uipc_usrreq.c revision 276500
1139825Simp/*-
21541Srgrimes * Copyright (c) 1982, 1986, 1989, 1991, 1993
31541Srgrimes *	The Regents of the University of California.
41541Srgrimes * Copyright (c) 2004-2009 Robert N. M. Watson
51541Srgrimes * All rights reserved.
61541Srgrimes *
71541Srgrimes * Redistribution and use in source and binary forms, with or without
81541Srgrimes * modification, are permitted provided that the following conditions
91541Srgrimes * are met:
101541Srgrimes * 1. Redistributions of source code must retain the above copyright
111541Srgrimes *    notice, this list of conditions and the following disclaimer.
121541Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
131541Srgrimes *    notice, this list of conditions and the following disclaimer in the
141541Srgrimes *    documentation and/or other materials provided with the distribution.
151541Srgrimes * 4. Neither the name of the University nor the names of its contributors
161541Srgrimes *    may be used to endorse or promote products derived from this software
171541Srgrimes *    without specific prior written permission.
181541Srgrimes *
191541Srgrimes * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
201541Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
211541Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
221541Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
231541Srgrimes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
241541Srgrimes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
251541Srgrimes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
261541Srgrimes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
271541Srgrimes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
281541Srgrimes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
291541Srgrimes * SUCH DAMAGE.
301541Srgrimes *
311541Srgrimes *	From: @(#)uipc_usrreq.c	8.3 (Berkeley) 1/4/94
321541Srgrimes */
331541Srgrimes
3414486Shsu/*
3550477Speter * UNIX Domain (Local) Sockets
361541Srgrimes *
371541Srgrimes * This is an implementation of UNIX (local) domain sockets.  Each socket has
3898487Sbde * an associated struct unpcb (UNIX protocol control block).  Stream sockets
3998300Swollman * may be connected to 0 or 1 other socket.  Datagram sockets may be
401541Srgrimes * connected to 0, 1, or many other sockets.  Sockets may be created and
4151791Smarcel * connected in pairs (socketpair(2)), or bound/connected to using the file
4251942Smarcel * system name space.  For most purposes, only the receive socket buffer is
4351791Smarcel * used, as sending on one socket delivers directly to the receive socket
4451942Smarcel * buffer of a second socket.
4551942Smarcel *
4651942Smarcel * The implementation is substantially complicated by the fact that
4751942Smarcel * "ancillary data", such as file descriptors or credentials, may be passed
4851942Smarcel * across UNIX domain sockets.  The potential for passing UNIX domain sockets
4985971Speter * over other UNIX domain sockets requires the implementation of a simple
501541Srgrimes * garbage collector to find and tear down cycles of disconnected sockets.
5151942Smarcel *
5298487Sbde * TODO:
53104504Smike *	RDM
5448621Scracauer *	rethink name space problems
55105950Speter *	need a proper out-of-band
56105950Speter */
57105950Speter
58105950Speter#include <sys/cdefs.h>
5998487Sbde__FBSDID("$FreeBSD: stable/10/sys/kern/uipc_usrreq.c 276500 2015-01-01 10:44:20Z kib $");
60
61#include "opt_ddb.h"
62
63#include <sys/param.h>
64#include <sys/capability.h>
65#include <sys/domain.h>
66#include <sys/fcntl.h>
67#include <sys/malloc.h>		/* XXX must be before <sys/file.h> */
68#include <sys/eventhandler.h>
69#include <sys/file.h>
70#include <sys/filedesc.h>
71#include <sys/kernel.h>
72#include <sys/lock.h>
73#include <sys/mbuf.h>
74#include <sys/mount.h>
75#include <sys/mutex.h>
76#include <sys/namei.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/queue.h>
80#include <sys/resourcevar.h>
81#include <sys/rwlock.h>
82#include <sys/socket.h>
83#include <sys/socketvar.h>
84#include <sys/signalvar.h>
85#include <sys/stat.h>
86#include <sys/sx.h>
87#include <sys/sysctl.h>
88#include <sys/systm.h>
89#include <sys/taskqueue.h>
90#include <sys/un.h>
91#include <sys/unpcb.h>
92#include <sys/vnode.h>
93
94#include <net/vnet.h>
95
96#ifdef DDB
97#include <ddb/ddb.h>
98#endif
99
100#include <security/mac/mac_framework.h>
101
102#include <vm/uma.h>
103
104MALLOC_DECLARE(M_FILECAPS);
105
106/*
107 * Locking key:
108 * (l)	Locked using list lock
109 * (g)	Locked using linkage lock
110 */
111
112static uma_zone_t	unp_zone;
113static unp_gen_t	unp_gencnt;	/* (l) */
114static u_int		unp_count;	/* (l) Count of local sockets. */
115static ino_t		unp_ino;	/* Prototype for fake inode numbers. */
116static int		unp_rights;	/* (g) File descriptors in flight. */
117static struct unp_head	unp_shead;	/* (l) List of stream sockets. */
118static struct unp_head	unp_dhead;	/* (l) List of datagram sockets. */
119static struct unp_head	unp_sphead;	/* (l) List of seqpacket sockets. */
120
121struct unp_defer {
122	SLIST_ENTRY(unp_defer) ud_link;
123	struct file *ud_fp;
124};
125static SLIST_HEAD(, unp_defer) unp_defers;
126static int unp_defers_count;
127
128static const struct sockaddr	sun_noname = { sizeof(sun_noname), AF_LOCAL };
129
130/*
131 * Garbage collection of cyclic file descriptor/socket references occurs
132 * asynchronously in a taskqueue context in order to avoid recursion and
133 * reentrance in the UNIX domain socket, file descriptor, and socket layer
134 * code.  See unp_gc() for a full description.
135 */
136static struct timeout_task unp_gc_task;
137
138/*
139 * The close of unix domain sockets attached as SCM_RIGHTS is
140 * postponed to the taskqueue, to avoid arbitrary recursion depth.
141 * The attached sockets might have another sockets attached.
142 */
143static struct task	unp_defer_task;
144
145/*
146 * Both send and receive buffers are allocated PIPSIZ bytes of buffering for
147 * stream sockets, although the total for sender and receiver is actually
148 * only PIPSIZ.
149 *
150 * Datagram sockets really use the sendspace as the maximum datagram size,
151 * and don't really want to reserve the sendspace.  Their recvspace should be
152 * large enough for at least one max-size datagram plus address.
153 */
154#ifndef PIPSIZ
155#define	PIPSIZ	8192
156#endif
157static u_long	unpst_sendspace = PIPSIZ;
158static u_long	unpst_recvspace = PIPSIZ;
159static u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
160static u_long	unpdg_recvspace = 4*1024;
161static u_long	unpsp_sendspace = PIPSIZ;	/* really max datagram size */
162static u_long	unpsp_recvspace = PIPSIZ;
163
164static SYSCTL_NODE(_net, PF_LOCAL, local, CTLFLAG_RW, 0, "Local domain");
165static SYSCTL_NODE(_net_local, SOCK_STREAM, stream, CTLFLAG_RW, 0,
166    "SOCK_STREAM");
167static SYSCTL_NODE(_net_local, SOCK_DGRAM, dgram, CTLFLAG_RW, 0, "SOCK_DGRAM");
168static SYSCTL_NODE(_net_local, SOCK_SEQPACKET, seqpacket, CTLFLAG_RW, 0,
169    "SOCK_SEQPACKET");
170
171SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW,
172	   &unpst_sendspace, 0, "Default stream send space.");
173SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW,
174	   &unpst_recvspace, 0, "Default stream receive space.");
175SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW,
176	   &unpdg_sendspace, 0, "Default datagram send space.");
177SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW,
178	   &unpdg_recvspace, 0, "Default datagram receive space.");
179SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, maxseqpacket, CTLFLAG_RW,
180	   &unpsp_sendspace, 0, "Default seqpacket send space.");
181SYSCTL_ULONG(_net_local_seqpacket, OID_AUTO, recvspace, CTLFLAG_RW,
182	   &unpsp_recvspace, 0, "Default seqpacket receive space.");
183SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0,
184    "File descriptors in flight.");
185SYSCTL_INT(_net_local, OID_AUTO, deferred, CTLFLAG_RD,
186    &unp_defers_count, 0,
187    "File descriptors deferred to taskqueue for close.");
188
189/*
190 * Locking and synchronization:
191 *
192 * Three types of locks exit in the local domain socket implementation: a
193 * global list mutex, a global linkage rwlock, and per-unpcb mutexes.  Of the
194 * global locks, the list lock protects the socket count, global generation
195 * number, and stream/datagram global lists.  The linkage lock protects the
196 * interconnection of unpcbs, the v_socket and unp_vnode pointers, and can be
197 * held exclusively over the acquisition of multiple unpcb locks to prevent
198 * deadlock.
199 *
200 * UNIX domain sockets each have an unpcb hung off of their so_pcb pointer,
201 * allocated in pru_attach() and freed in pru_detach().  The validity of that
202 * pointer is an invariant, so no lock is required to dereference the so_pcb
203 * pointer if a valid socket reference is held by the caller.  In practice,
204 * this is always true during operations performed on a socket.  Each unpcb
205 * has a back-pointer to its socket, unp_socket, which will be stable under
206 * the same circumstances.
207 *
208 * This pointer may only be safely dereferenced as long as a valid reference
209 * to the unpcb is held.  Typically, this reference will be from the socket,
210 * or from another unpcb when the referring unpcb's lock is held (in order
211 * that the reference not be invalidated during use).  For example, to follow
212 * unp->unp_conn->unp_socket, you need unlock the lock on unp, not unp_conn,
213 * as unp_socket remains valid as long as the reference to unp_conn is valid.
214 *
215 * Fields of unpcbss are locked using a per-unpcb lock, unp_mtx.  Individual
216 * atomic reads without the lock may be performed "lockless", but more
217 * complex reads and read-modify-writes require the mutex to be held.  No
218 * lock order is defined between unpcb locks -- multiple unpcb locks may be
219 * acquired at the same time only when holding the linkage rwlock
220 * exclusively, which prevents deadlocks.
221 *
222 * Blocking with UNIX domain sockets is a tricky issue: unlike most network
223 * protocols, bind() is a non-atomic operation, and connect() requires
224 * potential sleeping in the protocol, due to potentially waiting on local or
225 * distributed file systems.  We try to separate "lookup" operations, which
226 * may sleep, and the IPC operations themselves, which typically can occur
227 * with relative atomicity as locks can be held over the entire operation.
228 *
229 * Another tricky issue is simultaneous multi-threaded or multi-process
230 * access to a single UNIX domain socket.  These are handled by the flags
231 * UNP_CONNECTING and UNP_BINDING, which prevent concurrent connecting or
232 * binding, both of which involve dropping UNIX domain socket locks in order
233 * to perform namei() and other file system operations.
234 */
235static struct rwlock	unp_link_rwlock;
236static struct mtx	unp_list_lock;
237static struct mtx	unp_defers_lock;
238
239#define	UNP_LINK_LOCK_INIT()		rw_init(&unp_link_rwlock,	\
240					    "unp_link_rwlock")
241
242#define	UNP_LINK_LOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
243					    RA_LOCKED)
244#define	UNP_LINK_UNLOCK_ASSERT()	rw_assert(&unp_link_rwlock,	\
245					    RA_UNLOCKED)
246
247#define	UNP_LINK_RLOCK()		rw_rlock(&unp_link_rwlock)
248#define	UNP_LINK_RUNLOCK()		rw_runlock(&unp_link_rwlock)
249#define	UNP_LINK_WLOCK()		rw_wlock(&unp_link_rwlock)
250#define	UNP_LINK_WUNLOCK()		rw_wunlock(&unp_link_rwlock)
251#define	UNP_LINK_WLOCK_ASSERT()		rw_assert(&unp_link_rwlock,	\
252					    RA_WLOCKED)
253
254#define	UNP_LIST_LOCK_INIT()		mtx_init(&unp_list_lock,	\
255					    "unp_list_lock", NULL, MTX_DEF)
256#define	UNP_LIST_LOCK()			mtx_lock(&unp_list_lock)
257#define	UNP_LIST_UNLOCK()		mtx_unlock(&unp_list_lock)
258
259#define	UNP_DEFERRED_LOCK_INIT()	mtx_init(&unp_defers_lock, \
260					    "unp_defer", NULL, MTX_DEF)
261#define	UNP_DEFERRED_LOCK()		mtx_lock(&unp_defers_lock)
262#define	UNP_DEFERRED_UNLOCK()		mtx_unlock(&unp_defers_lock)
263
264#define UNP_PCB_LOCK_INIT(unp)		mtx_init(&(unp)->unp_mtx,	\
265					    "unp_mtx", "unp_mtx",	\
266					    MTX_DUPOK|MTX_DEF|MTX_RECURSE)
267#define	UNP_PCB_LOCK_DESTROY(unp)	mtx_destroy(&(unp)->unp_mtx)
268#define	UNP_PCB_LOCK(unp)		mtx_lock(&(unp)->unp_mtx)
269#define	UNP_PCB_UNLOCK(unp)		mtx_unlock(&(unp)->unp_mtx)
270#define	UNP_PCB_LOCK_ASSERT(unp)	mtx_assert(&(unp)->unp_mtx, MA_OWNED)
271
272static int	uipc_connect2(struct socket *, struct socket *);
273static int	uipc_ctloutput(struct socket *, struct sockopt *);
274static int	unp_connect(struct socket *, struct sockaddr *,
275		    struct thread *);
276static int	unp_connectat(int, struct socket *, struct sockaddr *,
277		    struct thread *);
278static int	unp_connect2(struct socket *so, struct socket *so2, int);
279static void	unp_disconnect(struct unpcb *unp, struct unpcb *unp2);
280static void	unp_dispose(struct mbuf *);
281static void	unp_shutdown(struct unpcb *);
282static void	unp_drop(struct unpcb *, int);
283static void	unp_gc(__unused void *, int);
284static void	unp_scan(struct mbuf *, void (*)(struct filedescent **, int));
285static void	unp_discard(struct file *);
286static void	unp_freerights(struct filedescent **, int);
287static void	unp_init(void);
288static int	unp_internalize(struct mbuf **, struct thread *);
289static void	unp_internalize_fp(struct file *);
290static int	unp_externalize(struct mbuf *, struct mbuf **, int);
291static int	unp_externalize_fp(struct file *);
292static struct mbuf	*unp_addsockcred(struct thread *, struct mbuf *);
293static void	unp_process_defers(void * __unused, int);
294
295/*
296 * Definitions of protocols supported in the LOCAL domain.
297 */
298static struct domain localdomain;
299static struct pr_usrreqs uipc_usrreqs_dgram, uipc_usrreqs_stream;
300static struct pr_usrreqs uipc_usrreqs_seqpacket;
301static struct protosw localsw[] = {
302{
303	.pr_type =		SOCK_STREAM,
304	.pr_domain =		&localdomain,
305	.pr_flags =		PR_CONNREQUIRED|PR_WANTRCVD|PR_RIGHTS,
306	.pr_ctloutput =		&uipc_ctloutput,
307	.pr_usrreqs =		&uipc_usrreqs_stream
308},
309{
310	.pr_type =		SOCK_DGRAM,
311	.pr_domain =		&localdomain,
312	.pr_flags =		PR_ATOMIC|PR_ADDR|PR_RIGHTS,
313	.pr_ctloutput =		&uipc_ctloutput,
314	.pr_usrreqs =		&uipc_usrreqs_dgram
315},
316{
317	.pr_type =		SOCK_SEQPACKET,
318	.pr_domain =		&localdomain,
319
320	/*
321	 * XXXRW: For now, PR_ADDR because soreceive will bump into them
322	 * due to our use of sbappendaddr.  A new sbappend variants is needed
323	 * that supports both atomic record writes and control data.
324	 */
325	.pr_flags =		PR_ADDR|PR_ATOMIC|PR_CONNREQUIRED|PR_WANTRCVD|
326				    PR_RIGHTS,
327	.pr_ctloutput =		&uipc_ctloutput,
328	.pr_usrreqs =		&uipc_usrreqs_seqpacket,
329},
330};
331
332static struct domain localdomain = {
333	.dom_family =		AF_LOCAL,
334	.dom_name =		"local",
335	.dom_init =		unp_init,
336	.dom_externalize =	unp_externalize,
337	.dom_dispose =		unp_dispose,
338	.dom_protosw =		localsw,
339	.dom_protoswNPROTOSW =	&localsw[sizeof(localsw)/sizeof(localsw[0])]
340};
341DOMAIN_SET(local);
342
343static void
344uipc_abort(struct socket *so)
345{
346	struct unpcb *unp, *unp2;
347
348	unp = sotounpcb(so);
349	KASSERT(unp != NULL, ("uipc_abort: unp == NULL"));
350
351	UNP_LINK_WLOCK();
352	UNP_PCB_LOCK(unp);
353	unp2 = unp->unp_conn;
354	if (unp2 != NULL) {
355		UNP_PCB_LOCK(unp2);
356		unp_drop(unp2, ECONNABORTED);
357		UNP_PCB_UNLOCK(unp2);
358	}
359	UNP_PCB_UNLOCK(unp);
360	UNP_LINK_WUNLOCK();
361}
362
363static int
364uipc_accept(struct socket *so, struct sockaddr **nam)
365{
366	struct unpcb *unp, *unp2;
367	const struct sockaddr *sa;
368
369	/*
370	 * Pass back name of connected socket, if it was bound and we are
371	 * still connected (our peer may have closed already!).
372	 */
373	unp = sotounpcb(so);
374	KASSERT(unp != NULL, ("uipc_accept: unp == NULL"));
375
376	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
377	UNP_LINK_RLOCK();
378	unp2 = unp->unp_conn;
379	if (unp2 != NULL && unp2->unp_addr != NULL) {
380		UNP_PCB_LOCK(unp2);
381		sa = (struct sockaddr *) unp2->unp_addr;
382		bcopy(sa, *nam, sa->sa_len);
383		UNP_PCB_UNLOCK(unp2);
384	} else {
385		sa = &sun_noname;
386		bcopy(sa, *nam, sa->sa_len);
387	}
388	UNP_LINK_RUNLOCK();
389	return (0);
390}
391
392static int
393uipc_attach(struct socket *so, int proto, struct thread *td)
394{
395	u_long sendspace, recvspace;
396	struct unpcb *unp;
397	int error;
398
399	KASSERT(so->so_pcb == NULL, ("uipc_attach: so_pcb != NULL"));
400	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
401		switch (so->so_type) {
402		case SOCK_STREAM:
403			sendspace = unpst_sendspace;
404			recvspace = unpst_recvspace;
405			break;
406
407		case SOCK_DGRAM:
408			sendspace = unpdg_sendspace;
409			recvspace = unpdg_recvspace;
410			break;
411
412		case SOCK_SEQPACKET:
413			sendspace = unpsp_sendspace;
414			recvspace = unpsp_recvspace;
415			break;
416
417		default:
418			panic("uipc_attach");
419		}
420		error = soreserve(so, sendspace, recvspace);
421		if (error)
422			return (error);
423	}
424	unp = uma_zalloc(unp_zone, M_NOWAIT | M_ZERO);
425	if (unp == NULL)
426		return (ENOBUFS);
427	LIST_INIT(&unp->unp_refs);
428	UNP_PCB_LOCK_INIT(unp);
429	unp->unp_socket = so;
430	so->so_pcb = unp;
431	unp->unp_refcount = 1;
432
433	UNP_LIST_LOCK();
434	unp->unp_gencnt = ++unp_gencnt;
435	unp_count++;
436	switch (so->so_type) {
437	case SOCK_STREAM:
438		LIST_INSERT_HEAD(&unp_shead, unp, unp_link);
439		break;
440
441	case SOCK_DGRAM:
442		LIST_INSERT_HEAD(&unp_dhead, unp, unp_link);
443		break;
444
445	case SOCK_SEQPACKET:
446		LIST_INSERT_HEAD(&unp_sphead, unp, unp_link);
447		break;
448
449	default:
450		panic("uipc_attach");
451	}
452	UNP_LIST_UNLOCK();
453
454	return (0);
455}
456
457static int
458uipc_bindat(int fd, struct socket *so, struct sockaddr *nam, struct thread *td)
459{
460	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
461	struct vattr vattr;
462	int error, namelen;
463	struct nameidata nd;
464	struct unpcb *unp;
465	struct vnode *vp;
466	struct mount *mp;
467	cap_rights_t rights;
468	char *buf;
469
470	if (nam->sa_family != AF_UNIX)
471		return (EAFNOSUPPORT);
472
473	unp = sotounpcb(so);
474	KASSERT(unp != NULL, ("uipc_bind: unp == NULL"));
475
476	if (soun->sun_len > sizeof(struct sockaddr_un))
477		return (EINVAL);
478	namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path);
479	if (namelen <= 0)
480		return (EINVAL);
481
482	/*
483	 * We don't allow simultaneous bind() calls on a single UNIX domain
484	 * socket, so flag in-progress operations, and return an error if an
485	 * operation is already in progress.
486	 *
487	 * Historically, we have not allowed a socket to be rebound, so this
488	 * also returns an error.  Not allowing re-binding simplifies the
489	 * implementation and avoids a great many possible failure modes.
490	 */
491	UNP_PCB_LOCK(unp);
492	if (unp->unp_vnode != NULL) {
493		UNP_PCB_UNLOCK(unp);
494		return (EINVAL);
495	}
496	if (unp->unp_flags & UNP_BINDING) {
497		UNP_PCB_UNLOCK(unp);
498		return (EALREADY);
499	}
500	unp->unp_flags |= UNP_BINDING;
501	UNP_PCB_UNLOCK(unp);
502
503	buf = malloc(namelen + 1, M_TEMP, M_WAITOK);
504	bcopy(soun->sun_path, buf, namelen);
505	buf[namelen] = 0;
506
507restart:
508	NDINIT_ATRIGHTS(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME | NOCACHE,
509	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_BINDAT), td);
510/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
511	error = namei(&nd);
512	if (error)
513		goto error;
514	vp = nd.ni_vp;
515	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
516		NDFREE(&nd, NDF_ONLY_PNBUF);
517		if (nd.ni_dvp == vp)
518			vrele(nd.ni_dvp);
519		else
520			vput(nd.ni_dvp);
521		if (vp != NULL) {
522			vrele(vp);
523			error = EADDRINUSE;
524			goto error;
525		}
526		error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH);
527		if (error)
528			goto error;
529		goto restart;
530	}
531	VATTR_NULL(&vattr);
532	vattr.va_type = VSOCK;
533	vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask);
534#ifdef MAC
535	error = mac_vnode_check_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd,
536	    &vattr);
537#endif
538	if (error == 0)
539		error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
540	NDFREE(&nd, NDF_ONLY_PNBUF);
541	vput(nd.ni_dvp);
542	if (error) {
543		vn_finished_write(mp);
544		goto error;
545	}
546	vp = nd.ni_vp;
547	ASSERT_VOP_ELOCKED(vp, "uipc_bind");
548	soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK);
549
550	UNP_LINK_WLOCK();
551	UNP_PCB_LOCK(unp);
552	VOP_UNP_BIND(vp, unp->unp_socket);
553	unp->unp_vnode = vp;
554	unp->unp_addr = soun;
555	unp->unp_flags &= ~UNP_BINDING;
556	UNP_PCB_UNLOCK(unp);
557	UNP_LINK_WUNLOCK();
558	VOP_UNLOCK(vp, 0);
559	vn_finished_write(mp);
560	free(buf, M_TEMP);
561	return (0);
562
563error:
564	UNP_PCB_LOCK(unp);
565	unp->unp_flags &= ~UNP_BINDING;
566	UNP_PCB_UNLOCK(unp);
567	free(buf, M_TEMP);
568	return (error);
569}
570
571static int
572uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
573{
574
575	return (uipc_bindat(AT_FDCWD, so, nam, td));
576}
577
578static int
579uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
580{
581	int error;
582
583	KASSERT(td == curthread, ("uipc_connect: td != curthread"));
584	UNP_LINK_WLOCK();
585	error = unp_connect(so, nam, td);
586	UNP_LINK_WUNLOCK();
587	return (error);
588}
589
590static int
591uipc_connectat(int fd, struct socket *so, struct sockaddr *nam,
592    struct thread *td)
593{
594	int error;
595
596	KASSERT(td == curthread, ("uipc_connectat: td != curthread"));
597	UNP_LINK_WLOCK();
598	error = unp_connectat(fd, so, nam, td);
599	UNP_LINK_WUNLOCK();
600	return (error);
601}
602
603static void
604uipc_close(struct socket *so)
605{
606	struct unpcb *unp, *unp2;
607
608	unp = sotounpcb(so);
609	KASSERT(unp != NULL, ("uipc_close: unp == NULL"));
610
611	UNP_LINK_WLOCK();
612	UNP_PCB_LOCK(unp);
613	unp2 = unp->unp_conn;
614	if (unp2 != NULL) {
615		UNP_PCB_LOCK(unp2);
616		unp_disconnect(unp, unp2);
617		UNP_PCB_UNLOCK(unp2);
618	}
619	UNP_PCB_UNLOCK(unp);
620	UNP_LINK_WUNLOCK();
621}
622
623static int
624uipc_connect2(struct socket *so1, struct socket *so2)
625{
626	struct unpcb *unp, *unp2;
627	int error;
628
629	UNP_LINK_WLOCK();
630	unp = so1->so_pcb;
631	KASSERT(unp != NULL, ("uipc_connect2: unp == NULL"));
632	UNP_PCB_LOCK(unp);
633	unp2 = so2->so_pcb;
634	KASSERT(unp2 != NULL, ("uipc_connect2: unp2 == NULL"));
635	UNP_PCB_LOCK(unp2);
636	error = unp_connect2(so1, so2, PRU_CONNECT2);
637	UNP_PCB_UNLOCK(unp2);
638	UNP_PCB_UNLOCK(unp);
639	UNP_LINK_WUNLOCK();
640	return (error);
641}
642
643static void
644uipc_detach(struct socket *so)
645{
646	struct unpcb *unp, *unp2;
647	struct sockaddr_un *saved_unp_addr;
648	struct vnode *vp;
649	int freeunp, local_unp_rights;
650
651	unp = sotounpcb(so);
652	KASSERT(unp != NULL, ("uipc_detach: unp == NULL"));
653
654	UNP_LINK_WLOCK();
655	UNP_LIST_LOCK();
656	UNP_PCB_LOCK(unp);
657	LIST_REMOVE(unp, unp_link);
658	unp->unp_gencnt = ++unp_gencnt;
659	--unp_count;
660	UNP_LIST_UNLOCK();
661
662	/*
663	 * XXXRW: Should assert vp->v_socket == so.
664	 */
665	if ((vp = unp->unp_vnode) != NULL) {
666		VOP_UNP_DETACH(vp);
667		unp->unp_vnode = NULL;
668	}
669	unp2 = unp->unp_conn;
670	if (unp2 != NULL) {
671		UNP_PCB_LOCK(unp2);
672		unp_disconnect(unp, unp2);
673		UNP_PCB_UNLOCK(unp2);
674	}
675
676	/*
677	 * We hold the linkage lock exclusively, so it's OK to acquire
678	 * multiple pcb locks at a time.
679	 */
680	while (!LIST_EMPTY(&unp->unp_refs)) {
681		struct unpcb *ref = LIST_FIRST(&unp->unp_refs);
682
683		UNP_PCB_LOCK(ref);
684		unp_drop(ref, ECONNRESET);
685		UNP_PCB_UNLOCK(ref);
686	}
687	local_unp_rights = unp_rights;
688	UNP_LINK_WUNLOCK();
689	unp->unp_socket->so_pcb = NULL;
690	saved_unp_addr = unp->unp_addr;
691	unp->unp_addr = NULL;
692	unp->unp_refcount--;
693	freeunp = (unp->unp_refcount == 0);
694	if (saved_unp_addr != NULL)
695		free(saved_unp_addr, M_SONAME);
696	if (freeunp) {
697		UNP_PCB_LOCK_DESTROY(unp);
698		uma_zfree(unp_zone, unp);
699	} else
700		UNP_PCB_UNLOCK(unp);
701	if (vp)
702		vrele(vp);
703	if (local_unp_rights)
704		taskqueue_enqueue_timeout(taskqueue_thread, &unp_gc_task, -1);
705}
706
707static int
708uipc_disconnect(struct socket *so)
709{
710	struct unpcb *unp, *unp2;
711
712	unp = sotounpcb(so);
713	KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL"));
714
715	UNP_LINK_WLOCK();
716	UNP_PCB_LOCK(unp);
717	unp2 = unp->unp_conn;
718	if (unp2 != NULL) {
719		UNP_PCB_LOCK(unp2);
720		unp_disconnect(unp, unp2);
721		UNP_PCB_UNLOCK(unp2);
722	}
723	UNP_PCB_UNLOCK(unp);
724	UNP_LINK_WUNLOCK();
725	return (0);
726}
727
728static int
729uipc_listen(struct socket *so, int backlog, struct thread *td)
730{
731	struct unpcb *unp;
732	int error;
733
734	unp = sotounpcb(so);
735	KASSERT(unp != NULL, ("uipc_listen: unp == NULL"));
736
737	UNP_PCB_LOCK(unp);
738	if (unp->unp_vnode == NULL) {
739		UNP_PCB_UNLOCK(unp);
740		return (EINVAL);
741	}
742
743	SOCK_LOCK(so);
744	error = solisten_proto_check(so);
745	if (error == 0) {
746		cru2x(td->td_ucred, &unp->unp_peercred);
747		unp->unp_flags |= UNP_HAVEPCCACHED;
748		solisten_proto(so, backlog);
749	}
750	SOCK_UNLOCK(so);
751	UNP_PCB_UNLOCK(unp);
752	return (error);
753}
754
755static int
756uipc_peeraddr(struct socket *so, struct sockaddr **nam)
757{
758	struct unpcb *unp, *unp2;
759	const struct sockaddr *sa;
760
761	unp = sotounpcb(so);
762	KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL"));
763
764	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
765	UNP_LINK_RLOCK();
766	/*
767	 * XXX: It seems that this test always fails even when connection is
768	 * established.  So, this else clause is added as workaround to
769	 * return PF_LOCAL sockaddr.
770	 */
771	unp2 = unp->unp_conn;
772	if (unp2 != NULL) {
773		UNP_PCB_LOCK(unp2);
774		if (unp2->unp_addr != NULL)
775			sa = (struct sockaddr *) unp2->unp_addr;
776		else
777			sa = &sun_noname;
778		bcopy(sa, *nam, sa->sa_len);
779		UNP_PCB_UNLOCK(unp2);
780	} else {
781		sa = &sun_noname;
782		bcopy(sa, *nam, sa->sa_len);
783	}
784	UNP_LINK_RUNLOCK();
785	return (0);
786}
787
788static int
789uipc_rcvd(struct socket *so, int flags)
790{
791	struct unpcb *unp, *unp2;
792	struct socket *so2;
793	u_int mbcnt, sbcc;
794
795	unp = sotounpcb(so);
796	KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL"));
797
798	if (so->so_type != SOCK_STREAM && so->so_type != SOCK_SEQPACKET)
799		panic("uipc_rcvd socktype %d", so->so_type);
800
801	/*
802	 * Adjust backpressure on sender and wakeup any waiting to write.
803	 *
804	 * The unp lock is acquired to maintain the validity of the unp_conn
805	 * pointer; no lock on unp2 is required as unp2->unp_socket will be
806	 * static as long as we don't permit unp2 to disconnect from unp,
807	 * which is prevented by the lock on unp.  We cache values from
808	 * so_rcv to avoid holding the so_rcv lock over the entire
809	 * transaction on the remote so_snd.
810	 */
811	SOCKBUF_LOCK(&so->so_rcv);
812	mbcnt = so->so_rcv.sb_mbcnt;
813	sbcc = so->so_rcv.sb_cc;
814	SOCKBUF_UNLOCK(&so->so_rcv);
815	/*
816	 * There is a benign race condition at this point.  If we're planning to
817	 * clear SB_STOP, but uipc_send is called on the connected socket at
818	 * this instant, it might add data to the sockbuf and set SB_STOP.  Then
819	 * we would erroneously clear SB_STOP below, even though the sockbuf is
820	 * full.  The race is benign because the only ill effect is to allow the
821	 * sockbuf to exceed its size limit, and the size limits are not
822	 * strictly guaranteed anyway.
823	 */
824	UNP_PCB_LOCK(unp);
825	unp2 = unp->unp_conn;
826	if (unp2 == NULL) {
827		UNP_PCB_UNLOCK(unp);
828		return (0);
829	}
830	so2 = unp2->unp_socket;
831	SOCKBUF_LOCK(&so2->so_snd);
832	if (sbcc < so2->so_snd.sb_hiwat && mbcnt < so2->so_snd.sb_mbmax)
833		so2->so_snd.sb_flags &= ~SB_STOP;
834	sowwakeup_locked(so2);
835	UNP_PCB_UNLOCK(unp);
836	return (0);
837}
838
839static int
840uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
841    struct mbuf *control, struct thread *td)
842{
843	struct unpcb *unp, *unp2;
844	struct socket *so2;
845	u_int mbcnt, sbcc;
846	int error = 0;
847
848	unp = sotounpcb(so);
849	KASSERT(unp != NULL, ("uipc_send: unp == NULL"));
850
851	if (flags & PRUS_OOB) {
852		error = EOPNOTSUPP;
853		goto release;
854	}
855	if (control != NULL && (error = unp_internalize(&control, td)))
856		goto release;
857	if ((nam != NULL) || (flags & PRUS_EOF))
858		UNP_LINK_WLOCK();
859	else
860		UNP_LINK_RLOCK();
861	switch (so->so_type) {
862	case SOCK_DGRAM:
863	{
864		const struct sockaddr *from;
865
866		unp2 = unp->unp_conn;
867		if (nam != NULL) {
868			UNP_LINK_WLOCK_ASSERT();
869			if (unp2 != NULL) {
870				error = EISCONN;
871				break;
872			}
873			error = unp_connect(so, nam, td);
874			if (error)
875				break;
876			unp2 = unp->unp_conn;
877		}
878
879		/*
880		 * Because connect() and send() are non-atomic in a sendto()
881		 * with a target address, it's possible that the socket will
882		 * have disconnected before the send() can run.  In that case
883		 * return the slightly counter-intuitive but otherwise
884		 * correct error that the socket is not connected.
885		 */
886		if (unp2 == NULL) {
887			error = ENOTCONN;
888			break;
889		}
890		/* Lockless read. */
891		if (unp2->unp_flags & UNP_WANTCRED)
892			control = unp_addsockcred(td, control);
893		UNP_PCB_LOCK(unp);
894		if (unp->unp_addr != NULL)
895			from = (struct sockaddr *)unp->unp_addr;
896		else
897			from = &sun_noname;
898		so2 = unp2->unp_socket;
899		SOCKBUF_LOCK(&so2->so_rcv);
900		if (sbappendaddr_locked(&so2->so_rcv, from, m,
901		    control)) {
902			sorwakeup_locked(so2);
903			m = NULL;
904			control = NULL;
905		} else {
906			SOCKBUF_UNLOCK(&so2->so_rcv);
907			error = ENOBUFS;
908		}
909		if (nam != NULL) {
910			UNP_LINK_WLOCK_ASSERT();
911			UNP_PCB_LOCK(unp2);
912			unp_disconnect(unp, unp2);
913			UNP_PCB_UNLOCK(unp2);
914		}
915		UNP_PCB_UNLOCK(unp);
916		break;
917	}
918
919	case SOCK_SEQPACKET:
920	case SOCK_STREAM:
921		if ((so->so_state & SS_ISCONNECTED) == 0) {
922			if (nam != NULL) {
923				UNP_LINK_WLOCK_ASSERT();
924				error = unp_connect(so, nam, td);
925				if (error)
926					break;	/* XXX */
927			} else {
928				error = ENOTCONN;
929				break;
930			}
931		}
932
933		/* Lockless read. */
934		if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
935			error = EPIPE;
936			break;
937		}
938
939		/*
940		 * Because connect() and send() are non-atomic in a sendto()
941		 * with a target address, it's possible that the socket will
942		 * have disconnected before the send() can run.  In that case
943		 * return the slightly counter-intuitive but otherwise
944		 * correct error that the socket is not connected.
945		 *
946		 * Locking here must be done carefully: the linkage lock
947		 * prevents interconnections between unpcbs from changing, so
948		 * we can traverse from unp to unp2 without acquiring unp's
949		 * lock.  Socket buffer locks follow unpcb locks, so we can
950		 * acquire both remote and lock socket buffer locks.
951		 */
952		unp2 = unp->unp_conn;
953		if (unp2 == NULL) {
954			error = ENOTCONN;
955			break;
956		}
957		so2 = unp2->unp_socket;
958		UNP_PCB_LOCK(unp2);
959		SOCKBUF_LOCK(&so2->so_rcv);
960		if (unp2->unp_flags & UNP_WANTCRED) {
961			/*
962			 * Credentials are passed only once on SOCK_STREAM
963			 * and SOCK_SEQPACKET.
964			 */
965			unp2->unp_flags &= ~UNP_WANTCRED;
966			control = unp_addsockcred(td, control);
967		}
968		/*
969		 * Send to paired receive port, and then reduce send buffer
970		 * hiwater marks to maintain backpressure.  Wake up readers.
971		 */
972		switch (so->so_type) {
973		case SOCK_STREAM:
974			if (control != NULL) {
975				if (sbappendcontrol_locked(&so2->so_rcv, m,
976				    control))
977					control = NULL;
978			} else
979				sbappend_locked(&so2->so_rcv, m);
980			break;
981
982		case SOCK_SEQPACKET: {
983			const struct sockaddr *from;
984
985			from = &sun_noname;
986			/*
987			 * Don't check for space available in so2->so_rcv.
988			 * Unix domain sockets only check for space in the
989			 * sending sockbuf, and that check is performed one
990			 * level up the stack.
991			 */
992			if (sbappendaddr_nospacecheck_locked(&so2->so_rcv,
993				from, m, control))
994				control = NULL;
995			break;
996			}
997		}
998
999		mbcnt = so2->so_rcv.sb_mbcnt;
1000		sbcc = so2->so_rcv.sb_cc;
1001		sorwakeup_locked(so2);
1002
1003		/*
1004		 * The PCB lock on unp2 protects the SB_STOP flag.  Without it,
1005		 * it would be possible for uipc_rcvd to be called at this
1006		 * point, drain the receiving sockbuf, clear SB_STOP, and then
1007		 * we would set SB_STOP below.  That could lead to an empty
1008		 * sockbuf having SB_STOP set
1009		 */
1010		SOCKBUF_LOCK(&so->so_snd);
1011		if (sbcc >= so->so_snd.sb_hiwat || mbcnt >= so->so_snd.sb_mbmax)
1012			so->so_snd.sb_flags |= SB_STOP;
1013		SOCKBUF_UNLOCK(&so->so_snd);
1014		UNP_PCB_UNLOCK(unp2);
1015		m = NULL;
1016		break;
1017
1018	default:
1019		panic("uipc_send unknown socktype");
1020	}
1021
1022	/*
1023	 * PRUS_EOF is equivalent to pru_send followed by pru_shutdown.
1024	 */
1025	if (flags & PRUS_EOF) {
1026		UNP_PCB_LOCK(unp);
1027		socantsendmore(so);
1028		unp_shutdown(unp);
1029		UNP_PCB_UNLOCK(unp);
1030	}
1031
1032	if ((nam != NULL) || (flags & PRUS_EOF))
1033		UNP_LINK_WUNLOCK();
1034	else
1035		UNP_LINK_RUNLOCK();
1036
1037	if (control != NULL && error != 0)
1038		unp_dispose(control);
1039
1040release:
1041	if (control != NULL)
1042		m_freem(control);
1043	if (m != NULL)
1044		m_freem(m);
1045	return (error);
1046}
1047
1048static int
1049uipc_sense(struct socket *so, struct stat *sb)
1050{
1051	struct unpcb *unp;
1052
1053	unp = sotounpcb(so);
1054	KASSERT(unp != NULL, ("uipc_sense: unp == NULL"));
1055
1056	sb->st_blksize = so->so_snd.sb_hiwat;
1057	UNP_PCB_LOCK(unp);
1058	sb->st_dev = NODEV;
1059	if (unp->unp_ino == 0)
1060		unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino;
1061	sb->st_ino = unp->unp_ino;
1062	UNP_PCB_UNLOCK(unp);
1063	return (0);
1064}
1065
1066static int
1067uipc_shutdown(struct socket *so)
1068{
1069	struct unpcb *unp;
1070
1071	unp = sotounpcb(so);
1072	KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL"));
1073
1074	UNP_LINK_WLOCK();
1075	UNP_PCB_LOCK(unp);
1076	socantsendmore(so);
1077	unp_shutdown(unp);
1078	UNP_PCB_UNLOCK(unp);
1079	UNP_LINK_WUNLOCK();
1080	return (0);
1081}
1082
1083static int
1084uipc_sockaddr(struct socket *so, struct sockaddr **nam)
1085{
1086	struct unpcb *unp;
1087	const struct sockaddr *sa;
1088
1089	unp = sotounpcb(so);
1090	KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL"));
1091
1092	*nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1093	UNP_PCB_LOCK(unp);
1094	if (unp->unp_addr != NULL)
1095		sa = (struct sockaddr *) unp->unp_addr;
1096	else
1097		sa = &sun_noname;
1098	bcopy(sa, *nam, sa->sa_len);
1099	UNP_PCB_UNLOCK(unp);
1100	return (0);
1101}
1102
1103static struct pr_usrreqs uipc_usrreqs_dgram = {
1104	.pru_abort = 		uipc_abort,
1105	.pru_accept =		uipc_accept,
1106	.pru_attach =		uipc_attach,
1107	.pru_bind =		uipc_bind,
1108	.pru_bindat =		uipc_bindat,
1109	.pru_connect =		uipc_connect,
1110	.pru_connectat =	uipc_connectat,
1111	.pru_connect2 =		uipc_connect2,
1112	.pru_detach =		uipc_detach,
1113	.pru_disconnect =	uipc_disconnect,
1114	.pru_listen =		uipc_listen,
1115	.pru_peeraddr =		uipc_peeraddr,
1116	.pru_rcvd =		uipc_rcvd,
1117	.pru_send =		uipc_send,
1118	.pru_sense =		uipc_sense,
1119	.pru_shutdown =		uipc_shutdown,
1120	.pru_sockaddr =		uipc_sockaddr,
1121	.pru_soreceive =	soreceive_dgram,
1122	.pru_close =		uipc_close,
1123};
1124
1125static struct pr_usrreqs uipc_usrreqs_seqpacket = {
1126	.pru_abort =		uipc_abort,
1127	.pru_accept =		uipc_accept,
1128	.pru_attach =		uipc_attach,
1129	.pru_bind =		uipc_bind,
1130	.pru_bindat =		uipc_bindat,
1131	.pru_connect =		uipc_connect,
1132	.pru_connectat =	uipc_connectat,
1133	.pru_connect2 =		uipc_connect2,
1134	.pru_detach =		uipc_detach,
1135	.pru_disconnect =	uipc_disconnect,
1136	.pru_listen =		uipc_listen,
1137	.pru_peeraddr =		uipc_peeraddr,
1138	.pru_rcvd =		uipc_rcvd,
1139	.pru_send =		uipc_send,
1140	.pru_sense =		uipc_sense,
1141	.pru_shutdown =		uipc_shutdown,
1142	.pru_sockaddr =		uipc_sockaddr,
1143	.pru_soreceive =	soreceive_generic,	/* XXX: or...? */
1144	.pru_close =		uipc_close,
1145};
1146
1147static struct pr_usrreqs uipc_usrreqs_stream = {
1148	.pru_abort = 		uipc_abort,
1149	.pru_accept =		uipc_accept,
1150	.pru_attach =		uipc_attach,
1151	.pru_bind =		uipc_bind,
1152	.pru_bindat =		uipc_bindat,
1153	.pru_connect =		uipc_connect,
1154	.pru_connectat =	uipc_connectat,
1155	.pru_connect2 =		uipc_connect2,
1156	.pru_detach =		uipc_detach,
1157	.pru_disconnect =	uipc_disconnect,
1158	.pru_listen =		uipc_listen,
1159	.pru_peeraddr =		uipc_peeraddr,
1160	.pru_rcvd =		uipc_rcvd,
1161	.pru_send =		uipc_send,
1162	.pru_sense =		uipc_sense,
1163	.pru_shutdown =		uipc_shutdown,
1164	.pru_sockaddr =		uipc_sockaddr,
1165	.pru_soreceive =	soreceive_generic,
1166	.pru_close =		uipc_close,
1167};
1168
1169static int
1170uipc_ctloutput(struct socket *so, struct sockopt *sopt)
1171{
1172	struct unpcb *unp;
1173	struct xucred xu;
1174	int error, optval;
1175
1176	if (sopt->sopt_level != 0)
1177		return (EINVAL);
1178
1179	unp = sotounpcb(so);
1180	KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL"));
1181	error = 0;
1182	switch (sopt->sopt_dir) {
1183	case SOPT_GET:
1184		switch (sopt->sopt_name) {
1185		case LOCAL_PEERCRED:
1186			UNP_PCB_LOCK(unp);
1187			if (unp->unp_flags & UNP_HAVEPC)
1188				xu = unp->unp_peercred;
1189			else {
1190				if (so->so_type == SOCK_STREAM)
1191					error = ENOTCONN;
1192				else
1193					error = EINVAL;
1194			}
1195			UNP_PCB_UNLOCK(unp);
1196			if (error == 0)
1197				error = sooptcopyout(sopt, &xu, sizeof(xu));
1198			break;
1199
1200		case LOCAL_CREDS:
1201			/* Unlocked read. */
1202			optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0;
1203			error = sooptcopyout(sopt, &optval, sizeof(optval));
1204			break;
1205
1206		case LOCAL_CONNWAIT:
1207			/* Unlocked read. */
1208			optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0;
1209			error = sooptcopyout(sopt, &optval, sizeof(optval));
1210			break;
1211
1212		default:
1213			error = EOPNOTSUPP;
1214			break;
1215		}
1216		break;
1217
1218	case SOPT_SET:
1219		switch (sopt->sopt_name) {
1220		case LOCAL_CREDS:
1221		case LOCAL_CONNWAIT:
1222			error = sooptcopyin(sopt, &optval, sizeof(optval),
1223					    sizeof(optval));
1224			if (error)
1225				break;
1226
1227#define	OPTSET(bit) do {						\
1228	UNP_PCB_LOCK(unp);						\
1229	if (optval)							\
1230		unp->unp_flags |= bit;					\
1231	else								\
1232		unp->unp_flags &= ~bit;					\
1233	UNP_PCB_UNLOCK(unp);						\
1234} while (0)
1235
1236			switch (sopt->sopt_name) {
1237			case LOCAL_CREDS:
1238				OPTSET(UNP_WANTCRED);
1239				break;
1240
1241			case LOCAL_CONNWAIT:
1242				OPTSET(UNP_CONNWAIT);
1243				break;
1244
1245			default:
1246				break;
1247			}
1248			break;
1249#undef	OPTSET
1250		default:
1251			error = ENOPROTOOPT;
1252			break;
1253		}
1254		break;
1255
1256	default:
1257		error = EOPNOTSUPP;
1258		break;
1259	}
1260	return (error);
1261}
1262
1263static int
1264unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
1265{
1266
1267	return (unp_connectat(AT_FDCWD, so, nam, td));
1268}
1269
1270static int
1271unp_connectat(int fd, struct socket *so, struct sockaddr *nam,
1272    struct thread *td)
1273{
1274	struct sockaddr_un *soun = (struct sockaddr_un *)nam;
1275	struct vnode *vp;
1276	struct socket *so2, *so3;
1277	struct unpcb *unp, *unp2, *unp3;
1278	struct nameidata nd;
1279	char buf[SOCK_MAXADDRLEN];
1280	struct sockaddr *sa;
1281	cap_rights_t rights;
1282	int error, len;
1283
1284	if (nam->sa_family != AF_UNIX)
1285		return (EAFNOSUPPORT);
1286
1287	UNP_LINK_WLOCK_ASSERT();
1288
1289	unp = sotounpcb(so);
1290	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1291
1292	if (nam->sa_len > sizeof(struct sockaddr_un))
1293		return (EINVAL);
1294	len = nam->sa_len - offsetof(struct sockaddr_un, sun_path);
1295	if (len <= 0)
1296		return (EINVAL);
1297	bcopy(soun->sun_path, buf, len);
1298	buf[len] = 0;
1299
1300	UNP_PCB_LOCK(unp);
1301	if (unp->unp_flags & UNP_CONNECTING) {
1302		UNP_PCB_UNLOCK(unp);
1303		return (EALREADY);
1304	}
1305	UNP_LINK_WUNLOCK();
1306	unp->unp_flags |= UNP_CONNECTING;
1307	UNP_PCB_UNLOCK(unp);
1308
1309	sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK);
1310	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | LOCKSHARED | LOCKLEAF,
1311	    UIO_SYSSPACE, buf, fd, cap_rights_init(&rights, CAP_CONNECTAT), td);
1312	error = namei(&nd);
1313	if (error)
1314		vp = NULL;
1315	else
1316		vp = nd.ni_vp;
1317	ASSERT_VOP_LOCKED(vp, "unp_connect");
1318	NDFREE(&nd, NDF_ONLY_PNBUF);
1319	if (error)
1320		goto bad;
1321
1322	if (vp->v_type != VSOCK) {
1323		error = ENOTSOCK;
1324		goto bad;
1325	}
1326#ifdef MAC
1327	error = mac_vnode_check_open(td->td_ucred, vp, VWRITE | VREAD);
1328	if (error)
1329		goto bad;
1330#endif
1331	error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td);
1332	if (error)
1333		goto bad;
1334
1335	unp = sotounpcb(so);
1336	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1337
1338	/*
1339	 * Lock linkage lock for two reasons: make sure v_socket is stable,
1340	 * and to protect simultaneous locking of multiple pcbs.
1341	 */
1342	UNP_LINK_WLOCK();
1343	VOP_UNP_CONNECT(vp, &so2);
1344	if (so2 == NULL) {
1345		error = ECONNREFUSED;
1346		goto bad2;
1347	}
1348	if (so->so_type != so2->so_type) {
1349		error = EPROTOTYPE;
1350		goto bad2;
1351	}
1352	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
1353		if (so2->so_options & SO_ACCEPTCONN) {
1354			CURVNET_SET(so2->so_vnet);
1355			so3 = sonewconn(so2, 0);
1356			CURVNET_RESTORE();
1357		} else
1358			so3 = NULL;
1359		if (so3 == NULL) {
1360			error = ECONNREFUSED;
1361			goto bad2;
1362		}
1363		unp = sotounpcb(so);
1364		unp2 = sotounpcb(so2);
1365		unp3 = sotounpcb(so3);
1366		UNP_PCB_LOCK(unp);
1367		UNP_PCB_LOCK(unp2);
1368		UNP_PCB_LOCK(unp3);
1369		if (unp2->unp_addr != NULL) {
1370			bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len);
1371			unp3->unp_addr = (struct sockaddr_un *) sa;
1372			sa = NULL;
1373		}
1374
1375		/*
1376		 * The connector's (client's) credentials are copied from its
1377		 * process structure at the time of connect() (which is now).
1378		 */
1379		cru2x(td->td_ucred, &unp3->unp_peercred);
1380		unp3->unp_flags |= UNP_HAVEPC;
1381
1382		/*
1383		 * The receiver's (server's) credentials are copied from the
1384		 * unp_peercred member of socket on which the former called
1385		 * listen(); uipc_listen() cached that process's credentials
1386		 * at that time so we can use them now.
1387		 */
1388		KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED,
1389		    ("unp_connect: listener without cached peercred"));
1390		memcpy(&unp->unp_peercred, &unp2->unp_peercred,
1391		    sizeof(unp->unp_peercred));
1392		unp->unp_flags |= UNP_HAVEPC;
1393		if (unp2->unp_flags & UNP_WANTCRED)
1394			unp3->unp_flags |= UNP_WANTCRED;
1395		UNP_PCB_UNLOCK(unp3);
1396		UNP_PCB_UNLOCK(unp2);
1397		UNP_PCB_UNLOCK(unp);
1398#ifdef MAC
1399		mac_socketpeer_set_from_socket(so, so3);
1400		mac_socketpeer_set_from_socket(so3, so);
1401#endif
1402
1403		so2 = so3;
1404	}
1405	unp = sotounpcb(so);
1406	KASSERT(unp != NULL, ("unp_connect: unp == NULL"));
1407	unp2 = sotounpcb(so2);
1408	KASSERT(unp2 != NULL, ("unp_connect: unp2 == NULL"));
1409	UNP_PCB_LOCK(unp);
1410	UNP_PCB_LOCK(unp2);
1411	error = unp_connect2(so, so2, PRU_CONNECT);
1412	UNP_PCB_UNLOCK(unp2);
1413	UNP_PCB_UNLOCK(unp);
1414bad2:
1415	UNP_LINK_WUNLOCK();
1416bad:
1417	if (vp != NULL)
1418		vput(vp);
1419	free(sa, M_SONAME);
1420	UNP_LINK_WLOCK();
1421	UNP_PCB_LOCK(unp);
1422	unp->unp_flags &= ~UNP_CONNECTING;
1423	UNP_PCB_UNLOCK(unp);
1424	return (error);
1425}
1426
1427static int
1428unp_connect2(struct socket *so, struct socket *so2, int req)
1429{
1430	struct unpcb *unp;
1431	struct unpcb *unp2;
1432
1433	unp = sotounpcb(so);
1434	KASSERT(unp != NULL, ("unp_connect2: unp == NULL"));
1435	unp2 = sotounpcb(so2);
1436	KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL"));
1437
1438	UNP_LINK_WLOCK_ASSERT();
1439	UNP_PCB_LOCK_ASSERT(unp);
1440	UNP_PCB_LOCK_ASSERT(unp2);
1441
1442	if (so2->so_type != so->so_type)
1443		return (EPROTOTYPE);
1444	unp->unp_conn = unp2;
1445
1446	switch (so->so_type) {
1447	case SOCK_DGRAM:
1448		LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink);
1449		soisconnected(so);
1450		break;
1451
1452	case SOCK_STREAM:
1453	case SOCK_SEQPACKET:
1454		unp2->unp_conn = unp;
1455		if (req == PRU_CONNECT &&
1456		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1457			soisconnecting(so);
1458		else
1459			soisconnected(so);
1460		soisconnected(so2);
1461		break;
1462
1463	default:
1464		panic("unp_connect2");
1465	}
1466	return (0);
1467}
1468
1469static void
1470unp_disconnect(struct unpcb *unp, struct unpcb *unp2)
1471{
1472	struct socket *so;
1473
1474	KASSERT(unp2 != NULL, ("unp_disconnect: unp2 == NULL"));
1475
1476	UNP_LINK_WLOCK_ASSERT();
1477	UNP_PCB_LOCK_ASSERT(unp);
1478	UNP_PCB_LOCK_ASSERT(unp2);
1479
1480	unp->unp_conn = NULL;
1481	switch (unp->unp_socket->so_type) {
1482	case SOCK_DGRAM:
1483		LIST_REMOVE(unp, unp_reflink);
1484		so = unp->unp_socket;
1485		SOCK_LOCK(so);
1486		so->so_state &= ~SS_ISCONNECTED;
1487		SOCK_UNLOCK(so);
1488		break;
1489
1490	case SOCK_STREAM:
1491	case SOCK_SEQPACKET:
1492		soisdisconnected(unp->unp_socket);
1493		unp2->unp_conn = NULL;
1494		soisdisconnected(unp2->unp_socket);
1495		break;
1496	}
1497}
1498
1499/*
1500 * unp_pcblist() walks the global list of struct unpcb's to generate a
1501 * pointer list, bumping the refcount on each unpcb.  It then copies them out
1502 * sequentially, validating the generation number on each to see if it has
1503 * been detached.  All of this is necessary because copyout() may sleep on
1504 * disk I/O.
1505 */
1506static int
1507unp_pcblist(SYSCTL_HANDLER_ARGS)
1508{
1509	int error, i, n;
1510	int freeunp;
1511	struct unpcb *unp, **unp_list;
1512	unp_gen_t gencnt;
1513	struct xunpgen *xug;
1514	struct unp_head *head;
1515	struct xunpcb *xu;
1516
1517	switch ((intptr_t)arg1) {
1518	case SOCK_STREAM:
1519		head = &unp_shead;
1520		break;
1521
1522	case SOCK_DGRAM:
1523		head = &unp_dhead;
1524		break;
1525
1526	case SOCK_SEQPACKET:
1527		head = &unp_sphead;
1528		break;
1529
1530	default:
1531		panic("unp_pcblist: arg1 %d", (int)(intptr_t)arg1);
1532	}
1533
1534	/*
1535	 * The process of preparing the PCB list is too time-consuming and
1536	 * resource-intensive to repeat twice on every request.
1537	 */
1538	if (req->oldptr == NULL) {
1539		n = unp_count;
1540		req->oldidx = 2 * (sizeof *xug)
1541			+ (n + n/8) * sizeof(struct xunpcb);
1542		return (0);
1543	}
1544
1545	if (req->newptr != NULL)
1546		return (EPERM);
1547
1548	/*
1549	 * OK, now we're committed to doing something.
1550	 */
1551	xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK);
1552	UNP_LIST_LOCK();
1553	gencnt = unp_gencnt;
1554	n = unp_count;
1555	UNP_LIST_UNLOCK();
1556
1557	xug->xug_len = sizeof *xug;
1558	xug->xug_count = n;
1559	xug->xug_gen = gencnt;
1560	xug->xug_sogen = so_gencnt;
1561	error = SYSCTL_OUT(req, xug, sizeof *xug);
1562	if (error) {
1563		free(xug, M_TEMP);
1564		return (error);
1565	}
1566
1567	unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK);
1568
1569	UNP_LIST_LOCK();
1570	for (unp = LIST_FIRST(head), i = 0; unp && i < n;
1571	     unp = LIST_NEXT(unp, unp_link)) {
1572		UNP_PCB_LOCK(unp);
1573		if (unp->unp_gencnt <= gencnt) {
1574			if (cr_cansee(req->td->td_ucred,
1575			    unp->unp_socket->so_cred)) {
1576				UNP_PCB_UNLOCK(unp);
1577				continue;
1578			}
1579			unp_list[i++] = unp;
1580			unp->unp_refcount++;
1581		}
1582		UNP_PCB_UNLOCK(unp);
1583	}
1584	UNP_LIST_UNLOCK();
1585	n = i;			/* In case we lost some during malloc. */
1586
1587	error = 0;
1588	xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO);
1589	for (i = 0; i < n; i++) {
1590		unp = unp_list[i];
1591		UNP_PCB_LOCK(unp);
1592		unp->unp_refcount--;
1593	        if (unp->unp_refcount != 0 && unp->unp_gencnt <= gencnt) {
1594			xu->xu_len = sizeof *xu;
1595			xu->xu_unpp = unp;
1596			/*
1597			 * XXX - need more locking here to protect against
1598			 * connect/disconnect races for SMP.
1599			 */
1600			if (unp->unp_addr != NULL)
1601				bcopy(unp->unp_addr, &xu->xu_addr,
1602				      unp->unp_addr->sun_len);
1603			if (unp->unp_conn != NULL &&
1604			    unp->unp_conn->unp_addr != NULL)
1605				bcopy(unp->unp_conn->unp_addr,
1606				      &xu->xu_caddr,
1607				      unp->unp_conn->unp_addr->sun_len);
1608			bcopy(unp, &xu->xu_unp, sizeof *unp);
1609			sotoxsocket(unp->unp_socket, &xu->xu_socket);
1610			UNP_PCB_UNLOCK(unp);
1611			error = SYSCTL_OUT(req, xu, sizeof *xu);
1612		} else {
1613			freeunp = (unp->unp_refcount == 0);
1614			UNP_PCB_UNLOCK(unp);
1615			if (freeunp) {
1616				UNP_PCB_LOCK_DESTROY(unp);
1617				uma_zfree(unp_zone, unp);
1618			}
1619		}
1620	}
1621	free(xu, M_TEMP);
1622	if (!error) {
1623		/*
1624		 * Give the user an updated idea of our state.  If the
1625		 * generation differs from what we told her before, she knows
1626		 * that something happened while we were processing this
1627		 * request, and it might be necessary to retry.
1628		 */
1629		xug->xug_gen = unp_gencnt;
1630		xug->xug_sogen = so_gencnt;
1631		xug->xug_count = unp_count;
1632		error = SYSCTL_OUT(req, xug, sizeof *xug);
1633	}
1634	free(unp_list, M_TEMP);
1635	free(xug, M_TEMP);
1636	return (error);
1637}
1638
1639SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1640    (void *)(intptr_t)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb",
1641    "List of active local datagram sockets");
1642SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD,
1643    (void *)(intptr_t)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb",
1644    "List of active local stream sockets");
1645SYSCTL_PROC(_net_local_seqpacket, OID_AUTO, pcblist,
1646    CTLTYPE_OPAQUE | CTLFLAG_RD,
1647    (void *)(intptr_t)SOCK_SEQPACKET, 0, unp_pcblist, "S,xunpcb",
1648    "List of active local seqpacket sockets");
1649
1650static void
1651unp_shutdown(struct unpcb *unp)
1652{
1653	struct unpcb *unp2;
1654	struct socket *so;
1655
1656	UNP_LINK_WLOCK_ASSERT();
1657	UNP_PCB_LOCK_ASSERT(unp);
1658
1659	unp2 = unp->unp_conn;
1660	if ((unp->unp_socket->so_type == SOCK_STREAM ||
1661	    (unp->unp_socket->so_type == SOCK_SEQPACKET)) && unp2 != NULL) {
1662		so = unp2->unp_socket;
1663		if (so != NULL)
1664			socantrcvmore(so);
1665	}
1666}
1667
1668static void
1669unp_drop(struct unpcb *unp, int errno)
1670{
1671	struct socket *so = unp->unp_socket;
1672	struct unpcb *unp2;
1673
1674	UNP_LINK_WLOCK_ASSERT();
1675	UNP_PCB_LOCK_ASSERT(unp);
1676
1677	so->so_error = errno;
1678	unp2 = unp->unp_conn;
1679	if (unp2 == NULL)
1680		return;
1681	UNP_PCB_LOCK(unp2);
1682	unp_disconnect(unp, unp2);
1683	UNP_PCB_UNLOCK(unp2);
1684}
1685
1686static void
1687unp_freerights(struct filedescent **fdep, int fdcount)
1688{
1689	struct file *fp;
1690	int i;
1691
1692	KASSERT(fdcount > 0, ("%s: fdcount %d", __func__, fdcount));
1693
1694	for (i = 0; i < fdcount; i++) {
1695		fp = fdep[i]->fde_file;
1696		filecaps_free(&fdep[i]->fde_caps);
1697		unp_discard(fp);
1698	}
1699	free(fdep[0], M_FILECAPS);
1700}
1701
1702static int
1703unp_externalize(struct mbuf *control, struct mbuf **controlp, int flags)
1704{
1705	struct thread *td = curthread;		/* XXX */
1706	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1707	int i;
1708	int *fdp;
1709	struct filedesc *fdesc = td->td_proc->p_fd;
1710	struct filedescent *fde, **fdep;
1711	void *data;
1712	socklen_t clen = control->m_len, datalen;
1713	int error, newfds;
1714	u_int newlen;
1715
1716	UNP_LINK_UNLOCK_ASSERT();
1717
1718	error = 0;
1719	if (controlp != NULL) /* controlp == NULL => free control messages */
1720		*controlp = NULL;
1721	while (cm != NULL) {
1722		if (sizeof(*cm) > clen || cm->cmsg_len > clen) {
1723			error = EINVAL;
1724			break;
1725		}
1726		data = CMSG_DATA(cm);
1727		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1728		if (cm->cmsg_level == SOL_SOCKET
1729		    && cm->cmsg_type == SCM_RIGHTS) {
1730			newfds = datalen / sizeof(*fdep);
1731			if (newfds == 0)
1732				goto next;
1733			fdep = data;
1734
1735			/* If we're not outputting the descriptors free them. */
1736			if (error || controlp == NULL) {
1737				unp_freerights(fdep, newfds);
1738				goto next;
1739			}
1740			FILEDESC_XLOCK(fdesc);
1741
1742			/*
1743			 * Now change each pointer to an fd in the global
1744			 * table to an integer that is the index to the local
1745			 * fd table entry that we set up to point to the
1746			 * global one we are transferring.
1747			 */
1748			newlen = newfds * sizeof(int);
1749			*controlp = sbcreatecontrol(NULL, newlen,
1750			    SCM_RIGHTS, SOL_SOCKET);
1751			if (*controlp == NULL) {
1752				FILEDESC_XUNLOCK(fdesc);
1753				error = E2BIG;
1754				unp_freerights(fdep, newfds);
1755				goto next;
1756			}
1757
1758			fdp = (int *)
1759			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1760			if (fdallocn(td, 0, fdp, newfds) != 0) {
1761				FILEDESC_XUNLOCK(td->td_proc->p_fd);
1762				error = EMSGSIZE;
1763				unp_freerights(fdep, newfds);
1764				m_freem(*controlp);
1765				*controlp = NULL;
1766				goto next;
1767			}
1768			for (i = 0; i < newfds; i++, fdp++) {
1769				fde = &fdesc->fd_ofiles[*fdp];
1770				fde->fde_file = fdep[i]->fde_file;
1771				filecaps_move(&fdep[i]->fde_caps,
1772				    &fde->fde_caps);
1773				if ((flags & MSG_CMSG_CLOEXEC) != 0)
1774					fde->fde_flags |= UF_EXCLOSE;
1775				unp_externalize_fp(fde->fde_file);
1776			}
1777			FILEDESC_XUNLOCK(fdesc);
1778			free(fdep[0], M_FILECAPS);
1779		} else {
1780			/* We can just copy anything else across. */
1781			if (error || controlp == NULL)
1782				goto next;
1783			*controlp = sbcreatecontrol(NULL, datalen,
1784			    cm->cmsg_type, cm->cmsg_level);
1785			if (*controlp == NULL) {
1786				error = ENOBUFS;
1787				goto next;
1788			}
1789			bcopy(data,
1790			    CMSG_DATA(mtod(*controlp, struct cmsghdr *)),
1791			    datalen);
1792		}
1793		controlp = &(*controlp)->m_next;
1794
1795next:
1796		if (CMSG_SPACE(datalen) < clen) {
1797			clen -= CMSG_SPACE(datalen);
1798			cm = (struct cmsghdr *)
1799			    ((caddr_t)cm + CMSG_SPACE(datalen));
1800		} else {
1801			clen = 0;
1802			cm = NULL;
1803		}
1804	}
1805
1806	m_freem(control);
1807	return (error);
1808}
1809
1810static void
1811unp_zone_change(void *tag)
1812{
1813
1814	uma_zone_set_max(unp_zone, maxsockets);
1815}
1816
1817static void
1818unp_init(void)
1819{
1820
1821#ifdef VIMAGE
1822	if (!IS_DEFAULT_VNET(curvnet))
1823		return;
1824#endif
1825	unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL,
1826	    NULL, NULL, UMA_ALIGN_PTR, 0);
1827	if (unp_zone == NULL)
1828		panic("unp_init");
1829	uma_zone_set_max(unp_zone, maxsockets);
1830	uma_zone_set_warning(unp_zone, "kern.ipc.maxsockets limit reached");
1831	EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change,
1832	    NULL, EVENTHANDLER_PRI_ANY);
1833	LIST_INIT(&unp_dhead);
1834	LIST_INIT(&unp_shead);
1835	LIST_INIT(&unp_sphead);
1836	SLIST_INIT(&unp_defers);
1837	TIMEOUT_TASK_INIT(taskqueue_thread, &unp_gc_task, 0, unp_gc, NULL);
1838	TASK_INIT(&unp_defer_task, 0, unp_process_defers, NULL);
1839	UNP_LINK_LOCK_INIT();
1840	UNP_LIST_LOCK_INIT();
1841	UNP_DEFERRED_LOCK_INIT();
1842}
1843
1844static int
1845unp_internalize(struct mbuf **controlp, struct thread *td)
1846{
1847	struct mbuf *control = *controlp;
1848	struct proc *p = td->td_proc;
1849	struct filedesc *fdesc = p->p_fd;
1850	struct bintime *bt;
1851	struct cmsghdr *cm = mtod(control, struct cmsghdr *);
1852	struct cmsgcred *cmcred;
1853	struct filedescent *fde, **fdep, *fdev;
1854	struct file *fp;
1855	struct timeval *tv;
1856	int i, *fdp;
1857	void *data;
1858	socklen_t clen = control->m_len, datalen;
1859	int error, oldfds;
1860	u_int newlen;
1861
1862	UNP_LINK_UNLOCK_ASSERT();
1863
1864	error = 0;
1865	*controlp = NULL;
1866	while (cm != NULL) {
1867		if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET
1868		    || cm->cmsg_len > clen || cm->cmsg_len < sizeof(*cm)) {
1869			error = EINVAL;
1870			goto out;
1871		}
1872		data = CMSG_DATA(cm);
1873		datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data;
1874
1875		switch (cm->cmsg_type) {
1876		/*
1877		 * Fill in credential information.
1878		 */
1879		case SCM_CREDS:
1880			*controlp = sbcreatecontrol(NULL, sizeof(*cmcred),
1881			    SCM_CREDS, SOL_SOCKET);
1882			if (*controlp == NULL) {
1883				error = ENOBUFS;
1884				goto out;
1885			}
1886			cmcred = (struct cmsgcred *)
1887			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1888			cmcred->cmcred_pid = p->p_pid;
1889			cmcred->cmcred_uid = td->td_ucred->cr_ruid;
1890			cmcred->cmcred_gid = td->td_ucred->cr_rgid;
1891			cmcred->cmcred_euid = td->td_ucred->cr_uid;
1892			cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups,
1893			    CMGROUP_MAX);
1894			for (i = 0; i < cmcred->cmcred_ngroups; i++)
1895				cmcred->cmcred_groups[i] =
1896				    td->td_ucred->cr_groups[i];
1897			break;
1898
1899		case SCM_RIGHTS:
1900			oldfds = datalen / sizeof (int);
1901			if (oldfds == 0)
1902				break;
1903			/*
1904			 * Check that all the FDs passed in refer to legal
1905			 * files.  If not, reject the entire operation.
1906			 */
1907			fdp = data;
1908			FILEDESC_SLOCK(fdesc);
1909			for (i = 0; i < oldfds; i++, fdp++) {
1910				fp = fget_locked(fdesc, *fdp);
1911				if (fp == NULL) {
1912					FILEDESC_SUNLOCK(fdesc);
1913					error = EBADF;
1914					goto out;
1915				}
1916				if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) {
1917					FILEDESC_SUNLOCK(fdesc);
1918					error = EOPNOTSUPP;
1919					goto out;
1920				}
1921
1922			}
1923
1924			/*
1925			 * Now replace the integer FDs with pointers to the
1926			 * file structure and capability rights.
1927			 */
1928			newlen = oldfds * sizeof(fdep[0]);
1929			*controlp = sbcreatecontrol(NULL, newlen,
1930			    SCM_RIGHTS, SOL_SOCKET);
1931			if (*controlp == NULL) {
1932				FILEDESC_SUNLOCK(fdesc);
1933				error = E2BIG;
1934				goto out;
1935			}
1936			fdp = data;
1937			fdep = (struct filedescent **)
1938			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1939			fdev = malloc(sizeof(*fdev) * oldfds, M_FILECAPS,
1940			    M_WAITOK);
1941			for (i = 0; i < oldfds; i++, fdev++, fdp++) {
1942				fde = &fdesc->fd_ofiles[*fdp];
1943				fdep[i] = fdev;
1944				fdep[i]->fde_file = fde->fde_file;
1945				filecaps_copy(&fde->fde_caps,
1946				    &fdep[i]->fde_caps);
1947				unp_internalize_fp(fdep[i]->fde_file);
1948			}
1949			FILEDESC_SUNLOCK(fdesc);
1950			break;
1951
1952		case SCM_TIMESTAMP:
1953			*controlp = sbcreatecontrol(NULL, sizeof(*tv),
1954			    SCM_TIMESTAMP, SOL_SOCKET);
1955			if (*controlp == NULL) {
1956				error = ENOBUFS;
1957				goto out;
1958			}
1959			tv = (struct timeval *)
1960			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1961			microtime(tv);
1962			break;
1963
1964		case SCM_BINTIME:
1965			*controlp = sbcreatecontrol(NULL, sizeof(*bt),
1966			    SCM_BINTIME, SOL_SOCKET);
1967			if (*controlp == NULL) {
1968				error = ENOBUFS;
1969				goto out;
1970			}
1971			bt = (struct bintime *)
1972			    CMSG_DATA(mtod(*controlp, struct cmsghdr *));
1973			bintime(bt);
1974			break;
1975
1976		default:
1977			error = EINVAL;
1978			goto out;
1979		}
1980
1981		controlp = &(*controlp)->m_next;
1982		if (CMSG_SPACE(datalen) < clen) {
1983			clen -= CMSG_SPACE(datalen);
1984			cm = (struct cmsghdr *)
1985			    ((caddr_t)cm + CMSG_SPACE(datalen));
1986		} else {
1987			clen = 0;
1988			cm = NULL;
1989		}
1990	}
1991
1992out:
1993	m_freem(control);
1994	return (error);
1995}
1996
1997static struct mbuf *
1998unp_addsockcred(struct thread *td, struct mbuf *control)
1999{
2000	struct mbuf *m, *n, *n_prev;
2001	struct sockcred *sc;
2002	const struct cmsghdr *cm;
2003	int ngroups;
2004	int i;
2005
2006	ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX);
2007	m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET);
2008	if (m == NULL)
2009		return (control);
2010
2011	sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *));
2012	sc->sc_uid = td->td_ucred->cr_ruid;
2013	sc->sc_euid = td->td_ucred->cr_uid;
2014	sc->sc_gid = td->td_ucred->cr_rgid;
2015	sc->sc_egid = td->td_ucred->cr_gid;
2016	sc->sc_ngroups = ngroups;
2017	for (i = 0; i < sc->sc_ngroups; i++)
2018		sc->sc_groups[i] = td->td_ucred->cr_groups[i];
2019
2020	/*
2021	 * Unlink SCM_CREDS control messages (struct cmsgcred), since just
2022	 * created SCM_CREDS control message (struct sockcred) has another
2023	 * format.
2024	 */
2025	if (control != NULL)
2026		for (n = control, n_prev = NULL; n != NULL;) {
2027			cm = mtod(n, struct cmsghdr *);
2028    			if (cm->cmsg_level == SOL_SOCKET &&
2029			    cm->cmsg_type == SCM_CREDS) {
2030    				if (n_prev == NULL)
2031					control = n->m_next;
2032				else
2033					n_prev->m_next = n->m_next;
2034				n = m_free(n);
2035			} else {
2036				n_prev = n;
2037				n = n->m_next;
2038			}
2039		}
2040
2041	/* Prepend it to the head. */
2042	m->m_next = control;
2043	return (m);
2044}
2045
2046static struct unpcb *
2047fptounp(struct file *fp)
2048{
2049	struct socket *so;
2050
2051	if (fp->f_type != DTYPE_SOCKET)
2052		return (NULL);
2053	if ((so = fp->f_data) == NULL)
2054		return (NULL);
2055	if (so->so_proto->pr_domain != &localdomain)
2056		return (NULL);
2057	return sotounpcb(so);
2058}
2059
2060static void
2061unp_discard(struct file *fp)
2062{
2063	struct unp_defer *dr;
2064
2065	if (unp_externalize_fp(fp)) {
2066		dr = malloc(sizeof(*dr), M_TEMP, M_WAITOK);
2067		dr->ud_fp = fp;
2068		UNP_DEFERRED_LOCK();
2069		SLIST_INSERT_HEAD(&unp_defers, dr, ud_link);
2070		UNP_DEFERRED_UNLOCK();
2071		atomic_add_int(&unp_defers_count, 1);
2072		taskqueue_enqueue(taskqueue_thread, &unp_defer_task);
2073	} else
2074		(void) closef(fp, (struct thread *)NULL);
2075}
2076
2077static void
2078unp_process_defers(void *arg __unused, int pending)
2079{
2080	struct unp_defer *dr;
2081	SLIST_HEAD(, unp_defer) drl;
2082	int count;
2083
2084	SLIST_INIT(&drl);
2085	for (;;) {
2086		UNP_DEFERRED_LOCK();
2087		if (SLIST_FIRST(&unp_defers) == NULL) {
2088			UNP_DEFERRED_UNLOCK();
2089			break;
2090		}
2091		SLIST_SWAP(&unp_defers, &drl, unp_defer);
2092		UNP_DEFERRED_UNLOCK();
2093		count = 0;
2094		while ((dr = SLIST_FIRST(&drl)) != NULL) {
2095			SLIST_REMOVE_HEAD(&drl, ud_link);
2096			closef(dr->ud_fp, NULL);
2097			free(dr, M_TEMP);
2098			count++;
2099		}
2100		atomic_add_int(&unp_defers_count, -count);
2101	}
2102}
2103
2104static void
2105unp_internalize_fp(struct file *fp)
2106{
2107	struct unpcb *unp;
2108
2109	UNP_LINK_WLOCK();
2110	if ((unp = fptounp(fp)) != NULL) {
2111		unp->unp_file = fp;
2112		unp->unp_msgcount++;
2113	}
2114	fhold(fp);
2115	unp_rights++;
2116	UNP_LINK_WUNLOCK();
2117}
2118
2119static int
2120unp_externalize_fp(struct file *fp)
2121{
2122	struct unpcb *unp;
2123	int ret;
2124
2125	UNP_LINK_WLOCK();
2126	if ((unp = fptounp(fp)) != NULL) {
2127		unp->unp_msgcount--;
2128		ret = 1;
2129	} else
2130		ret = 0;
2131	unp_rights--;
2132	UNP_LINK_WUNLOCK();
2133	return (ret);
2134}
2135
2136/*
2137 * unp_defer indicates whether additional work has been defered for a future
2138 * pass through unp_gc().  It is thread local and does not require explicit
2139 * synchronization.
2140 */
2141static int	unp_marked;
2142static int	unp_unreachable;
2143
2144static void
2145unp_accessable(struct filedescent **fdep, int fdcount)
2146{
2147	struct unpcb *unp;
2148	struct file *fp;
2149	int i;
2150
2151	for (i = 0; i < fdcount; i++) {
2152		fp = fdep[i]->fde_file;
2153		if ((unp = fptounp(fp)) == NULL)
2154			continue;
2155		if (unp->unp_gcflag & UNPGC_REF)
2156			continue;
2157		unp->unp_gcflag &= ~UNPGC_DEAD;
2158		unp->unp_gcflag |= UNPGC_REF;
2159		unp_marked++;
2160	}
2161}
2162
2163static void
2164unp_gc_process(struct unpcb *unp)
2165{
2166	struct socket *soa;
2167	struct socket *so;
2168	struct file *fp;
2169
2170	/* Already processed. */
2171	if (unp->unp_gcflag & UNPGC_SCANNED)
2172		return;
2173	fp = unp->unp_file;
2174
2175	/*
2176	 * Check for a socket potentially in a cycle.  It must be in a
2177	 * queue as indicated by msgcount, and this must equal the file
2178	 * reference count.  Note that when msgcount is 0 the file is NULL.
2179	 */
2180	if ((unp->unp_gcflag & UNPGC_REF) == 0 && fp &&
2181	    unp->unp_msgcount != 0 && fp->f_count == unp->unp_msgcount) {
2182		unp->unp_gcflag |= UNPGC_DEAD;
2183		unp_unreachable++;
2184		return;
2185	}
2186
2187	/*
2188	 * Mark all sockets we reference with RIGHTS.
2189	 */
2190	so = unp->unp_socket;
2191	SOCKBUF_LOCK(&so->so_rcv);
2192	unp_scan(so->so_rcv.sb_mb, unp_accessable);
2193	SOCKBUF_UNLOCK(&so->so_rcv);
2194
2195	/*
2196	 * Mark all sockets in our accept queue.
2197	 */
2198	ACCEPT_LOCK();
2199	TAILQ_FOREACH(soa, &so->so_comp, so_list) {
2200		SOCKBUF_LOCK(&soa->so_rcv);
2201		unp_scan(soa->so_rcv.sb_mb, unp_accessable);
2202		SOCKBUF_UNLOCK(&soa->so_rcv);
2203	}
2204	ACCEPT_UNLOCK();
2205	unp->unp_gcflag |= UNPGC_SCANNED;
2206}
2207
2208static int unp_recycled;
2209SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0,
2210    "Number of unreachable sockets claimed by the garbage collector.");
2211
2212static int unp_taskcount;
2213SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0,
2214    "Number of times the garbage collector has run.");
2215
2216static void
2217unp_gc(__unused void *arg, int pending)
2218{
2219	struct unp_head *heads[] = { &unp_dhead, &unp_shead, &unp_sphead,
2220				    NULL };
2221	struct unp_head **head;
2222	struct file *f, **unref;
2223	struct unpcb *unp;
2224	int i, total;
2225
2226	unp_taskcount++;
2227	UNP_LIST_LOCK();
2228	/*
2229	 * First clear all gc flags from previous runs.
2230	 */
2231	for (head = heads; *head != NULL; head++)
2232		LIST_FOREACH(unp, *head, unp_link)
2233			unp->unp_gcflag = 0;
2234
2235	/*
2236	 * Scan marking all reachable sockets with UNPGC_REF.  Once a socket
2237	 * is reachable all of the sockets it references are reachable.
2238	 * Stop the scan once we do a complete loop without discovering
2239	 * a new reachable socket.
2240	 */
2241	do {
2242		unp_unreachable = 0;
2243		unp_marked = 0;
2244		for (head = heads; *head != NULL; head++)
2245			LIST_FOREACH(unp, *head, unp_link)
2246				unp_gc_process(unp);
2247	} while (unp_marked);
2248	UNP_LIST_UNLOCK();
2249	if (unp_unreachable == 0)
2250		return;
2251
2252	/*
2253	 * Allocate space for a local list of dead unpcbs.
2254	 */
2255	unref = malloc(unp_unreachable * sizeof(struct file *),
2256	    M_TEMP, M_WAITOK);
2257
2258	/*
2259	 * Iterate looking for sockets which have been specifically marked
2260	 * as as unreachable and store them locally.
2261	 */
2262	UNP_LINK_RLOCK();
2263	UNP_LIST_LOCK();
2264	for (total = 0, head = heads; *head != NULL; head++)
2265		LIST_FOREACH(unp, *head, unp_link)
2266			if ((unp->unp_gcflag & UNPGC_DEAD) != 0) {
2267				f = unp->unp_file;
2268				if (unp->unp_msgcount == 0 || f == NULL ||
2269				    f->f_count != unp->unp_msgcount)
2270					continue;
2271				unref[total++] = f;
2272				fhold(f);
2273				KASSERT(total <= unp_unreachable,
2274				    ("unp_gc: incorrect unreachable count."));
2275			}
2276	UNP_LIST_UNLOCK();
2277	UNP_LINK_RUNLOCK();
2278
2279	/*
2280	 * Now flush all sockets, free'ing rights.  This will free the
2281	 * struct files associated with these sockets but leave each socket
2282	 * with one remaining ref.
2283	 */
2284	for (i = 0; i < total; i++) {
2285		struct socket *so;
2286
2287		so = unref[i]->f_data;
2288		CURVNET_SET(so->so_vnet);
2289		sorflush(so);
2290		CURVNET_RESTORE();
2291	}
2292
2293	/*
2294	 * And finally release the sockets so they can be reclaimed.
2295	 */
2296	for (i = 0; i < total; i++)
2297		fdrop(unref[i], NULL);
2298	unp_recycled += total;
2299	free(unref, M_TEMP);
2300}
2301
2302static void
2303unp_dispose(struct mbuf *m)
2304{
2305
2306	if (m)
2307		unp_scan(m, unp_freerights);
2308}
2309
2310static void
2311unp_scan(struct mbuf *m0, void (*op)(struct filedescent **, int))
2312{
2313	struct mbuf *m;
2314	struct cmsghdr *cm;
2315	void *data;
2316	socklen_t clen, datalen;
2317
2318	while (m0 != NULL) {
2319		for (m = m0; m; m = m->m_next) {
2320			if (m->m_type != MT_CONTROL)
2321				continue;
2322
2323			cm = mtod(m, struct cmsghdr *);
2324			clen = m->m_len;
2325
2326			while (cm != NULL) {
2327				if (sizeof(*cm) > clen || cm->cmsg_len > clen)
2328					break;
2329
2330				data = CMSG_DATA(cm);
2331				datalen = (caddr_t)cm + cm->cmsg_len
2332				    - (caddr_t)data;
2333
2334				if (cm->cmsg_level == SOL_SOCKET &&
2335				    cm->cmsg_type == SCM_RIGHTS) {
2336					(*op)(data, datalen /
2337					    sizeof(struct filedescent *));
2338				}
2339
2340				if (CMSG_SPACE(datalen) < clen) {
2341					clen -= CMSG_SPACE(datalen);
2342					cm = (struct cmsghdr *)
2343					    ((caddr_t)cm + CMSG_SPACE(datalen));
2344				} else {
2345					clen = 0;
2346					cm = NULL;
2347				}
2348			}
2349		}
2350		m0 = m0->m_nextpkt;
2351	}
2352}
2353
2354/*
2355 * A helper function called by VFS before socket-type vnode reclamation.
2356 * For an active vnode it clears unp_vnode pointer and decrements unp_vnode
2357 * use count.
2358 */
2359void
2360vfs_unp_reclaim(struct vnode *vp)
2361{
2362	struct socket *so;
2363	struct unpcb *unp;
2364	int active;
2365
2366	ASSERT_VOP_ELOCKED(vp, "vfs_unp_reclaim");
2367	KASSERT(vp->v_type == VSOCK,
2368	    ("vfs_unp_reclaim: vp->v_type != VSOCK"));
2369
2370	active = 0;
2371	UNP_LINK_WLOCK();
2372	VOP_UNP_CONNECT(vp, &so);
2373	if (so == NULL)
2374		goto done;
2375	unp = sotounpcb(so);
2376	if (unp == NULL)
2377		goto done;
2378	UNP_PCB_LOCK(unp);
2379	if (unp->unp_vnode == vp) {
2380		VOP_UNP_DETACH(vp);
2381		unp->unp_vnode = NULL;
2382		active = 1;
2383	}
2384	UNP_PCB_UNLOCK(unp);
2385done:
2386	UNP_LINK_WUNLOCK();
2387	if (active)
2388		vunref(vp);
2389}
2390
2391#ifdef DDB
2392static void
2393db_print_indent(int indent)
2394{
2395	int i;
2396
2397	for (i = 0; i < indent; i++)
2398		db_printf(" ");
2399}
2400
2401static void
2402db_print_unpflags(int unp_flags)
2403{
2404	int comma;
2405
2406	comma = 0;
2407	if (unp_flags & UNP_HAVEPC) {
2408		db_printf("%sUNP_HAVEPC", comma ? ", " : "");
2409		comma = 1;
2410	}
2411	if (unp_flags & UNP_HAVEPCCACHED) {
2412		db_printf("%sUNP_HAVEPCCACHED", comma ? ", " : "");
2413		comma = 1;
2414	}
2415	if (unp_flags & UNP_WANTCRED) {
2416		db_printf("%sUNP_WANTCRED", comma ? ", " : "");
2417		comma = 1;
2418	}
2419	if (unp_flags & UNP_CONNWAIT) {
2420		db_printf("%sUNP_CONNWAIT", comma ? ", " : "");
2421		comma = 1;
2422	}
2423	if (unp_flags & UNP_CONNECTING) {
2424		db_printf("%sUNP_CONNECTING", comma ? ", " : "");
2425		comma = 1;
2426	}
2427	if (unp_flags & UNP_BINDING) {
2428		db_printf("%sUNP_BINDING", comma ? ", " : "");
2429		comma = 1;
2430	}
2431}
2432
2433static void
2434db_print_xucred(int indent, struct xucred *xu)
2435{
2436	int comma, i;
2437
2438	db_print_indent(indent);
2439	db_printf("cr_version: %u   cr_uid: %u   cr_ngroups: %d\n",
2440	    xu->cr_version, xu->cr_uid, xu->cr_ngroups);
2441	db_print_indent(indent);
2442	db_printf("cr_groups: ");
2443	comma = 0;
2444	for (i = 0; i < xu->cr_ngroups; i++) {
2445		db_printf("%s%u", comma ? ", " : "", xu->cr_groups[i]);
2446		comma = 1;
2447	}
2448	db_printf("\n");
2449}
2450
2451static void
2452db_print_unprefs(int indent, struct unp_head *uh)
2453{
2454	struct unpcb *unp;
2455	int counter;
2456
2457	counter = 0;
2458	LIST_FOREACH(unp, uh, unp_reflink) {
2459		if (counter % 4 == 0)
2460			db_print_indent(indent);
2461		db_printf("%p  ", unp);
2462		if (counter % 4 == 3)
2463			db_printf("\n");
2464		counter++;
2465	}
2466	if (counter != 0 && counter % 4 != 0)
2467		db_printf("\n");
2468}
2469
2470DB_SHOW_COMMAND(unpcb, db_show_unpcb)
2471{
2472	struct unpcb *unp;
2473
2474        if (!have_addr) {
2475                db_printf("usage: show unpcb <addr>\n");
2476                return;
2477        }
2478        unp = (struct unpcb *)addr;
2479
2480	db_printf("unp_socket: %p   unp_vnode: %p\n", unp->unp_socket,
2481	    unp->unp_vnode);
2482
2483	db_printf("unp_ino: %ju   unp_conn: %p\n", (uintmax_t)unp->unp_ino,
2484	    unp->unp_conn);
2485
2486	db_printf("unp_refs:\n");
2487	db_print_unprefs(2, &unp->unp_refs);
2488
2489	/* XXXRW: Would be nice to print the full address, if any. */
2490	db_printf("unp_addr: %p\n", unp->unp_addr);
2491
2492	db_printf("unp_gencnt: %llu\n",
2493	    (unsigned long long)unp->unp_gencnt);
2494
2495	db_printf("unp_flags: %x (", unp->unp_flags);
2496	db_print_unpflags(unp->unp_flags);
2497	db_printf(")\n");
2498
2499	db_printf("unp_peercred:\n");
2500	db_print_xucred(2, &unp->unp_peercred);
2501
2502	db_printf("unp_refcount: %u\n", unp->unp_refcount);
2503}
2504#endif
2505