subr_sleepqueue.c revision 304905
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Implementation of sleep queues used to hold queue of threads blocked on
29 * a wait channel.  Sleep queues different from turnstiles in that wait
30 * channels are not owned by anyone, so there is no priority propagation.
31 * Sleep queues can also provide a timeout and can also be interrupted by
32 * signals.  That said, there are several similarities between the turnstile
33 * and sleep queue implementations.  (Note: turnstiles were implemented
34 * first.)  For example, both use a hash table of the same size where each
35 * bucket is referred to as a "chain" that contains both a spin lock and
36 * a linked list of queues.  An individual queue is located by using a hash
37 * to pick a chain, locking the chain, and then walking the chain searching
38 * for the queue.  This means that a wait channel object does not need to
39 * embed it's queue head just as locks do not embed their turnstile queue
40 * head.  Threads also carry around a sleep queue that they lend to the
41 * wait channel when blocking.  Just as in turnstiles, the queue includes
42 * a free list of the sleep queues of other threads blocked on the same
43 * wait channel in the case of multiple waiters.
44 *
45 * Some additional functionality provided by sleep queues include the
46 * ability to set a timeout.  The timeout is managed using a per-thread
47 * callout that resumes a thread if it is asleep.  A thread may also
48 * catch signals while it is asleep (aka an interruptible sleep).  The
49 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50 * sleep queues also provide some extra assertions.  One is not allowed to
51 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52 * must consistently use the same lock to synchronize with a wait channel,
53 * though this check is currently only a warning for sleep/wakeup due to
54 * pre-existing abuse of that API.  The same lock must also be held when
55 * awakening threads, though that is currently only enforced for condition
56 * variables.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: stable/10/sys/kern/subr_sleepqueue.c 304905 2016-08-27 11:45:05Z kib $");
61
62#include "opt_sleepqueue_profiling.h"
63#include "opt_ddb.h"
64#include "opt_kdtrace.h"
65#include "opt_sched.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/sbuf.h>
75#include <sys/sched.h>
76#include <sys/sdt.h>
77#include <sys/signalvar.h>
78#include <sys/sleepqueue.h>
79#include <sys/sysctl.h>
80
81#include <vm/uma.h>
82
83#ifdef DDB
84#include <ddb/ddb.h>
85#endif
86
87/*
88 * Constants for the hash table of sleep queue chains.
89 * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
90 */
91#define	SC_TABLESIZE	256			/* Must be power of 2. */
92#define	SC_MASK		(SC_TABLESIZE - 1)
93#define	SC_SHIFT	8
94#define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
95			    SC_MASK)
96#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
97#define NR_SLEEPQS      2
98/*
99 * There two different lists of sleep queues.  Both lists are connected
100 * via the sq_hash entries.  The first list is the sleep queue chain list
101 * that a sleep queue is on when it is attached to a wait channel.  The
102 * second list is the free list hung off of a sleep queue that is attached
103 * to a wait channel.
104 *
105 * Each sleep queue also contains the wait channel it is attached to, the
106 * list of threads blocked on that wait channel, flags specific to the
107 * wait channel, and the lock used to synchronize with a wait channel.
108 * The flags are used to catch mismatches between the various consumers
109 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
110 * The lock pointer is only used when invariants are enabled for various
111 * debugging checks.
112 *
113 * Locking key:
114 *  c - sleep queue chain lock
115 */
116struct sleepqueue {
117	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
118	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
119	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
120	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
121	void	*sq_wchan;			/* (c) Wait channel. */
122	int	sq_type;			/* (c) Queue type. */
123#ifdef INVARIANTS
124	struct lock_object *sq_lock;		/* (c) Associated lock. */
125#endif
126};
127
128struct sleepqueue_chain {
129	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
130	struct mtx sc_lock;			/* Spin lock for this chain. */
131#ifdef SLEEPQUEUE_PROFILING
132	u_int	sc_depth;			/* Length of sc_queues. */
133	u_int	sc_max_depth;			/* Max length of sc_queues. */
134#endif
135};
136
137#ifdef SLEEPQUEUE_PROFILING
138u_int sleepq_max_depth;
139static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
140static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
141    "sleepq chain stats");
142SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
143    0, "maxmimum depth achieved of a single chain");
144
145static void	sleepq_profile(const char *wmesg);
146static int	prof_enabled;
147#endif
148static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
149static uma_zone_t sleepq_zone;
150
151/*
152 * Prototypes for non-exported routines.
153 */
154static int	sleepq_catch_signals(void *wchan, int pri);
155static int	sleepq_check_signals(void);
156static int	sleepq_check_timeout(void);
157#ifdef INVARIANTS
158static void	sleepq_dtor(void *mem, int size, void *arg);
159#endif
160static int	sleepq_init(void *mem, int size, int flags);
161static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
162		    int pri);
163static void	sleepq_switch(void *wchan, int pri);
164static void	sleepq_timeout(void *arg);
165
166SDT_PROBE_DECLARE(sched, , , sleep);
167SDT_PROBE_DECLARE(sched, , , wakeup);
168
169/*
170 * Early initialization of sleep queues that is called from the sleepinit()
171 * SYSINIT.
172 */
173void
174init_sleepqueues(void)
175{
176#ifdef SLEEPQUEUE_PROFILING
177	struct sysctl_oid *chain_oid;
178	char chain_name[10];
179#endif
180	int i;
181
182	for (i = 0; i < SC_TABLESIZE; i++) {
183		LIST_INIT(&sleepq_chains[i].sc_queues);
184		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
185		    MTX_SPIN | MTX_RECURSE);
186#ifdef SLEEPQUEUE_PROFILING
187		snprintf(chain_name, sizeof(chain_name), "%d", i);
188		chain_oid = SYSCTL_ADD_NODE(NULL,
189		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
190		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
191		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
192		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
193		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
194		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
195		    NULL);
196#endif
197	}
198	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
199#ifdef INVARIANTS
200	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
201#else
202	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
203#endif
204
205	thread0.td_sleepqueue = sleepq_alloc();
206}
207
208/*
209 * Get a sleep queue for a new thread.
210 */
211struct sleepqueue *
212sleepq_alloc(void)
213{
214
215	return (uma_zalloc(sleepq_zone, M_WAITOK));
216}
217
218/*
219 * Free a sleep queue when a thread is destroyed.
220 */
221void
222sleepq_free(struct sleepqueue *sq)
223{
224
225	uma_zfree(sleepq_zone, sq);
226}
227
228/*
229 * Lock the sleep queue chain associated with the specified wait channel.
230 */
231void
232sleepq_lock(void *wchan)
233{
234	struct sleepqueue_chain *sc;
235
236	sc = SC_LOOKUP(wchan);
237	mtx_lock_spin(&sc->sc_lock);
238}
239
240/*
241 * Look up the sleep queue associated with a given wait channel in the hash
242 * table locking the associated sleep queue chain.  If no queue is found in
243 * the table, NULL is returned.
244 */
245struct sleepqueue *
246sleepq_lookup(void *wchan)
247{
248	struct sleepqueue_chain *sc;
249	struct sleepqueue *sq;
250
251	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
252	sc = SC_LOOKUP(wchan);
253	mtx_assert(&sc->sc_lock, MA_OWNED);
254	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
255		if (sq->sq_wchan == wchan)
256			return (sq);
257	return (NULL);
258}
259
260/*
261 * Unlock the sleep queue chain associated with a given wait channel.
262 */
263void
264sleepq_release(void *wchan)
265{
266	struct sleepqueue_chain *sc;
267
268	sc = SC_LOOKUP(wchan);
269	mtx_unlock_spin(&sc->sc_lock);
270}
271
272/*
273 * Places the current thread on the sleep queue for the specified wait
274 * channel.  If INVARIANTS is enabled, then it associates the passed in
275 * lock with the sleepq to make sure it is held when that sleep queue is
276 * woken up.
277 */
278void
279sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
280    int queue)
281{
282	struct sleepqueue_chain *sc;
283	struct sleepqueue *sq;
284	struct thread *td;
285
286	td = curthread;
287	sc = SC_LOOKUP(wchan);
288	mtx_assert(&sc->sc_lock, MA_OWNED);
289	MPASS(td->td_sleepqueue != NULL);
290	MPASS(wchan != NULL);
291	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
292
293	/* If this thread is not allowed to sleep, die a horrible death. */
294	KASSERT(td->td_no_sleeping == 0,
295	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
296	    __func__, td, wchan));
297
298	/* Look up the sleep queue associated with the wait channel 'wchan'. */
299	sq = sleepq_lookup(wchan);
300
301	/*
302	 * If the wait channel does not already have a sleep queue, use
303	 * this thread's sleep queue.  Otherwise, insert the current thread
304	 * into the sleep queue already in use by this wait channel.
305	 */
306	if (sq == NULL) {
307#ifdef INVARIANTS
308		int i;
309
310		sq = td->td_sleepqueue;
311		for (i = 0; i < NR_SLEEPQS; i++) {
312			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
313			    ("thread's sleep queue %d is not empty", i));
314			KASSERT(sq->sq_blockedcnt[i] == 0,
315			    ("thread's sleep queue %d count mismatches", i));
316		}
317		KASSERT(LIST_EMPTY(&sq->sq_free),
318		    ("thread's sleep queue has a non-empty free list"));
319		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
320		sq->sq_lock = lock;
321#endif
322#ifdef SLEEPQUEUE_PROFILING
323		sc->sc_depth++;
324		if (sc->sc_depth > sc->sc_max_depth) {
325			sc->sc_max_depth = sc->sc_depth;
326			if (sc->sc_max_depth > sleepq_max_depth)
327				sleepq_max_depth = sc->sc_max_depth;
328		}
329#endif
330		sq = td->td_sleepqueue;
331		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
332		sq->sq_wchan = wchan;
333		sq->sq_type = flags & SLEEPQ_TYPE;
334	} else {
335		MPASS(wchan == sq->sq_wchan);
336		MPASS(lock == sq->sq_lock);
337		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
338		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
339	}
340	thread_lock(td);
341	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
342	sq->sq_blockedcnt[queue]++;
343	td->td_sleepqueue = NULL;
344	td->td_sqqueue = queue;
345	td->td_wchan = wchan;
346	td->td_wmesg = wmesg;
347	if (flags & SLEEPQ_INTERRUPTIBLE) {
348		td->td_flags |= TDF_SINTR;
349		td->td_flags &= ~TDF_SLEEPABORT;
350	}
351	thread_unlock(td);
352}
353
354/*
355 * Sets a timeout that will remove the current thread from the specified
356 * sleep queue after timo ticks if the thread has not already been awakened.
357 */
358void
359sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
360    int flags)
361{
362	struct sleepqueue_chain *sc;
363	struct thread *td;
364	sbintime_t pr1;
365
366	td = curthread;
367	sc = SC_LOOKUP(wchan);
368	mtx_assert(&sc->sc_lock, MA_OWNED);
369	MPASS(TD_ON_SLEEPQ(td));
370	MPASS(td->td_sleepqueue == NULL);
371	MPASS(wchan != NULL);
372	KASSERT(td->td_sleeptimo == 0, ("td %d %p td_sleeptimo %jx",
373	    td->td_tid, td, (uintmax_t)td->td_sleeptimo));
374	thread_lock(td);
375	callout_when(sbt, pr, flags, &td->td_sleeptimo, &pr1);
376	thread_unlock(td);
377	callout_reset_sbt_on(&td->td_slpcallout, td->td_sleeptimo, pr1,
378	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_PRECALC |
379	    C_DIRECT_EXEC);
380}
381
382/*
383 * Return the number of actual sleepers for the specified queue.
384 */
385u_int
386sleepq_sleepcnt(void *wchan, int queue)
387{
388	struct sleepqueue *sq;
389
390	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
391	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
392	sq = sleepq_lookup(wchan);
393	if (sq == NULL)
394		return (0);
395	return (sq->sq_blockedcnt[queue]);
396}
397
398/*
399 * Marks the pending sleep of the current thread as interruptible and
400 * makes an initial check for pending signals before putting a thread
401 * to sleep. Enters and exits with the thread lock held.  Thread lock
402 * may have transitioned from the sleepq lock to a run lock.
403 */
404static int
405sleepq_catch_signals(void *wchan, int pri)
406{
407	struct sleepqueue_chain *sc;
408	struct sleepqueue *sq;
409	struct thread *td;
410	struct proc *p;
411	struct sigacts *ps;
412	int sig, ret;
413
414	td = curthread;
415	p = curproc;
416	sc = SC_LOOKUP(wchan);
417	mtx_assert(&sc->sc_lock, MA_OWNED);
418	MPASS(wchan != NULL);
419	if ((td->td_pflags & TDP_WAKEUP) != 0) {
420		td->td_pflags &= ~TDP_WAKEUP;
421		ret = EINTR;
422		thread_lock(td);
423		goto out;
424	}
425
426	/*
427	 * See if there are any pending signals for this thread.  If not
428	 * we can switch immediately.  Otherwise do the signal processing
429	 * directly.
430	 */
431	thread_lock(td);
432	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
433		sleepq_switch(wchan, pri);
434		return (0);
435	}
436	thread_unlock(td);
437	mtx_unlock_spin(&sc->sc_lock);
438	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
439		(void *)td, (long)p->p_pid, td->td_name);
440	PROC_LOCK(p);
441	ps = p->p_sigacts;
442	mtx_lock(&ps->ps_mtx);
443	sig = cursig(td);
444	if (sig == 0) {
445		mtx_unlock(&ps->ps_mtx);
446		ret = thread_suspend_check(1);
447		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
448	} else {
449		if (SIGISMEMBER(ps->ps_sigintr, sig))
450			ret = EINTR;
451		else
452			ret = ERESTART;
453		mtx_unlock(&ps->ps_mtx);
454	}
455	/*
456	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
457	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
458	 * thread_lock() are currently held in tdsendsignal().
459	 */
460	PROC_SLOCK(p);
461	mtx_lock_spin(&sc->sc_lock);
462	PROC_UNLOCK(p);
463	thread_lock(td);
464	PROC_SUNLOCK(p);
465	if (ret == 0) {
466		sleepq_switch(wchan, pri);
467		return (0);
468	}
469out:
470	/*
471	 * There were pending signals and this thread is still
472	 * on the sleep queue, remove it from the sleep queue.
473	 */
474	if (TD_ON_SLEEPQ(td)) {
475		sq = sleepq_lookup(wchan);
476		if (sleepq_resume_thread(sq, td, 0)) {
477#ifdef INVARIANTS
478			/*
479			 * This thread hasn't gone to sleep yet, so it
480			 * should not be swapped out.
481			 */
482			panic("not waking up swapper");
483#endif
484		}
485	}
486	mtx_unlock_spin(&sc->sc_lock);
487	MPASS(td->td_lock != &sc->sc_lock);
488	return (ret);
489}
490
491/*
492 * Switches to another thread if we are still asleep on a sleep queue.
493 * Returns with thread lock.
494 */
495static void
496sleepq_switch(void *wchan, int pri)
497{
498	struct sleepqueue_chain *sc;
499	struct sleepqueue *sq;
500	struct thread *td;
501
502	td = curthread;
503	sc = SC_LOOKUP(wchan);
504	mtx_assert(&sc->sc_lock, MA_OWNED);
505	THREAD_LOCK_ASSERT(td, MA_OWNED);
506
507	/*
508	 * If we have a sleep queue, then we've already been woken up, so
509	 * just return.
510	 */
511	if (td->td_sleepqueue != NULL) {
512		mtx_unlock_spin(&sc->sc_lock);
513		return;
514	}
515
516	/*
517	 * If TDF_TIMEOUT is set, then our sleep has been timed out
518	 * already but we are still on the sleep queue, so dequeue the
519	 * thread and return.
520	 */
521	if (td->td_flags & TDF_TIMEOUT) {
522		MPASS(TD_ON_SLEEPQ(td));
523		sq = sleepq_lookup(wchan);
524		if (sleepq_resume_thread(sq, td, 0)) {
525#ifdef INVARIANTS
526			/*
527			 * This thread hasn't gone to sleep yet, so it
528			 * should not be swapped out.
529			 */
530			panic("not waking up swapper");
531#endif
532		}
533		mtx_unlock_spin(&sc->sc_lock);
534		return;
535	}
536#ifdef SLEEPQUEUE_PROFILING
537	if (prof_enabled)
538		sleepq_profile(td->td_wmesg);
539#endif
540	MPASS(td->td_sleepqueue == NULL);
541	sched_sleep(td, pri);
542	thread_lock_set(td, &sc->sc_lock);
543	SDT_PROBE0(sched, , , sleep);
544	TD_SET_SLEEPING(td);
545	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
546	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
547	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
548	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
549}
550
551/*
552 * Check to see if we timed out.
553 */
554static int
555sleepq_check_timeout(void)
556{
557	struct thread *td;
558	int res;
559
560	td = curthread;
561	THREAD_LOCK_ASSERT(td, MA_OWNED);
562
563	/*
564	 * If TDF_TIMEOUT is set, we timed out.  But recheck
565	 * td_sleeptimo anyway.
566	 */
567	res = 0;
568	if (td->td_sleeptimo != 0) {
569		if (td->td_sleeptimo <= sbinuptime())
570			res = EWOULDBLOCK;
571		td->td_sleeptimo = 0;
572	}
573	if (td->td_flags & TDF_TIMEOUT)
574		td->td_flags &= ~TDF_TIMEOUT;
575	else
576		/*
577		 * We ignore the situation where timeout subsystem was
578		 * unable to stop our callout.  The struct thread is
579		 * type-stable, the callout will use the correct
580		 * memory when running.  The checks of the
581		 * td_sleeptimo value in this function and in
582		 * sleepq_timeout() ensure that the thread does not
583		 * get spurious wakeups, even if the callout was reset
584		 * or thread reused.
585		 */
586		callout_stop(&td->td_slpcallout);
587	return (res);
588}
589
590/*
591 * Check to see if we were awoken by a signal.
592 */
593static int
594sleepq_check_signals(void)
595{
596	struct thread *td;
597
598	td = curthread;
599	THREAD_LOCK_ASSERT(td, MA_OWNED);
600
601	/* We are no longer in an interruptible sleep. */
602	if (td->td_flags & TDF_SINTR)
603		td->td_flags &= ~TDF_SINTR;
604
605	if (td->td_flags & TDF_SLEEPABORT) {
606		td->td_flags &= ~TDF_SLEEPABORT;
607		return (td->td_intrval);
608	}
609
610	return (0);
611}
612
613/*
614 * Block the current thread until it is awakened from its sleep queue.
615 */
616void
617sleepq_wait(void *wchan, int pri)
618{
619	struct thread *td;
620
621	td = curthread;
622	MPASS(!(td->td_flags & TDF_SINTR));
623	thread_lock(td);
624	sleepq_switch(wchan, pri);
625	thread_unlock(td);
626}
627
628/*
629 * Block the current thread until it is awakened from its sleep queue
630 * or it is interrupted by a signal.
631 */
632int
633sleepq_wait_sig(void *wchan, int pri)
634{
635	int rcatch;
636	int rval;
637
638	rcatch = sleepq_catch_signals(wchan, pri);
639	rval = sleepq_check_signals();
640	thread_unlock(curthread);
641	if (rcatch)
642		return (rcatch);
643	return (rval);
644}
645
646/*
647 * Block the current thread until it is awakened from its sleep queue
648 * or it times out while waiting.
649 */
650int
651sleepq_timedwait(void *wchan, int pri)
652{
653	struct thread *td;
654	int rval;
655
656	td = curthread;
657	MPASS(!(td->td_flags & TDF_SINTR));
658	thread_lock(td);
659	sleepq_switch(wchan, pri);
660	rval = sleepq_check_timeout();
661	thread_unlock(td);
662
663	return (rval);
664}
665
666/*
667 * Block the current thread until it is awakened from its sleep queue,
668 * it is interrupted by a signal, or it times out waiting to be awakened.
669 */
670int
671sleepq_timedwait_sig(void *wchan, int pri)
672{
673	int rcatch, rvalt, rvals;
674
675	rcatch = sleepq_catch_signals(wchan, pri);
676	rvalt = sleepq_check_timeout();
677	rvals = sleepq_check_signals();
678	thread_unlock(curthread);
679	if (rcatch)
680		return (rcatch);
681	if (rvals)
682		return (rvals);
683	return (rvalt);
684}
685
686/*
687 * Returns the type of sleepqueue given a waitchannel.
688 */
689int
690sleepq_type(void *wchan)
691{
692	struct sleepqueue *sq;
693	int type;
694
695	MPASS(wchan != NULL);
696
697	sleepq_lock(wchan);
698	sq = sleepq_lookup(wchan);
699	if (sq == NULL) {
700		sleepq_release(wchan);
701		return (-1);
702	}
703	type = sq->sq_type;
704	sleepq_release(wchan);
705	return (type);
706}
707
708/*
709 * Removes a thread from a sleep queue and makes it
710 * runnable.
711 */
712static int
713sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
714{
715	struct sleepqueue_chain *sc;
716
717	MPASS(td != NULL);
718	MPASS(sq->sq_wchan != NULL);
719	MPASS(td->td_wchan == sq->sq_wchan);
720	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
721	THREAD_LOCK_ASSERT(td, MA_OWNED);
722	sc = SC_LOOKUP(sq->sq_wchan);
723	mtx_assert(&sc->sc_lock, MA_OWNED);
724
725	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
726
727	/* Remove the thread from the queue. */
728	sq->sq_blockedcnt[td->td_sqqueue]--;
729	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
730
731	/*
732	 * Get a sleep queue for this thread.  If this is the last waiter,
733	 * use the queue itself and take it out of the chain, otherwise,
734	 * remove a queue from the free list.
735	 */
736	if (LIST_EMPTY(&sq->sq_free)) {
737		td->td_sleepqueue = sq;
738#ifdef INVARIANTS
739		sq->sq_wchan = NULL;
740#endif
741#ifdef SLEEPQUEUE_PROFILING
742		sc->sc_depth--;
743#endif
744	} else
745		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
746	LIST_REMOVE(td->td_sleepqueue, sq_hash);
747
748	td->td_wmesg = NULL;
749	td->td_wchan = NULL;
750	td->td_flags &= ~TDF_SINTR;
751
752	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
753	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
754
755	/* Adjust priority if requested. */
756	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
757	if (pri != 0 && td->td_priority > pri &&
758	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
759		sched_prio(td, pri);
760
761	/*
762	 * Note that thread td might not be sleeping if it is running
763	 * sleepq_catch_signals() on another CPU or is blocked on its
764	 * proc lock to check signals.  There's no need to mark the
765	 * thread runnable in that case.
766	 */
767	if (TD_IS_SLEEPING(td)) {
768		TD_CLR_SLEEPING(td);
769		return (setrunnable(td));
770	}
771	return (0);
772}
773
774#ifdef INVARIANTS
775/*
776 * UMA zone item deallocator.
777 */
778static void
779sleepq_dtor(void *mem, int size, void *arg)
780{
781	struct sleepqueue *sq;
782	int i;
783
784	sq = mem;
785	for (i = 0; i < NR_SLEEPQS; i++) {
786		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
787		MPASS(sq->sq_blockedcnt[i] == 0);
788	}
789}
790#endif
791
792/*
793 * UMA zone item initializer.
794 */
795static int
796sleepq_init(void *mem, int size, int flags)
797{
798	struct sleepqueue *sq;
799	int i;
800
801	bzero(mem, size);
802	sq = mem;
803	for (i = 0; i < NR_SLEEPQS; i++) {
804		TAILQ_INIT(&sq->sq_blocked[i]);
805		sq->sq_blockedcnt[i] = 0;
806	}
807	LIST_INIT(&sq->sq_free);
808	return (0);
809}
810
811/*
812 * Find the highest priority thread sleeping on a wait channel and resume it.
813 */
814int
815sleepq_signal(void *wchan, int flags, int pri, int queue)
816{
817	struct sleepqueue *sq;
818	struct thread *td, *besttd;
819	int wakeup_swapper;
820
821	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
822	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
823	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
824	sq = sleepq_lookup(wchan);
825	if (sq == NULL)
826		return (0);
827	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
828	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
829
830	/*
831	 * Find the highest priority thread on the queue.  If there is a
832	 * tie, use the thread that first appears in the queue as it has
833	 * been sleeping the longest since threads are always added to
834	 * the tail of sleep queues.
835	 */
836	besttd = NULL;
837	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
838		if (besttd == NULL || td->td_priority < besttd->td_priority)
839			besttd = td;
840	}
841	MPASS(besttd != NULL);
842	thread_lock(besttd);
843	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
844	thread_unlock(besttd);
845	return (wakeup_swapper);
846}
847
848/*
849 * Resume all threads sleeping on a specified wait channel.
850 */
851int
852sleepq_broadcast(void *wchan, int flags, int pri, int queue)
853{
854	struct sleepqueue *sq;
855	struct thread *td, *tdn;
856	int wakeup_swapper;
857
858	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
859	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
860	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
861	sq = sleepq_lookup(wchan);
862	if (sq == NULL)
863		return (0);
864	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
865	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
866
867	/* Resume all blocked threads on the sleep queue. */
868	wakeup_swapper = 0;
869	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
870		thread_lock(td);
871		if (sleepq_resume_thread(sq, td, pri))
872			wakeup_swapper = 1;
873		thread_unlock(td);
874	}
875	return (wakeup_swapper);
876}
877
878/*
879 * Time sleeping threads out.  When the timeout expires, the thread is
880 * removed from the sleep queue and made runnable if it is still asleep.
881 */
882static void
883sleepq_timeout(void *arg)
884{
885	struct sleepqueue_chain *sc;
886	struct sleepqueue *sq;
887	struct thread *td;
888	void *wchan;
889	int wakeup_swapper;
890
891	td = arg;
892	wakeup_swapper = 0;
893	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
894	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
895
896	thread_lock(td);
897
898	if (td->td_sleeptimo > sbinuptime() || td->td_sleeptimo == 0) {
899		/*
900		 * The thread does not want a timeout (yet).
901		 */
902	} else if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
903		/*
904		 * See if the thread is asleep and get the wait
905		 * channel if it is.
906		 */
907		wchan = td->td_wchan;
908		sc = SC_LOOKUP(wchan);
909		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
910		sq = sleepq_lookup(wchan);
911		MPASS(sq != NULL);
912		td->td_flags |= TDF_TIMEOUT;
913		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
914	} else if (TD_ON_SLEEPQ(td)) {
915		/*
916		 * If the thread is on the SLEEPQ but isn't sleeping
917		 * yet, it can either be on another CPU in between
918		 * sleepq_add() and one of the sleepq_*wait*()
919		 * routines or it can be in sleepq_catch_signals().
920		 */
921		td->td_flags |= TDF_TIMEOUT;
922	}
923
924	thread_unlock(td);
925	if (wakeup_swapper)
926		kick_proc0();
927}
928
929/*
930 * Resumes a specific thread from the sleep queue associated with a specific
931 * wait channel if it is on that queue.
932 */
933void
934sleepq_remove(struct thread *td, void *wchan)
935{
936	struct sleepqueue *sq;
937	int wakeup_swapper;
938
939	/*
940	 * Look up the sleep queue for this wait channel, then re-check
941	 * that the thread is asleep on that channel, if it is not, then
942	 * bail.
943	 */
944	MPASS(wchan != NULL);
945	sleepq_lock(wchan);
946	sq = sleepq_lookup(wchan);
947	/*
948	 * We can not lock the thread here as it may be sleeping on a
949	 * different sleepq.  However, holding the sleepq lock for this
950	 * wchan can guarantee that we do not miss a wakeup for this
951	 * channel.  The asserts below will catch any false positives.
952	 */
953	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
954		sleepq_release(wchan);
955		return;
956	}
957	/* Thread is asleep on sleep queue sq, so wake it up. */
958	thread_lock(td);
959	MPASS(sq != NULL);
960	MPASS(td->td_wchan == wchan);
961	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
962	thread_unlock(td);
963	sleepq_release(wchan);
964	if (wakeup_swapper)
965		kick_proc0();
966}
967
968/*
969 * Abort a thread as if an interrupt had occurred.  Only abort
970 * interruptible waits (unfortunately it isn't safe to abort others).
971 */
972int
973sleepq_abort(struct thread *td, int intrval)
974{
975	struct sleepqueue *sq;
976	void *wchan;
977
978	THREAD_LOCK_ASSERT(td, MA_OWNED);
979	MPASS(TD_ON_SLEEPQ(td));
980	MPASS(td->td_flags & TDF_SINTR);
981	MPASS(intrval == EINTR || intrval == ERESTART);
982
983	/*
984	 * If the TDF_TIMEOUT flag is set, just leave. A
985	 * timeout is scheduled anyhow.
986	 */
987	if (td->td_flags & TDF_TIMEOUT)
988		return (0);
989
990	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
991	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
992	td->td_intrval = intrval;
993	td->td_flags |= TDF_SLEEPABORT;
994	/*
995	 * If the thread has not slept yet it will find the signal in
996	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
997	 * we have to do it here.
998	 */
999	if (!TD_IS_SLEEPING(td))
1000		return (0);
1001	wchan = td->td_wchan;
1002	MPASS(wchan != NULL);
1003	sq = sleepq_lookup(wchan);
1004	MPASS(sq != NULL);
1005
1006	/* Thread is asleep on sleep queue sq, so wake it up. */
1007	return (sleepq_resume_thread(sq, td, 0));
1008}
1009
1010#ifdef SLEEPQUEUE_PROFILING
1011#define	SLEEPQ_PROF_LOCATIONS	1024
1012#define	SLEEPQ_SBUFSIZE		512
1013struct sleepq_prof {
1014	LIST_ENTRY(sleepq_prof) sp_link;
1015	const char	*sp_wmesg;
1016	long		sp_count;
1017};
1018
1019LIST_HEAD(sqphead, sleepq_prof);
1020
1021struct sqphead sleepq_prof_free;
1022struct sqphead sleepq_hash[SC_TABLESIZE];
1023static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1024static struct mtx sleepq_prof_lock;
1025MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1026
1027static void
1028sleepq_profile(const char *wmesg)
1029{
1030	struct sleepq_prof *sp;
1031
1032	mtx_lock_spin(&sleepq_prof_lock);
1033	if (prof_enabled == 0)
1034		goto unlock;
1035	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1036		if (sp->sp_wmesg == wmesg)
1037			goto done;
1038	sp = LIST_FIRST(&sleepq_prof_free);
1039	if (sp == NULL)
1040		goto unlock;
1041	sp->sp_wmesg = wmesg;
1042	LIST_REMOVE(sp, sp_link);
1043	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1044done:
1045	sp->sp_count++;
1046unlock:
1047	mtx_unlock_spin(&sleepq_prof_lock);
1048	return;
1049}
1050
1051static void
1052sleepq_prof_reset(void)
1053{
1054	struct sleepq_prof *sp;
1055	int enabled;
1056	int i;
1057
1058	mtx_lock_spin(&sleepq_prof_lock);
1059	enabled = prof_enabled;
1060	prof_enabled = 0;
1061	for (i = 0; i < SC_TABLESIZE; i++)
1062		LIST_INIT(&sleepq_hash[i]);
1063	LIST_INIT(&sleepq_prof_free);
1064	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1065		sp = &sleepq_profent[i];
1066		sp->sp_wmesg = NULL;
1067		sp->sp_count = 0;
1068		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1069	}
1070	prof_enabled = enabled;
1071	mtx_unlock_spin(&sleepq_prof_lock);
1072}
1073
1074static int
1075enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1076{
1077	int error, v;
1078
1079	v = prof_enabled;
1080	error = sysctl_handle_int(oidp, &v, v, req);
1081	if (error)
1082		return (error);
1083	if (req->newptr == NULL)
1084		return (error);
1085	if (v == prof_enabled)
1086		return (0);
1087	if (v == 1)
1088		sleepq_prof_reset();
1089	mtx_lock_spin(&sleepq_prof_lock);
1090	prof_enabled = !!v;
1091	mtx_unlock_spin(&sleepq_prof_lock);
1092
1093	return (0);
1094}
1095
1096static int
1097reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1098{
1099	int error, v;
1100
1101	v = 0;
1102	error = sysctl_handle_int(oidp, &v, 0, req);
1103	if (error)
1104		return (error);
1105	if (req->newptr == NULL)
1106		return (error);
1107	if (v == 0)
1108		return (0);
1109	sleepq_prof_reset();
1110
1111	return (0);
1112}
1113
1114static int
1115dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1116{
1117	struct sleepq_prof *sp;
1118	struct sbuf *sb;
1119	int enabled;
1120	int error;
1121	int i;
1122
1123	error = sysctl_wire_old_buffer(req, 0);
1124	if (error != 0)
1125		return (error);
1126	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1127	sbuf_printf(sb, "\nwmesg\tcount\n");
1128	enabled = prof_enabled;
1129	mtx_lock_spin(&sleepq_prof_lock);
1130	prof_enabled = 0;
1131	mtx_unlock_spin(&sleepq_prof_lock);
1132	for (i = 0; i < SC_TABLESIZE; i++) {
1133		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1134			sbuf_printf(sb, "%s\t%ld\n",
1135			    sp->sp_wmesg, sp->sp_count);
1136		}
1137	}
1138	mtx_lock_spin(&sleepq_prof_lock);
1139	prof_enabled = enabled;
1140	mtx_unlock_spin(&sleepq_prof_lock);
1141
1142	error = sbuf_finish(sb);
1143	sbuf_delete(sb);
1144	return (error);
1145}
1146
1147SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1148    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1149SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1150    NULL, 0, reset_sleepq_prof_stats, "I",
1151    "Reset sleepqueue profiling statistics");
1152SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1153    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1154#endif
1155
1156#ifdef DDB
1157DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1158{
1159	struct sleepqueue_chain *sc;
1160	struct sleepqueue *sq;
1161#ifdef INVARIANTS
1162	struct lock_object *lock;
1163#endif
1164	struct thread *td;
1165	void *wchan;
1166	int i;
1167
1168	if (!have_addr)
1169		return;
1170
1171	/*
1172	 * First, see if there is an active sleep queue for the wait channel
1173	 * indicated by the address.
1174	 */
1175	wchan = (void *)addr;
1176	sc = SC_LOOKUP(wchan);
1177	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1178		if (sq->sq_wchan == wchan)
1179			goto found;
1180
1181	/*
1182	 * Second, see if there is an active sleep queue at the address
1183	 * indicated.
1184	 */
1185	for (i = 0; i < SC_TABLESIZE; i++)
1186		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1187			if (sq == (struct sleepqueue *)addr)
1188				goto found;
1189		}
1190
1191	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1192	return;
1193found:
1194	db_printf("Wait channel: %p\n", sq->sq_wchan);
1195	db_printf("Queue type: %d\n", sq->sq_type);
1196#ifdef INVARIANTS
1197	if (sq->sq_lock) {
1198		lock = sq->sq_lock;
1199		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1200		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1201	}
1202#endif
1203	db_printf("Blocked threads:\n");
1204	for (i = 0; i < NR_SLEEPQS; i++) {
1205		db_printf("\nQueue[%d]:\n", i);
1206		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1207			db_printf("\tempty\n");
1208		else
1209			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1210				      td_slpq) {
1211				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1212					  td->td_tid, td->td_proc->p_pid,
1213					  td->td_name);
1214			}
1215		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1216	}
1217}
1218
1219/* Alias 'show sleepqueue' to 'show sleepq'. */
1220DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1221#endif
1222