uipc_sockbuf.c revision 263820
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/uipc_sockbuf.c 263820 2014-03-27 16:47:35Z asomers $");
34
35#include "opt_param.h"
36
37#include <sys/param.h>
38#include <sys/aio.h> /* for aio_swake proto */
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/mbuf.h>
42#include <sys/mutex.h>
43#include <sys/proc.h>
44#include <sys/protosw.h>
45#include <sys/resourcevar.h>
46#include <sys/signalvar.h>
47#include <sys/socket.h>
48#include <sys/socketvar.h>
49#include <sys/sx.h>
50#include <sys/sysctl.h>
51
52/*
53 * Function pointer set by the AIO routines so that the socket buffer code
54 * can call back into the AIO module if it is loaded.
55 */
56void	(*aio_swake)(struct socket *, struct sockbuf *);
57
58/*
59 * Primitive routines for operating on socket buffers
60 */
61
62u_long	sb_max = SB_MAX;
63u_long sb_max_adj =
64       (quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
65
66static	u_long sb_efficiency = 8;	/* parameter for sbreserve() */
67
68static struct mbuf	*sbcut_internal(struct sockbuf *sb, int len);
69static void	sbflush_internal(struct sockbuf *sb);
70
71/*
72 * Socantsendmore indicates that no more data will be sent on the socket; it
73 * would normally be applied to a socket when the user informs the system
74 * that no more data is to be sent, by the protocol code (in case
75 * PRU_SHUTDOWN).  Socantrcvmore indicates that no more data will be
76 * received, and will normally be applied to the socket by a protocol when it
77 * detects that the peer will send no more data.  Data queued for reading in
78 * the socket may yet be read.
79 */
80void
81socantsendmore_locked(struct socket *so)
82{
83
84	SOCKBUF_LOCK_ASSERT(&so->so_snd);
85
86	so->so_snd.sb_state |= SBS_CANTSENDMORE;
87	sowwakeup_locked(so);
88	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
89}
90
91void
92socantsendmore(struct socket *so)
93{
94
95	SOCKBUF_LOCK(&so->so_snd);
96	socantsendmore_locked(so);
97	mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
98}
99
100void
101socantrcvmore_locked(struct socket *so)
102{
103
104	SOCKBUF_LOCK_ASSERT(&so->so_rcv);
105
106	so->so_rcv.sb_state |= SBS_CANTRCVMORE;
107	sorwakeup_locked(so);
108	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
109}
110
111void
112socantrcvmore(struct socket *so)
113{
114
115	SOCKBUF_LOCK(&so->so_rcv);
116	socantrcvmore_locked(so);
117	mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
118}
119
120/*
121 * Wait for data to arrive at/drain from a socket buffer.
122 */
123int
124sbwait(struct sockbuf *sb)
125{
126
127	SOCKBUF_LOCK_ASSERT(sb);
128
129	sb->sb_flags |= SB_WAIT;
130	return (msleep_sbt(&sb->sb_cc, &sb->sb_mtx,
131	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
132	    sb->sb_timeo, 0, 0));
133}
134
135int
136sblock(struct sockbuf *sb, int flags)
137{
138
139	KASSERT((flags & SBL_VALID) == flags,
140	    ("sblock: flags invalid (0x%x)", flags));
141
142	if (flags & SBL_WAIT) {
143		if ((sb->sb_flags & SB_NOINTR) ||
144		    (flags & SBL_NOINTR)) {
145			sx_xlock(&sb->sb_sx);
146			return (0);
147		}
148		return (sx_xlock_sig(&sb->sb_sx));
149	} else {
150		if (sx_try_xlock(&sb->sb_sx) == 0)
151			return (EWOULDBLOCK);
152		return (0);
153	}
154}
155
156void
157sbunlock(struct sockbuf *sb)
158{
159
160	sx_xunlock(&sb->sb_sx);
161}
162
163/*
164 * Wakeup processes waiting on a socket buffer.  Do asynchronous notification
165 * via SIGIO if the socket has the SS_ASYNC flag set.
166 *
167 * Called with the socket buffer lock held; will release the lock by the end
168 * of the function.  This allows the caller to acquire the socket buffer lock
169 * while testing for the need for various sorts of wakeup and hold it through
170 * to the point where it's no longer required.  We currently hold the lock
171 * through calls out to other subsystems (with the exception of kqueue), and
172 * then release it to avoid lock order issues.  It's not clear that's
173 * correct.
174 */
175void
176sowakeup(struct socket *so, struct sockbuf *sb)
177{
178	int ret;
179
180	SOCKBUF_LOCK_ASSERT(sb);
181
182	selwakeuppri(&sb->sb_sel, PSOCK);
183	if (!SEL_WAITING(&sb->sb_sel))
184		sb->sb_flags &= ~SB_SEL;
185	if (sb->sb_flags & SB_WAIT) {
186		sb->sb_flags &= ~SB_WAIT;
187		wakeup(&sb->sb_cc);
188	}
189	KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
190	if (sb->sb_upcall != NULL) {
191		ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
192		if (ret == SU_ISCONNECTED) {
193			KASSERT(sb == &so->so_rcv,
194			    ("SO_SND upcall returned SU_ISCONNECTED"));
195			soupcall_clear(so, SO_RCV);
196		}
197	} else
198		ret = SU_OK;
199	if (sb->sb_flags & SB_AIO)
200		aio_swake(so, sb);
201	SOCKBUF_UNLOCK(sb);
202	if (ret == SU_ISCONNECTED)
203		soisconnected(so);
204	if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
205		pgsigio(&so->so_sigio, SIGIO, 0);
206	mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
207}
208
209/*
210 * Socket buffer (struct sockbuf) utility routines.
211 *
212 * Each socket contains two socket buffers: one for sending data and one for
213 * receiving data.  Each buffer contains a queue of mbufs, information about
214 * the number of mbufs and amount of data in the queue, and other fields
215 * allowing select() statements and notification on data availability to be
216 * implemented.
217 *
218 * Data stored in a socket buffer is maintained as a list of records.  Each
219 * record is a list of mbufs chained together with the m_next field.  Records
220 * are chained together with the m_nextpkt field. The upper level routine
221 * soreceive() expects the following conventions to be observed when placing
222 * information in the receive buffer:
223 *
224 * 1. If the protocol requires each message be preceded by the sender's name,
225 *    then a record containing that name must be present before any
226 *    associated data (mbuf's must be of type MT_SONAME).
227 * 2. If the protocol supports the exchange of ``access rights'' (really just
228 *    additional data associated with the message), and there are ``rights''
229 *    to be received, then a record containing this data should be present
230 *    (mbuf's must be of type MT_RIGHTS).
231 * 3. If a name or rights record exists, then it must be followed by a data
232 *    record, perhaps of zero length.
233 *
234 * Before using a new socket structure it is first necessary to reserve
235 * buffer space to the socket, by calling sbreserve().  This should commit
236 * some of the available buffer space in the system buffer pool for the
237 * socket (currently, it does nothing but enforce limits).  The space should
238 * be released by calling sbrelease() when the socket is destroyed.
239 */
240int
241soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
242{
243	struct thread *td = curthread;
244
245	SOCKBUF_LOCK(&so->so_snd);
246	SOCKBUF_LOCK(&so->so_rcv);
247	if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
248		goto bad;
249	if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
250		goto bad2;
251	if (so->so_rcv.sb_lowat == 0)
252		so->so_rcv.sb_lowat = 1;
253	if (so->so_snd.sb_lowat == 0)
254		so->so_snd.sb_lowat = MCLBYTES;
255	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
256		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
257	SOCKBUF_UNLOCK(&so->so_rcv);
258	SOCKBUF_UNLOCK(&so->so_snd);
259	return (0);
260bad2:
261	sbrelease_locked(&so->so_snd, so);
262bad:
263	SOCKBUF_UNLOCK(&so->so_rcv);
264	SOCKBUF_UNLOCK(&so->so_snd);
265	return (ENOBUFS);
266}
267
268static int
269sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
270{
271	int error = 0;
272	u_long tmp_sb_max = sb_max;
273
274	error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
275	if (error || !req->newptr)
276		return (error);
277	if (tmp_sb_max < MSIZE + MCLBYTES)
278		return (EINVAL);
279	sb_max = tmp_sb_max;
280	sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
281	return (0);
282}
283
284/*
285 * Allot mbufs to a sockbuf.  Attempt to scale mbmax so that mbcnt doesn't
286 * become limiting if buffering efficiency is near the normal case.
287 */
288int
289sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
290    struct thread *td)
291{
292	rlim_t sbsize_limit;
293
294	SOCKBUF_LOCK_ASSERT(sb);
295
296	/*
297	 * When a thread is passed, we take into account the thread's socket
298	 * buffer size limit.  The caller will generally pass curthread, but
299	 * in the TCP input path, NULL will be passed to indicate that no
300	 * appropriate thread resource limits are available.  In that case,
301	 * we don't apply a process limit.
302	 */
303	if (cc > sb_max_adj)
304		return (0);
305	if (td != NULL) {
306		PROC_LOCK(td->td_proc);
307		sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
308		PROC_UNLOCK(td->td_proc);
309	} else
310		sbsize_limit = RLIM_INFINITY;
311	if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
312	    sbsize_limit))
313		return (0);
314	sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
315	if (sb->sb_lowat > sb->sb_hiwat)
316		sb->sb_lowat = sb->sb_hiwat;
317	return (1);
318}
319
320int
321sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
322    struct thread *td)
323{
324	int error;
325
326	SOCKBUF_LOCK(sb);
327	error = sbreserve_locked(sb, cc, so, td);
328	SOCKBUF_UNLOCK(sb);
329	return (error);
330}
331
332/*
333 * Free mbufs held by a socket, and reserved mbuf space.
334 */
335void
336sbrelease_internal(struct sockbuf *sb, struct socket *so)
337{
338
339	sbflush_internal(sb);
340	(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
341	    RLIM_INFINITY);
342	sb->sb_mbmax = 0;
343}
344
345void
346sbrelease_locked(struct sockbuf *sb, struct socket *so)
347{
348
349	SOCKBUF_LOCK_ASSERT(sb);
350
351	sbrelease_internal(sb, so);
352}
353
354void
355sbrelease(struct sockbuf *sb, struct socket *so)
356{
357
358	SOCKBUF_LOCK(sb);
359	sbrelease_locked(sb, so);
360	SOCKBUF_UNLOCK(sb);
361}
362
363void
364sbdestroy(struct sockbuf *sb, struct socket *so)
365{
366
367	sbrelease_internal(sb, so);
368}
369
370/*
371 * Routines to add and remove data from an mbuf queue.
372 *
373 * The routines sbappend() or sbappendrecord() are normally called to append
374 * new mbufs to a socket buffer, after checking that adequate space is
375 * available, comparing the function sbspace() with the amount of data to be
376 * added.  sbappendrecord() differs from sbappend() in that data supplied is
377 * treated as the beginning of a new record.  To place a sender's address,
378 * optional access rights, and data in a socket receive buffer,
379 * sbappendaddr() should be used.  To place access rights and data in a
380 * socket receive buffer, sbappendrights() should be used.  In either case,
381 * the new data begins a new record.  Note that unlike sbappend() and
382 * sbappendrecord(), these routines check for the caller that there will be
383 * enough space to store the data.  Each fails if there is not enough space,
384 * or if it cannot find mbufs to store additional information in.
385 *
386 * Reliable protocols may use the socket send buffer to hold data awaiting
387 * acknowledgement.  Data is normally copied from a socket send buffer in a
388 * protocol with m_copy for output to a peer, and then removing the data from
389 * the socket buffer with sbdrop() or sbdroprecord() when the data is
390 * acknowledged by the peer.
391 */
392#ifdef SOCKBUF_DEBUG
393void
394sblastrecordchk(struct sockbuf *sb, const char *file, int line)
395{
396	struct mbuf *m = sb->sb_mb;
397
398	SOCKBUF_LOCK_ASSERT(sb);
399
400	while (m && m->m_nextpkt)
401		m = m->m_nextpkt;
402
403	if (m != sb->sb_lastrecord) {
404		printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
405			__func__, sb->sb_mb, sb->sb_lastrecord, m);
406		printf("packet chain:\n");
407		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
408			printf("\t%p\n", m);
409		panic("%s from %s:%u", __func__, file, line);
410	}
411}
412
413void
414sblastmbufchk(struct sockbuf *sb, const char *file, int line)
415{
416	struct mbuf *m = sb->sb_mb;
417	struct mbuf *n;
418
419	SOCKBUF_LOCK_ASSERT(sb);
420
421	while (m && m->m_nextpkt)
422		m = m->m_nextpkt;
423
424	while (m && m->m_next)
425		m = m->m_next;
426
427	if (m != sb->sb_mbtail) {
428		printf("%s: sb_mb %p sb_mbtail %p last %p\n",
429			__func__, sb->sb_mb, sb->sb_mbtail, m);
430		printf("packet tree:\n");
431		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
432			printf("\t");
433			for (n = m; n != NULL; n = n->m_next)
434				printf("%p ", n);
435			printf("\n");
436		}
437		panic("%s from %s:%u", __func__, file, line);
438	}
439}
440#endif /* SOCKBUF_DEBUG */
441
442#define SBLINKRECORD(sb, m0) do {					\
443	SOCKBUF_LOCK_ASSERT(sb);					\
444	if ((sb)->sb_lastrecord != NULL)				\
445		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
446	else								\
447		(sb)->sb_mb = (m0);					\
448	(sb)->sb_lastrecord = (m0);					\
449} while (/*CONSTCOND*/0)
450
451/*
452 * Append mbuf chain m to the last record in the socket buffer sb.  The
453 * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
454 * are discarded and mbufs are compacted where possible.
455 */
456void
457sbappend_locked(struct sockbuf *sb, struct mbuf *m)
458{
459	struct mbuf *n;
460
461	SOCKBUF_LOCK_ASSERT(sb);
462
463	if (m == 0)
464		return;
465
466	SBLASTRECORDCHK(sb);
467	n = sb->sb_mb;
468	if (n) {
469		while (n->m_nextpkt)
470			n = n->m_nextpkt;
471		do {
472			if (n->m_flags & M_EOR) {
473				sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
474				return;
475			}
476		} while (n->m_next && (n = n->m_next));
477	} else {
478		/*
479		 * XXX Would like to simply use sb_mbtail here, but
480		 * XXX I need to verify that I won't miss an EOR that
481		 * XXX way.
482		 */
483		if ((n = sb->sb_lastrecord) != NULL) {
484			do {
485				if (n->m_flags & M_EOR) {
486					sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
487					return;
488				}
489			} while (n->m_next && (n = n->m_next));
490		} else {
491			/*
492			 * If this is the first record in the socket buffer,
493			 * it's also the last record.
494			 */
495			sb->sb_lastrecord = m;
496		}
497	}
498	sbcompress(sb, m, n);
499	SBLASTRECORDCHK(sb);
500}
501
502/*
503 * Append mbuf chain m to the last record in the socket buffer sb.  The
504 * additional space associated the mbuf chain is recorded in sb.  Empty mbufs
505 * are discarded and mbufs are compacted where possible.
506 */
507void
508sbappend(struct sockbuf *sb, struct mbuf *m)
509{
510
511	SOCKBUF_LOCK(sb);
512	sbappend_locked(sb, m);
513	SOCKBUF_UNLOCK(sb);
514}
515
516/*
517 * This version of sbappend() should only be used when the caller absolutely
518 * knows that there will never be more than one record in the socket buffer,
519 * that is, a stream protocol (such as TCP).
520 */
521void
522sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
523{
524	SOCKBUF_LOCK_ASSERT(sb);
525
526	KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
527	KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
528
529	SBLASTMBUFCHK(sb);
530
531	/* Remove all packet headers and mbuf tags to get a pure data chain. */
532	m_demote(m, 1);
533
534	sbcompress(sb, m, sb->sb_mbtail);
535
536	sb->sb_lastrecord = sb->sb_mb;
537	SBLASTRECORDCHK(sb);
538}
539
540/*
541 * This version of sbappend() should only be used when the caller absolutely
542 * knows that there will never be more than one record in the socket buffer,
543 * that is, a stream protocol (such as TCP).
544 */
545void
546sbappendstream(struct sockbuf *sb, struct mbuf *m)
547{
548
549	SOCKBUF_LOCK(sb);
550	sbappendstream_locked(sb, m);
551	SOCKBUF_UNLOCK(sb);
552}
553
554#ifdef SOCKBUF_DEBUG
555void
556sbcheck(struct sockbuf *sb)
557{
558	struct mbuf *m;
559	struct mbuf *n = 0;
560	u_long len = 0, mbcnt = 0;
561
562	SOCKBUF_LOCK_ASSERT(sb);
563
564	for (m = sb->sb_mb; m; m = n) {
565	    n = m->m_nextpkt;
566	    for (; m; m = m->m_next) {
567		len += m->m_len;
568		mbcnt += MSIZE;
569		if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
570			mbcnt += m->m_ext.ext_size;
571	    }
572	}
573	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
574		printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
575		    mbcnt, sb->sb_mbcnt);
576		panic("sbcheck");
577	}
578}
579#endif
580
581/*
582 * As above, except the mbuf chain begins a new record.
583 */
584void
585sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
586{
587	struct mbuf *m;
588
589	SOCKBUF_LOCK_ASSERT(sb);
590
591	if (m0 == 0)
592		return;
593	/*
594	 * Put the first mbuf on the queue.  Note this permits zero length
595	 * records.
596	 */
597	sballoc(sb, m0);
598	SBLASTRECORDCHK(sb);
599	SBLINKRECORD(sb, m0);
600	sb->sb_mbtail = m0;
601	m = m0->m_next;
602	m0->m_next = 0;
603	if (m && (m0->m_flags & M_EOR)) {
604		m0->m_flags &= ~M_EOR;
605		m->m_flags |= M_EOR;
606	}
607	/* always call sbcompress() so it can do SBLASTMBUFCHK() */
608	sbcompress(sb, m, m0);
609}
610
611/*
612 * As above, except the mbuf chain begins a new record.
613 */
614void
615sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
616{
617
618	SOCKBUF_LOCK(sb);
619	sbappendrecord_locked(sb, m0);
620	SOCKBUF_UNLOCK(sb);
621}
622
623/* Helper routine that appends data, control, and address to a sockbuf. */
624static int
625sbappendaddr_locked_internal(struct sockbuf *sb, const struct sockaddr *asa,
626    struct mbuf *m0, struct mbuf *control, struct mbuf *ctrl_last)
627{
628	struct mbuf *m, *n, *nlast;
629#if MSIZE <= 256
630	if (asa->sa_len > MLEN)
631		return (0);
632#endif
633	m = m_get(M_NOWAIT, MT_SONAME);
634	if (m == NULL)
635		return (0);
636	m->m_len = asa->sa_len;
637	bcopy(asa, mtod(m, caddr_t), asa->sa_len);
638	if (ctrl_last)
639		ctrl_last->m_next = m0;	/* concatenate data to control */
640	else
641		control = m0;
642	m->m_next = control;
643	for (n = m; n->m_next != NULL; n = n->m_next)
644		sballoc(sb, n);
645	sballoc(sb, n);
646	nlast = n;
647	SBLINKRECORD(sb, m);
648
649	sb->sb_mbtail = nlast;
650	SBLASTMBUFCHK(sb);
651
652	SBLASTRECORDCHK(sb);
653	return (1);
654}
655
656/*
657 * Append address and data, and optionally, control (ancillary) data to the
658 * receive queue of a socket.  If present, m0 must include a packet header
659 * with total length.  Returns 0 if no space in sockbuf or insufficient
660 * mbufs.
661 */
662int
663sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
664    struct mbuf *m0, struct mbuf *control)
665{
666	struct mbuf *ctrl_last;
667	int space = asa->sa_len;
668
669	SOCKBUF_LOCK_ASSERT(sb);
670
671	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
672		panic("sbappendaddr_locked");
673	if (m0)
674		space += m0->m_pkthdr.len;
675	space += m_length(control, &ctrl_last);
676
677	if (space > sbspace(sb))
678		return (0);
679	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
680}
681
682/*
683 * Append address and data, and optionally, control (ancillary) data to the
684 * receive queue of a socket.  If present, m0 must include a packet header
685 * with total length.  Returns 0 if insufficient mbufs.  Does not validate space
686 * on the receiving sockbuf.
687 */
688int
689sbappendaddr_nospacecheck_locked(struct sockbuf *sb, const struct sockaddr *asa,
690    struct mbuf *m0, struct mbuf *control)
691{
692	struct mbuf *ctrl_last;
693
694	SOCKBUF_LOCK_ASSERT(sb);
695
696	ctrl_last = (control == NULL) ? NULL : m_last(control);
697	return (sbappendaddr_locked_internal(sb, asa, m0, control, ctrl_last));
698}
699
700/*
701 * Append address and data, and optionally, control (ancillary) data to the
702 * receive queue of a socket.  If present, m0 must include a packet header
703 * with total length.  Returns 0 if no space in sockbuf or insufficient
704 * mbufs.
705 */
706int
707sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
708    struct mbuf *m0, struct mbuf *control)
709{
710	int retval;
711
712	SOCKBUF_LOCK(sb);
713	retval = sbappendaddr_locked(sb, asa, m0, control);
714	SOCKBUF_UNLOCK(sb);
715	return (retval);
716}
717
718int
719sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
720    struct mbuf *control)
721{
722	struct mbuf *m, *n, *mlast;
723	int space;
724
725	SOCKBUF_LOCK_ASSERT(sb);
726
727	if (control == 0)
728		panic("sbappendcontrol_locked");
729	space = m_length(control, &n) + m_length(m0, NULL);
730
731	if (space > sbspace(sb))
732		return (0);
733	n->m_next = m0;			/* concatenate data to control */
734
735	SBLASTRECORDCHK(sb);
736
737	for (m = control; m->m_next; m = m->m_next)
738		sballoc(sb, m);
739	sballoc(sb, m);
740	mlast = m;
741	SBLINKRECORD(sb, control);
742
743	sb->sb_mbtail = mlast;
744	SBLASTMBUFCHK(sb);
745
746	SBLASTRECORDCHK(sb);
747	return (1);
748}
749
750int
751sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
752{
753	int retval;
754
755	SOCKBUF_LOCK(sb);
756	retval = sbappendcontrol_locked(sb, m0, control);
757	SOCKBUF_UNLOCK(sb);
758	return (retval);
759}
760
761/*
762 * Append the data in mbuf chain (m) into the socket buffer sb following mbuf
763 * (n).  If (n) is NULL, the buffer is presumed empty.
764 *
765 * When the data is compressed, mbufs in the chain may be handled in one of
766 * three ways:
767 *
768 * (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
769 *     record boundary, and no change in data type).
770 *
771 * (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
772 *     an mbuf already in the socket buffer.  This can occur if an
773 *     appropriate mbuf exists, there is room, and no merging of data types
774 *     will occur.
775 *
776 * (3) The mbuf may be appended to the end of the existing mbuf chain.
777 *
778 * If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
779 * end-of-record.
780 */
781void
782sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
783{
784	int eor = 0;
785	struct mbuf *o;
786
787	SOCKBUF_LOCK_ASSERT(sb);
788
789	while (m) {
790		eor |= m->m_flags & M_EOR;
791		if (m->m_len == 0 &&
792		    (eor == 0 ||
793		     (((o = m->m_next) || (o = n)) &&
794		      o->m_type == m->m_type))) {
795			if (sb->sb_lastrecord == m)
796				sb->sb_lastrecord = m->m_next;
797			m = m_free(m);
798			continue;
799		}
800		if (n && (n->m_flags & M_EOR) == 0 &&
801		    M_WRITABLE(n) &&
802		    ((sb->sb_flags & SB_NOCOALESCE) == 0) &&
803		    m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
804		    m->m_len <= M_TRAILINGSPACE(n) &&
805		    n->m_type == m->m_type) {
806			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
807			    (unsigned)m->m_len);
808			n->m_len += m->m_len;
809			sb->sb_cc += m->m_len;
810			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
811				/* XXX: Probably don't need.*/
812				sb->sb_ctl += m->m_len;
813			m = m_free(m);
814			continue;
815		}
816		if (n)
817			n->m_next = m;
818		else
819			sb->sb_mb = m;
820		sb->sb_mbtail = m;
821		sballoc(sb, m);
822		n = m;
823		m->m_flags &= ~M_EOR;
824		m = m->m_next;
825		n->m_next = 0;
826	}
827	if (eor) {
828		KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
829		n->m_flags |= eor;
830	}
831	SBLASTMBUFCHK(sb);
832}
833
834/*
835 * Free all mbufs in a sockbuf.  Check that all resources are reclaimed.
836 */
837static void
838sbflush_internal(struct sockbuf *sb)
839{
840
841	while (sb->sb_mbcnt) {
842		/*
843		 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
844		 * we would loop forever. Panic instead.
845		 */
846		if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
847			break;
848		m_freem(sbcut_internal(sb, (int)sb->sb_cc));
849	}
850	if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
851		panic("sbflush_internal: cc %u || mb %p || mbcnt %u",
852		    sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
853}
854
855void
856sbflush_locked(struct sockbuf *sb)
857{
858
859	SOCKBUF_LOCK_ASSERT(sb);
860	sbflush_internal(sb);
861}
862
863void
864sbflush(struct sockbuf *sb)
865{
866
867	SOCKBUF_LOCK(sb);
868	sbflush_locked(sb);
869	SOCKBUF_UNLOCK(sb);
870}
871
872/*
873 * Cut data from (the front of) a sockbuf.
874 */
875static struct mbuf *
876sbcut_internal(struct sockbuf *sb, int len)
877{
878	struct mbuf *m, *n, *next, *mfree;
879
880	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
881	mfree = NULL;
882
883	while (len > 0) {
884		if (m == 0) {
885			if (next == 0)
886				panic("sbdrop");
887			m = next;
888			next = m->m_nextpkt;
889			continue;
890		}
891		if (m->m_len > len) {
892			m->m_len -= len;
893			m->m_data += len;
894			sb->sb_cc -= len;
895			if (sb->sb_sndptroff != 0)
896				sb->sb_sndptroff -= len;
897			if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
898				sb->sb_ctl -= len;
899			break;
900		}
901		len -= m->m_len;
902		sbfree(sb, m);
903		n = m->m_next;
904		m->m_next = mfree;
905		mfree = m;
906		m = n;
907	}
908	while (m && m->m_len == 0) {
909		sbfree(sb, m);
910		n = m->m_next;
911		m->m_next = mfree;
912		mfree = m;
913		m = n;
914	}
915	if (m) {
916		sb->sb_mb = m;
917		m->m_nextpkt = next;
918	} else
919		sb->sb_mb = next;
920	/*
921	 * First part is an inline SB_EMPTY_FIXUP().  Second part makes sure
922	 * sb_lastrecord is up-to-date if we dropped part of the last record.
923	 */
924	m = sb->sb_mb;
925	if (m == NULL) {
926		sb->sb_mbtail = NULL;
927		sb->sb_lastrecord = NULL;
928	} else if (m->m_nextpkt == NULL) {
929		sb->sb_lastrecord = m;
930	}
931
932	return (mfree);
933}
934
935/*
936 * Drop data from (the front of) a sockbuf.
937 */
938void
939sbdrop_locked(struct sockbuf *sb, int len)
940{
941
942	SOCKBUF_LOCK_ASSERT(sb);
943	m_freem(sbcut_internal(sb, len));
944}
945
946/*
947 * Drop data from (the front of) a sockbuf,
948 * and return it to caller.
949 */
950struct mbuf *
951sbcut_locked(struct sockbuf *sb, int len)
952{
953
954	SOCKBUF_LOCK_ASSERT(sb);
955	return (sbcut_internal(sb, len));
956}
957
958void
959sbdrop(struct sockbuf *sb, int len)
960{
961	struct mbuf *mfree;
962
963	SOCKBUF_LOCK(sb);
964	mfree = sbcut_internal(sb, len);
965	SOCKBUF_UNLOCK(sb);
966
967	m_freem(mfree);
968}
969
970/*
971 * Maintain a pointer and offset pair into the socket buffer mbuf chain to
972 * avoid traversal of the entire socket buffer for larger offsets.
973 */
974struct mbuf *
975sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
976{
977	struct mbuf *m, *ret;
978
979	KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
980	KASSERT(off + len <= sb->sb_cc, ("%s: beyond sb", __func__));
981	KASSERT(sb->sb_sndptroff <= sb->sb_cc, ("%s: sndptroff broken", __func__));
982
983	/*
984	 * Is off below stored offset? Happens on retransmits.
985	 * Just return, we can't help here.
986	 */
987	if (sb->sb_sndptroff > off) {
988		*moff = off;
989		return (sb->sb_mb);
990	}
991
992	/* Return closest mbuf in chain for current offset. */
993	*moff = off - sb->sb_sndptroff;
994	m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
995	if (*moff == m->m_len) {
996		*moff = 0;
997		sb->sb_sndptroff += m->m_len;
998		m = ret = m->m_next;
999		KASSERT(ret->m_len > 0,
1000		    ("mbuf %p in sockbuf %p chain has no valid data", ret, sb));
1001	}
1002
1003	/* Advance by len to be as close as possible for the next transmit. */
1004	for (off = off - sb->sb_sndptroff + len - 1;
1005	     off > 0 && m != NULL && off >= m->m_len;
1006	     m = m->m_next) {
1007		sb->sb_sndptroff += m->m_len;
1008		off -= m->m_len;
1009	}
1010	if (off > 0 && m == NULL)
1011		panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
1012	sb->sb_sndptr = m;
1013
1014	return (ret);
1015}
1016
1017/*
1018 * Drop a record off the front of a sockbuf and move the next record to the
1019 * front.
1020 */
1021void
1022sbdroprecord_locked(struct sockbuf *sb)
1023{
1024	struct mbuf *m;
1025
1026	SOCKBUF_LOCK_ASSERT(sb);
1027
1028	m = sb->sb_mb;
1029	if (m) {
1030		sb->sb_mb = m->m_nextpkt;
1031		do {
1032			sbfree(sb, m);
1033			m = m_free(m);
1034		} while (m);
1035	}
1036	SB_EMPTY_FIXUP(sb);
1037}
1038
1039/*
1040 * Drop a record off the front of a sockbuf and move the next record to the
1041 * front.
1042 */
1043void
1044sbdroprecord(struct sockbuf *sb)
1045{
1046
1047	SOCKBUF_LOCK(sb);
1048	sbdroprecord_locked(sb);
1049	SOCKBUF_UNLOCK(sb);
1050}
1051
1052/*
1053 * Create a "control" mbuf containing the specified data with the specified
1054 * type for presentation on a socket buffer.
1055 */
1056struct mbuf *
1057sbcreatecontrol(caddr_t p, int size, int type, int level)
1058{
1059	struct cmsghdr *cp;
1060	struct mbuf *m;
1061
1062	if (CMSG_SPACE((u_int)size) > MCLBYTES)
1063		return ((struct mbuf *) NULL);
1064	if (CMSG_SPACE((u_int)size) > MLEN)
1065		m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
1066	else
1067		m = m_get(M_NOWAIT, MT_CONTROL);
1068	if (m == NULL)
1069		return ((struct mbuf *) NULL);
1070	cp = mtod(m, struct cmsghdr *);
1071	m->m_len = 0;
1072	KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
1073	    ("sbcreatecontrol: short mbuf"));
1074	if (p != NULL)
1075		(void)memcpy(CMSG_DATA(cp), p, size);
1076	m->m_len = CMSG_SPACE(size);
1077	cp->cmsg_len = CMSG_LEN(size);
1078	cp->cmsg_level = level;
1079	cp->cmsg_type = type;
1080	return (m);
1081}
1082
1083/*
1084 * This does the same for socket buffers that sotoxsocket does for sockets:
1085 * generate an user-format data structure describing the socket buffer.  Note
1086 * that the xsockbuf structure, since it is always embedded in a socket, does
1087 * not include a self pointer nor a length.  We make this entry point public
1088 * in case some other mechanism needs it.
1089 */
1090void
1091sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1092{
1093
1094	xsb->sb_cc = sb->sb_cc;
1095	xsb->sb_hiwat = sb->sb_hiwat;
1096	xsb->sb_mbcnt = sb->sb_mbcnt;
1097	xsb->sb_mcnt = sb->sb_mcnt;
1098	xsb->sb_ccnt = sb->sb_ccnt;
1099	xsb->sb_mbmax = sb->sb_mbmax;
1100	xsb->sb_lowat = sb->sb_lowat;
1101	xsb->sb_flags = sb->sb_flags;
1102	xsb->sb_timeo = sb->sb_timeo;
1103}
1104
1105/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1106static int dummy;
1107SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1108SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
1109    &sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
1110SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1111    &sb_efficiency, 0, "Socket buffer size waste factor");
1112