resid;
3798
3799			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3800			if (resid > iosize)
3801				resid = iosize;
3802
3803			/*
3804			 * cleanup bogus pages, restoring the originals
3805			 */
3806			m = bp->b_pages[i];
3807			if (m == bogus_page) {
3808				bogus = bogusflag = 1;
3809				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3810				if (m == NULL)
3811					panic("biodone: page disappeared!");
3812				bp->b_pages[i] = m;
3813			}
3814			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3815			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3816			    (intmax_t)foff, (uintmax_t)m->pindex));
3817
3818			/*
3819			 * In the write case, the valid and clean bits are
3820			 * already changed correctly ( see bdwrite() ), so we
3821			 * only need to do this here in the read case.
3822			 */
3823			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3824				KASSERT((m->dirty & vm_page_bits(foff &
3825				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3826				    " page %p has unexpected dirty bits", m));
3827				vfs_page_set_valid(bp, foff, m);
3828			}
3829
3830			vm_page_sunbusy(m);
3831			vm_object_pip_subtract(obj, 1);
3832			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3833			iosize -= resid;
3834		}
3835		vm_object_pip_wakeupn(obj, 0);
3836		VM_OBJECT_WUNLOCK(obj);
3837		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3838			BUF_CHECK_MAPPED(bp);
3839			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3840			    bp->b_pages, bp->b_npages);
3841		}
3842	}
3843
3844	/*
3845	 * For asynchronous completions, release the buffer now. The brelse
3846	 * will do a wakeup there if necessary - so no need to do a wakeup
3847	 * here in the async case. The sync case always needs to do a wakeup.
3848	 */
3849
3850	if (bp->b_flags & B_ASYNC) {
3851		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3852			brelse(bp);
3853		else
3854			bqrelse(bp);
3855	} else
3856		bdone(bp);
3857}
3858
3859/*
3860 * This routine is called in lieu of iodone in the case of
3861 * incomplete I/O.  This keeps the busy status for pages
3862 * consistant.
3863 */
3864void
3865vfs_unbusy_pages(struct buf *bp)
3866{
3867	int i;
3868	vm_object_t obj;
3869	vm_page_t m;
3870
3871	runningbufwakeup(bp);
3872	if (!(bp->b_flags & B_VMIO))
3873		return;
3874
3875	obj = bp->b_bufobj->bo_object;
3876	VM_OBJECT_WLOCK(obj);
3877	for (i = 0; i < bp->b_npages; i++) {
3878		m = bp->b_pages[i];
3879		if (m == bogus_page) {
3880			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3881			if (!m)
3882				panic("vfs_unbusy_pages: page missing\n");
3883			bp->b_pages[i] = m;
3884			if ((bp->b_flags & B_UNMAPPED) == 0) {
3885				BUF_CHECK_MAPPED(bp);
3886				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3887				    bp->b_pages, bp->b_npages);
3888			} else
3889				BUF_CHECK_UNMAPPED(bp);
3890		}
3891		vm_object_pip_subtract(obj, 1);
3892		vm_page_sunbusy(m);
3893	}
3894	vm_object_pip_wakeupn(obj, 0);
3895	VM_OBJECT_WUNLOCK(obj);
3896}
3897
3898/*
3899 * vfs_page_set_valid:
3900 *
3901 *	Set the valid bits in a page based on the supplied offset.   The
3902 *	range is restricted to the buffer's size.
3903 *
3904 *	This routine is typically called after a read completes.
3905 */
3906static void
3907vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3908{
3909	vm_ooffset_t eoff;
3910
3911	/*
3912	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3913	 * page boundary and eoff is not greater than the end of the buffer.
3914	 * The end of the buffer, in this case, is our file EOF, not the
3915	 * allocation size of the buffer.
3916	 */
3917	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3918	if (eoff > bp->b_offset + bp->b_bcount)
3919		eoff = bp->b_offset + bp->b_bcount;
3920
3921	/*
3922	 * Set valid range.  This is typically the entire buffer and thus the
3923	 * entire page.
3924	 */
3925	if (eoff > off)
3926		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3927}
3928
3929/*
3930 * vfs_page_set_validclean:
3931 *
3932 *	Set the valid bits and clear the dirty bits in a page based on the
3933 *	supplied offset.   The range is restricted to the buffer's size.
3934 */
3935static void
3936vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3937{
3938	vm_ooffset_t soff, eoff;
3939
3940	/*
3941	 * Start and end offsets in buffer.  eoff - soff may not cross a
3942	 * page boundry or cross the end of the buffer.  The end of the
3943	 * buffer, in this case, is our file EOF, not the allocation size
3944	 * of the buffer.
3945	 */
3946	soff = off;
3947	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3948	if (eoff > bp->b_offset + bp->b_bcount)
3949		eoff = bp->b_offset + bp->b_bcount;
3950
3951	/*
3952	 * Set valid range.  This is typically the entire buffer and thus the
3953	 * entire page.
3954	 */
3955	if (eoff > soff) {
3956		vm_page_set_validclean(
3957		    m,
3958		   (vm_offset_t) (soff & PAGE_MASK),
3959		   (vm_offset_t) (eoff - soff)
3960		);
3961	}
3962}
3963
3964/*
3965 * Ensure that all buffer pages are not exclusive busied.  If any page is
3966 * exclusive busy, drain it.
3967 */
3968void
3969vfs_drain_busy_pages(struct buf *bp)
3970{
3971	vm_page_t m;
3972	int i, last_busied;
3973
3974	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
3975	last_busied = 0;
3976	for (i = 0; i < bp->b_npages; i++) {
3977		m = bp->b_pages[i];
3978		if (vm_page_xbusied(m)) {
3979			for (; last_busied < i; last_busied++)
3980				vm_page_sbusy(bp->b_pages[last_busied]);
3981			while (vm_page_xbusied(m)) {
3982				vm_page_lock(m);
3983				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3984				vm_page_busy_sleep(m, "vbpage");
3985				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3986			}
3987		}
3988	}
3989	for (i = 0; i < last_busied; i++)
3990		vm_page_sunbusy(bp->b_pages[i]);
3991}
3992
3993/*
3994 * This routine is called before a device strategy routine.
3995 * It is used to tell the VM system that paging I/O is in
3996 * progress, and treat the pages associated with the buffer
3997 * almost as being exclusive busy.  Also the object paging_in_progress
3998 * flag is handled to make sure that the object doesn't become
3999 * inconsistant.
4000 *
4001 * Since I/O has not been initiated yet, certain buffer flags
4002 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4003 * and should be ignored.
4004 */
4005void
4006vfs_busy_pages(struct buf *bp, int clear_modify)
4007{
4008	int i, bogus;
4009	vm_object_t obj;
4010	vm_ooffset_t foff;
4011	vm_page_t m;
4012
4013	if (!(bp->b_flags & B_VMIO))
4014		return;
4015
4016	obj = bp->b_bufobj->bo_object;
4017	foff = bp->b_offset;
4018	KASSERT(bp->b_offset != NOOFFSET,
4019	    ("vfs_busy_pages: no buffer offset"));
4020	VM_OBJECT_WLOCK(obj);
4021	vfs_drain_busy_pages(bp);
4022	if (bp->b_bufsize != 0)
4023		vfs_setdirty_locked_object(bp);
4024	bogus = 0;
4025	for (i = 0; i < bp->b_npages; i++) {
4026		m = bp->b_pages[i];
4027
4028		if ((bp->b_flags & B_CLUSTER) == 0) {
4029			vm_object_pip_add(obj, 1);
4030			vm_page_sbusy(m);
4031		}
4032		/*
4033		 * When readying a buffer for a read ( i.e
4034		 * clear_modify == 0 ), it is important to do
4035		 * bogus_page replacement for valid pages in
4036		 * partially instantiated buffers.  Partially
4037		 * instantiated buffers can, in turn, occur when
4038		 * reconstituting a buffer from its VM backing store
4039		 * base.  We only have to do this if B_CACHE is
4040		 * clear ( which causes the I/O to occur in the
4041		 * first place ).  The replacement prevents the read
4042		 * I/O from overwriting potentially dirty VM-backed
4043		 * pages.  XXX bogus page replacement is, uh, bogus.
4044		 * It may not work properly with small-block devices.
4045		 * We need to find a better way.
4046		 */
4047		if (clear_modify) {
4048			pmap_remove_write(m);
4049			vfs_page_set_validclean(bp, foff, m);
4050		} else if (m->valid == VM_PAGE_BITS_ALL &&
4051		    (bp->b_flags & B_CACHE) == 0) {
4052			bp->b_pages[i] = bogus_page;
4053			bogus++;
4054		}
4055		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4056	}
4057	VM_OBJECT_WUNLOCK(obj);
4058	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4059		BUF_CHECK_MAPPED(bp);
4060		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4061		    bp->b_pages, bp->b_npages);
4062	}
4063}
4064
4065/*
4066 *	vfs_bio_set_valid:
4067 *
4068 *	Set the range within the buffer to valid.  The range is
4069 *	relative to the beginning of the buffer, b_offset.  Note that
4070 *	b_offset itself may be offset from the beginning of the first
4071 *	page.
4072 */
4073void
4074vfs_bio_set_valid(struct buf *bp, int base, int size)
4075{
4076	int i, n;
4077	vm_page_t m;
4078
4079	if (!(bp->b_flags & B_VMIO))
4080		return;
4081
4082	/*
4083	 * Fixup base to be relative to beginning of first page.
4084	 * Set initial n to be the maximum number of bytes in the
4085	 * first page that can be validated.
4086	 */
4087	base += (bp->b_offset & PAGE_MASK);
4088	n = PAGE_SIZE - (base & PAGE_MASK);
4089
4090	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4091	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4092		m = bp->b_pages[i];
4093		if (n > size)
4094			n = size;
4095		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4096		base += n;
4097		size -= n;
4098		n = PAGE_SIZE;
4099	}
4100	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4101}
4102
4103/*
4104 *	vfs_bio_clrbuf:
4105 *
4106 *	If the specified buffer is a non-VMIO buffer, clear the entire
4107 *	buffer.  If the specified buffer is a VMIO buffer, clear and
4108 *	validate only the previously invalid portions of the buffer.
4109 *	This routine essentially fakes an I/O, so we need to clear
4110 *	BIO_ERROR and B_INVAL.
4111 *
4112 *	Note that while we only theoretically need to clear through b_bcount,
4113 *	we go ahead and clear through b_bufsize.
4114 */
4115void
4116vfs_bio_clrbuf(struct buf *bp)
4117{
4118	int i, j, mask, sa, ea, slide;
4119
4120	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4121		clrbuf(bp);
4122		return;
4123	}
4124	bp->b_flags &= ~B_INVAL;
4125	bp->b_ioflags &= ~BIO_ERROR;
4126	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4127	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4128	    (bp->b_offset & PAGE_MASK) == 0) {
4129		if (bp->b_pages[0] == bogus_page)
4130			goto unlock;
4131		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4132		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4133		if ((bp->b_pages[0]->valid & mask) == mask)
4134			goto unlock;
4135		if ((bp->b_pages[0]->valid & mask) == 0) {
4136			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4137			bp->b_pages[0]->valid |= mask;
4138			goto unlock;
4139		}
4140	}
4141	sa = bp->b_offset & PAGE_MASK;
4142	slide = 0;
4143	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4144		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4145		ea = slide & PAGE_MASK;
4146		if (ea == 0)
4147			ea = PAGE_SIZE;
4148		if (bp->b_pages[i] == bogus_page)
4149			continue;
4150		j = sa / DEV_BSIZE;
4151		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4152		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4153		if ((bp->b_pages[i]->valid & mask) == mask)
4154			continue;
4155		if ((bp->b_pages[i]->valid & mask) == 0)
4156			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4157		else {
4158			for (; sa < ea; sa += DEV_BSIZE, j++) {
4159				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4160					pmap_zero_page_area(bp->b_pages[i],
4161					    sa, DEV_BSIZE);
4162				}
4163			}
4164		}
4165		bp->b_pages[i]->valid |= mask;
4166	}
4167unlock:
4168	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4169	bp->b_resid = 0;
4170}
4171
4172void
4173vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4174{
4175	vm_page_t m;
4176	int i, n;
4177
4178	if ((bp->b_flags & B_UNMAPPED) == 0) {
4179		BUF_CHECK_MAPPED(bp);
4180		bzero(bp->b_data + base, size);
4181	} else {
4182		BUF_CHECK_UNMAPPED(bp);
4183		n = PAGE_SIZE - (base & PAGE_MASK);
4184		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4185			m = bp->b_pages[i];
4186			if (n > size)
4187				n = size;
4188			pmap_zero_page_area(m, base & PAGE_MASK, n);
4189			base += n;
4190			size -= n;
4191			n = PAGE_SIZE;
4192		}
4193	}
4194}
4195
4196/*
4197 * vm_hold_load_pages and vm_hold_free_pages get pages into
4198 * a buffers address space.  The pages are anonymous and are
4199 * not associated with a file object.
4200 */
4201static void
4202vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4203{
4204	vm_offset_t pg;
4205	vm_page_t p;
4206	int index;
4207
4208	BUF_CHECK_MAPPED(bp);
4209
4210	to = round_page(to);
4211	from = round_page(from);
4212	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4213
4214	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4215tryagain:
4216		/*
4217		 * note: must allocate system pages since blocking here
4218		 * could interfere with paging I/O, no matter which
4219		 * process we are.
4220		 */
4221		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4222		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4223		if (p == NULL) {
4224			VM_WAIT;
4225			goto tryagain;
4226		}
4227		pmap_qenter(pg, &p, 1);
4228		bp->b_pages[index] = p;
4229	}
4230	bp->b_npages = index;
4231}
4232
4233/* Return pages associated with this buf to the vm system */
4234static void
4235vm_hold_free_pages(struct buf *bp, int newbsize)
4236{
4237	vm_offset_t from;
4238	vm_page_t p;
4239	int index, newnpages;
4240
4241	BUF_CHECK_MAPPED(bp);
4242
4243	from = round_page((vm_offset_t)bp->b_data + newbsize);
4244	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4245	if (bp->b_npages > newnpages)
4246		pmap_qremove(from, bp->b_npages - newnpages);
4247	for (index = newnpages; index < bp->b_npages; index++) {
4248		p = bp->b_pages[index];
4249		bp->b_pages[index] = NULL;
4250		if (vm_page_sbusied(p))
4251			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4252			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4253		p->wire_count--;
4254		vm_page_free(p);
4255		atomic_subtract_int(&cnt.v_wire_count, 1);
4256	}
4257	bp->b_npages = newnpages;
4258}
4259
4260/*
4261 * Map an IO request into kernel virtual address space.
4262 *
4263 * All requests are (re)mapped into kernel VA space.
4264 * Notice that we use b_bufsize for the size of the buffer
4265 * to be mapped.  b_bcount might be modified by the driver.
4266 *
4267 * Note that even if the caller determines that the address space should
4268 * be valid, a race or a smaller-file mapped into a larger space may
4269 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4270 * check the return value.
4271 */
4272int
4273vmapbuf(struct buf *bp, int mapbuf)
4274{
4275	caddr_t kva;
4276	vm_prot_t prot;
4277	int pidx;
4278
4279	if (bp->b_bufsize < 0)
4280		return (-1);
4281	prot = VM_PROT_READ;
4282	if (bp->b_iocmd == BIO_READ)
4283		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4284	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4285	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4286	    btoc(MAXPHYS))) < 0)
4287		return (-1);
4288	bp->b_npages = pidx;
4289	if (mapbuf || !unmapped_buf_allowed) {
4290		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4291		kva = bp->b_saveaddr;
4292		bp->b_saveaddr = bp->b_data;
4293		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4294		bp->b_flags &= ~B_UNMAPPED;
4295	} else {
4296		bp->b_flags |= B_UNMAPPED;
4297		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4298		bp->b_saveaddr = bp->b_data;
4299		bp->b_data = unmapped_buf;
4300	}
4301	return(0);
4302}
4303
4304/*
4305 * Free the io map PTEs associated with this IO operation.
4306 * We also invalidate the TLB entries and restore the original b_addr.
4307 */
4308void
4309vunmapbuf(struct buf *bp)
4310{
4311	int npages;
4312
4313	npages = bp->b_npages;
4314	if (bp->b_flags & B_UNMAPPED)
4315		bp->b_flags &= ~B_UNMAPPED;
4316	else
4317		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4318	vm_page_unhold_pages(bp->b_pages, npages);
4319
4320	bp->b_data = bp->b_saveaddr;
4321}
4322
4323void
4324bdone(struct buf *bp)
4325{
4326	struct mtx *mtxp;
4327
4328	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4329	mtx_lock(mtxp);
4330	bp->b_flags |= B_DONE;
4331	wakeup(bp);
4332	mtx_unlock(mtxp);
4333}
4334
4335void
4336bwait(struct buf *bp, u_char pri, const char *wchan)
4337{
4338	struct mtx *mtxp;
4339
4340	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4341	mtx_lock(mtxp);
4342	while ((bp->b_flags & B_DONE) == 0)
4343		msleep(bp, mtxp, pri, wchan, 0);
4344	mtx_unlock(mtxp);
4345}
4346
4347int
4348bufsync(struct bufobj *bo, int waitfor)
4349{
4350
4351	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4352}
4353
4354void
4355bufstrategy(struct bufobj *bo, struct buf *bp)
4356{
4357	int i = 0;
4358	struct vnode *vp;
4359
4360	vp = bp->b_vp;
4361	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4362	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4363	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4364	i = VOP_STRATEGY(vp, bp);
4365	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4366}
4367
4368void
4369bufobj_wrefl(struct bufobj *bo)
4370{
4371
4372	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4373	ASSERT_BO_WLOCKED(bo);
4374	bo->bo_numoutput++;
4375}
4376
4377void
4378bufobj_wref(struct bufobj *bo)
4379{
4380
4381	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4382	BO_LOCK(bo);
4383	bo->bo_numoutput++;
4384	BO_UNLOCK(bo);
4385}
4386
4387void
4388bufobj_wdrop(struct bufobj *bo)
4389{
4390
4391	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4392	BO_LOCK(bo);
4393	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4394	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4395		bo->bo_flag &= ~BO_WWAIT;
4396		wakeup(&bo->bo_numoutput);
4397	}
4398	BO_UNLOCK(bo);
4399}
4400
4401int
4402bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4403{
4404	int error;
4405
4406	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4407	ASSERT_BO_WLOCKED(bo);
4408	error = 0;
4409	while (bo->bo_numoutput) {
4410		bo->bo_flag |= BO_WWAIT;
4411		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4412		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4413		if (error)
4414			break;
4415	}
4416	return (error);
4417}
4418
4419void
4420bpin(struct buf *bp)
4421{
4422	struct mtx *mtxp;
4423
4424	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4425	mtx_lock(mtxp);
4426	bp->b_pin_count++;
4427	mtx_unlock(mtxp);
4428}
4429
4430void
4431bunpin(struct buf *bp)
4432{
4433	struct mtx *mtxp;
4434
4435	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4436	mtx_lock(mtxp);
4437	if (--bp->b_pin_count == 0)
4438		wakeup(bp);
4439	mtx_unlock(mtxp);
4440}
4441
4442void
4443bunpin_wait(struct buf *bp)
4444{
4445	struct mtx *mtxp;
4446
4447	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4448	mtx_lock(mtxp);
4449	while (bp->b_pin_count > 0)
4450		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4451	mtx_unlock(mtxp);
4452}
4453
4454/*
4455 * Set bio_data or bio_ma for struct bio from the struct buf.
4456 */
4457void
4458bdata2bio(struct buf *bp, struct bio *bip)
4459{
4460
4461	if ((bp->b_flags & B_UNMAPPED) != 0) {
4462		KASSERT(unmapped_buf_allowed, ("unmapped"));
4463		bip->bio_ma = bp->b_pages;
4464		bip->bio_ma_n = bp->b_npages;
4465		bip->bio_data = unmapped_buf;
4466		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4467		bip->bio_flags |= BIO_UNMAPPED;
4468		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4469		    PAGE_SIZE == bp->b_npages,
4470		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4471		    (long long)bip->bio_length, bip->bio_ma_n));
4472	} else {
4473		bip->bio_data = bp->b_data;
4474		bip->bio_ma = NULL;
4475	}
4476}
4477
4478#include "opt_ddb.h"
4479#ifdef DDB
4480#include <ddb/ddb.h>
4481
4482/* DDB command to show buffer data */
4483DB_SHOW_COMMAND(buffer, db_show_buffer)
4484{
4485	/* get args */
4486	struct buf *bp = (struct buf *)addr;
4487
4488	if (!have_addr) {
4489		db_printf("usage: show buffer <addr>\n");
4490		return;
4491	}
4492
4493	db_printf("buf at %p\n", bp);
4494	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4495	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4496	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4497	db_printf(
4498	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4499	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4500	    "b_dep = %p\n",
4501	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4502	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4503	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4504	if (bp->b_npages) {
4505		int i;
4506		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4507		for (i = 0; i < bp->b_npages; i++) {
4508			vm_page_t m;
4509			m = bp->b_pages[i];
4510			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4511			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4512			if ((i + 1) < bp->b_npages)
4513				db_printf(",");
4514		}
4515		db_printf("\n");
4516	}
4517	db_printf(" ");
4518	BUF_LOCKPRINTINFO(bp);
4519}
4520
4521DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4522{
4523	struct buf *bp;
4524	int i;
4525
4526	for (i = 0; i < nbuf; i++) {
4527		bp = &buf[i];
4528		if (BUF_ISLOCKED(bp)) {
4529			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4530			db_printf("\n");
4531		}
4532	}
4533}
4534
4535DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4536{
4537	struct vnode *vp;
4538	struct buf *bp;
4539
4540	if (!have_addr) {
4541		db_printf("usage: show vnodebufs <addr>\n");
4542		return;
4543	}
4544	vp = (struct vnode *)addr;
4545	db_printf("Clean buffers:\n");
4546	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4547		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4548		db_printf("\n");
4549	}
4550	db_printf("Dirty buffers:\n");
4551	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4552		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4553		db_printf("\n");
4554	}
4555}
4556
4557DB_COMMAND(countfreebufs, db_coundfreebufs)
4558{
4559	struct buf *bp;
4560	int i, used = 0, nfree = 0;
4561
4562	if (have_addr) {
4563		db_printf("usage: countfreebufs\n");
4564		return;
4565	}
4566
4567	for (i = 0; i < nbuf; i++) {
4568		bp = &buf[i];
4569		if ((bp->b_flags & B_INFREECNT) != 0)
4570			nfree++;
4571		else
4572			used++;
4573	}
4574
4575	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4576	    nfree + used);
4577	db_printf("numfreebuffers is %d\n", numfreebuffers);
4578}
4579#endif /* DDB */
4580