sys_generic.c revision 275986
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)sys_generic.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/sys_generic.c 275986 2014-12-21 07:58:28Z dchagin $");
39
40#include "opt_capsicum.h"
41#include "opt_compat.h"
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysproto.h>
47#include <sys/capability.h>
48#include <sys/filedesc.h>
49#include <sys/filio.h>
50#include <sys/fcntl.h>
51#include <sys/file.h>
52#include <sys/lock.h>
53#include <sys/proc.h>
54#include <sys/signalvar.h>
55#include <sys/socketvar.h>
56#include <sys/uio.h>
57#include <sys/kernel.h>
58#include <sys/ktr.h>
59#include <sys/limits.h>
60#include <sys/malloc.h>
61#include <sys/poll.h>
62#include <sys/resourcevar.h>
63#include <sys/selinfo.h>
64#include <sys/sleepqueue.h>
65#include <sys/syscallsubr.h>
66#include <sys/sysctl.h>
67#include <sys/sysent.h>
68#include <sys/vnode.h>
69#include <sys/bio.h>
70#include <sys/buf.h>
71#include <sys/condvar.h>
72#ifdef KTRACE
73#include <sys/ktrace.h>
74#endif
75
76#include <security/audit/audit.h>
77
78/*
79 * The following macro defines how many bytes will be allocated from
80 * the stack instead of memory allocated when passing the IOCTL data
81 * structures from userspace and to the kernel. Some IOCTLs having
82 * small data structures are used very frequently and this small
83 * buffer on the stack gives a significant speedup improvement for
84 * those requests. The value of this define should be greater or equal
85 * to 64 bytes and should also be power of two. The data structure is
86 * currently hard-aligned to a 8-byte boundary on the stack. This
87 * should currently be sufficient for all supported platforms.
88 */
89#define	SYS_IOCTL_SMALL_SIZE	128	/* bytes */
90#define	SYS_IOCTL_SMALL_ALIGN	8	/* bytes */
91
92int iosize_max_clamp = 1;
93SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
94    &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
95int devfs_iosize_max_clamp = 1;
96SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
97    &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
98
99/*
100 * Assert that the return value of read(2) and write(2) syscalls fits
101 * into a register.  If not, an architecture will need to provide the
102 * usermode wrappers to reconstruct the result.
103 */
104CTASSERT(sizeof(register_t) >= sizeof(size_t));
105
106static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
107static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
108MALLOC_DEFINE(M_IOV, "iov", "large iov's");
109
110static int	pollout(struct thread *, struct pollfd *, struct pollfd *,
111		    u_int);
112static int	pollscan(struct thread *, struct pollfd *, u_int);
113static int	pollrescan(struct thread *);
114static int	selscan(struct thread *, fd_mask **, fd_mask **, int);
115static int	selrescan(struct thread *, fd_mask **, fd_mask **);
116static void	selfdalloc(struct thread *, void *);
117static void	selfdfree(struct seltd *, struct selfd *);
118static int	dofileread(struct thread *, int, struct file *, struct uio *,
119		    off_t, int);
120static int	dofilewrite(struct thread *, int, struct file *, struct uio *,
121		    off_t, int);
122static void	doselwakeup(struct selinfo *, int);
123static void	seltdinit(struct thread *);
124static int	seltdwait(struct thread *, sbintime_t, sbintime_t);
125static void	seltdclear(struct thread *);
126
127/*
128 * One seltd per-thread allocated on demand as needed.
129 *
130 *	t - protected by st_mtx
131 * 	k - Only accessed by curthread or read-only
132 */
133struct seltd {
134	STAILQ_HEAD(, selfd)	st_selq;	/* (k) List of selfds. */
135	struct selfd		*st_free1;	/* (k) free fd for read set. */
136	struct selfd		*st_free2;	/* (k) free fd for write set. */
137	struct mtx		st_mtx;		/* Protects struct seltd */
138	struct cv		st_wait;	/* (t) Wait channel. */
139	int			st_flags;	/* (t) SELTD_ flags. */
140};
141
142#define	SELTD_PENDING	0x0001			/* We have pending events. */
143#define	SELTD_RESCAN	0x0002			/* Doing a rescan. */
144
145/*
146 * One selfd allocated per-thread per-file-descriptor.
147 *	f - protected by sf_mtx
148 */
149struct selfd {
150	STAILQ_ENTRY(selfd)	sf_link;	/* (k) fds owned by this td. */
151	TAILQ_ENTRY(selfd)	sf_threads;	/* (f) fds on this selinfo. */
152	struct selinfo		*sf_si;		/* (f) selinfo when linked. */
153	struct mtx		*sf_mtx;	/* Pointer to selinfo mtx. */
154	struct seltd		*sf_td;		/* (k) owning seltd. */
155	void			*sf_cookie;	/* (k) fd or pollfd. */
156};
157
158static uma_zone_t selfd_zone;
159static struct mtx_pool *mtxpool_select;
160
161#ifndef _SYS_SYSPROTO_H_
162struct read_args {
163	int	fd;
164	void	*buf;
165	size_t	nbyte;
166};
167#endif
168int
169sys_read(td, uap)
170	struct thread *td;
171	struct read_args *uap;
172{
173	struct uio auio;
174	struct iovec aiov;
175	int error;
176
177	if (uap->nbyte > IOSIZE_MAX)
178		return (EINVAL);
179	aiov.iov_base = uap->buf;
180	aiov.iov_len = uap->nbyte;
181	auio.uio_iov = &aiov;
182	auio.uio_iovcnt = 1;
183	auio.uio_resid = uap->nbyte;
184	auio.uio_segflg = UIO_USERSPACE;
185	error = kern_readv(td, uap->fd, &auio);
186	return(error);
187}
188
189/*
190 * Positioned read system call
191 */
192#ifndef _SYS_SYSPROTO_H_
193struct pread_args {
194	int	fd;
195	void	*buf;
196	size_t	nbyte;
197	int	pad;
198	off_t	offset;
199};
200#endif
201int
202sys_pread(td, uap)
203	struct thread *td;
204	struct pread_args *uap;
205{
206	struct uio auio;
207	struct iovec aiov;
208	int error;
209
210	if (uap->nbyte > IOSIZE_MAX)
211		return (EINVAL);
212	aiov.iov_base = uap->buf;
213	aiov.iov_len = uap->nbyte;
214	auio.uio_iov = &aiov;
215	auio.uio_iovcnt = 1;
216	auio.uio_resid = uap->nbyte;
217	auio.uio_segflg = UIO_USERSPACE;
218	error = kern_preadv(td, uap->fd, &auio, uap->offset);
219	return(error);
220}
221
222int
223freebsd6_pread(td, uap)
224	struct thread *td;
225	struct freebsd6_pread_args *uap;
226{
227	struct pread_args oargs;
228
229	oargs.fd = uap->fd;
230	oargs.buf = uap->buf;
231	oargs.nbyte = uap->nbyte;
232	oargs.offset = uap->offset;
233	return (sys_pread(td, &oargs));
234}
235
236/*
237 * Scatter read system call.
238 */
239#ifndef _SYS_SYSPROTO_H_
240struct readv_args {
241	int	fd;
242	struct	iovec *iovp;
243	u_int	iovcnt;
244};
245#endif
246int
247sys_readv(struct thread *td, struct readv_args *uap)
248{
249	struct uio *auio;
250	int error;
251
252	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
253	if (error)
254		return (error);
255	error = kern_readv(td, uap->fd, auio);
256	free(auio, M_IOV);
257	return (error);
258}
259
260int
261kern_readv(struct thread *td, int fd, struct uio *auio)
262{
263	struct file *fp;
264	cap_rights_t rights;
265	int error;
266
267	error = fget_read(td, fd, cap_rights_init(&rights, CAP_READ), &fp);
268	if (error)
269		return (error);
270	error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
271	fdrop(fp, td);
272	return (error);
273}
274
275/*
276 * Scatter positioned read system call.
277 */
278#ifndef _SYS_SYSPROTO_H_
279struct preadv_args {
280	int	fd;
281	struct	iovec *iovp;
282	u_int	iovcnt;
283	off_t	offset;
284};
285#endif
286int
287sys_preadv(struct thread *td, struct preadv_args *uap)
288{
289	struct uio *auio;
290	int error;
291
292	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
293	if (error)
294		return (error);
295	error = kern_preadv(td, uap->fd, auio, uap->offset);
296	free(auio, M_IOV);
297	return (error);
298}
299
300int
301kern_preadv(td, fd, auio, offset)
302	struct thread *td;
303	int fd;
304	struct uio *auio;
305	off_t offset;
306{
307	struct file *fp;
308	cap_rights_t rights;
309	int error;
310
311	error = fget_read(td, fd, cap_rights_init(&rights, CAP_PREAD), &fp);
312	if (error)
313		return (error);
314	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
315		error = ESPIPE;
316	else if (offset < 0 && fp->f_vnode->v_type != VCHR)
317		error = EINVAL;
318	else
319		error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
320	fdrop(fp, td);
321	return (error);
322}
323
324/*
325 * Common code for readv and preadv that reads data in
326 * from a file using the passed in uio, offset, and flags.
327 */
328static int
329dofileread(td, fd, fp, auio, offset, flags)
330	struct thread *td;
331	int fd;
332	struct file *fp;
333	struct uio *auio;
334	off_t offset;
335	int flags;
336{
337	ssize_t cnt;
338	int error;
339#ifdef KTRACE
340	struct uio *ktruio = NULL;
341#endif
342
343	/* Finish zero length reads right here */
344	if (auio->uio_resid == 0) {
345		td->td_retval[0] = 0;
346		return(0);
347	}
348	auio->uio_rw = UIO_READ;
349	auio->uio_offset = offset;
350	auio->uio_td = td;
351#ifdef KTRACE
352	if (KTRPOINT(td, KTR_GENIO))
353		ktruio = cloneuio(auio);
354#endif
355	cnt = auio->uio_resid;
356	if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
357		if (auio->uio_resid != cnt && (error == ERESTART ||
358		    error == EINTR || error == EWOULDBLOCK))
359			error = 0;
360	}
361	cnt -= auio->uio_resid;
362#ifdef KTRACE
363	if (ktruio != NULL) {
364		ktruio->uio_resid = cnt;
365		ktrgenio(fd, UIO_READ, ktruio, error);
366	}
367#endif
368	td->td_retval[0] = cnt;
369	return (error);
370}
371
372#ifndef _SYS_SYSPROTO_H_
373struct write_args {
374	int	fd;
375	const void *buf;
376	size_t	nbyte;
377};
378#endif
379int
380sys_write(td, uap)
381	struct thread *td;
382	struct write_args *uap;
383{
384	struct uio auio;
385	struct iovec aiov;
386	int error;
387
388	if (uap->nbyte > IOSIZE_MAX)
389		return (EINVAL);
390	aiov.iov_base = (void *)(uintptr_t)uap->buf;
391	aiov.iov_len = uap->nbyte;
392	auio.uio_iov = &aiov;
393	auio.uio_iovcnt = 1;
394	auio.uio_resid = uap->nbyte;
395	auio.uio_segflg = UIO_USERSPACE;
396	error = kern_writev(td, uap->fd, &auio);
397	return(error);
398}
399
400/*
401 * Positioned write system call.
402 */
403#ifndef _SYS_SYSPROTO_H_
404struct pwrite_args {
405	int	fd;
406	const void *buf;
407	size_t	nbyte;
408	int	pad;
409	off_t	offset;
410};
411#endif
412int
413sys_pwrite(td, uap)
414	struct thread *td;
415	struct pwrite_args *uap;
416{
417	struct uio auio;
418	struct iovec aiov;
419	int error;
420
421	if (uap->nbyte > IOSIZE_MAX)
422		return (EINVAL);
423	aiov.iov_base = (void *)(uintptr_t)uap->buf;
424	aiov.iov_len = uap->nbyte;
425	auio.uio_iov = &aiov;
426	auio.uio_iovcnt = 1;
427	auio.uio_resid = uap->nbyte;
428	auio.uio_segflg = UIO_USERSPACE;
429	error = kern_pwritev(td, uap->fd, &auio, uap->offset);
430	return(error);
431}
432
433int
434freebsd6_pwrite(td, uap)
435	struct thread *td;
436	struct freebsd6_pwrite_args *uap;
437{
438	struct pwrite_args oargs;
439
440	oargs.fd = uap->fd;
441	oargs.buf = uap->buf;
442	oargs.nbyte = uap->nbyte;
443	oargs.offset = uap->offset;
444	return (sys_pwrite(td, &oargs));
445}
446
447/*
448 * Gather write system call.
449 */
450#ifndef _SYS_SYSPROTO_H_
451struct writev_args {
452	int	fd;
453	struct	iovec *iovp;
454	u_int	iovcnt;
455};
456#endif
457int
458sys_writev(struct thread *td, struct writev_args *uap)
459{
460	struct uio *auio;
461	int error;
462
463	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
464	if (error)
465		return (error);
466	error = kern_writev(td, uap->fd, auio);
467	free(auio, M_IOV);
468	return (error);
469}
470
471int
472kern_writev(struct thread *td, int fd, struct uio *auio)
473{
474	struct file *fp;
475	cap_rights_t rights;
476	int error;
477
478	error = fget_write(td, fd, cap_rights_init(&rights, CAP_WRITE), &fp);
479	if (error)
480		return (error);
481	error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
482	fdrop(fp, td);
483	return (error);
484}
485
486/*
487 * Gather positioned write system call.
488 */
489#ifndef _SYS_SYSPROTO_H_
490struct pwritev_args {
491	int	fd;
492	struct	iovec *iovp;
493	u_int	iovcnt;
494	off_t	offset;
495};
496#endif
497int
498sys_pwritev(struct thread *td, struct pwritev_args *uap)
499{
500	struct uio *auio;
501	int error;
502
503	error = copyinuio(uap->iovp, uap->iovcnt, &auio);
504	if (error)
505		return (error);
506	error = kern_pwritev(td, uap->fd, auio, uap->offset);
507	free(auio, M_IOV);
508	return (error);
509}
510
511int
512kern_pwritev(td, fd, auio, offset)
513	struct thread *td;
514	struct uio *auio;
515	int fd;
516	off_t offset;
517{
518	struct file *fp;
519	cap_rights_t rights;
520	int error;
521
522	error = fget_write(td, fd, cap_rights_init(&rights, CAP_PWRITE), &fp);
523	if (error)
524		return (error);
525	if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
526		error = ESPIPE;
527	else if (offset < 0 && fp->f_vnode->v_type != VCHR)
528		error = EINVAL;
529	else
530		error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
531	fdrop(fp, td);
532	return (error);
533}
534
535/*
536 * Common code for writev and pwritev that writes data to
537 * a file using the passed in uio, offset, and flags.
538 */
539static int
540dofilewrite(td, fd, fp, auio, offset, flags)
541	struct thread *td;
542	int fd;
543	struct file *fp;
544	struct uio *auio;
545	off_t offset;
546	int flags;
547{
548	ssize_t cnt;
549	int error;
550#ifdef KTRACE
551	struct uio *ktruio = NULL;
552#endif
553
554	auio->uio_rw = UIO_WRITE;
555	auio->uio_td = td;
556	auio->uio_offset = offset;
557#ifdef KTRACE
558	if (KTRPOINT(td, KTR_GENIO))
559		ktruio = cloneuio(auio);
560#endif
561	cnt = auio->uio_resid;
562	if (fp->f_type == DTYPE_VNODE &&
563	    (fp->f_vnread_flags & FDEVFS_VNODE) == 0)
564		bwillwrite();
565	if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
566		if (auio->uio_resid != cnt && (error == ERESTART ||
567		    error == EINTR || error == EWOULDBLOCK))
568			error = 0;
569		/* Socket layer is responsible for issuing SIGPIPE. */
570		if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
571			PROC_LOCK(td->td_proc);
572			tdsignal(td, SIGPIPE);
573			PROC_UNLOCK(td->td_proc);
574		}
575	}
576	cnt -= auio->uio_resid;
577#ifdef KTRACE
578	if (ktruio != NULL) {
579		ktruio->uio_resid = cnt;
580		ktrgenio(fd, UIO_WRITE, ktruio, error);
581	}
582#endif
583	td->td_retval[0] = cnt;
584	return (error);
585}
586
587/*
588 * Truncate a file given a file descriptor.
589 *
590 * Can't use fget_write() here, since must return EINVAL and not EBADF if the
591 * descriptor isn't writable.
592 */
593int
594kern_ftruncate(td, fd, length)
595	struct thread *td;
596	int fd;
597	off_t length;
598{
599	struct file *fp;
600	cap_rights_t rights;
601	int error;
602
603	AUDIT_ARG_FD(fd);
604	if (length < 0)
605		return (EINVAL);
606	error = fget(td, fd, cap_rights_init(&rights, CAP_FTRUNCATE), &fp);
607	if (error)
608		return (error);
609	AUDIT_ARG_FILE(td->td_proc, fp);
610	if (!(fp->f_flag & FWRITE)) {
611		fdrop(fp, td);
612		return (EINVAL);
613	}
614	error = fo_truncate(fp, length, td->td_ucred, td);
615	fdrop(fp, td);
616	return (error);
617}
618
619#ifndef _SYS_SYSPROTO_H_
620struct ftruncate_args {
621	int	fd;
622	int	pad;
623	off_t	length;
624};
625#endif
626int
627sys_ftruncate(td, uap)
628	struct thread *td;
629	struct ftruncate_args *uap;
630{
631
632	return (kern_ftruncate(td, uap->fd, uap->length));
633}
634
635#if defined(COMPAT_43)
636#ifndef _SYS_SYSPROTO_H_
637struct oftruncate_args {
638	int	fd;
639	long	length;
640};
641#endif
642int
643oftruncate(td, uap)
644	struct thread *td;
645	struct oftruncate_args *uap;
646{
647
648	return (kern_ftruncate(td, uap->fd, uap->length));
649}
650#endif /* COMPAT_43 */
651
652#ifndef _SYS_SYSPROTO_H_
653struct ioctl_args {
654	int	fd;
655	u_long	com;
656	caddr_t	data;
657};
658#endif
659/* ARGSUSED */
660int
661sys_ioctl(struct thread *td, struct ioctl_args *uap)
662{
663	u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
664	u_long com;
665	int arg, error;
666	u_int size;
667	caddr_t data;
668
669	if (uap->com > 0xffffffff) {
670		printf(
671		    "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
672		    td->td_proc->p_pid, td->td_name, uap->com);
673		uap->com &= 0xffffffff;
674	}
675	com = uap->com;
676
677	/*
678	 * Interpret high order word to find amount of data to be
679	 * copied to/from the user's address space.
680	 */
681	size = IOCPARM_LEN(com);
682	if ((size > IOCPARM_MAX) ||
683	    ((com & (IOC_VOID  | IOC_IN | IOC_OUT)) == 0) ||
684#if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
685	    ((com & IOC_OUT) && size == 0) ||
686#else
687	    ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
688#endif
689	    ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
690		return (ENOTTY);
691
692	if (size > 0) {
693		if (com & IOC_VOID) {
694			/* Integer argument. */
695			arg = (intptr_t)uap->data;
696			data = (void *)&arg;
697			size = 0;
698		} else {
699			if (size > SYS_IOCTL_SMALL_SIZE)
700				data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
701			else
702				data = smalldata;
703		}
704	} else
705		data = (void *)&uap->data;
706	if (com & IOC_IN) {
707		error = copyin(uap->data, data, (u_int)size);
708		if (error != 0)
709			goto out;
710	} else if (com & IOC_OUT) {
711		/*
712		 * Zero the buffer so the user always
713		 * gets back something deterministic.
714		 */
715		bzero(data, size);
716	}
717
718	error = kern_ioctl(td, uap->fd, com, data);
719
720	if (error == 0 && (com & IOC_OUT))
721		error = copyout(data, uap->data, (u_int)size);
722
723out:
724	if (size > SYS_IOCTL_SMALL_SIZE)
725		free(data, M_IOCTLOPS);
726	return (error);
727}
728
729int
730kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
731{
732	struct file *fp;
733	struct filedesc *fdp;
734#ifndef CAPABILITIES
735	cap_rights_t rights;
736#endif
737	int error, tmp, locked;
738
739	AUDIT_ARG_FD(fd);
740	AUDIT_ARG_CMD(com);
741
742	fdp = td->td_proc->p_fd;
743
744	switch (com) {
745	case FIONCLEX:
746	case FIOCLEX:
747		FILEDESC_XLOCK(fdp);
748		locked = LA_XLOCKED;
749		break;
750	default:
751#ifdef CAPABILITIES
752		FILEDESC_SLOCK(fdp);
753		locked = LA_SLOCKED;
754#else
755		locked = LA_UNLOCKED;
756#endif
757		break;
758	}
759
760#ifdef CAPABILITIES
761	if ((fp = fget_locked(fdp, fd)) == NULL) {
762		error = EBADF;
763		goto out;
764	}
765	if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
766		fp = NULL;	/* fhold() was not called yet */
767		goto out;
768	}
769	fhold(fp);
770	if (locked == LA_SLOCKED) {
771		FILEDESC_SUNLOCK(fdp);
772		locked = LA_UNLOCKED;
773	}
774#else
775	error = fget(td, fd, cap_rights_init(&rights, CAP_IOCTL), &fp);
776	if (error != 0) {
777		fp = NULL;
778		goto out;
779	}
780#endif
781	if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
782		error = EBADF;
783		goto out;
784	}
785
786	switch (com) {
787	case FIONCLEX:
788		fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
789		goto out;
790	case FIOCLEX:
791		fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
792		goto out;
793	case FIONBIO:
794		if ((tmp = *(int *)data))
795			atomic_set_int(&fp->f_flag, FNONBLOCK);
796		else
797			atomic_clear_int(&fp->f_flag, FNONBLOCK);
798		data = (void *)&tmp;
799		break;
800	case FIOASYNC:
801		if ((tmp = *(int *)data))
802			atomic_set_int(&fp->f_flag, FASYNC);
803		else
804			atomic_clear_int(&fp->f_flag, FASYNC);
805		data = (void *)&tmp;
806		break;
807	}
808
809	error = fo_ioctl(fp, com, data, td->td_ucred, td);
810out:
811	switch (locked) {
812	case LA_XLOCKED:
813		FILEDESC_XUNLOCK(fdp);
814		break;
815#ifdef CAPABILITIES
816	case LA_SLOCKED:
817		FILEDESC_SUNLOCK(fdp);
818		break;
819#endif
820	default:
821		FILEDESC_UNLOCK_ASSERT(fdp);
822		break;
823	}
824	if (fp != NULL)
825		fdrop(fp, td);
826	return (error);
827}
828
829int
830poll_no_poll(int events)
831{
832	/*
833	 * Return true for read/write.  If the user asked for something
834	 * special, return POLLNVAL, so that clients have a way of
835	 * determining reliably whether or not the extended
836	 * functionality is present without hard-coding knowledge
837	 * of specific filesystem implementations.
838	 */
839	if (events & ~POLLSTANDARD)
840		return (POLLNVAL);
841
842	return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
843}
844
845int
846sys_pselect(struct thread *td, struct pselect_args *uap)
847{
848	struct timespec ts;
849	struct timeval tv, *tvp;
850	sigset_t set, *uset;
851	int error;
852
853	if (uap->ts != NULL) {
854		error = copyin(uap->ts, &ts, sizeof(ts));
855		if (error != 0)
856		    return (error);
857		TIMESPEC_TO_TIMEVAL(&tv, &ts);
858		tvp = &tv;
859	} else
860		tvp = NULL;
861	if (uap->sm != NULL) {
862		error = copyin(uap->sm, &set, sizeof(set));
863		if (error != 0)
864			return (error);
865		uset = &set;
866	} else
867		uset = NULL;
868	return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
869	    uset, NFDBITS));
870}
871
872int
873kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
874    struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
875{
876	int error;
877
878	if (uset != NULL) {
879		error = kern_sigprocmask(td, SIG_SETMASK, uset,
880		    &td->td_oldsigmask, 0);
881		if (error != 0)
882			return (error);
883		td->td_pflags |= TDP_OLDMASK;
884		/*
885		 * Make sure that ast() is called on return to
886		 * usermode and TDP_OLDMASK is cleared, restoring old
887		 * sigmask.
888		 */
889		thread_lock(td);
890		td->td_flags |= TDF_ASTPENDING;
891		thread_unlock(td);
892	}
893	error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
894	return (error);
895}
896
897#ifndef _SYS_SYSPROTO_H_
898struct select_args {
899	int	nd;
900	fd_set	*in, *ou, *ex;
901	struct	timeval *tv;
902};
903#endif
904int
905sys_select(struct thread *td, struct select_args *uap)
906{
907	struct timeval tv, *tvp;
908	int error;
909
910	if (uap->tv != NULL) {
911		error = copyin(uap->tv, &tv, sizeof(tv));
912		if (error)
913			return (error);
914		tvp = &tv;
915	} else
916		tvp = NULL;
917
918	return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
919	    NFDBITS));
920}
921
922/*
923 * In the unlikely case when user specified n greater then the last
924 * open file descriptor, check that no bits are set after the last
925 * valid fd.  We must return EBADF if any is set.
926 *
927 * There are applications that rely on the behaviour.
928 *
929 * nd is fd_lastfile + 1.
930 */
931static int
932select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
933{
934	char *addr, *oaddr;
935	int b, i, res;
936	uint8_t bits;
937
938	if (nd >= ndu || fd_in == NULL)
939		return (0);
940
941	oaddr = NULL;
942	bits = 0; /* silence gcc */
943	for (i = nd; i < ndu; i++) {
944		b = i / NBBY;
945#if BYTE_ORDER == LITTLE_ENDIAN
946		addr = (char *)fd_in + b;
947#else
948		addr = (char *)fd_in;
949		if (abi_nfdbits == NFDBITS) {
950			addr += rounddown(b, sizeof(fd_mask)) +
951			    sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
952		} else {
953			addr += rounddown(b, sizeof(uint32_t)) +
954			    sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
955		}
956#endif
957		if (addr != oaddr) {
958			res = fubyte(addr);
959			if (res == -1)
960				return (EFAULT);
961			oaddr = addr;
962			bits = res;
963		}
964		if ((bits & (1 << (i % NBBY))) != 0)
965			return (EBADF);
966	}
967	return (0);
968}
969
970int
971kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
972    fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
973{
974	struct filedesc *fdp;
975	/*
976	 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
977	 * infds with the new FD_SETSIZE of 1024, and more than enough for
978	 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
979	 * of 256.
980	 */
981	fd_mask s_selbits[howmany(2048, NFDBITS)];
982	fd_mask *ibits[3], *obits[3], *selbits, *sbp;
983	struct timeval rtv;
984	sbintime_t asbt, precision, rsbt;
985	u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
986	int error, lf, ndu;
987
988	if (nd < 0)
989		return (EINVAL);
990	fdp = td->td_proc->p_fd;
991	ndu = nd;
992	lf = fdp->fd_lastfile;
993	if (nd > lf + 1)
994		nd = lf + 1;
995
996	error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
997	if (error != 0)
998		return (error);
999	error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1000	if (error != 0)
1001		return (error);
1002	error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1003	if (error != 0)
1004		return (error);
1005
1006	/*
1007	 * Allocate just enough bits for the non-null fd_sets.  Use the
1008	 * preallocated auto buffer if possible.
1009	 */
1010	nfdbits = roundup(nd, NFDBITS);
1011	ncpbytes = nfdbits / NBBY;
1012	ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1013	nbufbytes = 0;
1014	if (fd_in != NULL)
1015		nbufbytes += 2 * ncpbytes;
1016	if (fd_ou != NULL)
1017		nbufbytes += 2 * ncpbytes;
1018	if (fd_ex != NULL)
1019		nbufbytes += 2 * ncpbytes;
1020	if (nbufbytes <= sizeof s_selbits)
1021		selbits = &s_selbits[0];
1022	else
1023		selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1024
1025	/*
1026	 * Assign pointers into the bit buffers and fetch the input bits.
1027	 * Put the output buffers together so that they can be bzeroed
1028	 * together.
1029	 */
1030	sbp = selbits;
1031#define	getbits(name, x) \
1032	do {								\
1033		if (name == NULL) {					\
1034			ibits[x] = NULL;				\
1035			obits[x] = NULL;				\
1036		} else {						\
1037			ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp;	\
1038			obits[x] = sbp;					\
1039			sbp += ncpbytes / sizeof *sbp;			\
1040			error = copyin(name, ibits[x], ncpubytes);	\
1041			if (error != 0)					\
1042				goto done;				\
1043			bzero((char *)ibits[x] + ncpubytes,		\
1044			    ncpbytes - ncpubytes);			\
1045		}							\
1046	} while (0)
1047	getbits(fd_in, 0);
1048	getbits(fd_ou, 1);
1049	getbits(fd_ex, 2);
1050#undef	getbits
1051
1052#if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1053	/*
1054	 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1055	 * we are running under 32-bit emulation. This should be more
1056	 * generic.
1057	 */
1058#define swizzle_fdset(bits)						\
1059	if (abi_nfdbits != NFDBITS && bits != NULL) {			\
1060		int i;							\
1061		for (i = 0; i < ncpbytes / sizeof *sbp; i++)		\
1062			bits[i] = (bits[i] >> 32) | (bits[i] << 32);	\
1063	}
1064#else
1065#define swizzle_fdset(bits)
1066#endif
1067
1068	/* Make sure the bit order makes it through an ABI transition */
1069	swizzle_fdset(ibits[0]);
1070	swizzle_fdset(ibits[1]);
1071	swizzle_fdset(ibits[2]);
1072
1073	if (nbufbytes != 0)
1074		bzero(selbits, nbufbytes / 2);
1075
1076	precision = 0;
1077	if (tvp != NULL) {
1078		rtv = *tvp;
1079		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1080		    rtv.tv_usec >= 1000000) {
1081			error = EINVAL;
1082			goto done;
1083		}
1084		if (!timevalisset(&rtv))
1085			asbt = 0;
1086		else if (rtv.tv_sec <= INT32_MAX) {
1087			rsbt = tvtosbt(rtv);
1088			precision = rsbt;
1089			precision >>= tc_precexp;
1090			if (TIMESEL(&asbt, rsbt))
1091				asbt += tc_tick_sbt;
1092			if (asbt <= INT64_MAX - rsbt)
1093				asbt += rsbt;
1094			else
1095				asbt = -1;
1096		} else
1097			asbt = -1;
1098	} else
1099		asbt = -1;
1100	seltdinit(td);
1101	/* Iterate until the timeout expires or descriptors become ready. */
1102	for (;;) {
1103		error = selscan(td, ibits, obits, nd);
1104		if (error || td->td_retval[0] != 0)
1105			break;
1106		error = seltdwait(td, asbt, precision);
1107		if (error)
1108			break;
1109		error = selrescan(td, ibits, obits);
1110		if (error || td->td_retval[0] != 0)
1111			break;
1112	}
1113	seltdclear(td);
1114
1115done:
1116	/* select is not restarted after signals... */
1117	if (error == ERESTART)
1118		error = EINTR;
1119	if (error == EWOULDBLOCK)
1120		error = 0;
1121
1122	/* swizzle bit order back, if necessary */
1123	swizzle_fdset(obits[0]);
1124	swizzle_fdset(obits[1]);
1125	swizzle_fdset(obits[2]);
1126#undef swizzle_fdset
1127
1128#define	putbits(name, x) \
1129	if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1130		error = error2;
1131	if (error == 0) {
1132		int error2;
1133
1134		putbits(fd_in, 0);
1135		putbits(fd_ou, 1);
1136		putbits(fd_ex, 2);
1137#undef putbits
1138	}
1139	if (selbits != &s_selbits[0])
1140		free(selbits, M_SELECT);
1141
1142	return (error);
1143}
1144/*
1145 * Convert a select bit set to poll flags.
1146 *
1147 * The backend always returns POLLHUP/POLLERR if appropriate and we
1148 * return this as a set bit in any set.
1149 */
1150static int select_flags[3] = {
1151    POLLRDNORM | POLLHUP | POLLERR,
1152    POLLWRNORM | POLLHUP | POLLERR,
1153    POLLRDBAND | POLLERR
1154};
1155
1156/*
1157 * Compute the fo_poll flags required for a fd given by the index and
1158 * bit position in the fd_mask array.
1159 */
1160static __inline int
1161selflags(fd_mask **ibits, int idx, fd_mask bit)
1162{
1163	int flags;
1164	int msk;
1165
1166	flags = 0;
1167	for (msk = 0; msk < 3; msk++) {
1168		if (ibits[msk] == NULL)
1169			continue;
1170		if ((ibits[msk][idx] & bit) == 0)
1171			continue;
1172		flags |= select_flags[msk];
1173	}
1174	return (flags);
1175}
1176
1177/*
1178 * Set the appropriate output bits given a mask of fired events and the
1179 * input bits originally requested.
1180 */
1181static __inline int
1182selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1183{
1184	int msk;
1185	int n;
1186
1187	n = 0;
1188	for (msk = 0; msk < 3; msk++) {
1189		if ((events & select_flags[msk]) == 0)
1190			continue;
1191		if (ibits[msk] == NULL)
1192			continue;
1193		if ((ibits[msk][idx] & bit) == 0)
1194			continue;
1195		/*
1196		 * XXX Check for a duplicate set.  This can occur because a
1197		 * socket calls selrecord() twice for each poll() call
1198		 * resulting in two selfds per real fd.  selrescan() will
1199		 * call selsetbits twice as a result.
1200		 */
1201		if ((obits[msk][idx] & bit) != 0)
1202			continue;
1203		obits[msk][idx] |= bit;
1204		n++;
1205	}
1206
1207	return (n);
1208}
1209
1210static __inline int
1211getselfd_cap(struct filedesc *fdp, int fd, struct file **fpp)
1212{
1213	cap_rights_t rights;
1214
1215	cap_rights_init(&rights, CAP_EVENT);
1216
1217	return (fget_unlocked(fdp, fd, &rights, 0, fpp, NULL));
1218}
1219
1220/*
1221 * Traverse the list of fds attached to this thread's seltd and check for
1222 * completion.
1223 */
1224static int
1225selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1226{
1227	struct filedesc *fdp;
1228	struct selinfo *si;
1229	struct seltd *stp;
1230	struct selfd *sfp;
1231	struct selfd *sfn;
1232	struct file *fp;
1233	fd_mask bit;
1234	int fd, ev, n, idx;
1235	int error;
1236
1237	fdp = td->td_proc->p_fd;
1238	stp = td->td_sel;
1239	n = 0;
1240	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1241		fd = (int)(uintptr_t)sfp->sf_cookie;
1242		si = sfp->sf_si;
1243		selfdfree(stp, sfp);
1244		/* If the selinfo wasn't cleared the event didn't fire. */
1245		if (si != NULL)
1246			continue;
1247		error = getselfd_cap(fdp, fd, &fp);
1248		if (error)
1249			return (error);
1250		idx = fd / NFDBITS;
1251		bit = (fd_mask)1 << (fd % NFDBITS);
1252		ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1253		fdrop(fp, td);
1254		if (ev != 0)
1255			n += selsetbits(ibits, obits, idx, bit, ev);
1256	}
1257	stp->st_flags = 0;
1258	td->td_retval[0] = n;
1259	return (0);
1260}
1261
1262/*
1263 * Perform the initial filedescriptor scan and register ourselves with
1264 * each selinfo.
1265 */
1266static int
1267selscan(td, ibits, obits, nfd)
1268	struct thread *td;
1269	fd_mask **ibits, **obits;
1270	int nfd;
1271{
1272	struct filedesc *fdp;
1273	struct file *fp;
1274	fd_mask bit;
1275	int ev, flags, end, fd;
1276	int n, idx;
1277	int error;
1278
1279	fdp = td->td_proc->p_fd;
1280	n = 0;
1281	for (idx = 0, fd = 0; fd < nfd; idx++) {
1282		end = imin(fd + NFDBITS, nfd);
1283		for (bit = 1; fd < end; bit <<= 1, fd++) {
1284			/* Compute the list of events we're interested in. */
1285			flags = selflags(ibits, idx, bit);
1286			if (flags == 0)
1287				continue;
1288			error = getselfd_cap(fdp, fd, &fp);
1289			if (error)
1290				return (error);
1291			selfdalloc(td, (void *)(uintptr_t)fd);
1292			ev = fo_poll(fp, flags, td->td_ucred, td);
1293			fdrop(fp, td);
1294			if (ev != 0)
1295				n += selsetbits(ibits, obits, idx, bit, ev);
1296		}
1297	}
1298
1299	td->td_retval[0] = n;
1300	return (0);
1301}
1302
1303int
1304sys_poll(struct thread *td, struct poll_args *uap)
1305{
1306	struct timespec ts, *tsp;
1307
1308	if (uap->timeout != INFTIM) {
1309		if (uap->timeout < 0)
1310			return (EINVAL);
1311		ts.tv_sec = uap->timeout / 1000;
1312		ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1313		tsp = &ts;
1314	} else
1315		tsp = NULL;
1316
1317	return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1318}
1319
1320int
1321kern_poll(struct thread *td, struct pollfd *fds, u_int nfds,
1322    struct timespec *tsp, sigset_t *uset)
1323{
1324	struct pollfd *bits;
1325	struct pollfd smallbits[32];
1326	sbintime_t sbt, precision, tmp;
1327	time_t over;
1328	struct timespec ts;
1329	int error;
1330	size_t ni;
1331
1332	precision = 0;
1333	if (tsp != NULL) {
1334		if (tsp->tv_sec < 0)
1335			return (EINVAL);
1336		if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1337			return (EINVAL);
1338		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1339			sbt = 0;
1340		else {
1341			ts = *tsp;
1342			if (ts.tv_sec > INT32_MAX / 2) {
1343				over = ts.tv_sec - INT32_MAX / 2;
1344				ts.tv_sec -= over;
1345			} else
1346				over = 0;
1347			tmp = tstosbt(ts);
1348			precision = tmp;
1349			precision >>= tc_precexp;
1350			if (TIMESEL(&sbt, tmp))
1351				sbt += tc_tick_sbt;
1352			sbt += tmp;
1353		}
1354	} else
1355		sbt = -1;
1356
1357	if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1358		return (EINVAL);
1359	ni = nfds * sizeof(struct pollfd);
1360	if (ni > sizeof(smallbits))
1361		bits = malloc(ni, M_TEMP, M_WAITOK);
1362	else
1363		bits = smallbits;
1364	error = copyin(fds, bits, ni);
1365	if (error)
1366		goto done;
1367
1368	if (uset != NULL) {
1369		error = kern_sigprocmask(td, SIG_SETMASK, uset,
1370		    &td->td_oldsigmask, 0);
1371		if (error)
1372			goto done;
1373		td->td_pflags |= TDP_OLDMASK;
1374		/*
1375		 * Make sure that ast() is called on return to
1376		 * usermode and TDP_OLDMASK is cleared, restoring old
1377		 * sigmask.
1378		 */
1379		thread_lock(td);
1380		td->td_flags |= TDF_ASTPENDING;
1381		thread_unlock(td);
1382	}
1383
1384	seltdinit(td);
1385	/* Iterate until the timeout expires or descriptors become ready. */
1386	for (;;) {
1387		error = pollscan(td, bits, nfds);
1388		if (error || td->td_retval[0] != 0)
1389			break;
1390		error = seltdwait(td, sbt, precision);
1391		if (error)
1392			break;
1393		error = pollrescan(td);
1394		if (error || td->td_retval[0] != 0)
1395			break;
1396	}
1397	seltdclear(td);
1398
1399done:
1400	/* poll is not restarted after signals... */
1401	if (error == ERESTART)
1402		error = EINTR;
1403	if (error == EWOULDBLOCK)
1404		error = 0;
1405	if (error == 0) {
1406		error = pollout(td, bits, fds, nfds);
1407		if (error)
1408			goto out;
1409	}
1410out:
1411	if (ni > sizeof(smallbits))
1412		free(bits, M_TEMP);
1413	return (error);
1414}
1415
1416int
1417sys_ppoll(struct thread *td, struct ppoll_args *uap)
1418{
1419	struct timespec ts, *tsp;
1420	sigset_t set, *ssp;
1421	int error;
1422
1423	if (uap->ts != NULL) {
1424		error = copyin(uap->ts, &ts, sizeof(ts));
1425		if (error)
1426			return (error);
1427		tsp = &ts;
1428	} else
1429		tsp = NULL;
1430	if (uap->set != NULL) {
1431		error = copyin(uap->set, &set, sizeof(set));
1432		if (error)
1433			return (error);
1434		ssp = &set;
1435	} else
1436		ssp = NULL;
1437	/*
1438	 * fds is still a pointer to user space. kern_poll() will
1439	 * take care of copyin that array to the kernel space.
1440	 */
1441
1442	return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1443}
1444
1445static int
1446pollrescan(struct thread *td)
1447{
1448	struct seltd *stp;
1449	struct selfd *sfp;
1450	struct selfd *sfn;
1451	struct selinfo *si;
1452	struct filedesc *fdp;
1453	struct file *fp;
1454	struct pollfd *fd;
1455#ifdef CAPABILITIES
1456	cap_rights_t rights;
1457#endif
1458	int n;
1459
1460	n = 0;
1461	fdp = td->td_proc->p_fd;
1462	stp = td->td_sel;
1463	FILEDESC_SLOCK(fdp);
1464	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1465		fd = (struct pollfd *)sfp->sf_cookie;
1466		si = sfp->sf_si;
1467		selfdfree(stp, sfp);
1468		/* If the selinfo wasn't cleared the event didn't fire. */
1469		if (si != NULL)
1470			continue;
1471		fp = fdp->fd_ofiles[fd->fd].fde_file;
1472#ifdef CAPABILITIES
1473		if (fp == NULL ||
1474		    cap_check(cap_rights(fdp, fd->fd),
1475		    cap_rights_init(&rights, CAP_EVENT)) != 0)
1476#else
1477		if (fp == NULL)
1478#endif
1479		{
1480			fd->revents = POLLNVAL;
1481			n++;
1482			continue;
1483		}
1484
1485		/*
1486		 * Note: backend also returns POLLHUP and
1487		 * POLLERR if appropriate.
1488		 */
1489		fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1490		if (fd->revents != 0)
1491			n++;
1492	}
1493	FILEDESC_SUNLOCK(fdp);
1494	stp->st_flags = 0;
1495	td->td_retval[0] = n;
1496	return (0);
1497}
1498
1499
1500static int
1501pollout(td, fds, ufds, nfd)
1502	struct thread *td;
1503	struct pollfd *fds;
1504	struct pollfd *ufds;
1505	u_int nfd;
1506{
1507	int error = 0;
1508	u_int i = 0;
1509	u_int n = 0;
1510
1511	for (i = 0; i < nfd; i++) {
1512		error = copyout(&fds->revents, &ufds->revents,
1513		    sizeof(ufds->revents));
1514		if (error)
1515			return (error);
1516		if (fds->revents != 0)
1517			n++;
1518		fds++;
1519		ufds++;
1520	}
1521	td->td_retval[0] = n;
1522	return (0);
1523}
1524
1525static int
1526pollscan(td, fds, nfd)
1527	struct thread *td;
1528	struct pollfd *fds;
1529	u_int nfd;
1530{
1531	struct filedesc *fdp = td->td_proc->p_fd;
1532	struct file *fp;
1533#ifdef CAPABILITIES
1534	cap_rights_t rights;
1535#endif
1536	int i, n = 0;
1537
1538	FILEDESC_SLOCK(fdp);
1539	for (i = 0; i < nfd; i++, fds++) {
1540		if (fds->fd > fdp->fd_lastfile) {
1541			fds->revents = POLLNVAL;
1542			n++;
1543		} else if (fds->fd < 0) {
1544			fds->revents = 0;
1545		} else {
1546			fp = fdp->fd_ofiles[fds->fd].fde_file;
1547#ifdef CAPABILITIES
1548			if (fp == NULL ||
1549			    cap_check(cap_rights(fdp, fds->fd),
1550			    cap_rights_init(&rights, CAP_EVENT)) != 0)
1551#else
1552			if (fp == NULL)
1553#endif
1554			{
1555				fds->revents = POLLNVAL;
1556				n++;
1557			} else {
1558				/*
1559				 * Note: backend also returns POLLHUP and
1560				 * POLLERR if appropriate.
1561				 */
1562				selfdalloc(td, fds);
1563				fds->revents = fo_poll(fp, fds->events,
1564				    td->td_ucred, td);
1565				/*
1566				 * POSIX requires POLLOUT to be never
1567				 * set simultaneously with POLLHUP.
1568				 */
1569				if ((fds->revents & POLLHUP) != 0)
1570					fds->revents &= ~POLLOUT;
1571
1572				if (fds->revents != 0)
1573					n++;
1574			}
1575		}
1576	}
1577	FILEDESC_SUNLOCK(fdp);
1578	td->td_retval[0] = n;
1579	return (0);
1580}
1581
1582/*
1583 * OpenBSD poll system call.
1584 *
1585 * XXX this isn't quite a true representation..  OpenBSD uses select ops.
1586 */
1587#ifndef _SYS_SYSPROTO_H_
1588struct openbsd_poll_args {
1589	struct pollfd *fds;
1590	u_int	nfds;
1591	int	timeout;
1592};
1593#endif
1594int
1595sys_openbsd_poll(td, uap)
1596	register struct thread *td;
1597	register struct openbsd_poll_args *uap;
1598{
1599	return (sys_poll(td, (struct poll_args *)uap));
1600}
1601
1602/*
1603 * XXX This was created specifically to support netncp and netsmb.  This
1604 * allows the caller to specify a socket to wait for events on.  It returns
1605 * 0 if any events matched and an error otherwise.  There is no way to
1606 * determine which events fired.
1607 */
1608int
1609selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1610{
1611	struct timeval rtv;
1612	sbintime_t asbt, precision, rsbt;
1613	int error;
1614
1615	precision = 0;	/* stupid gcc! */
1616	if (tvp != NULL) {
1617		rtv = *tvp;
1618		if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1619		    rtv.tv_usec >= 1000000)
1620			return (EINVAL);
1621		if (!timevalisset(&rtv))
1622			asbt = 0;
1623		else if (rtv.tv_sec <= INT32_MAX) {
1624			rsbt = tvtosbt(rtv);
1625			precision = rsbt;
1626			precision >>= tc_precexp;
1627			if (TIMESEL(&asbt, rsbt))
1628				asbt += tc_tick_sbt;
1629			if (asbt <= INT64_MAX - rsbt)
1630				asbt += rsbt;
1631			else
1632				asbt = -1;
1633		} else
1634			asbt = -1;
1635	} else
1636		asbt = -1;
1637	seltdinit(td);
1638	/*
1639	 * Iterate until the timeout expires or the socket becomes ready.
1640	 */
1641	for (;;) {
1642		selfdalloc(td, NULL);
1643		error = sopoll(so, events, NULL, td);
1644		/* error here is actually the ready events. */
1645		if (error)
1646			return (0);
1647		error = seltdwait(td, asbt, precision);
1648		if (error)
1649			break;
1650	}
1651	seltdclear(td);
1652	/* XXX Duplicates ncp/smb behavior. */
1653	if (error == ERESTART)
1654		error = 0;
1655	return (error);
1656}
1657
1658/*
1659 * Preallocate two selfds associated with 'cookie'.  Some fo_poll routines
1660 * have two select sets, one for read and another for write.
1661 */
1662static void
1663selfdalloc(struct thread *td, void *cookie)
1664{
1665	struct seltd *stp;
1666
1667	stp = td->td_sel;
1668	if (stp->st_free1 == NULL)
1669		stp->st_free1 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1670	stp->st_free1->sf_td = stp;
1671	stp->st_free1->sf_cookie = cookie;
1672	if (stp->st_free2 == NULL)
1673		stp->st_free2 = uma_zalloc(selfd_zone, M_WAITOK|M_ZERO);
1674	stp->st_free2->sf_td = stp;
1675	stp->st_free2->sf_cookie = cookie;
1676}
1677
1678static void
1679selfdfree(struct seltd *stp, struct selfd *sfp)
1680{
1681	STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1682	mtx_lock(sfp->sf_mtx);
1683	if (sfp->sf_si)
1684		TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1685	mtx_unlock(sfp->sf_mtx);
1686	uma_zfree(selfd_zone, sfp);
1687}
1688
1689/* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1690void
1691seldrain(sip)
1692        struct selinfo *sip;
1693{
1694
1695	/*
1696	 * This feature is already provided by doselwakeup(), thus it is
1697	 * enough to go for it.
1698	 * Eventually, the context, should take care to avoid races
1699	 * between thread calling select()/poll() and file descriptor
1700	 * detaching, but, again, the races are just the same as
1701	 * selwakeup().
1702	 */
1703        doselwakeup(sip, -1);
1704}
1705
1706/*
1707 * Record a select request.
1708 */
1709void
1710selrecord(selector, sip)
1711	struct thread *selector;
1712	struct selinfo *sip;
1713{
1714	struct selfd *sfp;
1715	struct seltd *stp;
1716	struct mtx *mtxp;
1717
1718	stp = selector->td_sel;
1719	/*
1720	 * Don't record when doing a rescan.
1721	 */
1722	if (stp->st_flags & SELTD_RESCAN)
1723		return;
1724	/*
1725	 * Grab one of the preallocated descriptors.
1726	 */
1727	sfp = NULL;
1728	if ((sfp = stp->st_free1) != NULL)
1729		stp->st_free1 = NULL;
1730	else if ((sfp = stp->st_free2) != NULL)
1731		stp->st_free2 = NULL;
1732	else
1733		panic("selrecord: No free selfd on selq");
1734	mtxp = sip->si_mtx;
1735	if (mtxp == NULL)
1736		mtxp = mtx_pool_find(mtxpool_select, sip);
1737	/*
1738	 * Initialize the sfp and queue it in the thread.
1739	 */
1740	sfp->sf_si = sip;
1741	sfp->sf_mtx = mtxp;
1742	STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1743	/*
1744	 * Now that we've locked the sip, check for initialization.
1745	 */
1746	mtx_lock(mtxp);
1747	if (sip->si_mtx == NULL) {
1748		sip->si_mtx = mtxp;
1749		TAILQ_INIT(&sip->si_tdlist);
1750	}
1751	/*
1752	 * Add this thread to the list of selfds listening on this selinfo.
1753	 */
1754	TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1755	mtx_unlock(sip->si_mtx);
1756}
1757
1758/* Wake up a selecting thread. */
1759void
1760selwakeup(sip)
1761	struct selinfo *sip;
1762{
1763	doselwakeup(sip, -1);
1764}
1765
1766/* Wake up a selecting thread, and set its priority. */
1767void
1768selwakeuppri(sip, pri)
1769	struct selinfo *sip;
1770	int pri;
1771{
1772	doselwakeup(sip, pri);
1773}
1774
1775/*
1776 * Do a wakeup when a selectable event occurs.
1777 */
1778static void
1779doselwakeup(sip, pri)
1780	struct selinfo *sip;
1781	int pri;
1782{
1783	struct selfd *sfp;
1784	struct selfd *sfn;
1785	struct seltd *stp;
1786
1787	/* If it's not initialized there can't be any waiters. */
1788	if (sip->si_mtx == NULL)
1789		return;
1790	/*
1791	 * Locking the selinfo locks all selfds associated with it.
1792	 */
1793	mtx_lock(sip->si_mtx);
1794	TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1795		/*
1796		 * Once we remove this sfp from the list and clear the
1797		 * sf_si seltdclear will know to ignore this si.
1798		 */
1799		TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1800		sfp->sf_si = NULL;
1801		stp = sfp->sf_td;
1802		mtx_lock(&stp->st_mtx);
1803		stp->st_flags |= SELTD_PENDING;
1804		cv_broadcastpri(&stp->st_wait, pri);
1805		mtx_unlock(&stp->st_mtx);
1806	}
1807	mtx_unlock(sip->si_mtx);
1808}
1809
1810static void
1811seltdinit(struct thread *td)
1812{
1813	struct seltd *stp;
1814
1815	if ((stp = td->td_sel) != NULL)
1816		goto out;
1817	td->td_sel = stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1818	mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1819	cv_init(&stp->st_wait, "select");
1820out:
1821	stp->st_flags = 0;
1822	STAILQ_INIT(&stp->st_selq);
1823}
1824
1825static int
1826seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1827{
1828	struct seltd *stp;
1829	int error;
1830
1831	stp = td->td_sel;
1832	/*
1833	 * An event of interest may occur while we do not hold the seltd
1834	 * locked so check the pending flag before we sleep.
1835	 */
1836	mtx_lock(&stp->st_mtx);
1837	/*
1838	 * Any further calls to selrecord will be a rescan.
1839	 */
1840	stp->st_flags |= SELTD_RESCAN;
1841	if (stp->st_flags & SELTD_PENDING) {
1842		mtx_unlock(&stp->st_mtx);
1843		return (0);
1844	}
1845	if (sbt == 0)
1846		error = EWOULDBLOCK;
1847	else if (sbt != -1)
1848		error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1849		    sbt, precision, C_ABSOLUTE);
1850	else
1851		error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1852	mtx_unlock(&stp->st_mtx);
1853
1854	return (error);
1855}
1856
1857void
1858seltdfini(struct thread *td)
1859{
1860	struct seltd *stp;
1861
1862	stp = td->td_sel;
1863	if (stp == NULL)
1864		return;
1865	if (stp->st_free1)
1866		uma_zfree(selfd_zone, stp->st_free1);
1867	if (stp->st_free2)
1868		uma_zfree(selfd_zone, stp->st_free2);
1869	td->td_sel = NULL;
1870	free(stp, M_SELECT);
1871}
1872
1873/*
1874 * Remove the references to the thread from all of the objects we were
1875 * polling.
1876 */
1877static void
1878seltdclear(struct thread *td)
1879{
1880	struct seltd *stp;
1881	struct selfd *sfp;
1882	struct selfd *sfn;
1883
1884	stp = td->td_sel;
1885	STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1886		selfdfree(stp, sfp);
1887	stp->st_flags = 0;
1888}
1889
1890static void selectinit(void *);
1891SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1892static void
1893selectinit(void *dummy __unused)
1894{
1895
1896	selfd_zone = uma_zcreate("selfd", sizeof(struct selfd), NULL, NULL,
1897	    NULL, NULL, UMA_ALIGN_PTR, 0);
1898	mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1899}
1900