vfs_bio.c revision 260385
11558Srgrimes/*-
21558Srgrimes * Copyright (c) 2004 Poul-Henning Kamp
31558Srgrimes * Copyright (c) 1994,1997 John S. Dyson
41558Srgrimes * Copyright (c) 2013 The FreeBSD Foundation
51558Srgrimes * All rights reserved.
61558Srgrimes *
71558Srgrimes * Portions of this software were developed by Konstantin Belousov
81558Srgrimes * under sponsorship from the FreeBSD Foundation.
91558Srgrimes *
101558Srgrimes * Redistribution and use in source and binary forms, with or without
111558Srgrimes * modification, are permitted provided that the following conditions
121558Srgrimes * are met:
131558Srgrimes * 1. Redistributions of source code must retain the above copyright
141558Srgrimes *    notice, this list of conditions and the following disclaimer.
151558Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
161558Srgrimes *    notice, this list of conditions and the following disclaimer in the
171558Srgrimes *    documentation and/or other materials provided with the distribution.
181558Srgrimes *
191558Srgrimes * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
201558Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
211558Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
221558Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
231558Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
241558Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
251558Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
261558Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
271558Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
281558Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
291558Srgrimes * SUCH DAMAGE.
30114589Sobrien */
311558Srgrimes
3223675Speter/*
33114589Sobrien * this file contains a new buffer I/O scheme implementing a coherent
3441477Sjulian * VM object and buffer cache scheme.  Pains have been taken to make
35114589Sobrien * sure that the performance degradation associated with schemes such
36114589Sobrien * as this is not realized.
371558Srgrimes *
381558Srgrimes * Author:  John S. Dyson
3941474Sjulian * Significant help during the development and debugging phases
4074556Smckusick * had been provided by David Greenman, also of the FreeBSD core team.
4123675Speter *
421558Srgrimes * see man buf(9) for more info.
431558Srgrimes */
441558Srgrimes
4523796Sbde#include <sys/cdefs.h>
4623675Speter__FBSDID("$FreeBSD: stable/10/sys/kern/vfs_bio.c 260385 2014-01-07 01:32:23Z scottl $");
471558Srgrimes
4823675Speter#include <sys/param.h>
491558Srgrimes#include <sys/systm.h>
501558Srgrimes#include <sys/bio.h>
51100935Sphk#include <sys/conf.h>
52121258Siedowse#include <sys/buf.h>
5374556Smckusick#include <sys/devicestat.h>
5474556Smckusick#include <sys/eventhandler.h>
5574556Smckusick#include <sys/fail.h>
5674556Smckusick#include <sys/limits.h>
571558Srgrimes#include <sys/lock.h>
581558Srgrimes#include <sys/malloc.h>
591558Srgrimes#include <sys/mount.h>
601558Srgrimes#include <sys/mutex.h>
611558Srgrimes#include <sys/kernel.h>
621558Srgrimes#include <sys/kthread.h>
631558Srgrimes#include <sys/proc.h>
641558Srgrimes#include <sys/resourcevar.h>
651558Srgrimes#include <sys/rwlock.h>
6692839Simp#include <sys/sysctl.h>
6792839Simp#include <sys/vmem.h>
6898542Smckusick#include <sys/vmmeter.h>
6992839Simp#include <sys/vnode.h>
7092839Simp#include <geom/geom.h>
7198542Smckusick#include <vm/vm.h>
7292839Simp#include <vm/vm_param.h>
7392839Simp#include <vm/vm_kern.h>
741558Srgrimes#include <vm/vm_pageout.h>
751558Srgrimes#include <vm/vm_page.h>
761558Srgrimes#include <vm/vm_object.h>
771558Srgrimes#include <vm/vm_extern.h>
787585Sbde#include <vm/vm_map.h>
7992839Simp#include "opt_compat.h"
801558Srgrimes#include "opt_directio.h"
8192806Sobrien#include "opt_swap.h"
821558Srgrimes
831558Srgrimesstatic MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
841558Srgrimes
851558Srgrimesstruct	bio_ops bioops;		/* I/O operation notification */
861558Srgrimes
871558Srgrimesstruct	buf_ops buf_ops_bio = {
881558Srgrimes	.bop_name	=	"buf_ops_bio",
891558Srgrimes	.bop_write	=	bufwrite,
901558Srgrimes	.bop_strategy	=	bufstrategy,
911558Srgrimes	.bop_sync	=	bufsync,
9241474Sjulian	.bop_bdflush	=	bufbdflush,
93136281Struckman};
9441474Sjulian
951558Srgrimes/*
961558Srgrimes * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
971558Srgrimes * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
981558Srgrimes */
991558Srgrimesstruct buf *buf;		/* buffer header pool */
1001558Srgrimescaddr_t unmapped_buf;
1011558Srgrimes
1021558Srgrimesstatic struct proc *bufdaemonproc;
1031558Srgrimes
1047585Sbdestatic int inmem(struct vnode *vp, daddr_t blkno);
10592839Simpstatic void vm_hold_free_pages(struct buf *bp, int newbsize);
1061558Srgrimesstatic void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
10792806Sobrien		vm_offset_t to);
10892806Sobrienstatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
10974556Smckusickstatic void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
1101558Srgrimes		vm_page_t m);
1111558Srgrimesstatic void vfs_clean_pages_dirty_buf(struct buf *bp);
1121558Srgrimesstatic void vfs_setdirty_locked_object(struct buf *bp);
1131558Srgrimesstatic void vfs_vmio_release(struct buf *bp);
11423675Speterstatic int vfs_bio_clcheck(struct vnode *vp, int size,
1151558Srgrimes		daddr_t lblkno, daddr_t blkno);
1161558Srgrimesstatic int buf_flush(int);
1171558Srgrimesstatic int flushbufqueues(int, int);
1181558Srgrimesstatic void buf_daemon(void);
1191558Srgrimesstatic void bremfreel(struct buf *bp);
1201558Srgrimesstatic __inline void bd_wakeup(void);
1211558Srgrimes#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
1221558Srgrimes    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
1231558Srgrimesstatic int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
1241558Srgrimes#endif
1251558Srgrimes
12641474Sjulianint vmiodirenable = TRUE;
12741474SjulianSYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
12823675Speter    "Use the VM system for directory writes");
1291558Srgrimeslong runningbufspace;
1301558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
1311558Srgrimes    "Amount of presently outstanding async buffer io");
13223675Speterstatic long bufspace;
1331558Srgrimes#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
1341558Srgrimes    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
1351558SrgrimesSYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
1361558Srgrimes    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
1378871Srgrimes#else
1381558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
1391558Srgrimes    "Virtual memory used for buffers");
1401558Srgrimes#endif
1411558Srgrimesstatic long unmapped_bufspace;
1421558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
1431558Srgrimes    &unmapped_bufspace, 0,
1441558Srgrimes    "Amount of unmapped buffers, inclusive in the bufspace");
1451558Srgrimesstatic long maxbufspace;
14623675SpeterSYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
14792839Simp    "Maximum allowed value of bufspace (including buf_daemon)");
1481558Srgrimesstatic long bufmallocspace;
14992806SobrienSYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
15092806Sobrien    "Amount of malloced memory for buffers");
1511558Srgrimesstatic long maxbufmallocspace;
1521558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
1531558Srgrimes    "Maximum amount of malloced memory for buffers");
1541558Srgrimesstatic long lobufspace;
1551558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
1561558Srgrimes    "Minimum amount of buffers we want to have");
1571558Srgrimeslong hibufspace;
1581558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
1591558Srgrimes    "Maximum allowed value of bufspace (excluding buf_daemon)");
16023675Speterstatic int bufreusecnt;
16123675SpeterSYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
1621558Srgrimes    "Number of times we have reused a buffer");
1631558Srgrimesstatic int buffreekvacnt;
1641558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
1651558Srgrimes    "Number of times we have freed the KVA space from some buffer");
1661558Srgrimesstatic int bufdefragcnt;
1671558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
1681558Srgrimes    "Number of times we have had to repeat buffer allocation to defragment");
1691558Srgrimesstatic long lorunningspace;
1701558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
1711558Srgrimes    "Minimum preferred space used for in-progress I/O");
1721558Srgrimesstatic long hirunningspace;
1731558SrgrimesSYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
1741558Srgrimes    "Maximum amount of space to use for in-progress I/O");
1751558Srgrimesint dirtybufferflushes;
1761558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
1771558Srgrimes    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
1781558Srgrimesint bdwriteskip;
1791558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
1801558Srgrimes    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
1811558Srgrimesint altbufferflushes;
1821558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
1831558Srgrimes    0, "Number of fsync flushes to limit dirty buffers");
1841558Srgrimesstatic int recursiveflushes;
1851558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
1861558Srgrimes    0, "Number of flushes skipped due to being recursive");
1871558Srgrimesstatic int numdirtybuffers;
1881558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
1891558Srgrimes    "Number of buffers that are dirty (has unwritten changes) at the moment");
1901558Srgrimesstatic int lodirtybuffers;
19123675SpeterSYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
19223675Speter    "How many buffers we want to have free before bufdaemon can sleep");
1931558Srgrimesstatic int hidirtybuffers;
1941558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
1951558Srgrimes    "When the number of dirty buffers is considered severe");
1961558Srgrimesint dirtybufthresh;
1971558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
1981558Srgrimes    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
1991558Srgrimesstatic int numfreebuffers;
2001558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
2011558Srgrimes    "Number of free buffers");
2021558Srgrimesstatic int lofreebuffers;
2031558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
2041558Srgrimes   "XXX Unused");
2051558Srgrimesstatic int hifreebuffers;
2061558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
20723675Speter   "XXX Complicatedly unused");
20892839Simpstatic int getnewbufcalls;
2091558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
210114589Sobrien   "Number of calls to getnewbuf");
21192806Sobrienstatic int getnewbufrestarts;
212114589SobrienSYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
213114589Sobrien    "Number of times getnewbuf has had to restart a buffer aquisition");
2141558Srgrimesstatic int mappingrestarts;
2151558SrgrimesSYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
21623675Speter    "Number of times getblk has had to restart a buffer mapping for "
21741474Sjulian    "unmapped buffer");
21823675Speterstatic int flushbufqtarget = 100;
21923675SpeterSYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
22062668Smckusick    "Amount of work to do in flushbufqueues when helping bufdaemon");
22123675Speterstatic long notbufdflushes;
22223675SpeterSYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
22396483Sphk    "Number of dirty buffer flushes done by the bufdaemon helpers");
22496483Sphkstatic long barrierwrites;
22596483SphkSYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
22623675Speter    "Number of barrier writes");
22723675SpeterSYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
22823675Speter    &unmapped_buf_allowed, 0,
22923675Speter    "Permit the use of the unmapped i/o");
23062668Smckusick
23123675Speter/*
23223675Speter * Lock for the non-dirty bufqueues
23362668Smckusick */
23423675Speterstatic struct mtx_padalign bqclean;
23562668Smckusick
23623675Speter/*
23762668Smckusick * Lock for the dirty queue.
23862668Smckusick */
23962668Smckusickstatic struct mtx_padalign bqdirty;
24062668Smckusick
24162668Smckusick/*
24262668Smckusick * This lock synchronizes access to bd_request.
2431558Srgrimes */
2441558Srgrimesstatic struct mtx_padalign bdlock;
2457585Sbde
246100935Sphk/*
2471558Srgrimes * This lock protects the runningbufreq and synchronizes runningbufwakeup and
2481558Srgrimes * waitrunningbufspace().
2491558Srgrimes */
2501558Srgrimesstatic struct mtx_padalign rbreqlock;
2511558Srgrimes
2527585Sbde/*
253100935Sphk * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
2541558Srgrimes */
25598542Smckusickstatic struct mtx_padalign nblock;
2561558Srgrimes
2571558Srgrimes/*
2581558Srgrimes * Lock that protects bdirtywait.
2591558Srgrimes */
2601558Srgrimesstatic struct mtx_padalign bdirtylock;
2611558Srgrimes
2621558Srgrimes/*
2631558Srgrimes * Wakeup point for bufdaemon, as well as indicator of whether it is already
2641558Srgrimes * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
2651558Srgrimes * is idling.
2661558Srgrimes */
2671558Srgrimesstatic int bd_request;
2681558Srgrimes
26998542Smckusick/*
27098542Smckusick * Request for the buf daemon to write more buffers than is indicated by
2711558Srgrimes * lodirtybuf.  This may be necessary to push out excess dependencies or
2721558Srgrimes * defragment the address space where a simple count of the number of dirty
2731558Srgrimes * buffers is insufficient to characterize the demand for flushing them.
2741558Srgrimes */
2757585Sbdestatic int bd_speedupreq;
27692839Simp
2771558Srgrimes/*
27898542Smckusick * bogus page -- for I/O to/from partially complete buffers
27941474Sjulian * this is a temporary solution to the problem, but it is not
2801558Srgrimes * really that bad.  it would be better to split the buffer
2811558Srgrimes * for input in the case of buffers partially already in memory,
28298542Smckusick * but the code is intricate enough already.
28341474Sjulian */
28441474Sjulianvm_page_t bogus_page;
285102231Strhodes
28641474Sjulian/*
28741474Sjulian * Synchronization (sleep/wakeup) variable for active buffer space requests.
28874556Smckusick * Set when wait starts, cleared prior to wakeup().
28941474Sjulian * Used in runningbufwakeup() and waitrunningbufspace().
29041474Sjulian */
29141474Sjulianstatic int runningbufreq;
29241474Sjulian
293102231Strhodes/*
29441474Sjulian * Synchronization (sleep/wakeup) variable for buffer requests.
29541474Sjulian * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
29641474Sjulian * by and/or.
29741474Sjulian * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
29841474Sjulian * getnewbuf(), and getblk().
29941474Sjulian */
30041474Sjulianstatic int needsbuffer;
30141474Sjulian
30241474Sjulian/*
30341474Sjulian * Synchronization for bwillwrite() waiters.
30441474Sjulian */
30541474Sjulianstatic int bdirtywait;
30641474Sjulian
30741474Sjulian/*
30841474Sjulian * Definitions for the buffer free lists.
30941474Sjulian */
31041474Sjulian#define BUFFER_QUEUES	5	/* number of free buffer queues */
31141474Sjulian
3121558Srgrimes#define QUEUE_NONE	0	/* on no queue */
31398542Smckusick#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
3141558Srgrimes#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
3151558Srgrimes#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
31698542Smckusick#define QUEUE_EMPTY	4	/* empty buffer headers */
31734266Sjulian#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
3181558Srgrimes
3191558Srgrimes/* Queues for free buffers with various properties */
3201558Srgrimesstatic TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
3211558Srgrimes#ifdef INVARIANTS
32234266Sjulianstatic int bq_len[BUFFER_QUEUES];
32334266Sjulian#endif
3241558Srgrimes
3251558Srgrimes/*
32674556Smckusick * Single global constant for BUF_WMESG, to avoid getting multiple references.
327134589Sscottl * buf_wmesg is referred from macros.
32874556Smckusick */
32974556Smckusickconst char *buf_wmesg = BUF_WMESG;
33074556Smckusick
33174556Smckusick#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
33274556Smckusick#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
333100935Sphk#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
334100935Sphk
335100935Sphk#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
33674556Smckusick    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
33774556Smckusickstatic int
33874556Smckusicksysctl_bufspace(SYSCTL_HANDLER_ARGS)
33974556Smckusick{
3401558Srgrimes	long lvalue;
3411558Srgrimes	int ivalue;
3421558Srgrimes
3431558Srgrimes	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
34423675Speter		return (sysctl_handle_long(oidp, arg1, arg2, req));
34592839Simp	lvalue = *(long *)arg1;
3461558Srgrimes	if (lvalue > INT_MAX)
34792806Sobrien		/* On overflow, still write out a long to trigger ENOMEM. */
3481558Srgrimes		return (sysctl_handle_long(oidp, &lvalue, 0, req));
3491558Srgrimes	ivalue = lvalue;
3501558Srgrimes	return (sysctl_handle_int(oidp, &ivalue, 0, req));
3511558Srgrimes}
3521558Srgrimes#endif
3531558Srgrimes
3541558Srgrimes#ifdef DIRECTIO
3551558Srgrimesextern void ffs_rawread_setup(void);
3561558Srgrimes#endif /* DIRECTIO */
3571558Srgrimes
3581558Srgrimes/*
3591558Srgrimes *	bqlock:
3601558Srgrimes *
3611558Srgrimes *	Return the appropriate queue lock based on the index.
3621558Srgrimes */
36323675Speterstatic inline struct mtx *
36496483Sphkbqlock(int qindex)
36523675Speter{
36623675Speter
3671558Srgrimes	if (qindex == QUEUE_DIRTY)
3681558Srgrimes		return (struct mtx *)(&bqdirty);
3691558Srgrimes	return (struct mtx *)(&bqclean);
37023675Speter}
37192839Simp
3721558Srgrimes/*
37392806Sobrien *	bdirtywakeup:
3741558Srgrimes *
37523675Speter *	Wakeup any bwillwrite() waiters.
3761558Srgrimes */
3771558Srgrimesstatic void
37896483Sphkbdirtywakeup(void)
3791558Srgrimes{
3801558Srgrimes	mtx_lock(&bdirtylock);
3811558Srgrimes	if (bdirtywait) {
3827585Sbde		bdirtywait = 0;
38392839Simp		wakeup(&bdirtywait);
3841558Srgrimes	}
38598542Smckusick	mtx_unlock(&bdirtylock);
3861558Srgrimes}
3871558Srgrimes
3881558Srgrimes/*
3891558Srgrimes *	bdirtysub:
3901558Srgrimes *
39123675Speter *	Decrement the numdirtybuffers count by one and wakeup any
3921558Srgrimes *	threads blocked in bwillwrite().
39398542Smckusick */
3941558Srgrimesstatic void
3951558Srgrimesbdirtysub(void)
39698542Smckusick{
3971558Srgrimes
39874556Smckusick	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
39974556Smckusick	    (lodirtybuffers + hidirtybuffers) / 2)
40074556Smckusick		bdirtywakeup();
40174556Smckusick}
4021558Srgrimes
4031558Srgrimes/*
4041558Srgrimes *	bdirtyadd:
4051558Srgrimes *
4061558Srgrimes *	Increment the numdirtybuffers count by one and wakeup the buf
4071558Srgrimes *	daemon if needed.
4081558Srgrimes */
409100935Sphkstatic void
4101558Srgrimesbdirtyadd(void)
4111558Srgrimes{
4121558Srgrimes
4131558Srgrimes	/*
4141558Srgrimes	 * Only do the wakeup once as we cross the boundary.  The
4151558Srgrimes	 * buf daemon will keep running until the condition clears.
4161558Srgrimes	 */
4171558Srgrimes	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
4181558Srgrimes	    (lodirtybuffers + hidirtybuffers) / 2)
4191558Srgrimes		bd_wakeup();
4201558Srgrimes}
42141474Sjulian
4221558Srgrimes/*
4231558Srgrimes *	bufspacewakeup:
4241558Srgrimes *
4251558Srgrimes *	Called when buffer space is potentially available for recovery.
4261558Srgrimes *	getnewbuf() will block on this flag when it is unable to free
4271558Srgrimes *	sufficient buffer space.  Buffer space becomes recoverable when
4281558Srgrimes *	bp's get placed back in the queues.
4291558Srgrimes */
4301558Srgrimes
4311558Srgrimesstatic __inline void
4321558Srgrimesbufspacewakeup(void)
4331558Srgrimes{
4341558Srgrimes
4351558Srgrimes	/*
4361558Srgrimes	 * If someone is waiting for BUF space, wake them up.  Even
4371558Srgrimes	 * though we haven't freed the kva space yet, the waiting
4381558Srgrimes	 * process will be able to now.
4391558Srgrimes	 */
44098542Smckusick	mtx_lock(&nblock);
4411558Srgrimes	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
4421558Srgrimes		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
4431558Srgrimes		wakeup(&needsbuffer);
4441558Srgrimes	}
4451558Srgrimes	mtx_unlock(&nblock);
4461558Srgrimes}
4471558Srgrimes
4481558Srgrimes/*
4491558Srgrimes *	runningwakeup:
4501558Srgrimes *
4511558Srgrimes *	Wake up processes that are waiting on asynchronous writes to fall
4521558Srgrimes *	below lorunningspace.
4531558Srgrimes */
4541558Srgrimesstatic void
4551558Srgrimesrunningwakeup(void)
4561558Srgrimes{
45741474Sjulian
45841474Sjulian	mtx_lock(&rbreqlock);
4591558Srgrimes	if (runningbufreq) {
4601558Srgrimes		runningbufreq = 0;
46141474Sjulian		wakeup(&runningbufreq);
4621558Srgrimes	}
4631558Srgrimes	mtx_unlock(&rbreqlock);
4641558Srgrimes}
4651558Srgrimes
46641474Sjulian/*
4671558Srgrimes *	runningbufwakeup:
4681558Srgrimes *
4691558Srgrimes *	Decrement the outstanding write count according.
4701558Srgrimes */
47141474Sjulianvoid
4721558Srgrimesrunningbufwakeup(struct buf *bp)
4731558Srgrimes{
4741558Srgrimes	long space, bspace;
4751558Srgrimes
4761558Srgrimes	bspace = bp->b_runningbufspace;
477134589Sscottl	if (bspace == 0)
4781558Srgrimes		return;
47941474Sjulian	space = atomic_fetchadd_long(&runningbufspace, -bspace);
48086514Siedowse	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
48115699Snate	    space, bspace));
48237236Sbde	bp->b_runningbufspace = 0;
48341477Sjulian	/*
48441477Sjulian	 * Only acquire the lock and wakeup on the transition from exceeding
48541477Sjulian	 * the threshold to falling below it.
48641477Sjulian	 */
48741477Sjulian	if (space < lorunningspace)
48841477Sjulian		return;
48941477Sjulian	if (space - bspace > lorunningspace)
49041474Sjulian		return;
49115699Snate	runningwakeup();
4921558Srgrimes}
4931558Srgrimes
4941558Srgrimes/*
4951558Srgrimes *	bufcountadd:
4961558Srgrimes *
4971558Srgrimes *	Called when a buffer has been added to one of the free queues to
4981558Srgrimes *	account for the buffer and to wakeup anyone waiting for free buffers.
4991558Srgrimes *	This typically occurs when large amounts of metadata are being handled
5001558Srgrimes *	by the buffer cache ( else buffer space runs out first, usually ).
5017585Sbde */
502100935Sphkstatic __inline void
5031558Srgrimesbufcountadd(struct buf *bp)
5041558Srgrimes{
5051558Srgrimes	int old;
50623675Speter
5071558Srgrimes	KASSERT((bp->b_flags & B_INFREECNT) == 0,
5081558Srgrimes	    ("buf %p already counted as free", bp));
5091558Srgrimes	bp->b_flags |= B_INFREECNT;
5101558Srgrimes	old = atomic_fetchadd_int(&numfreebuffers, 1);
511100935Sphk	KASSERT(old >= 0 && old < nbuf,
5121558Srgrimes	    ("numfreebuffers climbed to %d", old + 1));
5131558Srgrimes	mtx_lock(&nblock);
5141558Srgrimes	if (needsbuffer) {
5151558Srgrimes		needsbuffer &= ~VFS_BIO_NEED_ANY;
5161558Srgrimes		if (numfreebuffers >= hifreebuffers)
5171558Srgrimes			needsbuffer &= ~VFS_BIO_NEED_FREE;
5181558Srgrimes		wakeup(&needsbuffer);
5197585Sbde	}
520100935Sphk	mtx_unlock(&nblock);
5211558Srgrimes}
52298542Smckusick
5231558Srgrimes/*
5241558Srgrimes *	bufcountsub:
5258871Srgrimes *
5261558Srgrimes *	Decrement the numfreebuffers count as needed.
5271558Srgrimes */
5281558Srgrimesstatic void
52923675Speterbufcountsub(struct buf *bp)
5301558Srgrimes{
5311558Srgrimes	int old;
5321558Srgrimes
5331558Srgrimes	/*
5341558Srgrimes	 * Fixup numfreebuffers count.  If the buffer is invalid or not
535100935Sphk	 * delayed-write, the buffer was free and we must decrement
5361558Srgrimes	 * numfreebuffers.
53798542Smckusick	 */
538134589Sscottl	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
5391558Srgrimes		KASSERT((bp->b_flags & B_INFREECNT) != 0,
5401558Srgrimes		    ("buf %p not counted in numfreebuffers", bp));
5411558Srgrimes		bp->b_flags &= ~B_INFREECNT;
5421558Srgrimes		old = atomic_fetchadd_int(&numfreebuffers, -1);
5431558Srgrimes		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
5441558Srgrimes	}
5451558Srgrimes}
5461558Srgrimes
5471558Srgrimes/*
5481558Srgrimes *	waitrunningbufspace()
5491558Srgrimes *
5501558Srgrimes *	runningbufspace is a measure of the amount of I/O currently
5511558Srgrimes *	running.  This routine is used in async-write situations to
5521558Srgrimes *	prevent creating huge backups of pending writes to a device.
55323675Speter *	Only asynchronous writes are governed by this function.
55498542Smckusick *
5551558Srgrimes *	This does NOT turn an async write into a sync write.  It waits
55698542Smckusick *	for earlier writes to complete and generally returns before the
55792806Sobrien *	caller's write has reached the device.
5581558Srgrimes */
5591558Srgrimesvoid
56098542Smckusickwaitrunningbufspace(void)
56198542Smckusick{
56298542Smckusick
5631558Srgrimes	mtx_lock(&rbreqlock);
5641558Srgrimes	while (runningbufspace > hirunningspace) {
5651558Srgrimes		runningbufreq = 1;
566134589Sscottl		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
567134589Sscottl	}
568134589Sscottl	mtx_unlock(&rbreqlock);
569134589Sscottl}
57098542Smckusick
57198542Smckusick
5721558Srgrimes/*
5731558Srgrimes *	vfs_buf_test_cache:
57423675Speter *
5751558Srgrimes *	Called when a buffer is extended.  This function clears the B_CACHE
5761558Srgrimes *	bit if the newly extended portion of the buffer does not contain
5771558Srgrimes *	valid data.
57823675Speter */
5791558Srgrimesstatic __inline
5801558Srgrimesvoid
5811558Srgrimesvfs_buf_test_cache(struct buf *bp,
58223675Speter		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
5831558Srgrimes		  vm_page_t m)
58498542Smckusick{
58598542Smckusick
5861558Srgrimes	VM_OBJECT_ASSERT_LOCKED(m->object);
5871558Srgrimes	if (bp->b_flags & B_CACHE) {
58823675Speter		int base = (foff + off) & PAGE_MASK;
5891558Srgrimes		if (vm_page_is_valid(m, base, size) == 0)
5901558Srgrimes			bp->b_flags &= ~B_CACHE;
5911558Srgrimes	}
5921558Srgrimes}
5931558Srgrimes
5941558Srgrimes/* Wake up the buffer daemon if necessary */
5951558Srgrimesstatic __inline void
5961558Srgrimesbd_wakeup(void)
5971558Srgrimes{
598134589Sscottl
599134589Sscottl	mtx_lock(&bdlock);
600134589Sscottl	if (bd_request == 0) {
601134589Sscottl		bd_request = 1;
6021558Srgrimes		wakeup(&bd_request);
6031558Srgrimes	}
6041558Srgrimes	mtx_unlock(&bdlock);
6051558Srgrimes}
6061558Srgrimes
6071558Srgrimes/*
6081558Srgrimes * bd_speedup - speedup the buffer cache flushing code
6097586Sbde */
61092839Simpvoid
6111558Srgrimesbd_speedup(void)
6121558Srgrimes{
6131558Srgrimes	int needwake;
61498542Smckusick
61563810Smckusick	mtx_lock(&bdlock);
61663810Smckusick	needwake = 0;
6171558Srgrimes	if (bd_speedupreq == 0 || bd_request == 0)
6181558Srgrimes		needwake = 1;
6191558Srgrimes	bd_speedupreq = 1;
62096483Sphk	bd_request = 1;
6211558Srgrimes	if (needwake)
6221558Srgrimes		wakeup(&bd_request);
6231558Srgrimes	mtx_unlock(&bdlock);
62498542Smckusick}
6251558Srgrimes
6261558Srgrimes#ifdef __i386__
6271558Srgrimes#define	TRANSIENT_DENOM	5
6281558Srgrimes#else
62923675Speter#define	TRANSIENT_DENOM 10
6301558Srgrimes#endif
6311558Srgrimes
6321558Srgrimes/*
63323675Speter * Calculating buffer cache scaling values and reserve space for buffer
6341558Srgrimes * headers.  This is called during low level kernel initialization and
635134589Sscottl * may be called more then once.  We CANNOT write to the memory area
6361558Srgrimes * being reserved at this time.
6371558Srgrimes */
63898542Smckusickcaddr_t
6391558Srgrimeskern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
6401558Srgrimes{
6411558Srgrimes	int tuned_nbuf;
642136281Struckman	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
6431558Srgrimes
6441558Srgrimes	/*
6451558Srgrimes	 * physmem_est is in pages.  Convert it to kilobytes (assumes
6461558Srgrimes	 * PAGE_SIZE is >= 1K)
64763810Smckusick	 */
64863810Smckusick	physmem_est = physmem_est * (PAGE_SIZE / 1024);
64963810Smckusick
65041474Sjulian	/*
65141474Sjulian	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
65298542Smckusick	 * For the first 64MB of ram nominally allocate sufficient buffers to
65341474Sjulian	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
6541558Srgrimes	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
6551558Srgrimes	 * the buffer cache we limit the eventual kva reservation to
656134589Sscottl	 * maxbcache bytes.
6571558Srgrimes	 *
6581558Srgrimes	 * factor represents the 1/4 x ram conversion.
6591558Srgrimes	 */
6601558Srgrimes	if (nbuf == 0) {
6611558Srgrimes		int factor = 4 * BKVASIZE / 1024;
6621558Srgrimes
6631558Srgrimes		nbuf = 50;
6647585Sbde		if (physmem_est > 4096)
66592839Simp			nbuf += min((physmem_est - 4096) / factor,
6661558Srgrimes			    65536 / factor);
66798542Smckusick		if (physmem_est > 65536)
6681558Srgrimes			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
6691558Srgrimes			    32 * 1024 * 1024 / (factor * 5));
6701558Srgrimes
671134589Sscottl		if (maxbcache && nbuf > maxbcache / BKVASIZE)
6721558Srgrimes			nbuf = maxbcache / BKVASIZE;
6731558Srgrimes		tuned_nbuf = 1;
6741558Srgrimes	} else
6751558Srgrimes		tuned_nbuf = 0;
6761558Srgrimes
6771558Srgrimes	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
6781558Srgrimes	maxbuf = (LONG_MAX / 3) / BKVASIZE;
6791558Srgrimes	if (nbuf > maxbuf) {
68023675Speter		if (!tuned_nbuf)
68192839Simp			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
6821558Srgrimes			    maxbuf);
68392806Sobrien		nbuf = maxbuf;
68492806Sobrien	}
6851558Srgrimes
6861558Srgrimes	/*
6871558Srgrimes	 * Ideal allocation size for the transient bio submap if 10%
6881558Srgrimes	 * of the maximal space buffer map.  This roughly corresponds
6891558Srgrimes	 * to the amount of the buffer mapped for typical UFS load.
6901558Srgrimes	 *
6911558Srgrimes	 * Clip the buffer map to reserve space for the transient
6921558Srgrimes	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
6931558Srgrimes	 * maximum buffer map extent on the platform.
6941558Srgrimes	 *
6951558Srgrimes	 * The fall-back to the maxbuf in case of maxbcache unset,
6961558Srgrimes	 * allows to not trim the buffer KVA for the architectures
6971558Srgrimes	 * with ample KVA space.
6981558Srgrimes	 */
6991558Srgrimes	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
7001558Srgrimes		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
7011558Srgrimes		buf_sz = (long)nbuf * BKVASIZE;
7021558Srgrimes		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
7031558Srgrimes		    (TRANSIENT_DENOM - 1)) {
7041558Srgrimes			/*
70523675Speter			 * There is more KVA than memory.  Do not
70698542Smckusick			 * adjust buffer map size, and assign the rest
7071558Srgrimes			 * of maxbuf to transient map.
7081558Srgrimes			 */
7091558Srgrimes			biotmap_sz = maxbuf_sz - buf_sz;
7101558Srgrimes		} else {
7111558Srgrimes			/*
7121558Srgrimes			 * Buffer map spans all KVA we could afford on
7131558Srgrimes			 * this platform.  Give 10% (20% on i386) of
714			 * the buffer map to the transient bio map.
715			 */
716			biotmap_sz = buf_sz / TRANSIENT_DENOM;
717			buf_sz -= biotmap_sz;
718		}
719		if (biotmap_sz / INT_MAX > MAXPHYS)
720			bio_transient_maxcnt = INT_MAX;
721		else
722			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
723		/*
724		 * Artifically limit to 1024 simultaneous in-flight I/Os
725		 * using the transient mapping.
726		 */
727		if (bio_transient_maxcnt > 1024)
728			bio_transient_maxcnt = 1024;
729		if (tuned_nbuf)
730			nbuf = buf_sz / BKVASIZE;
731	}
732
733	/*
734	 * swbufs are used as temporary holders for I/O, such as paging I/O.
735	 * We have no less then 16 and no more then 256.
736	 */
737	nswbuf = max(min(nbuf/4, 256), 16);
738#ifdef NSWBUF_MIN
739	if (nswbuf < NSWBUF_MIN)
740		nswbuf = NSWBUF_MIN;
741#endif
742#ifdef DIRECTIO
743	ffs_rawread_setup();
744#endif
745
746	/*
747	 * Reserve space for the buffer cache buffers
748	 */
749	swbuf = (void *)v;
750	v = (caddr_t)(swbuf + nswbuf);
751	buf = (void *)v;
752	v = (caddr_t)(buf + nbuf);
753
754	return(v);
755}
756
757/* Initialize the buffer subsystem.  Called before use of any buffers. */
758void
759bufinit(void)
760{
761	struct buf *bp;
762	int i;
763
764	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
765	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
766	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
767	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
768	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
769	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
770
771	/* next, make a null set of free lists */
772	for (i = 0; i < BUFFER_QUEUES; i++)
773		TAILQ_INIT(&bufqueues[i]);
774
775	/* finally, initialize each buffer header and stick on empty q */
776	for (i = 0; i < nbuf; i++) {
777		bp = &buf[i];
778		bzero(bp, sizeof *bp);
779		bp->b_flags = B_INVAL | B_INFREECNT;
780		bp->b_rcred = NOCRED;
781		bp->b_wcred = NOCRED;
782		bp->b_qindex = QUEUE_EMPTY;
783		bp->b_xflags = 0;
784		LIST_INIT(&bp->b_dep);
785		BUF_LOCKINIT(bp);
786		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
787#ifdef INVARIANTS
788		bq_len[QUEUE_EMPTY]++;
789#endif
790	}
791
792	/*
793	 * maxbufspace is the absolute maximum amount of buffer space we are
794	 * allowed to reserve in KVM and in real terms.  The absolute maximum
795	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
796	 * used by most other processes.  The differential is required to
797	 * ensure that buf_daemon is able to run when other processes might
798	 * be blocked waiting for buffer space.
799	 *
800	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
801	 * this may result in KVM fragmentation which is not handled optimally
802	 * by the system.
803	 */
804	maxbufspace = (long)nbuf * BKVASIZE;
805	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
806	lobufspace = hibufspace - MAXBSIZE;
807
808	/*
809	 * Note: The 16 MiB upper limit for hirunningspace was chosen
810	 * arbitrarily and may need further tuning. It corresponds to
811	 * 128 outstanding write IO requests (if IO size is 128 KiB),
812	 * which fits with many RAID controllers' tagged queuing limits.
813	 * The lower 1 MiB limit is the historical upper limit for
814	 * hirunningspace.
815	 */
816	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
817	    16 * 1024 * 1024), 1024 * 1024);
818	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
819
820/*
821 * Limit the amount of malloc memory since it is wired permanently into
822 * the kernel space.  Even though this is accounted for in the buffer
823 * allocation, we don't want the malloced region to grow uncontrolled.
824 * The malloc scheme improves memory utilization significantly on average
825 * (small) directories.
826 */
827	maxbufmallocspace = hibufspace / 20;
828
829/*
830 * Reduce the chance of a deadlock occuring by limiting the number
831 * of delayed-write dirty buffers we allow to stack up.
832 */
833	hidirtybuffers = nbuf / 4 + 20;
834	dirtybufthresh = hidirtybuffers * 9 / 10;
835	numdirtybuffers = 0;
836/*
837 * To support extreme low-memory systems, make sure hidirtybuffers cannot
838 * eat up all available buffer space.  This occurs when our minimum cannot
839 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
840 * BKVASIZE'd buffers.
841 */
842	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
843		hidirtybuffers >>= 1;
844	}
845	lodirtybuffers = hidirtybuffers / 2;
846
847/*
848 * Try to keep the number of free buffers in the specified range,
849 * and give special processes (e.g. like buf_daemon) access to an
850 * emergency reserve.
851 */
852	lofreebuffers = nbuf / 18 + 5;
853	hifreebuffers = 2 * lofreebuffers;
854	numfreebuffers = nbuf;
855
856	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
857	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
858	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
859}
860
861#ifdef INVARIANTS
862static inline void
863vfs_buf_check_mapped(struct buf *bp)
864{
865
866	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
867	    ("mapped buf %p %x", bp, bp->b_flags));
868	KASSERT(bp->b_kvabase != unmapped_buf,
869	    ("mapped buf: b_kvabase was not updated %p", bp));
870	KASSERT(bp->b_data != unmapped_buf,
871	    ("mapped buf: b_data was not updated %p", bp));
872}
873
874static inline void
875vfs_buf_check_unmapped(struct buf *bp)
876{
877
878	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
879	    ("unmapped buf %p %x", bp, bp->b_flags));
880	KASSERT(bp->b_kvabase == unmapped_buf,
881	    ("unmapped buf: corrupted b_kvabase %p", bp));
882	KASSERT(bp->b_data == unmapped_buf,
883	    ("unmapped buf: corrupted b_data %p", bp));
884}
885
886#define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
887#define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
888#else
889#define	BUF_CHECK_MAPPED(bp) do {} while (0)
890#define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
891#endif
892
893static void
894bpmap_qenter(struct buf *bp)
895{
896
897	BUF_CHECK_MAPPED(bp);
898
899	/*
900	 * bp->b_data is relative to bp->b_offset, but
901	 * bp->b_offset may be offset into the first page.
902	 */
903	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
904	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
905	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
906	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
907}
908
909/*
910 * bfreekva() - free the kva allocation for a buffer.
911 *
912 *	Since this call frees up buffer space, we call bufspacewakeup().
913 */
914static void
915bfreekva(struct buf *bp)
916{
917
918	if (bp->b_kvasize == 0)
919		return;
920
921	atomic_add_int(&buffreekvacnt, 1);
922	atomic_subtract_long(&bufspace, bp->b_kvasize);
923	if ((bp->b_flags & B_UNMAPPED) == 0) {
924		BUF_CHECK_MAPPED(bp);
925		vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase,
926		    bp->b_kvasize);
927	} else {
928		BUF_CHECK_UNMAPPED(bp);
929		if ((bp->b_flags & B_KVAALLOC) != 0) {
930			vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc,
931			    bp->b_kvasize);
932		}
933		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
934		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
935	}
936	bp->b_kvasize = 0;
937	bufspacewakeup();
938}
939
940/*
941 *	binsfree:
942 *
943 *	Insert the buffer into the appropriate free list.
944 */
945static void
946binsfree(struct buf *bp, int qindex)
947{
948	struct mtx *olock, *nlock;
949
950	BUF_ASSERT_XLOCKED(bp);
951
952	olock = bqlock(bp->b_qindex);
953	nlock = bqlock(qindex);
954	mtx_lock(olock);
955	/* Handle delayed bremfree() processing. */
956	if (bp->b_flags & B_REMFREE)
957		bremfreel(bp);
958
959	if (bp->b_qindex != QUEUE_NONE)
960		panic("binsfree: free buffer onto another queue???");
961
962	bp->b_qindex = qindex;
963	if (olock != nlock) {
964		mtx_unlock(olock);
965		mtx_lock(nlock);
966	}
967	if (bp->b_flags & B_AGE)
968		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
969	else
970		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
971#ifdef INVARIANTS
972	bq_len[bp->b_qindex]++;
973#endif
974	mtx_unlock(nlock);
975
976	/*
977	 * Something we can maybe free or reuse.
978	 */
979	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
980		bufspacewakeup();
981
982	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
983		bufcountadd(bp);
984}
985
986/*
987 *	bremfree:
988 *
989 *	Mark the buffer for removal from the appropriate free list.
990 *
991 */
992void
993bremfree(struct buf *bp)
994{
995
996	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
997	KASSERT((bp->b_flags & B_REMFREE) == 0,
998	    ("bremfree: buffer %p already marked for delayed removal.", bp));
999	KASSERT(bp->b_qindex != QUEUE_NONE,
1000	    ("bremfree: buffer %p not on a queue.", bp));
1001	BUF_ASSERT_XLOCKED(bp);
1002
1003	bp->b_flags |= B_REMFREE;
1004	bufcountsub(bp);
1005}
1006
1007/*
1008 *	bremfreef:
1009 *
1010 *	Force an immediate removal from a free list.  Used only in nfs when
1011 *	it abuses the b_freelist pointer.
1012 */
1013void
1014bremfreef(struct buf *bp)
1015{
1016	struct mtx *qlock;
1017
1018	qlock = bqlock(bp->b_qindex);
1019	mtx_lock(qlock);
1020	bremfreel(bp);
1021	mtx_unlock(qlock);
1022}
1023
1024/*
1025 *	bremfreel:
1026 *
1027 *	Removes a buffer from the free list, must be called with the
1028 *	correct qlock held.
1029 */
1030static void
1031bremfreel(struct buf *bp)
1032{
1033
1034	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1035	    bp, bp->b_vp, bp->b_flags);
1036	KASSERT(bp->b_qindex != QUEUE_NONE,
1037	    ("bremfreel: buffer %p not on a queue.", bp));
1038	BUF_ASSERT_XLOCKED(bp);
1039	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1040
1041	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1042#ifdef INVARIANTS
1043	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1044	    bp->b_qindex));
1045	bq_len[bp->b_qindex]--;
1046#endif
1047	bp->b_qindex = QUEUE_NONE;
1048	/*
1049	 * If this was a delayed bremfree() we only need to remove the buffer
1050	 * from the queue and return the stats are already done.
1051	 */
1052	if (bp->b_flags & B_REMFREE) {
1053		bp->b_flags &= ~B_REMFREE;
1054		return;
1055	}
1056	bufcountsub(bp);
1057}
1058
1059/*
1060 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1061 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1062 * the buffer is valid and we do not have to do anything.
1063 */
1064void
1065breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1066    int cnt, struct ucred * cred)
1067{
1068	struct buf *rabp;
1069	int i;
1070
1071	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1072		if (inmem(vp, *rablkno))
1073			continue;
1074		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1075
1076		if ((rabp->b_flags & B_CACHE) == 0) {
1077			if (!TD_IS_IDLETHREAD(curthread))
1078				curthread->td_ru.ru_inblock++;
1079			rabp->b_flags |= B_ASYNC;
1080			rabp->b_flags &= ~B_INVAL;
1081			rabp->b_ioflags &= ~BIO_ERROR;
1082			rabp->b_iocmd = BIO_READ;
1083			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1084				rabp->b_rcred = crhold(cred);
1085			vfs_busy_pages(rabp, 0);
1086			BUF_KERNPROC(rabp);
1087			rabp->b_iooffset = dbtob(rabp->b_blkno);
1088			bstrategy(rabp);
1089		} else {
1090			brelse(rabp);
1091		}
1092	}
1093}
1094
1095/*
1096 * Entry point for bread() and breadn() via #defines in sys/buf.h.
1097 *
1098 * Get a buffer with the specified data.  Look in the cache first.  We
1099 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1100 * is set, the buffer is valid and we do not have to do anything, see
1101 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1102 */
1103int
1104breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1105    int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1106{
1107	struct buf *bp;
1108	int rv = 0, readwait = 0;
1109
1110	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1111	/*
1112	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1113	 */
1114	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1115	if (bp == NULL)
1116		return (EBUSY);
1117
1118	/* if not found in cache, do some I/O */
1119	if ((bp->b_flags & B_CACHE) == 0) {
1120		if (!TD_IS_IDLETHREAD(curthread))
1121			curthread->td_ru.ru_inblock++;
1122		bp->b_iocmd = BIO_READ;
1123		bp->b_flags &= ~B_INVAL;
1124		bp->b_ioflags &= ~BIO_ERROR;
1125		if (bp->b_rcred == NOCRED && cred != NOCRED)
1126			bp->b_rcred = crhold(cred);
1127		vfs_busy_pages(bp, 0);
1128		bp->b_iooffset = dbtob(bp->b_blkno);
1129		bstrategy(bp);
1130		++readwait;
1131	}
1132
1133	breada(vp, rablkno, rabsize, cnt, cred);
1134
1135	if (readwait) {
1136		rv = bufwait(bp);
1137	}
1138	return (rv);
1139}
1140
1141/*
1142 * Write, release buffer on completion.  (Done by iodone
1143 * if async).  Do not bother writing anything if the buffer
1144 * is invalid.
1145 *
1146 * Note that we set B_CACHE here, indicating that buffer is
1147 * fully valid and thus cacheable.  This is true even of NFS
1148 * now so we set it generally.  This could be set either here
1149 * or in biodone() since the I/O is synchronous.  We put it
1150 * here.
1151 */
1152int
1153bufwrite(struct buf *bp)
1154{
1155	int oldflags;
1156	struct vnode *vp;
1157	long space;
1158	int vp_md;
1159
1160	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1161	if (bp->b_flags & B_INVAL) {
1162		brelse(bp);
1163		return (0);
1164	}
1165
1166	if (bp->b_flags & B_BARRIER)
1167		barrierwrites++;
1168
1169	oldflags = bp->b_flags;
1170
1171	BUF_ASSERT_HELD(bp);
1172
1173	if (bp->b_pin_count > 0)
1174		bunpin_wait(bp);
1175
1176	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1177	    ("FFS background buffer should not get here %p", bp));
1178
1179	vp = bp->b_vp;
1180	if (vp)
1181		vp_md = vp->v_vflag & VV_MD;
1182	else
1183		vp_md = 0;
1184
1185	/*
1186	 * Mark the buffer clean.  Increment the bufobj write count
1187	 * before bundirty() call, to prevent other thread from seeing
1188	 * empty dirty list and zero counter for writes in progress,
1189	 * falsely indicating that the bufobj is clean.
1190	 */
1191	bufobj_wref(bp->b_bufobj);
1192	bundirty(bp);
1193
1194	bp->b_flags &= ~B_DONE;
1195	bp->b_ioflags &= ~BIO_ERROR;
1196	bp->b_flags |= B_CACHE;
1197	bp->b_iocmd = BIO_WRITE;
1198
1199	vfs_busy_pages(bp, 1);
1200
1201	/*
1202	 * Normal bwrites pipeline writes
1203	 */
1204	bp->b_runningbufspace = bp->b_bufsize;
1205	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1206
1207	if (!TD_IS_IDLETHREAD(curthread))
1208		curthread->td_ru.ru_oublock++;
1209	if (oldflags & B_ASYNC)
1210		BUF_KERNPROC(bp);
1211	bp->b_iooffset = dbtob(bp->b_blkno);
1212	bstrategy(bp);
1213
1214	if ((oldflags & B_ASYNC) == 0) {
1215		int rtval = bufwait(bp);
1216		brelse(bp);
1217		return (rtval);
1218	} else if (space > hirunningspace) {
1219		/*
1220		 * don't allow the async write to saturate the I/O
1221		 * system.  We will not deadlock here because
1222		 * we are blocking waiting for I/O that is already in-progress
1223		 * to complete. We do not block here if it is the update
1224		 * or syncer daemon trying to clean up as that can lead
1225		 * to deadlock.
1226		 */
1227		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1228			waitrunningbufspace();
1229	}
1230
1231	return (0);
1232}
1233
1234void
1235bufbdflush(struct bufobj *bo, struct buf *bp)
1236{
1237	struct buf *nbp;
1238
1239	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1240		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1241		altbufferflushes++;
1242	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1243		BO_LOCK(bo);
1244		/*
1245		 * Try to find a buffer to flush.
1246		 */
1247		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1248			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1249			    BUF_LOCK(nbp,
1250				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1251				continue;
1252			if (bp == nbp)
1253				panic("bdwrite: found ourselves");
1254			BO_UNLOCK(bo);
1255			/* Don't countdeps with the bo lock held. */
1256			if (buf_countdeps(nbp, 0)) {
1257				BO_LOCK(bo);
1258				BUF_UNLOCK(nbp);
1259				continue;
1260			}
1261			if (nbp->b_flags & B_CLUSTEROK) {
1262				vfs_bio_awrite(nbp);
1263			} else {
1264				bremfree(nbp);
1265				bawrite(nbp);
1266			}
1267			dirtybufferflushes++;
1268			break;
1269		}
1270		if (nbp == NULL)
1271			BO_UNLOCK(bo);
1272	}
1273}
1274
1275/*
1276 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1277 * anything if the buffer is marked invalid.
1278 *
1279 * Note that since the buffer must be completely valid, we can safely
1280 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1281 * biodone() in order to prevent getblk from writing the buffer
1282 * out synchronously.
1283 */
1284void
1285bdwrite(struct buf *bp)
1286{
1287	struct thread *td = curthread;
1288	struct vnode *vp;
1289	struct bufobj *bo;
1290
1291	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1292	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1293	KASSERT((bp->b_flags & B_BARRIER) == 0,
1294	    ("Barrier request in delayed write %p", bp));
1295	BUF_ASSERT_HELD(bp);
1296
1297	if (bp->b_flags & B_INVAL) {
1298		brelse(bp);
1299		return;
1300	}
1301
1302	/*
1303	 * If we have too many dirty buffers, don't create any more.
1304	 * If we are wildly over our limit, then force a complete
1305	 * cleanup. Otherwise, just keep the situation from getting
1306	 * out of control. Note that we have to avoid a recursive
1307	 * disaster and not try to clean up after our own cleanup!
1308	 */
1309	vp = bp->b_vp;
1310	bo = bp->b_bufobj;
1311	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1312		td->td_pflags |= TDP_INBDFLUSH;
1313		BO_BDFLUSH(bo, bp);
1314		td->td_pflags &= ~TDP_INBDFLUSH;
1315	} else
1316		recursiveflushes++;
1317
1318	bdirty(bp);
1319	/*
1320	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1321	 * true even of NFS now.
1322	 */
1323	bp->b_flags |= B_CACHE;
1324
1325	/*
1326	 * This bmap keeps the system from needing to do the bmap later,
1327	 * perhaps when the system is attempting to do a sync.  Since it
1328	 * is likely that the indirect block -- or whatever other datastructure
1329	 * that the filesystem needs is still in memory now, it is a good
1330	 * thing to do this.  Note also, that if the pageout daemon is
1331	 * requesting a sync -- there might not be enough memory to do
1332	 * the bmap then...  So, this is important to do.
1333	 */
1334	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1335		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1336	}
1337
1338	/*
1339	 * Set the *dirty* buffer range based upon the VM system dirty
1340	 * pages.
1341	 *
1342	 * Mark the buffer pages as clean.  We need to do this here to
1343	 * satisfy the vnode_pager and the pageout daemon, so that it
1344	 * thinks that the pages have been "cleaned".  Note that since
1345	 * the pages are in a delayed write buffer -- the VFS layer
1346	 * "will" see that the pages get written out on the next sync,
1347	 * or perhaps the cluster will be completed.
1348	 */
1349	vfs_clean_pages_dirty_buf(bp);
1350	bqrelse(bp);
1351
1352	/*
1353	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1354	 * due to the softdep code.
1355	 */
1356}
1357
1358/*
1359 *	bdirty:
1360 *
1361 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1362 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1363 *	itself to properly update it in the dirty/clean lists.  We mark it
1364 *	B_DONE to ensure that any asynchronization of the buffer properly
1365 *	clears B_DONE ( else a panic will occur later ).
1366 *
1367 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1368 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1369 *	should only be called if the buffer is known-good.
1370 *
1371 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1372 *	count.
1373 *
1374 *	The buffer must be on QUEUE_NONE.
1375 */
1376void
1377bdirty(struct buf *bp)
1378{
1379
1380	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1381	    bp, bp->b_vp, bp->b_flags);
1382	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1383	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1384	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1385	BUF_ASSERT_HELD(bp);
1386	bp->b_flags &= ~(B_RELBUF);
1387	bp->b_iocmd = BIO_WRITE;
1388
1389	if ((bp->b_flags & B_DELWRI) == 0) {
1390		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1391		reassignbuf(bp);
1392		bdirtyadd();
1393	}
1394}
1395
1396/*
1397 *	bundirty:
1398 *
1399 *	Clear B_DELWRI for buffer.
1400 *
1401 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1402 *	count.
1403 *
1404 *	The buffer must be on QUEUE_NONE.
1405 */
1406
1407void
1408bundirty(struct buf *bp)
1409{
1410
1411	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1412	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1413	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1414	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1415	BUF_ASSERT_HELD(bp);
1416
1417	if (bp->b_flags & B_DELWRI) {
1418		bp->b_flags &= ~B_DELWRI;
1419		reassignbuf(bp);
1420		bdirtysub();
1421	}
1422	/*
1423	 * Since it is now being written, we can clear its deferred write flag.
1424	 */
1425	bp->b_flags &= ~B_DEFERRED;
1426}
1427
1428/*
1429 *	bawrite:
1430 *
1431 *	Asynchronous write.  Start output on a buffer, but do not wait for
1432 *	it to complete.  The buffer is released when the output completes.
1433 *
1434 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1435 *	B_INVAL buffers.  Not us.
1436 */
1437void
1438bawrite(struct buf *bp)
1439{
1440
1441	bp->b_flags |= B_ASYNC;
1442	(void) bwrite(bp);
1443}
1444
1445/*
1446 *	babarrierwrite:
1447 *
1448 *	Asynchronous barrier write.  Start output on a buffer, but do not
1449 *	wait for it to complete.  Place a write barrier after this write so
1450 *	that this buffer and all buffers written before it are committed to
1451 *	the disk before any buffers written after this write are committed
1452 *	to the disk.  The buffer is released when the output completes.
1453 */
1454void
1455babarrierwrite(struct buf *bp)
1456{
1457
1458	bp->b_flags |= B_ASYNC | B_BARRIER;
1459	(void) bwrite(bp);
1460}
1461
1462/*
1463 *	bbarrierwrite:
1464 *
1465 *	Synchronous barrier write.  Start output on a buffer and wait for
1466 *	it to complete.  Place a write barrier after this write so that
1467 *	this buffer and all buffers written before it are committed to
1468 *	the disk before any buffers written after this write are committed
1469 *	to the disk.  The buffer is released when the output completes.
1470 */
1471int
1472bbarrierwrite(struct buf *bp)
1473{
1474
1475	bp->b_flags |= B_BARRIER;
1476	return (bwrite(bp));
1477}
1478
1479/*
1480 *	bwillwrite:
1481 *
1482 *	Called prior to the locking of any vnodes when we are expecting to
1483 *	write.  We do not want to starve the buffer cache with too many
1484 *	dirty buffers so we block here.  By blocking prior to the locking
1485 *	of any vnodes we attempt to avoid the situation where a locked vnode
1486 *	prevents the various system daemons from flushing related buffers.
1487 */
1488void
1489bwillwrite(void)
1490{
1491
1492	if (numdirtybuffers >= hidirtybuffers) {
1493		mtx_lock(&bdirtylock);
1494		while (numdirtybuffers >= hidirtybuffers) {
1495			bdirtywait = 1;
1496			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1497			    "flswai", 0);
1498		}
1499		mtx_unlock(&bdirtylock);
1500	}
1501}
1502
1503/*
1504 * Return true if we have too many dirty buffers.
1505 */
1506int
1507buf_dirty_count_severe(void)
1508{
1509
1510	return(numdirtybuffers >= hidirtybuffers);
1511}
1512
1513static __noinline int
1514buf_vm_page_count_severe(void)
1515{
1516
1517	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1518
1519	return vm_page_count_severe();
1520}
1521
1522/*
1523 *	brelse:
1524 *
1525 *	Release a busy buffer and, if requested, free its resources.  The
1526 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1527 *	to be accessed later as a cache entity or reused for other purposes.
1528 */
1529void
1530brelse(struct buf *bp)
1531{
1532	int qindex;
1533
1534	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1535	    bp, bp->b_vp, bp->b_flags);
1536	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1537	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1538
1539	if (BUF_LOCKRECURSED(bp)) {
1540		/*
1541		 * Do not process, in particular, do not handle the
1542		 * B_INVAL/B_RELBUF and do not release to free list.
1543		 */
1544		BUF_UNLOCK(bp);
1545		return;
1546	}
1547
1548	if (bp->b_flags & B_MANAGED) {
1549		bqrelse(bp);
1550		return;
1551	}
1552
1553	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1554	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1555		/*
1556		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1557		 * pages from being scrapped.  If the error is anything
1558		 * other than an I/O error (EIO), assume that retrying
1559		 * is futile.
1560		 */
1561		bp->b_ioflags &= ~BIO_ERROR;
1562		bdirty(bp);
1563	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1564	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1565		/*
1566		 * Either a failed I/O or we were asked to free or not
1567		 * cache the buffer.
1568		 */
1569		bp->b_flags |= B_INVAL;
1570		if (!LIST_EMPTY(&bp->b_dep))
1571			buf_deallocate(bp);
1572		if (bp->b_flags & B_DELWRI)
1573			bdirtysub();
1574		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1575		if ((bp->b_flags & B_VMIO) == 0) {
1576			if (bp->b_bufsize)
1577				allocbuf(bp, 0);
1578			if (bp->b_vp)
1579				brelvp(bp);
1580		}
1581	}
1582
1583	/*
1584	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1585	 * is called with B_DELWRI set, the underlying pages may wind up
1586	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1587	 * because pages associated with a B_DELWRI bp are marked clean.
1588	 *
1589	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1590	 * if B_DELWRI is set.
1591	 *
1592	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1593	 * on pages to return pages to the VM page queues.
1594	 */
1595	if (bp->b_flags & B_DELWRI)
1596		bp->b_flags &= ~B_RELBUF;
1597	else if (buf_vm_page_count_severe()) {
1598		/*
1599		 * BKGRDINPROG can only be set with the buf and bufobj
1600		 * locks both held.  We tolerate a race to clear it here.
1601		 */
1602		if (!(bp->b_vflags & BV_BKGRDINPROG))
1603			bp->b_flags |= B_RELBUF;
1604	}
1605
1606	/*
1607	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1608	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1609	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1610	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1611	 *
1612	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1613	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1614	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1615	 *
1616	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1617	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1618	 * the commit state and we cannot afford to lose the buffer. If the
1619	 * buffer has a background write in progress, we need to keep it
1620	 * around to prevent it from being reconstituted and starting a second
1621	 * background write.
1622	 */
1623	if ((bp->b_flags & B_VMIO)
1624	    && !(bp->b_vp->v_mount != NULL &&
1625		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1626		 !vn_isdisk(bp->b_vp, NULL) &&
1627		 (bp->b_flags & B_DELWRI))
1628	    ) {
1629
1630		int i, j, resid;
1631		vm_page_t m;
1632		off_t foff;
1633		vm_pindex_t poff;
1634		vm_object_t obj;
1635
1636		obj = bp->b_bufobj->bo_object;
1637
1638		/*
1639		 * Get the base offset and length of the buffer.  Note that
1640		 * in the VMIO case if the buffer block size is not
1641		 * page-aligned then b_data pointer may not be page-aligned.
1642		 * But our b_pages[] array *IS* page aligned.
1643		 *
1644		 * block sizes less then DEV_BSIZE (usually 512) are not
1645		 * supported due to the page granularity bits (m->valid,
1646		 * m->dirty, etc...).
1647		 *
1648		 * See man buf(9) for more information
1649		 */
1650		resid = bp->b_bufsize;
1651		foff = bp->b_offset;
1652		for (i = 0; i < bp->b_npages; i++) {
1653			int had_bogus = 0;
1654
1655			m = bp->b_pages[i];
1656
1657			/*
1658			 * If we hit a bogus page, fixup *all* the bogus pages
1659			 * now.
1660			 */
1661			if (m == bogus_page) {
1662				poff = OFF_TO_IDX(bp->b_offset);
1663				had_bogus = 1;
1664
1665				VM_OBJECT_RLOCK(obj);
1666				for (j = i; j < bp->b_npages; j++) {
1667					vm_page_t mtmp;
1668					mtmp = bp->b_pages[j];
1669					if (mtmp == bogus_page) {
1670						mtmp = vm_page_lookup(obj, poff + j);
1671						if (!mtmp) {
1672							panic("brelse: page missing\n");
1673						}
1674						bp->b_pages[j] = mtmp;
1675					}
1676				}
1677				VM_OBJECT_RUNLOCK(obj);
1678
1679				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1680					BUF_CHECK_MAPPED(bp);
1681					pmap_qenter(
1682					    trunc_page((vm_offset_t)bp->b_data),
1683					    bp->b_pages, bp->b_npages);
1684				}
1685				m = bp->b_pages[i];
1686			}
1687			if ((bp->b_flags & B_NOCACHE) ||
1688			    (bp->b_ioflags & BIO_ERROR &&
1689			     bp->b_iocmd == BIO_READ)) {
1690				int poffset = foff & PAGE_MASK;
1691				int presid = resid > (PAGE_SIZE - poffset) ?
1692					(PAGE_SIZE - poffset) : resid;
1693
1694				KASSERT(presid >= 0, ("brelse: extra page"));
1695				VM_OBJECT_WLOCK(obj);
1696				while (vm_page_xbusied(m)) {
1697					vm_page_lock(m);
1698					VM_OBJECT_WUNLOCK(obj);
1699					vm_page_busy_sleep(m, "mbncsh");
1700					VM_OBJECT_WLOCK(obj);
1701				}
1702				if (pmap_page_wired_mappings(m) == 0)
1703					vm_page_set_invalid(m, poffset, presid);
1704				VM_OBJECT_WUNLOCK(obj);
1705				if (had_bogus)
1706					printf("avoided corruption bug in bogus_page/brelse code\n");
1707			}
1708			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1709			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1710		}
1711		if (bp->b_flags & (B_INVAL | B_RELBUF))
1712			vfs_vmio_release(bp);
1713
1714	} else if (bp->b_flags & B_VMIO) {
1715
1716		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1717			vfs_vmio_release(bp);
1718		}
1719
1720	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1721		if (bp->b_bufsize != 0)
1722			allocbuf(bp, 0);
1723		if (bp->b_vp != NULL)
1724			brelvp(bp);
1725	}
1726
1727	/*
1728	 * If the buffer has junk contents signal it and eventually
1729	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1730	 * doesn't find it.
1731	 */
1732	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1733	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1734		bp->b_flags |= B_INVAL;
1735	if (bp->b_flags & B_INVAL) {
1736		if (bp->b_flags & B_DELWRI)
1737			bundirty(bp);
1738		if (bp->b_vp)
1739			brelvp(bp);
1740	}
1741
1742	/* buffers with no memory */
1743	if (bp->b_bufsize == 0) {
1744		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1745		if (bp->b_vflags & BV_BKGRDINPROG)
1746			panic("losing buffer 1");
1747		if (bp->b_kvasize)
1748			qindex = QUEUE_EMPTYKVA;
1749		else
1750			qindex = QUEUE_EMPTY;
1751		bp->b_flags |= B_AGE;
1752	/* buffers with junk contents */
1753	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1754	    (bp->b_ioflags & BIO_ERROR)) {
1755		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1756		if (bp->b_vflags & BV_BKGRDINPROG)
1757			panic("losing buffer 2");
1758		qindex = QUEUE_CLEAN;
1759		bp->b_flags |= B_AGE;
1760	/* remaining buffers */
1761	} else if (bp->b_flags & B_DELWRI)
1762		qindex = QUEUE_DIRTY;
1763	else
1764		qindex = QUEUE_CLEAN;
1765
1766	binsfree(bp, qindex);
1767
1768	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1769	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1770		panic("brelse: not dirty");
1771	/* unlock */
1772	BUF_UNLOCK(bp);
1773}
1774
1775/*
1776 * Release a buffer back to the appropriate queue but do not try to free
1777 * it.  The buffer is expected to be used again soon.
1778 *
1779 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1780 * biodone() to requeue an async I/O on completion.  It is also used when
1781 * known good buffers need to be requeued but we think we may need the data
1782 * again soon.
1783 *
1784 * XXX we should be able to leave the B_RELBUF hint set on completion.
1785 */
1786void
1787bqrelse(struct buf *bp)
1788{
1789	int qindex;
1790
1791	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1792	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1793	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1794
1795	if (BUF_LOCKRECURSED(bp)) {
1796		/* do not release to free list */
1797		BUF_UNLOCK(bp);
1798		return;
1799	}
1800	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1801
1802	if (bp->b_flags & B_MANAGED) {
1803		if (bp->b_flags & B_REMFREE)
1804			bremfreef(bp);
1805		goto out;
1806	}
1807
1808	/* buffers with stale but valid contents */
1809	if (bp->b_flags & B_DELWRI) {
1810		qindex = QUEUE_DIRTY;
1811	} else {
1812		if ((bp->b_flags & B_DELWRI) == 0 &&
1813		    (bp->b_xflags & BX_VNDIRTY))
1814			panic("bqrelse: not dirty");
1815		/*
1816		 * BKGRDINPROG can only be set with the buf and bufobj
1817		 * locks both held.  We tolerate a race to clear it here.
1818		 */
1819		if (buf_vm_page_count_severe() &&
1820		    (bp->b_vflags & BV_BKGRDINPROG) == 0) {
1821			/*
1822			 * We are too low on memory, we have to try to free
1823			 * the buffer (most importantly: the wired pages
1824			 * making up its backing store) *now*.
1825			 */
1826			brelse(bp);
1827			return;
1828		}
1829		qindex = QUEUE_CLEAN;
1830	}
1831	binsfree(bp, qindex);
1832
1833out:
1834	/* unlock */
1835	BUF_UNLOCK(bp);
1836}
1837
1838/* Give pages used by the bp back to the VM system (where possible) */
1839static void
1840vfs_vmio_release(struct buf *bp)
1841{
1842	int i;
1843	vm_page_t m;
1844
1845	if ((bp->b_flags & B_UNMAPPED) == 0) {
1846		BUF_CHECK_MAPPED(bp);
1847		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1848	} else
1849		BUF_CHECK_UNMAPPED(bp);
1850	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
1851	for (i = 0; i < bp->b_npages; i++) {
1852		m = bp->b_pages[i];
1853		bp->b_pages[i] = NULL;
1854		/*
1855		 * In order to keep page LRU ordering consistent, put
1856		 * everything on the inactive queue.
1857		 */
1858		vm_page_lock(m);
1859		vm_page_unwire(m, 0);
1860
1861		/*
1862		 * Might as well free the page if we can and it has
1863		 * no valid data.  We also free the page if the
1864		 * buffer was used for direct I/O
1865		 */
1866		if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1867			if (m->wire_count == 0 && !vm_page_busied(m))
1868				vm_page_free(m);
1869		} else if (bp->b_flags & B_DIRECT)
1870			vm_page_try_to_free(m);
1871		else if (buf_vm_page_count_severe())
1872			vm_page_try_to_cache(m);
1873		vm_page_unlock(m);
1874	}
1875	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
1876
1877	if (bp->b_bufsize) {
1878		bufspacewakeup();
1879		bp->b_bufsize = 0;
1880	}
1881	bp->b_npages = 0;
1882	bp->b_flags &= ~B_VMIO;
1883	if (bp->b_vp)
1884		brelvp(bp);
1885}
1886
1887/*
1888 * Check to see if a block at a particular lbn is available for a clustered
1889 * write.
1890 */
1891static int
1892vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1893{
1894	struct buf *bpa;
1895	int match;
1896
1897	match = 0;
1898
1899	/* If the buf isn't in core skip it */
1900	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1901		return (0);
1902
1903	/* If the buf is busy we don't want to wait for it */
1904	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1905		return (0);
1906
1907	/* Only cluster with valid clusterable delayed write buffers */
1908	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1909	    (B_DELWRI | B_CLUSTEROK))
1910		goto done;
1911
1912	if (bpa->b_bufsize != size)
1913		goto done;
1914
1915	/*
1916	 * Check to see if it is in the expected place on disk and that the
1917	 * block has been mapped.
1918	 */
1919	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1920		match = 1;
1921done:
1922	BUF_UNLOCK(bpa);
1923	return (match);
1924}
1925
1926/*
1927 *	vfs_bio_awrite:
1928 *
1929 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1930 *	This is much better then the old way of writing only one buffer at
1931 *	a time.  Note that we may not be presented with the buffers in the
1932 *	correct order, so we search for the cluster in both directions.
1933 */
1934int
1935vfs_bio_awrite(struct buf *bp)
1936{
1937	struct bufobj *bo;
1938	int i;
1939	int j;
1940	daddr_t lblkno = bp->b_lblkno;
1941	struct vnode *vp = bp->b_vp;
1942	int ncl;
1943	int nwritten;
1944	int size;
1945	int maxcl;
1946	int gbflags;
1947
1948	bo = &vp->v_bufobj;
1949	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1950	/*
1951	 * right now we support clustered writing only to regular files.  If
1952	 * we find a clusterable block we could be in the middle of a cluster
1953	 * rather then at the beginning.
1954	 */
1955	if ((vp->v_type == VREG) &&
1956	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1957	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1958
1959		size = vp->v_mount->mnt_stat.f_iosize;
1960		maxcl = MAXPHYS / size;
1961
1962		BO_RLOCK(bo);
1963		for (i = 1; i < maxcl; i++)
1964			if (vfs_bio_clcheck(vp, size, lblkno + i,
1965			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1966				break;
1967
1968		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1969			if (vfs_bio_clcheck(vp, size, lblkno - j,
1970			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1971				break;
1972		BO_RUNLOCK(bo);
1973		--j;
1974		ncl = i + j;
1975		/*
1976		 * this is a possible cluster write
1977		 */
1978		if (ncl != 1) {
1979			BUF_UNLOCK(bp);
1980			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
1981			    gbflags);
1982			return (nwritten);
1983		}
1984	}
1985	bremfree(bp);
1986	bp->b_flags |= B_ASYNC;
1987	/*
1988	 * default (old) behavior, writing out only one block
1989	 *
1990	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1991	 */
1992	nwritten = bp->b_bufsize;
1993	(void) bwrite(bp);
1994
1995	return (nwritten);
1996}
1997
1998static void
1999setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
2000{
2001
2002	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2003	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
2004	if ((gbflags & GB_UNMAPPED) == 0) {
2005		bp->b_kvabase = (caddr_t)addr;
2006	} else if ((gbflags & GB_KVAALLOC) != 0) {
2007		KASSERT((gbflags & GB_UNMAPPED) != 0,
2008		    ("GB_KVAALLOC without GB_UNMAPPED"));
2009		bp->b_kvaalloc = (caddr_t)addr;
2010		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2011		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2012	}
2013	bp->b_kvasize = maxsize;
2014}
2015
2016/*
2017 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
2018 * needed.
2019 */
2020static int
2021allocbufkva(struct buf *bp, int maxsize, int gbflags)
2022{
2023	vm_offset_t addr;
2024
2025	bfreekva(bp);
2026	addr = 0;
2027
2028	if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) {
2029		/*
2030		 * Buffer map is too fragmented.  Request the caller
2031		 * to defragment the map.
2032		 */
2033		atomic_add_int(&bufdefragcnt, 1);
2034		return (1);
2035	}
2036	setbufkva(bp, addr, maxsize, gbflags);
2037	atomic_add_long(&bufspace, bp->b_kvasize);
2038	return (0);
2039}
2040
2041/*
2042 * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2043 * locked vnode is supplied.
2044 */
2045static void
2046getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2047    int defrag)
2048{
2049	struct thread *td;
2050	char *waitmsg;
2051	int cnt, error, flags, norunbuf, wait;
2052
2053	mtx_assert(&bqclean, MA_OWNED);
2054
2055	if (defrag) {
2056		flags = VFS_BIO_NEED_BUFSPACE;
2057		waitmsg = "nbufkv";
2058	} else if (bufspace >= hibufspace) {
2059		waitmsg = "nbufbs";
2060		flags = VFS_BIO_NEED_BUFSPACE;
2061	} else {
2062		waitmsg = "newbuf";
2063		flags = VFS_BIO_NEED_ANY;
2064	}
2065	mtx_lock(&nblock);
2066	needsbuffer |= flags;
2067	mtx_unlock(&nblock);
2068	mtx_unlock(&bqclean);
2069
2070	bd_speedup();	/* heeeelp */
2071	if ((gbflags & GB_NOWAIT_BD) != 0)
2072		return;
2073
2074	td = curthread;
2075	cnt = 0;
2076	wait = MNT_NOWAIT;
2077	mtx_lock(&nblock);
2078	while (needsbuffer & flags) {
2079		if (vp != NULL && vp->v_type != VCHR &&
2080		    (td->td_pflags & TDP_BUFNEED) == 0) {
2081			mtx_unlock(&nblock);
2082
2083			/*
2084			 * getblk() is called with a vnode locked, and
2085			 * some majority of the dirty buffers may as
2086			 * well belong to the vnode.  Flushing the
2087			 * buffers there would make a progress that
2088			 * cannot be achieved by the buf_daemon, that
2089			 * cannot lock the vnode.
2090			 */
2091			if (cnt++ > 2)
2092				wait = MNT_WAIT;
2093			ASSERT_VOP_LOCKED(vp, "bufd_helper");
2094			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2095			    vn_lock(vp, LK_TRYUPGRADE);
2096			if (error == 0) {
2097				/* play bufdaemon */
2098				norunbuf = curthread_pflags_set(TDP_BUFNEED |
2099				    TDP_NORUNNINGBUF);
2100				VOP_FSYNC(vp, wait, td);
2101				atomic_add_long(&notbufdflushes, 1);
2102				curthread_pflags_restore(norunbuf);
2103			}
2104			mtx_lock(&nblock);
2105			if ((needsbuffer & flags) == 0)
2106				break;
2107		}
2108		if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
2109		    waitmsg, slptimeo))
2110			break;
2111	}
2112	mtx_unlock(&nblock);
2113}
2114
2115static void
2116getnewbuf_reuse_bp(struct buf *bp, int qindex)
2117{
2118
2119	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2120	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2121	     bp->b_kvasize, bp->b_bufsize, qindex);
2122	mtx_assert(&bqclean, MA_NOTOWNED);
2123
2124	/*
2125	 * Note: we no longer distinguish between VMIO and non-VMIO
2126	 * buffers.
2127	 */
2128	KASSERT((bp->b_flags & B_DELWRI) == 0,
2129	    ("delwri buffer %p found in queue %d", bp, qindex));
2130
2131	if (qindex == QUEUE_CLEAN) {
2132		if (bp->b_flags & B_VMIO) {
2133			bp->b_flags &= ~B_ASYNC;
2134			vfs_vmio_release(bp);
2135		}
2136		if (bp->b_vp != NULL)
2137			brelvp(bp);
2138	}
2139
2140	/*
2141	 * Get the rest of the buffer freed up.  b_kva* is still valid
2142	 * after this operation.
2143	 */
2144
2145	if (bp->b_rcred != NOCRED) {
2146		crfree(bp->b_rcred);
2147		bp->b_rcred = NOCRED;
2148	}
2149	if (bp->b_wcred != NOCRED) {
2150		crfree(bp->b_wcred);
2151		bp->b_wcred = NOCRED;
2152	}
2153	if (!LIST_EMPTY(&bp->b_dep))
2154		buf_deallocate(bp);
2155	if (bp->b_vflags & BV_BKGRDINPROG)
2156		panic("losing buffer 3");
2157	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2158	    bp, bp->b_vp, qindex));
2159	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2160	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2161
2162	if (bp->b_bufsize)
2163		allocbuf(bp, 0);
2164
2165	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2166	bp->b_ioflags = 0;
2167	bp->b_xflags = 0;
2168	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2169	    ("buf %p still counted as free?", bp));
2170	bp->b_vflags = 0;
2171	bp->b_vp = NULL;
2172	bp->b_blkno = bp->b_lblkno = 0;
2173	bp->b_offset = NOOFFSET;
2174	bp->b_iodone = 0;
2175	bp->b_error = 0;
2176	bp->b_resid = 0;
2177	bp->b_bcount = 0;
2178	bp->b_npages = 0;
2179	bp->b_dirtyoff = bp->b_dirtyend = 0;
2180	bp->b_bufobj = NULL;
2181	bp->b_pin_count = 0;
2182	bp->b_fsprivate1 = NULL;
2183	bp->b_fsprivate2 = NULL;
2184	bp->b_fsprivate3 = NULL;
2185
2186	LIST_INIT(&bp->b_dep);
2187}
2188
2189static int flushingbufs;
2190
2191static struct buf *
2192getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2193{
2194	struct buf *bp, *nbp;
2195	int nqindex, qindex, pass;
2196
2197	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2198
2199	pass = 1;
2200restart:
2201	atomic_add_int(&getnewbufrestarts, 1);
2202
2203	/*
2204	 * Setup for scan.  If we do not have enough free buffers,
2205	 * we setup a degenerate case that immediately fails.  Note
2206	 * that if we are specially marked process, we are allowed to
2207	 * dip into our reserves.
2208	 *
2209	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2210	 * for the allocation of the mapped buffer.  For unmapped, the
2211	 * easiest is to start with EMPTY outright.
2212	 *
2213	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2214	 * However, there are a number of cases (defragging, reusing, ...)
2215	 * where we cannot backup.
2216	 */
2217	nbp = NULL;
2218	mtx_lock(&bqclean);
2219	if (!defrag && unmapped) {
2220		nqindex = QUEUE_EMPTY;
2221		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2222	}
2223	if (nbp == NULL) {
2224		nqindex = QUEUE_EMPTYKVA;
2225		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2226	}
2227
2228	/*
2229	 * If no EMPTYKVA buffers and we are either defragging or
2230	 * reusing, locate a CLEAN buffer to free or reuse.  If
2231	 * bufspace useage is low skip this step so we can allocate a
2232	 * new buffer.
2233	 */
2234	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2235		nqindex = QUEUE_CLEAN;
2236		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2237	}
2238
2239	/*
2240	 * If we could not find or were not allowed to reuse a CLEAN
2241	 * buffer, check to see if it is ok to use an EMPTY buffer.
2242	 * We can only use an EMPTY buffer if allocating its KVA would
2243	 * not otherwise run us out of buffer space.  No KVA is needed
2244	 * for the unmapped allocation.
2245	 */
2246	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2247	    metadata)) {
2248		nqindex = QUEUE_EMPTY;
2249		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2250	}
2251
2252	/*
2253	 * All available buffers might be clean, retry ignoring the
2254	 * lobufspace as the last resort.
2255	 */
2256	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2257		nqindex = QUEUE_CLEAN;
2258		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2259	}
2260
2261	/*
2262	 * Run scan, possibly freeing data and/or kva mappings on the fly
2263	 * depending.
2264	 */
2265	while ((bp = nbp) != NULL) {
2266		qindex = nqindex;
2267
2268		/*
2269		 * Calculate next bp (we can only use it if we do not
2270		 * block or do other fancy things).
2271		 */
2272		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2273			switch (qindex) {
2274			case QUEUE_EMPTY:
2275				nqindex = QUEUE_EMPTYKVA;
2276				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2277				if (nbp != NULL)
2278					break;
2279				/* FALLTHROUGH */
2280			case QUEUE_EMPTYKVA:
2281				nqindex = QUEUE_CLEAN;
2282				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2283				if (nbp != NULL)
2284					break;
2285				/* FALLTHROUGH */
2286			case QUEUE_CLEAN:
2287				if (metadata && pass == 1) {
2288					pass = 2;
2289					nqindex = QUEUE_EMPTY;
2290					nbp = TAILQ_FIRST(
2291					    &bufqueues[QUEUE_EMPTY]);
2292				}
2293				/*
2294				 * nbp is NULL.
2295				 */
2296				break;
2297			}
2298		}
2299		/*
2300		 * If we are defragging then we need a buffer with
2301		 * b_kvasize != 0.  XXX this situation should no longer
2302		 * occur, if defrag is non-zero the buffer's b_kvasize
2303		 * should also be non-zero at this point.  XXX
2304		 */
2305		if (defrag && bp->b_kvasize == 0) {
2306			printf("Warning: defrag empty buffer %p\n", bp);
2307			continue;
2308		}
2309
2310		/*
2311		 * Start freeing the bp.  This is somewhat involved.  nbp
2312		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2313		 */
2314		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2315			continue;
2316		/*
2317		 * BKGRDINPROG can only be set with the buf and bufobj
2318		 * locks both held.  We tolerate a race to clear it here.
2319		 */
2320		if (bp->b_vflags & BV_BKGRDINPROG) {
2321			BUF_UNLOCK(bp);
2322			continue;
2323		}
2324
2325		KASSERT(bp->b_qindex == qindex,
2326		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2327
2328		bremfreel(bp);
2329		mtx_unlock(&bqclean);
2330		/*
2331		 * NOTE:  nbp is now entirely invalid.  We can only restart
2332		 * the scan from this point on.
2333		 */
2334
2335		getnewbuf_reuse_bp(bp, qindex);
2336		mtx_assert(&bqclean, MA_NOTOWNED);
2337
2338		/*
2339		 * If we are defragging then free the buffer.
2340		 */
2341		if (defrag) {
2342			bp->b_flags |= B_INVAL;
2343			bfreekva(bp);
2344			brelse(bp);
2345			defrag = 0;
2346			goto restart;
2347		}
2348
2349		/*
2350		 * Notify any waiters for the buffer lock about
2351		 * identity change by freeing the buffer.
2352		 */
2353		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2354			bp->b_flags |= B_INVAL;
2355			bfreekva(bp);
2356			brelse(bp);
2357			goto restart;
2358		}
2359
2360		if (metadata)
2361			break;
2362
2363		/*
2364		 * If we are overcomitted then recover the buffer and its
2365		 * KVM space.  This occurs in rare situations when multiple
2366		 * processes are blocked in getnewbuf() or allocbuf().
2367		 */
2368		if (bufspace >= hibufspace)
2369			flushingbufs = 1;
2370		if (flushingbufs && bp->b_kvasize != 0) {
2371			bp->b_flags |= B_INVAL;
2372			bfreekva(bp);
2373			brelse(bp);
2374			goto restart;
2375		}
2376		if (bufspace < lobufspace)
2377			flushingbufs = 0;
2378		break;
2379	}
2380	return (bp);
2381}
2382
2383/*
2384 *	getnewbuf:
2385 *
2386 *	Find and initialize a new buffer header, freeing up existing buffers
2387 *	in the bufqueues as necessary.  The new buffer is returned locked.
2388 *
2389 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2390 *	buffer away, the caller must set B_INVAL prior to calling brelse().
2391 *
2392 *	We block if:
2393 *		We have insufficient buffer headers
2394 *		We have insufficient buffer space
2395 *		buffer_arena is too fragmented ( space reservation fails )
2396 *		If we have to flush dirty buffers ( but we try to avoid this )
2397 */
2398static struct buf *
2399getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2400    int gbflags)
2401{
2402	struct buf *bp;
2403	int defrag, metadata;
2404
2405	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2406	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2407	if (!unmapped_buf_allowed)
2408		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2409
2410	defrag = 0;
2411	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2412	    vp->v_type == VCHR)
2413		metadata = 1;
2414	else
2415		metadata = 0;
2416	/*
2417	 * We can't afford to block since we might be holding a vnode lock,
2418	 * which may prevent system daemons from running.  We deal with
2419	 * low-memory situations by proactively returning memory and running
2420	 * async I/O rather then sync I/O.
2421	 */
2422	atomic_add_int(&getnewbufcalls, 1);
2423	atomic_subtract_int(&getnewbufrestarts, 1);
2424restart:
2425	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2426	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2427	if (bp != NULL)
2428		defrag = 0;
2429
2430	/*
2431	 * If we exhausted our list, sleep as appropriate.  We may have to
2432	 * wakeup various daemons and write out some dirty buffers.
2433	 *
2434	 * Generally we are sleeping due to insufficient buffer space.
2435	 */
2436	if (bp == NULL) {
2437		mtx_assert(&bqclean, MA_OWNED);
2438		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2439		mtx_assert(&bqclean, MA_NOTOWNED);
2440	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2441		mtx_assert(&bqclean, MA_NOTOWNED);
2442
2443		bfreekva(bp);
2444		bp->b_flags |= B_UNMAPPED;
2445		bp->b_kvabase = bp->b_data = unmapped_buf;
2446		bp->b_kvasize = maxsize;
2447		atomic_add_long(&bufspace, bp->b_kvasize);
2448		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2449		atomic_add_int(&bufreusecnt, 1);
2450	} else {
2451		mtx_assert(&bqclean, MA_NOTOWNED);
2452
2453		/*
2454		 * We finally have a valid bp.  We aren't quite out of the
2455		 * woods, we still have to reserve kva space.  In order
2456		 * to keep fragmentation sane we only allocate kva in
2457		 * BKVASIZE chunks.
2458		 */
2459		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2460
2461		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2462		    B_KVAALLOC)) == B_UNMAPPED) {
2463			if (allocbufkva(bp, maxsize, gbflags)) {
2464				defrag = 1;
2465				bp->b_flags |= B_INVAL;
2466				brelse(bp);
2467				goto restart;
2468			}
2469			atomic_add_int(&bufreusecnt, 1);
2470		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2471		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2472			/*
2473			 * If the reused buffer has KVA allocated,
2474			 * reassign b_kvaalloc to b_kvabase.
2475			 */
2476			bp->b_kvabase = bp->b_kvaalloc;
2477			bp->b_flags &= ~B_KVAALLOC;
2478			atomic_subtract_long(&unmapped_bufspace,
2479			    bp->b_kvasize);
2480			atomic_add_int(&bufreusecnt, 1);
2481		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2482		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2483		    GB_KVAALLOC)) {
2484			/*
2485			 * The case of reused buffer already have KVA
2486			 * mapped, but the request is for unmapped
2487			 * buffer with KVA allocated.
2488			 */
2489			bp->b_kvaalloc = bp->b_kvabase;
2490			bp->b_data = bp->b_kvabase = unmapped_buf;
2491			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2492			atomic_add_long(&unmapped_bufspace,
2493			    bp->b_kvasize);
2494			atomic_add_int(&bufreusecnt, 1);
2495		}
2496		if ((gbflags & GB_UNMAPPED) == 0) {
2497			bp->b_saveaddr = bp->b_kvabase;
2498			bp->b_data = bp->b_saveaddr;
2499			bp->b_flags &= ~B_UNMAPPED;
2500			BUF_CHECK_MAPPED(bp);
2501		}
2502	}
2503	return (bp);
2504}
2505
2506/*
2507 *	buf_daemon:
2508 *
2509 *	buffer flushing daemon.  Buffers are normally flushed by the
2510 *	update daemon but if it cannot keep up this process starts to
2511 *	take the load in an attempt to prevent getnewbuf() from blocking.
2512 */
2513
2514static struct kproc_desc buf_kp = {
2515	"bufdaemon",
2516	buf_daemon,
2517	&bufdaemonproc
2518};
2519SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2520
2521static int
2522buf_flush(int target)
2523{
2524	int flushed;
2525
2526	flushed = flushbufqueues(target, 0);
2527	if (flushed == 0) {
2528		/*
2529		 * Could not find any buffers without rollback
2530		 * dependencies, so just write the first one
2531		 * in the hopes of eventually making progress.
2532		 */
2533		flushed = flushbufqueues(target, 1);
2534	}
2535	return (flushed);
2536}
2537
2538static void
2539buf_daemon()
2540{
2541	int lodirty;
2542
2543	/*
2544	 * This process needs to be suspended prior to shutdown sync.
2545	 */
2546	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2547	    SHUTDOWN_PRI_LAST);
2548
2549	/*
2550	 * This process is allowed to take the buffer cache to the limit
2551	 */
2552	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2553	mtx_lock(&bdlock);
2554	for (;;) {
2555		bd_request = 0;
2556		mtx_unlock(&bdlock);
2557
2558		kproc_suspend_check(bufdaemonproc);
2559		lodirty = lodirtybuffers;
2560		if (bd_speedupreq) {
2561			lodirty = numdirtybuffers / 2;
2562			bd_speedupreq = 0;
2563		}
2564		/*
2565		 * Do the flush.  Limit the amount of in-transit I/O we
2566		 * allow to build up, otherwise we would completely saturate
2567		 * the I/O system.
2568		 */
2569		while (numdirtybuffers > lodirty) {
2570			if (buf_flush(numdirtybuffers - lodirty) == 0)
2571				break;
2572			kern_yield(PRI_USER);
2573		}
2574
2575		/*
2576		 * Only clear bd_request if we have reached our low water
2577		 * mark.  The buf_daemon normally waits 1 second and
2578		 * then incrementally flushes any dirty buffers that have
2579		 * built up, within reason.
2580		 *
2581		 * If we were unable to hit our low water mark and couldn't
2582		 * find any flushable buffers, we sleep for a short period
2583		 * to avoid endless loops on unlockable buffers.
2584		 */
2585		mtx_lock(&bdlock);
2586		if (numdirtybuffers <= lodirtybuffers) {
2587			/*
2588			 * We reached our low water mark, reset the
2589			 * request and sleep until we are needed again.
2590			 * The sleep is just so the suspend code works.
2591			 */
2592			bd_request = 0;
2593			/*
2594			 * Do an extra wakeup in case dirty threshold
2595			 * changed via sysctl and the explicit transition
2596			 * out of shortfall was missed.
2597			 */
2598			bdirtywakeup();
2599			if (runningbufspace <= lorunningspace)
2600				runningwakeup();
2601			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2602		} else {
2603			/*
2604			 * We couldn't find any flushable dirty buffers but
2605			 * still have too many dirty buffers, we
2606			 * have to sleep and try again.  (rare)
2607			 */
2608			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2609		}
2610	}
2611}
2612
2613/*
2614 *	flushbufqueues:
2615 *
2616 *	Try to flush a buffer in the dirty queue.  We must be careful to
2617 *	free up B_INVAL buffers instead of write them, which NFS is
2618 *	particularly sensitive to.
2619 */
2620static int flushwithdeps = 0;
2621SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2622    0, "Number of buffers flushed with dependecies that require rollbacks");
2623
2624static int
2625flushbufqueues(int target, int flushdeps)
2626{
2627	struct buf *sentinel;
2628	struct vnode *vp;
2629	struct mount *mp;
2630	struct buf *bp;
2631	int hasdeps;
2632	int flushed;
2633	int queue;
2634	int error;
2635
2636	flushed = 0;
2637	queue = QUEUE_DIRTY;
2638	bp = NULL;
2639	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2640	sentinel->b_qindex = QUEUE_SENTINEL;
2641	mtx_lock(&bqdirty);
2642	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2643	mtx_unlock(&bqdirty);
2644	while (flushed != target) {
2645		maybe_yield();
2646		mtx_lock(&bqdirty);
2647		bp = TAILQ_NEXT(sentinel, b_freelist);
2648		if (bp != NULL) {
2649			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2650			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2651			    b_freelist);
2652		} else {
2653			mtx_unlock(&bqdirty);
2654			break;
2655		}
2656		KASSERT(bp->b_qindex != QUEUE_SENTINEL,
2657		    ("parallel calls to flushbufqueues() bp %p", bp));
2658		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2659		mtx_unlock(&bqdirty);
2660		if (error != 0)
2661			continue;
2662		if (bp->b_pin_count > 0) {
2663			BUF_UNLOCK(bp);
2664			continue;
2665		}
2666		/*
2667		 * BKGRDINPROG can only be set with the buf and bufobj
2668		 * locks both held.  We tolerate a race to clear it here.
2669		 */
2670		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2671		    (bp->b_flags & B_DELWRI) == 0) {
2672			BUF_UNLOCK(bp);
2673			continue;
2674		}
2675		if (bp->b_flags & B_INVAL) {
2676			bremfreef(bp);
2677			brelse(bp);
2678			flushed++;
2679			continue;
2680		}
2681
2682		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2683			if (flushdeps == 0) {
2684				BUF_UNLOCK(bp);
2685				continue;
2686			}
2687			hasdeps = 1;
2688		} else
2689			hasdeps = 0;
2690		/*
2691		 * We must hold the lock on a vnode before writing
2692		 * one of its buffers. Otherwise we may confuse, or
2693		 * in the case of a snapshot vnode, deadlock the
2694		 * system.
2695		 *
2696		 * The lock order here is the reverse of the normal
2697		 * of vnode followed by buf lock.  This is ok because
2698		 * the NOWAIT will prevent deadlock.
2699		 */
2700		vp = bp->b_vp;
2701		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2702			BUF_UNLOCK(bp);
2703			continue;
2704		}
2705		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2706		if (error == 0) {
2707			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2708			    bp, bp->b_vp, bp->b_flags);
2709			vfs_bio_awrite(bp);
2710			vn_finished_write(mp);
2711			VOP_UNLOCK(vp, 0);
2712			flushwithdeps += hasdeps;
2713			flushed++;
2714			if (runningbufspace > hirunningspace)
2715				waitrunningbufspace();
2716			continue;
2717		}
2718		vn_finished_write(mp);
2719		BUF_UNLOCK(bp);
2720	}
2721	mtx_lock(&bqdirty);
2722	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2723	mtx_unlock(&bqdirty);
2724	free(sentinel, M_TEMP);
2725	return (flushed);
2726}
2727
2728/*
2729 * Check to see if a block is currently memory resident.
2730 */
2731struct buf *
2732incore(struct bufobj *bo, daddr_t blkno)
2733{
2734	struct buf *bp;
2735
2736	BO_RLOCK(bo);
2737	bp = gbincore(bo, blkno);
2738	BO_RUNLOCK(bo);
2739	return (bp);
2740}
2741
2742/*
2743 * Returns true if no I/O is needed to access the
2744 * associated VM object.  This is like incore except
2745 * it also hunts around in the VM system for the data.
2746 */
2747
2748static int
2749inmem(struct vnode * vp, daddr_t blkno)
2750{
2751	vm_object_t obj;
2752	vm_offset_t toff, tinc, size;
2753	vm_page_t m;
2754	vm_ooffset_t off;
2755
2756	ASSERT_VOP_LOCKED(vp, "inmem");
2757
2758	if (incore(&vp->v_bufobj, blkno))
2759		return 1;
2760	if (vp->v_mount == NULL)
2761		return 0;
2762	obj = vp->v_object;
2763	if (obj == NULL)
2764		return (0);
2765
2766	size = PAGE_SIZE;
2767	if (size > vp->v_mount->mnt_stat.f_iosize)
2768		size = vp->v_mount->mnt_stat.f_iosize;
2769	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2770
2771	VM_OBJECT_RLOCK(obj);
2772	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2773		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2774		if (!m)
2775			goto notinmem;
2776		tinc = size;
2777		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2778			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2779		if (vm_page_is_valid(m,
2780		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2781			goto notinmem;
2782	}
2783	VM_OBJECT_RUNLOCK(obj);
2784	return 1;
2785
2786notinmem:
2787	VM_OBJECT_RUNLOCK(obj);
2788	return (0);
2789}
2790
2791/*
2792 * Set the dirty range for a buffer based on the status of the dirty
2793 * bits in the pages comprising the buffer.  The range is limited
2794 * to the size of the buffer.
2795 *
2796 * Tell the VM system that the pages associated with this buffer
2797 * are clean.  This is used for delayed writes where the data is
2798 * going to go to disk eventually without additional VM intevention.
2799 *
2800 * Note that while we only really need to clean through to b_bcount, we
2801 * just go ahead and clean through to b_bufsize.
2802 */
2803static void
2804vfs_clean_pages_dirty_buf(struct buf *bp)
2805{
2806	vm_ooffset_t foff, noff, eoff;
2807	vm_page_t m;
2808	int i;
2809
2810	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2811		return;
2812
2813	foff = bp->b_offset;
2814	KASSERT(bp->b_offset != NOOFFSET,
2815	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2816
2817	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2818	vfs_drain_busy_pages(bp);
2819	vfs_setdirty_locked_object(bp);
2820	for (i = 0; i < bp->b_npages; i++) {
2821		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2822		eoff = noff;
2823		if (eoff > bp->b_offset + bp->b_bufsize)
2824			eoff = bp->b_offset + bp->b_bufsize;
2825		m = bp->b_pages[i];
2826		vfs_page_set_validclean(bp, foff, m);
2827		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2828		foff = noff;
2829	}
2830	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2831}
2832
2833static void
2834vfs_setdirty_locked_object(struct buf *bp)
2835{
2836	vm_object_t object;
2837	int i;
2838
2839	object = bp->b_bufobj->bo_object;
2840	VM_OBJECT_ASSERT_WLOCKED(object);
2841
2842	/*
2843	 * We qualify the scan for modified pages on whether the
2844	 * object has been flushed yet.
2845	 */
2846	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2847		vm_offset_t boffset;
2848		vm_offset_t eoffset;
2849
2850		/*
2851		 * test the pages to see if they have been modified directly
2852		 * by users through the VM system.
2853		 */
2854		for (i = 0; i < bp->b_npages; i++)
2855			vm_page_test_dirty(bp->b_pages[i]);
2856
2857		/*
2858		 * Calculate the encompassing dirty range, boffset and eoffset,
2859		 * (eoffset - boffset) bytes.
2860		 */
2861
2862		for (i = 0; i < bp->b_npages; i++) {
2863			if (bp->b_pages[i]->dirty)
2864				break;
2865		}
2866		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2867
2868		for (i = bp->b_npages - 1; i >= 0; --i) {
2869			if (bp->b_pages[i]->dirty) {
2870				break;
2871			}
2872		}
2873		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2874
2875		/*
2876		 * Fit it to the buffer.
2877		 */
2878
2879		if (eoffset > bp->b_bcount)
2880			eoffset = bp->b_bcount;
2881
2882		/*
2883		 * If we have a good dirty range, merge with the existing
2884		 * dirty range.
2885		 */
2886
2887		if (boffset < eoffset) {
2888			if (bp->b_dirtyoff > boffset)
2889				bp->b_dirtyoff = boffset;
2890			if (bp->b_dirtyend < eoffset)
2891				bp->b_dirtyend = eoffset;
2892		}
2893	}
2894}
2895
2896/*
2897 * Allocate the KVA mapping for an existing buffer. It handles the
2898 * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2899 * KVA which is not mapped (B_KVAALLOC).
2900 */
2901static void
2902bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2903{
2904	struct buf *scratch_bp;
2905	int bsize, maxsize, need_mapping, need_kva;
2906	off_t offset;
2907
2908	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2909	    (gbflags & GB_UNMAPPED) == 0;
2910	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2911	    (gbflags & GB_KVAALLOC) != 0;
2912	if (!need_mapping && !need_kva)
2913		return;
2914
2915	BUF_CHECK_UNMAPPED(bp);
2916
2917	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2918		/*
2919		 * Buffer is not mapped, but the KVA was already
2920		 * reserved at the time of the instantiation.  Use the
2921		 * allocated space.
2922		 */
2923		bp->b_flags &= ~B_KVAALLOC;
2924		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2925		bp->b_kvabase = bp->b_kvaalloc;
2926		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2927		goto has_addr;
2928	}
2929
2930	/*
2931	 * Calculate the amount of the address space we would reserve
2932	 * if the buffer was mapped.
2933	 */
2934	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2935	offset = blkno * bsize;
2936	maxsize = size + (offset & PAGE_MASK);
2937	maxsize = imax(maxsize, bsize);
2938
2939mapping_loop:
2940	if (allocbufkva(bp, maxsize, gbflags)) {
2941		/*
2942		 * Request defragmentation. getnewbuf() returns us the
2943		 * allocated space by the scratch buffer KVA.
2944		 */
2945		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2946		    (GB_UNMAPPED | GB_KVAALLOC));
2947		if (scratch_bp == NULL) {
2948			if ((gbflags & GB_NOWAIT_BD) != 0) {
2949				/*
2950				 * XXXKIB: defragmentation cannot
2951				 * succeed, not sure what else to do.
2952				 */
2953				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
2954			}
2955			atomic_add_int(&mappingrestarts, 1);
2956			goto mapping_loop;
2957		}
2958		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
2959		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
2960		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
2961		    scratch_bp->b_kvasize, gbflags);
2962
2963		/* Get rid of the scratch buffer. */
2964		scratch_bp->b_kvasize = 0;
2965		scratch_bp->b_flags |= B_INVAL;
2966		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
2967		brelse(scratch_bp);
2968	}
2969	if (!need_mapping)
2970		return;
2971
2972has_addr:
2973	bp->b_saveaddr = bp->b_kvabase;
2974	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
2975	bp->b_flags &= ~B_UNMAPPED;
2976	BUF_CHECK_MAPPED(bp);
2977	bpmap_qenter(bp);
2978}
2979
2980/*
2981 *	getblk:
2982 *
2983 *	Get a block given a specified block and offset into a file/device.
2984 *	The buffers B_DONE bit will be cleared on return, making it almost
2985 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2986 *	return.  The caller should clear B_INVAL prior to initiating a
2987 *	READ.
2988 *
2989 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2990 *	an existing buffer.
2991 *
2992 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2993 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2994 *	and then cleared based on the backing VM.  If the previous buffer is
2995 *	non-0-sized but invalid, B_CACHE will be cleared.
2996 *
2997 *	If getblk() must create a new buffer, the new buffer is returned with
2998 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2999 *	case it is returned with B_INVAL clear and B_CACHE set based on the
3000 *	backing VM.
3001 *
3002 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3003 *	B_CACHE bit is clear.
3004 *
3005 *	What this means, basically, is that the caller should use B_CACHE to
3006 *	determine whether the buffer is fully valid or not and should clear
3007 *	B_INVAL prior to issuing a read.  If the caller intends to validate
3008 *	the buffer by loading its data area with something, the caller needs
3009 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3010 *	the caller should set B_CACHE ( as an optimization ), else the caller
3011 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3012 *	a write attempt or if it was a successfull read.  If the caller
3013 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3014 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3015 */
3016struct buf *
3017getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3018    int flags)
3019{
3020	struct buf *bp;
3021	struct bufobj *bo;
3022	int bsize, error, maxsize, vmio;
3023	off_t offset;
3024
3025	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3026	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3027	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3028	ASSERT_VOP_LOCKED(vp, "getblk");
3029	if (size > MAXBSIZE)
3030		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
3031	if (!unmapped_buf_allowed)
3032		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3033
3034	bo = &vp->v_bufobj;
3035loop:
3036	BO_RLOCK(bo);
3037	bp = gbincore(bo, blkno);
3038	if (bp != NULL) {
3039		int lockflags;
3040		/*
3041		 * Buffer is in-core.  If the buffer is not busy nor managed,
3042		 * it must be on a queue.
3043		 */
3044		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3045
3046		if (flags & GB_LOCK_NOWAIT)
3047			lockflags |= LK_NOWAIT;
3048
3049		error = BUF_TIMELOCK(bp, lockflags,
3050		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3051
3052		/*
3053		 * If we slept and got the lock we have to restart in case
3054		 * the buffer changed identities.
3055		 */
3056		if (error == ENOLCK)
3057			goto loop;
3058		/* We timed out or were interrupted. */
3059		else if (error)
3060			return (NULL);
3061		/* If recursed, assume caller knows the rules. */
3062		else if (BUF_LOCKRECURSED(bp))
3063			goto end;
3064
3065		/*
3066		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3067		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3068		 * and for a VMIO buffer B_CACHE is adjusted according to the
3069		 * backing VM cache.
3070		 */
3071		if (bp->b_flags & B_INVAL)
3072			bp->b_flags &= ~B_CACHE;
3073		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3074			bp->b_flags |= B_CACHE;
3075		if (bp->b_flags & B_MANAGED)
3076			MPASS(bp->b_qindex == QUEUE_NONE);
3077		else
3078			bremfree(bp);
3079
3080		/*
3081		 * check for size inconsistencies for non-VMIO case.
3082		 */
3083		if (bp->b_bcount != size) {
3084			if ((bp->b_flags & B_VMIO) == 0 ||
3085			    (size > bp->b_kvasize)) {
3086				if (bp->b_flags & B_DELWRI) {
3087					/*
3088					 * If buffer is pinned and caller does
3089					 * not want sleep  waiting for it to be
3090					 * unpinned, bail out
3091					 * */
3092					if (bp->b_pin_count > 0) {
3093						if (flags & GB_LOCK_NOWAIT) {
3094							bqrelse(bp);
3095							return (NULL);
3096						} else {
3097							bunpin_wait(bp);
3098						}
3099					}
3100					bp->b_flags |= B_NOCACHE;
3101					bwrite(bp);
3102				} else {
3103					if (LIST_EMPTY(&bp->b_dep)) {
3104						bp->b_flags |= B_RELBUF;
3105						brelse(bp);
3106					} else {
3107						bp->b_flags |= B_NOCACHE;
3108						bwrite(bp);
3109					}
3110				}
3111				goto loop;
3112			}
3113		}
3114
3115		/*
3116		 * Handle the case of unmapped buffer which should
3117		 * become mapped, or the buffer for which KVA
3118		 * reservation is requested.
3119		 */
3120		bp_unmapped_get_kva(bp, blkno, size, flags);
3121
3122		/*
3123		 * If the size is inconsistant in the VMIO case, we can resize
3124		 * the buffer.  This might lead to B_CACHE getting set or
3125		 * cleared.  If the size has not changed, B_CACHE remains
3126		 * unchanged from its previous state.
3127		 */
3128		if (bp->b_bcount != size)
3129			allocbuf(bp, size);
3130
3131		KASSERT(bp->b_offset != NOOFFSET,
3132		    ("getblk: no buffer offset"));
3133
3134		/*
3135		 * A buffer with B_DELWRI set and B_CACHE clear must
3136		 * be committed before we can return the buffer in
3137		 * order to prevent the caller from issuing a read
3138		 * ( due to B_CACHE not being set ) and overwriting
3139		 * it.
3140		 *
3141		 * Most callers, including NFS and FFS, need this to
3142		 * operate properly either because they assume they
3143		 * can issue a read if B_CACHE is not set, or because
3144		 * ( for example ) an uncached B_DELWRI might loop due
3145		 * to softupdates re-dirtying the buffer.  In the latter
3146		 * case, B_CACHE is set after the first write completes,
3147		 * preventing further loops.
3148		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3149		 * above while extending the buffer, we cannot allow the
3150		 * buffer to remain with B_CACHE set after the write
3151		 * completes or it will represent a corrupt state.  To
3152		 * deal with this we set B_NOCACHE to scrap the buffer
3153		 * after the write.
3154		 *
3155		 * We might be able to do something fancy, like setting
3156		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3157		 * so the below call doesn't set B_CACHE, but that gets real
3158		 * confusing.  This is much easier.
3159		 */
3160
3161		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3162			bp->b_flags |= B_NOCACHE;
3163			bwrite(bp);
3164			goto loop;
3165		}
3166		bp->b_flags &= ~B_DONE;
3167	} else {
3168		/*
3169		 * Buffer is not in-core, create new buffer.  The buffer
3170		 * returned by getnewbuf() is locked.  Note that the returned
3171		 * buffer is also considered valid (not marked B_INVAL).
3172		 */
3173		BO_RUNLOCK(bo);
3174		/*
3175		 * If the user does not want us to create the buffer, bail out
3176		 * here.
3177		 */
3178		if (flags & GB_NOCREAT)
3179			return NULL;
3180		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3181			return NULL;
3182
3183		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3184		offset = blkno * bsize;
3185		vmio = vp->v_object != NULL;
3186		if (vmio) {
3187			maxsize = size + (offset & PAGE_MASK);
3188		} else {
3189			maxsize = size;
3190			/* Do not allow non-VMIO notmapped buffers. */
3191			flags &= ~GB_UNMAPPED;
3192		}
3193		maxsize = imax(maxsize, bsize);
3194
3195		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3196		if (bp == NULL) {
3197			if (slpflag || slptimeo)
3198				return NULL;
3199			goto loop;
3200		}
3201
3202		/*
3203		 * This code is used to make sure that a buffer is not
3204		 * created while the getnewbuf routine is blocked.
3205		 * This can be a problem whether the vnode is locked or not.
3206		 * If the buffer is created out from under us, we have to
3207		 * throw away the one we just created.
3208		 *
3209		 * Note: this must occur before we associate the buffer
3210		 * with the vp especially considering limitations in
3211		 * the splay tree implementation when dealing with duplicate
3212		 * lblkno's.
3213		 */
3214		BO_LOCK(bo);
3215		if (gbincore(bo, blkno)) {
3216			BO_UNLOCK(bo);
3217			bp->b_flags |= B_INVAL;
3218			brelse(bp);
3219			goto loop;
3220		}
3221
3222		/*
3223		 * Insert the buffer into the hash, so that it can
3224		 * be found by incore.
3225		 */
3226		bp->b_blkno = bp->b_lblkno = blkno;
3227		bp->b_offset = offset;
3228		bgetvp(vp, bp);
3229		BO_UNLOCK(bo);
3230
3231		/*
3232		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3233		 * buffer size starts out as 0, B_CACHE will be set by
3234		 * allocbuf() for the VMIO case prior to it testing the
3235		 * backing store for validity.
3236		 */
3237
3238		if (vmio) {
3239			bp->b_flags |= B_VMIO;
3240			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3241			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3242			    bp, vp->v_object, bp->b_bufobj->bo_object));
3243		} else {
3244			bp->b_flags &= ~B_VMIO;
3245			KASSERT(bp->b_bufobj->bo_object == NULL,
3246			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3247			    bp, bp->b_bufobj->bo_object));
3248			BUF_CHECK_MAPPED(bp);
3249		}
3250
3251		allocbuf(bp, size);
3252		bp->b_flags &= ~B_DONE;
3253	}
3254	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3255	BUF_ASSERT_HELD(bp);
3256end:
3257	KASSERT(bp->b_bufobj == bo,
3258	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3259	return (bp);
3260}
3261
3262/*
3263 * Get an empty, disassociated buffer of given size.  The buffer is initially
3264 * set to B_INVAL.
3265 */
3266struct buf *
3267geteblk(int size, int flags)
3268{
3269	struct buf *bp;
3270	int maxsize;
3271
3272	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3273	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3274		if ((flags & GB_NOWAIT_BD) &&
3275		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3276			return (NULL);
3277	}
3278	allocbuf(bp, size);
3279	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3280	BUF_ASSERT_HELD(bp);
3281	return (bp);
3282}
3283
3284
3285/*
3286 * This code constitutes the buffer memory from either anonymous system
3287 * memory (in the case of non-VMIO operations) or from an associated
3288 * VM object (in the case of VMIO operations).  This code is able to
3289 * resize a buffer up or down.
3290 *
3291 * Note that this code is tricky, and has many complications to resolve
3292 * deadlock or inconsistant data situations.  Tread lightly!!!
3293 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3294 * the caller.  Calling this code willy nilly can result in the loss of data.
3295 *
3296 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3297 * B_CACHE for the non-VMIO case.
3298 */
3299
3300int
3301allocbuf(struct buf *bp, int size)
3302{
3303	int newbsize, mbsize;
3304	int i;
3305
3306	BUF_ASSERT_HELD(bp);
3307
3308	if (bp->b_kvasize < size)
3309		panic("allocbuf: buffer too small");
3310
3311	if ((bp->b_flags & B_VMIO) == 0) {
3312		caddr_t origbuf;
3313		int origbufsize;
3314		/*
3315		 * Just get anonymous memory from the kernel.  Don't
3316		 * mess with B_CACHE.
3317		 */
3318		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3319		if (bp->b_flags & B_MALLOC)
3320			newbsize = mbsize;
3321		else
3322			newbsize = round_page(size);
3323
3324		if (newbsize < bp->b_bufsize) {
3325			/*
3326			 * malloced buffers are not shrunk
3327			 */
3328			if (bp->b_flags & B_MALLOC) {
3329				if (newbsize) {
3330					bp->b_bcount = size;
3331				} else {
3332					free(bp->b_data, M_BIOBUF);
3333					if (bp->b_bufsize) {
3334						atomic_subtract_long(
3335						    &bufmallocspace,
3336						    bp->b_bufsize);
3337						bufspacewakeup();
3338						bp->b_bufsize = 0;
3339					}
3340					bp->b_saveaddr = bp->b_kvabase;
3341					bp->b_data = bp->b_saveaddr;
3342					bp->b_bcount = 0;
3343					bp->b_flags &= ~B_MALLOC;
3344				}
3345				return 1;
3346			}
3347			vm_hold_free_pages(bp, newbsize);
3348		} else if (newbsize > bp->b_bufsize) {
3349			/*
3350			 * We only use malloced memory on the first allocation.
3351			 * and revert to page-allocated memory when the buffer
3352			 * grows.
3353			 */
3354			/*
3355			 * There is a potential smp race here that could lead
3356			 * to bufmallocspace slightly passing the max.  It
3357			 * is probably extremely rare and not worth worrying
3358			 * over.
3359			 */
3360			if ( (bufmallocspace < maxbufmallocspace) &&
3361				(bp->b_bufsize == 0) &&
3362				(mbsize <= PAGE_SIZE/2)) {
3363
3364				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3365				bp->b_bufsize = mbsize;
3366				bp->b_bcount = size;
3367				bp->b_flags |= B_MALLOC;
3368				atomic_add_long(&bufmallocspace, mbsize);
3369				return 1;
3370			}
3371			origbuf = NULL;
3372			origbufsize = 0;
3373			/*
3374			 * If the buffer is growing on its other-than-first allocation,
3375			 * then we revert to the page-allocation scheme.
3376			 */
3377			if (bp->b_flags & B_MALLOC) {
3378				origbuf = bp->b_data;
3379				origbufsize = bp->b_bufsize;
3380				bp->b_data = bp->b_kvabase;
3381				if (bp->b_bufsize) {
3382					atomic_subtract_long(&bufmallocspace,
3383					    bp->b_bufsize);
3384					bufspacewakeup();
3385					bp->b_bufsize = 0;
3386				}
3387				bp->b_flags &= ~B_MALLOC;
3388				newbsize = round_page(newbsize);
3389			}
3390			vm_hold_load_pages(
3391			    bp,
3392			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3393			    (vm_offset_t) bp->b_data + newbsize);
3394			if (origbuf) {
3395				bcopy(origbuf, bp->b_data, origbufsize);
3396				free(origbuf, M_BIOBUF);
3397			}
3398		}
3399	} else {
3400		int desiredpages;
3401
3402		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3403		desiredpages = (size == 0) ? 0 :
3404			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3405
3406		if (bp->b_flags & B_MALLOC)
3407			panic("allocbuf: VMIO buffer can't be malloced");
3408		/*
3409		 * Set B_CACHE initially if buffer is 0 length or will become
3410		 * 0-length.
3411		 */
3412		if (size == 0 || bp->b_bufsize == 0)
3413			bp->b_flags |= B_CACHE;
3414
3415		if (newbsize < bp->b_bufsize) {
3416			/*
3417			 * DEV_BSIZE aligned new buffer size is less then the
3418			 * DEV_BSIZE aligned existing buffer size.  Figure out
3419			 * if we have to remove any pages.
3420			 */
3421			if (desiredpages < bp->b_npages) {
3422				vm_page_t m;
3423
3424				if ((bp->b_flags & B_UNMAPPED) == 0) {
3425					BUF_CHECK_MAPPED(bp);
3426					pmap_qremove((vm_offset_t)trunc_page(
3427					    (vm_offset_t)bp->b_data) +
3428					    (desiredpages << PAGE_SHIFT),
3429					    (bp->b_npages - desiredpages));
3430				} else
3431					BUF_CHECK_UNMAPPED(bp);
3432				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3433				for (i = desiredpages; i < bp->b_npages; i++) {
3434					/*
3435					 * the page is not freed here -- it
3436					 * is the responsibility of
3437					 * vnode_pager_setsize
3438					 */
3439					m = bp->b_pages[i];
3440					KASSERT(m != bogus_page,
3441					    ("allocbuf: bogus page found"));
3442					while (vm_page_sleep_if_busy(m,
3443					    "biodep"))
3444						continue;
3445
3446					bp->b_pages[i] = NULL;
3447					vm_page_lock(m);
3448					vm_page_unwire(m, 0);
3449					vm_page_unlock(m);
3450				}
3451				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3452				bp->b_npages = desiredpages;
3453			}
3454		} else if (size > bp->b_bcount) {
3455			/*
3456			 * We are growing the buffer, possibly in a
3457			 * byte-granular fashion.
3458			 */
3459			vm_object_t obj;
3460			vm_offset_t toff;
3461			vm_offset_t tinc;
3462
3463			/*
3464			 * Step 1, bring in the VM pages from the object,
3465			 * allocating them if necessary.  We must clear
3466			 * B_CACHE if these pages are not valid for the
3467			 * range covered by the buffer.
3468			 */
3469
3470			obj = bp->b_bufobj->bo_object;
3471
3472			VM_OBJECT_WLOCK(obj);
3473			while (bp->b_npages < desiredpages) {
3474				vm_page_t m;
3475
3476				/*
3477				 * We must allocate system pages since blocking
3478				 * here could interfere with paging I/O, no
3479				 * matter which process we are.
3480				 *
3481				 * Only exclusive busy can be tested here.
3482				 * Blocking on shared busy might lead to
3483				 * deadlocks once allocbuf() is called after
3484				 * pages are vfs_busy_pages().
3485				 */
3486				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3487				    bp->b_npages, VM_ALLOC_NOBUSY |
3488				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3489				    VM_ALLOC_IGN_SBUSY |
3490				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3491				if (m->valid == 0)
3492					bp->b_flags &= ~B_CACHE;
3493				bp->b_pages[bp->b_npages] = m;
3494				++bp->b_npages;
3495			}
3496
3497			/*
3498			 * Step 2.  We've loaded the pages into the buffer,
3499			 * we have to figure out if we can still have B_CACHE
3500			 * set.  Note that B_CACHE is set according to the
3501			 * byte-granular range ( bcount and size ), new the
3502			 * aligned range ( newbsize ).
3503			 *
3504			 * The VM test is against m->valid, which is DEV_BSIZE
3505			 * aligned.  Needless to say, the validity of the data
3506			 * needs to also be DEV_BSIZE aligned.  Note that this
3507			 * fails with NFS if the server or some other client
3508			 * extends the file's EOF.  If our buffer is resized,
3509			 * B_CACHE may remain set! XXX
3510			 */
3511
3512			toff = bp->b_bcount;
3513			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3514
3515			while ((bp->b_flags & B_CACHE) && toff < size) {
3516				vm_pindex_t pi;
3517
3518				if (tinc > (size - toff))
3519					tinc = size - toff;
3520
3521				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3522				    PAGE_SHIFT;
3523
3524				vfs_buf_test_cache(
3525				    bp,
3526				    bp->b_offset,
3527				    toff,
3528				    tinc,
3529				    bp->b_pages[pi]
3530				);
3531				toff += tinc;
3532				tinc = PAGE_SIZE;
3533			}
3534			VM_OBJECT_WUNLOCK(obj);
3535
3536			/*
3537			 * Step 3, fixup the KVM pmap.
3538			 */
3539			if ((bp->b_flags & B_UNMAPPED) == 0)
3540				bpmap_qenter(bp);
3541			else
3542				BUF_CHECK_UNMAPPED(bp);
3543		}
3544	}
3545	if (newbsize < bp->b_bufsize)
3546		bufspacewakeup();
3547	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3548	bp->b_bcount = size;		/* requested buffer size	*/
3549	return 1;
3550}
3551
3552extern int inflight_transient_maps;
3553
3554void
3555biodone(struct bio *bp)
3556{
3557	struct mtx *mtxp;
3558	void (*done)(struct bio *);
3559	vm_offset_t start, end;
3560
3561	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3562		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
3563		bp->bio_flags |= BIO_UNMAPPED;
3564		start = trunc_page((vm_offset_t)bp->bio_data);
3565		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3566		pmap_qremove(start, OFF_TO_IDX(end - start));
3567		vmem_free(transient_arena, start, end - start);
3568		atomic_add_int(&inflight_transient_maps, -1);
3569	}
3570	done = bp->bio_done;
3571	if (done == NULL) {
3572		mtxp = mtx_pool_find(mtxpool_sleep, bp);
3573		mtx_lock(mtxp);
3574		bp->bio_flags |= BIO_DONE;
3575		wakeup(bp);
3576		mtx_unlock(mtxp);
3577	} else {
3578		bp->bio_flags |= BIO_DONE;
3579		done(bp);
3580	}
3581}
3582
3583/*
3584 * Wait for a BIO to finish.
3585 */
3586int
3587biowait(struct bio *bp, const char *wchan)
3588{
3589	struct mtx *mtxp;
3590
3591	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3592	mtx_lock(mtxp);
3593	while ((bp->bio_flags & BIO_DONE) == 0)
3594		msleep(bp, mtxp, PRIBIO, wchan, 0);
3595	mtx_unlock(mtxp);
3596	if (bp->bio_error != 0)
3597		return (bp->bio_error);
3598	if (!(bp->bio_flags & BIO_ERROR))
3599		return (0);
3600	return (EIO);
3601}
3602
3603void
3604biofinish(struct bio *bp, struct devstat *stat, int error)
3605{
3606
3607	if (error) {
3608		bp->bio_error = error;
3609		bp->bio_flags |= BIO_ERROR;
3610	}
3611	if (stat != NULL)
3612		devstat_end_transaction_bio(stat, bp);
3613	biodone(bp);
3614}
3615
3616/*
3617 *	bufwait:
3618 *
3619 *	Wait for buffer I/O completion, returning error status.  The buffer
3620 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3621 *	error and cleared.
3622 */
3623int
3624bufwait(struct buf *bp)
3625{
3626	if (bp->b_iocmd == BIO_READ)
3627		bwait(bp, PRIBIO, "biord");
3628	else
3629		bwait(bp, PRIBIO, "biowr");
3630	if (bp->b_flags & B_EINTR) {
3631		bp->b_flags &= ~B_EINTR;
3632		return (EINTR);
3633	}
3634	if (bp->b_ioflags & BIO_ERROR) {
3635		return (bp->b_error ? bp->b_error : EIO);
3636	} else {
3637		return (0);
3638	}
3639}
3640
3641 /*
3642  * Call back function from struct bio back up to struct buf.
3643  */
3644static void
3645bufdonebio(struct bio *bip)
3646{
3647	struct buf *bp;
3648
3649	bp = bip->bio_caller2;
3650	bp->b_resid = bp->b_bcount - bip->bio_completed;
3651	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3652	bp->b_ioflags = bip->bio_flags;
3653	bp->b_error = bip->bio_error;
3654	if (bp->b_error)
3655		bp->b_ioflags |= BIO_ERROR;
3656	bufdone(bp);
3657	g_destroy_bio(bip);
3658}
3659
3660void
3661dev_strategy(struct cdev *dev, struct buf *bp)
3662{
3663	struct cdevsw *csw;
3664	int ref;
3665
3666	KASSERT(dev->si_refcount > 0,
3667	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3668	    devtoname(dev), dev));
3669
3670	csw = dev_refthread(dev, &ref);
3671	dev_strategy_csw(dev, csw, bp);
3672	dev_relthread(dev, ref);
3673}
3674
3675void
3676dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3677{
3678	struct bio *bip;
3679
3680	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3681	    ("b_iocmd botch"));
3682	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3683	    dev->si_threadcount > 0,
3684	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3685	    dev));
3686	if (csw == NULL) {
3687		bp->b_error = ENXIO;
3688		bp->b_ioflags = BIO_ERROR;
3689		bufdone(bp);
3690		return;
3691	}
3692	for (;;) {
3693		bip = g_new_bio();
3694		if (bip != NULL)
3695			break;
3696		/* Try again later */
3697		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3698	}
3699	bip->bio_cmd = bp->b_iocmd;
3700	bip->bio_offset = bp->b_iooffset;
3701	bip->bio_length = bp->b_bcount;
3702	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3703	bdata2bio(bp, bip);
3704	bip->bio_done = bufdonebio;
3705	bip->bio_caller2 = bp;
3706	bip->bio_dev = dev;
3707	(*csw->d_strategy)(bip);
3708}
3709
3710/*
3711 *	bufdone:
3712 *
3713 *	Finish I/O on a buffer, optionally calling a completion function.
3714 *	This is usually called from an interrupt so process blocking is
3715 *	not allowed.
3716 *
3717 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3718 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3719 *	assuming B_INVAL is clear.
3720 *
3721 *	For the VMIO case, we set B_CACHE if the op was a read and no
3722 *	read error occured, or if the op was a write.  B_CACHE is never
3723 *	set if the buffer is invalid or otherwise uncacheable.
3724 *
3725 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3726 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3727 *	in the biodone routine.
3728 */
3729void
3730bufdone(struct buf *bp)
3731{
3732	struct bufobj *dropobj;
3733	void    (*biodone)(struct buf *);
3734
3735	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3736	dropobj = NULL;
3737
3738	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3739	BUF_ASSERT_HELD(bp);
3740
3741	runningbufwakeup(bp);
3742	if (bp->b_iocmd == BIO_WRITE)
3743		dropobj = bp->b_bufobj;
3744	/* call optional completion function if requested */
3745	if (bp->b_iodone != NULL) {
3746		biodone = bp->b_iodone;
3747		bp->b_iodone = NULL;
3748		(*biodone) (bp);
3749		if (dropobj)
3750			bufobj_wdrop(dropobj);
3751		return;
3752	}
3753
3754	bufdone_finish(bp);
3755
3756	if (dropobj)
3757		bufobj_wdrop(dropobj);
3758}
3759
3760void
3761bufdone_finish(struct buf *bp)
3762{
3763	BUF_ASSERT_HELD(bp);
3764
3765	if (!LIST_EMPTY(&bp->b_dep))
3766		buf_complete(bp);
3767
3768	if (bp->b_flags & B_VMIO) {
3769		vm_ooffset_t foff;
3770		vm_page_t m;
3771		vm_object_t obj;
3772		struct vnode *vp;
3773		int bogus, i, iosize;
3774
3775		obj = bp->b_bufobj->bo_object;
3776		KASSERT(obj->paging_in_progress >= bp->b_npages,
3777		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3778		    obj->paging_in_progress, bp->b_npages));
3779
3780		vp = bp->b_vp;
3781		KASSERT(vp->v_holdcnt > 0,
3782		    ("biodone_finish: vnode %p has zero hold count", vp));
3783		KASSERT(vp->v_object != NULL,
3784		    ("biodone_finish: vnode %p has no vm_object", vp));
3785
3786		foff = bp->b_offset;
3787		KASSERT(bp->b_offset != NOOFFSET,
3788		    ("biodone_finish: bp %p has no buffer offset", bp));
3789
3790		/*
3791		 * Set B_CACHE if the op was a normal read and no error
3792		 * occured.  B_CACHE is set for writes in the b*write()
3793		 * routines.
3794		 */
3795		iosize = bp->b_bcount - bp->b_resid;
3796		if (bp->b_iocmd == BIO_READ &&
3797		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3798		    !(bp->b_ioflags & BIO_ERROR)) {
3799			bp->b_flags |= B_CACHE;
3800		}
3801		bogus = 0;
3802		VM_OBJECT_WLOCK(obj);
3803		for (i = 0; i < bp->b_npages; i++) {
3804			int bogusflag = 0;
3805			int resid;
3806
3807			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3808			if (resid > iosize)
3809				resid = iosize;
3810
3811			/*
3812			 * cleanup bogus pages, restoring the originals
3813			 */
3814			m = bp->b_pages[i];
3815			if (m == bogus_page) {
3816				bogus = bogusflag = 1;
3817				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3818				if (m == NULL)
3819					panic("biodone: page disappeared!");
3820				bp->b_pages[i] = m;
3821			}
3822			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3823			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3824			    (intmax_t)foff, (uintmax_t)m->pindex));
3825
3826			/*
3827			 * In the write case, the valid and clean bits are
3828			 * already changed correctly ( see bdwrite() ), so we
3829			 * only need to do this here in the read case.
3830			 */
3831			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3832				KASSERT((m->dirty & vm_page_bits(foff &
3833				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3834				    " page %p has unexpected dirty bits", m));
3835				vfs_page_set_valid(bp, foff, m);
3836			}
3837
3838			vm_page_sunbusy(m);
3839			vm_object_pip_subtract(obj, 1);
3840			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3841			iosize -= resid;
3842		}
3843		vm_object_pip_wakeupn(obj, 0);
3844		VM_OBJECT_WUNLOCK(obj);
3845		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3846			BUF_CHECK_MAPPED(bp);
3847			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3848			    bp->b_pages, bp->b_npages);
3849		}
3850	}
3851
3852	/*
3853	 * For asynchronous completions, release the buffer now. The brelse
3854	 * will do a wakeup there if necessary - so no need to do a wakeup
3855	 * here in the async case. The sync case always needs to do a wakeup.
3856	 */
3857
3858	if (bp->b_flags & B_ASYNC) {
3859		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3860			brelse(bp);
3861		else
3862			bqrelse(bp);
3863	} else
3864		bdone(bp);
3865}
3866
3867/*
3868 * This routine is called in lieu of iodone in the case of
3869 * incomplete I/O.  This keeps the busy status for pages
3870 * consistant.
3871 */
3872void
3873vfs_unbusy_pages(struct buf *bp)
3874{
3875	int i;
3876	vm_object_t obj;
3877	vm_page_t m;
3878
3879	runningbufwakeup(bp);
3880	if (!(bp->b_flags & B_VMIO))
3881		return;
3882
3883	obj = bp->b_bufobj->bo_object;
3884	VM_OBJECT_WLOCK(obj);
3885	for (i = 0; i < bp->b_npages; i++) {
3886		m = bp->b_pages[i];
3887		if (m == bogus_page) {
3888			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3889			if (!m)
3890				panic("vfs_unbusy_pages: page missing\n");
3891			bp->b_pages[i] = m;
3892			if ((bp->b_flags & B_UNMAPPED) == 0) {
3893				BUF_CHECK_MAPPED(bp);
3894				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3895				    bp->b_pages, bp->b_npages);
3896			} else
3897				BUF_CHECK_UNMAPPED(bp);
3898		}
3899		vm_object_pip_subtract(obj, 1);
3900		vm_page_sunbusy(m);
3901	}
3902	vm_object_pip_wakeupn(obj, 0);
3903	VM_OBJECT_WUNLOCK(obj);
3904}
3905
3906/*
3907 * vfs_page_set_valid:
3908 *
3909 *	Set the valid bits in a page based on the supplied offset.   The
3910 *	range is restricted to the buffer's size.
3911 *
3912 *	This routine is typically called after a read completes.
3913 */
3914static void
3915vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3916{
3917	vm_ooffset_t eoff;
3918
3919	/*
3920	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3921	 * page boundary and eoff is not greater than the end of the buffer.
3922	 * The end of the buffer, in this case, is our file EOF, not the
3923	 * allocation size of the buffer.
3924	 */
3925	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3926	if (eoff > bp->b_offset + bp->b_bcount)
3927		eoff = bp->b_offset + bp->b_bcount;
3928
3929	/*
3930	 * Set valid range.  This is typically the entire buffer and thus the
3931	 * entire page.
3932	 */
3933	if (eoff > off)
3934		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3935}
3936
3937/*
3938 * vfs_page_set_validclean:
3939 *
3940 *	Set the valid bits and clear the dirty bits in a page based on the
3941 *	supplied offset.   The range is restricted to the buffer's size.
3942 */
3943static void
3944vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3945{
3946	vm_ooffset_t soff, eoff;
3947
3948	/*
3949	 * Start and end offsets in buffer.  eoff - soff may not cross a
3950	 * page boundry or cross the end of the buffer.  The end of the
3951	 * buffer, in this case, is our file EOF, not the allocation size
3952	 * of the buffer.
3953	 */
3954	soff = off;
3955	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3956	if (eoff > bp->b_offset + bp->b_bcount)
3957		eoff = bp->b_offset + bp->b_bcount;
3958
3959	/*
3960	 * Set valid range.  This is typically the entire buffer and thus the
3961	 * entire page.
3962	 */
3963	if (eoff > soff) {
3964		vm_page_set_validclean(
3965		    m,
3966		   (vm_offset_t) (soff & PAGE_MASK),
3967		   (vm_offset_t) (eoff - soff)
3968		);
3969	}
3970}
3971
3972/*
3973 * Ensure that all buffer pages are not exclusive busied.  If any page is
3974 * exclusive busy, drain it.
3975 */
3976void
3977vfs_drain_busy_pages(struct buf *bp)
3978{
3979	vm_page_t m;
3980	int i, last_busied;
3981
3982	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
3983	last_busied = 0;
3984	for (i = 0; i < bp->b_npages; i++) {
3985		m = bp->b_pages[i];
3986		if (vm_page_xbusied(m)) {
3987			for (; last_busied < i; last_busied++)
3988				vm_page_sbusy(bp->b_pages[last_busied]);
3989			while (vm_page_xbusied(m)) {
3990				vm_page_lock(m);
3991				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3992				vm_page_busy_sleep(m, "vbpage");
3993				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3994			}
3995		}
3996	}
3997	for (i = 0; i < last_busied; i++)
3998		vm_page_sunbusy(bp->b_pages[i]);
3999}
4000
4001/*
4002 * This routine is called before a device strategy routine.
4003 * It is used to tell the VM system that paging I/O is in
4004 * progress, and treat the pages associated with the buffer
4005 * almost as being exclusive busy.  Also the object paging_in_progress
4006 * flag is handled to make sure that the object doesn't become
4007 * inconsistant.
4008 *
4009 * Since I/O has not been initiated yet, certain buffer flags
4010 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4011 * and should be ignored.
4012 */
4013void
4014vfs_busy_pages(struct buf *bp, int clear_modify)
4015{
4016	int i, bogus;
4017	vm_object_t obj;
4018	vm_ooffset_t foff;
4019	vm_page_t m;
4020
4021	if (!(bp->b_flags & B_VMIO))
4022		return;
4023
4024	obj = bp->b_bufobj->bo_object;
4025	foff = bp->b_offset;
4026	KASSERT(bp->b_offset != NOOFFSET,
4027	    ("vfs_busy_pages: no buffer offset"));
4028	VM_OBJECT_WLOCK(obj);
4029	vfs_drain_busy_pages(bp);
4030	if (bp->b_bufsize != 0)
4031		vfs_setdirty_locked_object(bp);
4032	bogus = 0;
4033	for (i = 0; i < bp->b_npages; i++) {
4034		m = bp->b_pages[i];
4035
4036		if ((bp->b_flags & B_CLUSTER) == 0) {
4037			vm_object_pip_add(obj, 1);
4038			vm_page_sbusy(m);
4039		}
4040		/*
4041		 * When readying a buffer for a read ( i.e
4042		 * clear_modify == 0 ), it is important to do
4043		 * bogus_page replacement for valid pages in
4044		 * partially instantiated buffers.  Partially
4045		 * instantiated buffers can, in turn, occur when
4046		 * reconstituting a buffer from its VM backing store
4047		 * base.  We only have to do this if B_CACHE is
4048		 * clear ( which causes the I/O to occur in the
4049		 * first place ).  The replacement prevents the read
4050		 * I/O from overwriting potentially dirty VM-backed
4051		 * pages.  XXX bogus page replacement is, uh, bogus.
4052		 * It may not work properly with small-block devices.
4053		 * We need to find a better way.
4054		 */
4055		if (clear_modify) {
4056			pmap_remove_write(m);
4057			vfs_page_set_validclean(bp, foff, m);
4058		} else if (m->valid == VM_PAGE_BITS_ALL &&
4059		    (bp->b_flags & B_CACHE) == 0) {
4060			bp->b_pages[i] = bogus_page;
4061			bogus++;
4062		}
4063		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4064	}
4065	VM_OBJECT_WUNLOCK(obj);
4066	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4067		BUF_CHECK_MAPPED(bp);
4068		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4069		    bp->b_pages, bp->b_npages);
4070	}
4071}
4072
4073/*
4074 *	vfs_bio_set_valid:
4075 *
4076 *	Set the range within the buffer to valid.  The range is
4077 *	relative to the beginning of the buffer, b_offset.  Note that
4078 *	b_offset itself may be offset from the beginning of the first
4079 *	page.
4080 */
4081void
4082vfs_bio_set_valid(struct buf *bp, int base, int size)
4083{
4084	int i, n;
4085	vm_page_t m;
4086
4087	if (!(bp->b_flags & B_VMIO))
4088		return;
4089
4090	/*
4091	 * Fixup base to be relative to beginning of first page.
4092	 * Set initial n to be the maximum number of bytes in the
4093	 * first page that can be validated.
4094	 */
4095	base += (bp->b_offset & PAGE_MASK);
4096	n = PAGE_SIZE - (base & PAGE_MASK);
4097
4098	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4099	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4100		m = bp->b_pages[i];
4101		if (n > size)
4102			n = size;
4103		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4104		base += n;
4105		size -= n;
4106		n = PAGE_SIZE;
4107	}
4108	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4109}
4110
4111/*
4112 *	vfs_bio_clrbuf:
4113 *
4114 *	If the specified buffer is a non-VMIO buffer, clear the entire
4115 *	buffer.  If the specified buffer is a VMIO buffer, clear and
4116 *	validate only the previously invalid portions of the buffer.
4117 *	This routine essentially fakes an I/O, so we need to clear
4118 *	BIO_ERROR and B_INVAL.
4119 *
4120 *	Note that while we only theoretically need to clear through b_bcount,
4121 *	we go ahead and clear through b_bufsize.
4122 */
4123void
4124vfs_bio_clrbuf(struct buf *bp)
4125{
4126	int i, j, mask, sa, ea, slide;
4127
4128	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4129		clrbuf(bp);
4130		return;
4131	}
4132	bp->b_flags &= ~B_INVAL;
4133	bp->b_ioflags &= ~BIO_ERROR;
4134	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4135	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4136	    (bp->b_offset & PAGE_MASK) == 0) {
4137		if (bp->b_pages[0] == bogus_page)
4138			goto unlock;
4139		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4140		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4141		if ((bp->b_pages[0]->valid & mask) == mask)
4142			goto unlock;
4143		if ((bp->b_pages[0]->valid & mask) == 0) {
4144			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4145			bp->b_pages[0]->valid |= mask;
4146			goto unlock;
4147		}
4148	}
4149	sa = bp->b_offset & PAGE_MASK;
4150	slide = 0;
4151	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4152		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4153		ea = slide & PAGE_MASK;
4154		if (ea == 0)
4155			ea = PAGE_SIZE;
4156		if (bp->b_pages[i] == bogus_page)
4157			continue;
4158		j = sa / DEV_BSIZE;
4159		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4160		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4161		if ((bp->b_pages[i]->valid & mask) == mask)
4162			continue;
4163		if ((bp->b_pages[i]->valid & mask) == 0)
4164			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4165		else {
4166			for (; sa < ea; sa += DEV_BSIZE, j++) {
4167				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4168					pmap_zero_page_area(bp->b_pages[i],
4169					    sa, DEV_BSIZE);
4170				}
4171			}
4172		}
4173		bp->b_pages[i]->valid |= mask;
4174	}
4175unlock:
4176	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4177	bp->b_resid = 0;
4178}
4179
4180void
4181vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4182{
4183	vm_page_t m;
4184	int i, n;
4185
4186	if ((bp->b_flags & B_UNMAPPED) == 0) {
4187		BUF_CHECK_MAPPED(bp);
4188		bzero(bp->b_data + base, size);
4189	} else {
4190		BUF_CHECK_UNMAPPED(bp);
4191		n = PAGE_SIZE - (base & PAGE_MASK);
4192		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4193			m = bp->b_pages[i];
4194			if (n > size)
4195				n = size;
4196			pmap_zero_page_area(m, base & PAGE_MASK, n);
4197			base += n;
4198			size -= n;
4199			n = PAGE_SIZE;
4200		}
4201	}
4202}
4203
4204/*
4205 * vm_hold_load_pages and vm_hold_free_pages get pages into
4206 * a buffers address space.  The pages are anonymous and are
4207 * not associated with a file object.
4208 */
4209static void
4210vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4211{
4212	vm_offset_t pg;
4213	vm_page_t p;
4214	int index;
4215
4216	BUF_CHECK_MAPPED(bp);
4217
4218	to = round_page(to);
4219	from = round_page(from);
4220	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4221
4222	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4223tryagain:
4224		/*
4225		 * note: must allocate system pages since blocking here
4226		 * could interfere with paging I/O, no matter which
4227		 * process we are.
4228		 */
4229		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4230		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4231		if (p == NULL) {
4232			VM_WAIT;
4233			goto tryagain;
4234		}
4235		pmap_qenter(pg, &p, 1);
4236		bp->b_pages[index] = p;
4237	}
4238	bp->b_npages = index;
4239}
4240
4241/* Return pages associated with this buf to the vm system */
4242static void
4243vm_hold_free_pages(struct buf *bp, int newbsize)
4244{
4245	vm_offset_t from;
4246	vm_page_t p;
4247	int index, newnpages;
4248
4249	BUF_CHECK_MAPPED(bp);
4250
4251	from = round_page((vm_offset_t)bp->b_data + newbsize);
4252	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4253	if (bp->b_npages > newnpages)
4254		pmap_qremove(from, bp->b_npages - newnpages);
4255	for (index = newnpages; index < bp->b_npages; index++) {
4256		p = bp->b_pages[index];
4257		bp->b_pages[index] = NULL;
4258		if (vm_page_sbusied(p))
4259			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4260			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4261		p->wire_count--;
4262		vm_page_free(p);
4263		atomic_subtract_int(&cnt.v_wire_count, 1);
4264	}
4265	bp->b_npages = newnpages;
4266}
4267
4268/*
4269 * Map an IO request into kernel virtual address space.
4270 *
4271 * All requests are (re)mapped into kernel VA space.
4272 * Notice that we use b_bufsize for the size of the buffer
4273 * to be mapped.  b_bcount might be modified by the driver.
4274 *
4275 * Note that even if the caller determines that the address space should
4276 * be valid, a race or a smaller-file mapped into a larger space may
4277 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4278 * check the return value.
4279 */
4280int
4281vmapbuf(struct buf *bp, int mapbuf)
4282{
4283	caddr_t kva;
4284	vm_prot_t prot;
4285	int pidx;
4286
4287	if (bp->b_bufsize < 0)
4288		return (-1);
4289	prot = VM_PROT_READ;
4290	if (bp->b_iocmd == BIO_READ)
4291		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4292	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4293	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4294	    btoc(MAXPHYS))) < 0)
4295		return (-1);
4296	bp->b_npages = pidx;
4297	if (mapbuf || !unmapped_buf_allowed) {
4298		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4299		kva = bp->b_saveaddr;
4300		bp->b_saveaddr = bp->b_data;
4301		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4302		bp->b_flags &= ~B_UNMAPPED;
4303	} else {
4304		bp->b_flags |= B_UNMAPPED;
4305		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4306		bp->b_saveaddr = bp->b_data;
4307		bp->b_data = unmapped_buf;
4308	}
4309	return(0);
4310}
4311
4312/*
4313 * Free the io map PTEs associated with this IO operation.
4314 * We also invalidate the TLB entries and restore the original b_addr.
4315 */
4316void
4317vunmapbuf(struct buf *bp)
4318{
4319	int npages;
4320
4321	npages = bp->b_npages;
4322	if (bp->b_flags & B_UNMAPPED)
4323		bp->b_flags &= ~B_UNMAPPED;
4324	else
4325		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4326	vm_page_unhold_pages(bp->b_pages, npages);
4327
4328	bp->b_data = bp->b_saveaddr;
4329}
4330
4331void
4332bdone(struct buf *bp)
4333{
4334	struct mtx *mtxp;
4335
4336	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4337	mtx_lock(mtxp);
4338	bp->b_flags |= B_DONE;
4339	wakeup(bp);
4340	mtx_unlock(mtxp);
4341}
4342
4343void
4344bwait(struct buf *bp, u_char pri, const char *wchan)
4345{
4346	struct mtx *mtxp;
4347
4348	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4349	mtx_lock(mtxp);
4350	while ((bp->b_flags & B_DONE) == 0)
4351		msleep(bp, mtxp, pri, wchan, 0);
4352	mtx_unlock(mtxp);
4353}
4354
4355int
4356bufsync(struct bufobj *bo, int waitfor)
4357{
4358
4359	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4360}
4361
4362void
4363bufstrategy(struct bufobj *bo, struct buf *bp)
4364{
4365	int i = 0;
4366	struct vnode *vp;
4367
4368	vp = bp->b_vp;
4369	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4370	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4371	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4372	i = VOP_STRATEGY(vp, bp);
4373	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4374}
4375
4376void
4377bufobj_wrefl(struct bufobj *bo)
4378{
4379
4380	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4381	ASSERT_BO_WLOCKED(bo);
4382	bo->bo_numoutput++;
4383}
4384
4385void
4386bufobj_wref(struct bufobj *bo)
4387{
4388
4389	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4390	BO_LOCK(bo);
4391	bo->bo_numoutput++;
4392	BO_UNLOCK(bo);
4393}
4394
4395void
4396bufobj_wdrop(struct bufobj *bo)
4397{
4398
4399	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4400	BO_LOCK(bo);
4401	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4402	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4403		bo->bo_flag &= ~BO_WWAIT;
4404		wakeup(&bo->bo_numoutput);
4405	}
4406	BO_UNLOCK(bo);
4407}
4408
4409int
4410bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4411{
4412	int error;
4413
4414	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4415	ASSERT_BO_WLOCKED(bo);
4416	error = 0;
4417	while (bo->bo_numoutput) {
4418		bo->bo_flag |= BO_WWAIT;
4419		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4420		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4421		if (error)
4422			break;
4423	}
4424	return (error);
4425}
4426
4427void
4428bpin(struct buf *bp)
4429{
4430	struct mtx *mtxp;
4431
4432	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4433	mtx_lock(mtxp);
4434	bp->b_pin_count++;
4435	mtx_unlock(mtxp);
4436}
4437
4438void
4439bunpin(struct buf *bp)
4440{
4441	struct mtx *mtxp;
4442
4443	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4444	mtx_lock(mtxp);
4445	if (--bp->b_pin_count == 0)
4446		wakeup(bp);
4447	mtx_unlock(mtxp);
4448}
4449
4450void
4451bunpin_wait(struct buf *bp)
4452{
4453	struct mtx *mtxp;
4454
4455	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4456	mtx_lock(mtxp);
4457	while (bp->b_pin_count > 0)
4458		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4459	mtx_unlock(mtxp);
4460}
4461
4462/*
4463 * Set bio_data or bio_ma for struct bio from the struct buf.
4464 */
4465void
4466bdata2bio(struct buf *bp, struct bio *bip)
4467{
4468
4469	if ((bp->b_flags & B_UNMAPPED) != 0) {
4470		KASSERT(unmapped_buf_allowed, ("unmapped"));
4471		bip->bio_ma = bp->b_pages;
4472		bip->bio_ma_n = bp->b_npages;
4473		bip->bio_data = unmapped_buf;
4474		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4475		bip->bio_flags |= BIO_UNMAPPED;
4476		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4477		    PAGE_SIZE == bp->b_npages,
4478		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4479		    (long long)bip->bio_length, bip->bio_ma_n));
4480	} else {
4481		bip->bio_data = bp->b_data;
4482		bip->bio_ma = NULL;
4483	}
4484}
4485
4486#include "opt_ddb.h"
4487#ifdef DDB
4488#include <ddb/ddb.h>
4489
4490/* DDB command to show buffer data */
4491DB_SHOW_COMMAND(buffer, db_show_buffer)
4492{
4493	/* get args */
4494	struct buf *bp = (struct buf *)addr;
4495
4496	if (!have_addr) {
4497		db_printf("usage: show buffer <addr>\n");
4498		return;
4499	}
4500
4501	db_printf("buf at %p\n", bp);
4502	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4503	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4504	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4505	db_printf(
4506	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4507	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4508	    "b_dep = %p\n",
4509	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4510	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4511	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4512	if (bp->b_npages) {
4513		int i;
4514		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4515		for (i = 0; i < bp->b_npages; i++) {
4516			vm_page_t m;
4517			m = bp->b_pages[i];
4518			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4519			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4520			if ((i + 1) < bp->b_npages)
4521				db_printf(",");
4522		}
4523		db_printf("\n");
4524	}
4525	db_printf(" ");
4526	BUF_LOCKPRINTINFO(bp);
4527}
4528
4529DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4530{
4531	struct buf *bp;
4532	int i;
4533
4534	for (i = 0; i < nbuf; i++) {
4535		bp = &buf[i];
4536		if (BUF_ISLOCKED(bp)) {
4537			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4538			db_printf("\n");
4539		}
4540	}
4541}
4542
4543DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4544{
4545	struct vnode *vp;
4546	struct buf *bp;
4547
4548	if (!have_addr) {
4549		db_printf("usage: show vnodebufs <addr>\n");
4550		return;
4551	}
4552	vp = (struct vnode *)addr;
4553	db_printf("Clean buffers:\n");
4554	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4555		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4556		db_printf("\n");
4557	}
4558	db_printf("Dirty buffers:\n");
4559	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4560		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4561		db_printf("\n");
4562	}
4563}
4564
4565DB_COMMAND(countfreebufs, db_coundfreebufs)
4566{
4567	struct buf *bp;
4568	int i, used = 0, nfree = 0;
4569
4570	if (have_addr) {
4571		db_printf("usage: countfreebufs\n");
4572		return;
4573	}
4574
4575	for (i = 0; i < nbuf; i++) {
4576		bp = &buf[i];
4577		if ((bp->b_flags & B_INFREECNT) != 0)
4578			nfree++;
4579		else
4580			used++;
4581	}
4582
4583	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4584	    nfree + used);
4585	db_printf("numfreebuffers is %d\n", numfreebuffers);
4586}
4587#endif /* DDB */
4588