subr_sleepqueue.c revision 262192
1/*-
2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/*
28 * Implementation of sleep queues used to hold queue of threads blocked on
29 * a wait channel.  Sleep queues different from turnstiles in that wait
30 * channels are not owned by anyone, so there is no priority propagation.
31 * Sleep queues can also provide a timeout and can also be interrupted by
32 * signals.  That said, there are several similarities between the turnstile
33 * and sleep queue implementations.  (Note: turnstiles were implemented
34 * first.)  For example, both use a hash table of the same size where each
35 * bucket is referred to as a "chain" that contains both a spin lock and
36 * a linked list of queues.  An individual queue is located by using a hash
37 * to pick a chain, locking the chain, and then walking the chain searching
38 * for the queue.  This means that a wait channel object does not need to
39 * embed it's queue head just as locks do not embed their turnstile queue
40 * head.  Threads also carry around a sleep queue that they lend to the
41 * wait channel when blocking.  Just as in turnstiles, the queue includes
42 * a free list of the sleep queues of other threads blocked on the same
43 * wait channel in the case of multiple waiters.
44 *
45 * Some additional functionality provided by sleep queues include the
46 * ability to set a timeout.  The timeout is managed using a per-thread
47 * callout that resumes a thread if it is asleep.  A thread may also
48 * catch signals while it is asleep (aka an interruptible sleep).  The
49 * signal code uses sleepq_abort() to interrupt a sleeping thread.  Finally,
50 * sleep queues also provide some extra assertions.  One is not allowed to
51 * mix the sleep/wakeup and cv APIs for a given wait channel.  Also, one
52 * must consistently use the same lock to synchronize with a wait channel,
53 * though this check is currently only a warning for sleep/wakeup due to
54 * pre-existing abuse of that API.  The same lock must also be held when
55 * awakening threads, though that is currently only enforced for condition
56 * variables.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: stable/10/sys/kern/subr_sleepqueue.c 262192 2014-02-18 20:27:17Z jhb $");
61
62#include "opt_sleepqueue_profiling.h"
63#include "opt_ddb.h"
64#include "opt_kdtrace.h"
65#include "opt_sched.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/kernel.h>
71#include <sys/ktr.h>
72#include <sys/mutex.h>
73#include <sys/proc.h>
74#include <sys/sbuf.h>
75#include <sys/sched.h>
76#include <sys/sdt.h>
77#include <sys/signalvar.h>
78#include <sys/sleepqueue.h>
79#include <sys/sysctl.h>
80
81#include <vm/uma.h>
82
83#ifdef DDB
84#include <ddb/ddb.h>
85#endif
86
87/*
88 * Constants for the hash table of sleep queue chains.
89 * SC_TABLESIZE must be a power of two for SC_MASK to work properly.
90 */
91#define	SC_TABLESIZE	256			/* Must be power of 2. */
92#define	SC_MASK		(SC_TABLESIZE - 1)
93#define	SC_SHIFT	8
94#define	SC_HASH(wc)	((((uintptr_t)(wc) >> SC_SHIFT) ^ (uintptr_t)(wc)) & \
95			    SC_MASK)
96#define	SC_LOOKUP(wc)	&sleepq_chains[SC_HASH(wc)]
97#define NR_SLEEPQS      2
98/*
99 * There two different lists of sleep queues.  Both lists are connected
100 * via the sq_hash entries.  The first list is the sleep queue chain list
101 * that a sleep queue is on when it is attached to a wait channel.  The
102 * second list is the free list hung off of a sleep queue that is attached
103 * to a wait channel.
104 *
105 * Each sleep queue also contains the wait channel it is attached to, the
106 * list of threads blocked on that wait channel, flags specific to the
107 * wait channel, and the lock used to synchronize with a wait channel.
108 * The flags are used to catch mismatches between the various consumers
109 * of the sleep queue API (e.g. sleep/wakeup and condition variables).
110 * The lock pointer is only used when invariants are enabled for various
111 * debugging checks.
112 *
113 * Locking key:
114 *  c - sleep queue chain lock
115 */
116struct sleepqueue {
117	TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS];	/* (c) Blocked threads. */
118	u_int sq_blockedcnt[NR_SLEEPQS];	/* (c) N. of blocked threads. */
119	LIST_ENTRY(sleepqueue) sq_hash;		/* (c) Chain and free list. */
120	LIST_HEAD(, sleepqueue) sq_free;	/* (c) Free queues. */
121	void	*sq_wchan;			/* (c) Wait channel. */
122	int	sq_type;			/* (c) Queue type. */
123#ifdef INVARIANTS
124	struct lock_object *sq_lock;		/* (c) Associated lock. */
125#endif
126};
127
128struct sleepqueue_chain {
129	LIST_HEAD(, sleepqueue) sc_queues;	/* List of sleep queues. */
130	struct mtx sc_lock;			/* Spin lock for this chain. */
131#ifdef SLEEPQUEUE_PROFILING
132	u_int	sc_depth;			/* Length of sc_queues. */
133	u_int	sc_max_depth;			/* Max length of sc_queues. */
134#endif
135};
136
137#ifdef SLEEPQUEUE_PROFILING
138u_int sleepq_max_depth;
139static SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling");
140static SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0,
141    "sleepq chain stats");
142SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth,
143    0, "maxmimum depth achieved of a single chain");
144
145static void	sleepq_profile(const char *wmesg);
146static int	prof_enabled;
147#endif
148static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE];
149static uma_zone_t sleepq_zone;
150
151/*
152 * Prototypes for non-exported routines.
153 */
154static int	sleepq_catch_signals(void *wchan, int pri);
155static int	sleepq_check_signals(void);
156static int	sleepq_check_timeout(void);
157#ifdef INVARIANTS
158static void	sleepq_dtor(void *mem, int size, void *arg);
159#endif
160static int	sleepq_init(void *mem, int size, int flags);
161static int	sleepq_resume_thread(struct sleepqueue *sq, struct thread *td,
162		    int pri);
163static void	sleepq_switch(void *wchan, int pri);
164static void	sleepq_timeout(void *arg);
165
166SDT_PROBE_DECLARE(sched, , , sleep);
167SDT_PROBE_DECLARE(sched, , , wakeup);
168
169/*
170 * Early initialization of sleep queues that is called from the sleepinit()
171 * SYSINIT.
172 */
173void
174init_sleepqueues(void)
175{
176#ifdef SLEEPQUEUE_PROFILING
177	struct sysctl_oid *chain_oid;
178	char chain_name[10];
179#endif
180	int i;
181
182	for (i = 0; i < SC_TABLESIZE; i++) {
183		LIST_INIT(&sleepq_chains[i].sc_queues);
184		mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL,
185		    MTX_SPIN | MTX_RECURSE);
186#ifdef SLEEPQUEUE_PROFILING
187		snprintf(chain_name, sizeof(chain_name), "%d", i);
188		chain_oid = SYSCTL_ADD_NODE(NULL,
189		    SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO,
190		    chain_name, CTLFLAG_RD, NULL, "sleepq chain stats");
191		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
192		    "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL);
193		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
194		    "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0,
195		    NULL);
196#endif
197	}
198	sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue),
199#ifdef INVARIANTS
200	    NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
201#else
202	    NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0);
203#endif
204
205	thread0.td_sleepqueue = sleepq_alloc();
206}
207
208/*
209 * Get a sleep queue for a new thread.
210 */
211struct sleepqueue *
212sleepq_alloc(void)
213{
214
215	return (uma_zalloc(sleepq_zone, M_WAITOK));
216}
217
218/*
219 * Free a sleep queue when a thread is destroyed.
220 */
221void
222sleepq_free(struct sleepqueue *sq)
223{
224
225	uma_zfree(sleepq_zone, sq);
226}
227
228/*
229 * Lock the sleep queue chain associated with the specified wait channel.
230 */
231void
232sleepq_lock(void *wchan)
233{
234	struct sleepqueue_chain *sc;
235
236	sc = SC_LOOKUP(wchan);
237	mtx_lock_spin(&sc->sc_lock);
238}
239
240/*
241 * Look up the sleep queue associated with a given wait channel in the hash
242 * table locking the associated sleep queue chain.  If no queue is found in
243 * the table, NULL is returned.
244 */
245struct sleepqueue *
246sleepq_lookup(void *wchan)
247{
248	struct sleepqueue_chain *sc;
249	struct sleepqueue *sq;
250
251	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
252	sc = SC_LOOKUP(wchan);
253	mtx_assert(&sc->sc_lock, MA_OWNED);
254	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
255		if (sq->sq_wchan == wchan)
256			return (sq);
257	return (NULL);
258}
259
260/*
261 * Unlock the sleep queue chain associated with a given wait channel.
262 */
263void
264sleepq_release(void *wchan)
265{
266	struct sleepqueue_chain *sc;
267
268	sc = SC_LOOKUP(wchan);
269	mtx_unlock_spin(&sc->sc_lock);
270}
271
272/*
273 * Places the current thread on the sleep queue for the specified wait
274 * channel.  If INVARIANTS is enabled, then it associates the passed in
275 * lock with the sleepq to make sure it is held when that sleep queue is
276 * woken up.
277 */
278void
279sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags,
280    int queue)
281{
282	struct sleepqueue_chain *sc;
283	struct sleepqueue *sq;
284	struct thread *td;
285
286	td = curthread;
287	sc = SC_LOOKUP(wchan);
288	mtx_assert(&sc->sc_lock, MA_OWNED);
289	MPASS(td->td_sleepqueue != NULL);
290	MPASS(wchan != NULL);
291	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
292
293	/* If this thread is not allowed to sleep, die a horrible death. */
294	KASSERT(td->td_no_sleeping == 0,
295	    ("%s: td %p to sleep on wchan %p with sleeping prohibited",
296	    __func__, td, wchan));
297
298	/* Look up the sleep queue associated with the wait channel 'wchan'. */
299	sq = sleepq_lookup(wchan);
300
301	/*
302	 * If the wait channel does not already have a sleep queue, use
303	 * this thread's sleep queue.  Otherwise, insert the current thread
304	 * into the sleep queue already in use by this wait channel.
305	 */
306	if (sq == NULL) {
307#ifdef INVARIANTS
308		int i;
309
310		sq = td->td_sleepqueue;
311		for (i = 0; i < NR_SLEEPQS; i++) {
312			KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]),
313			    ("thread's sleep queue %d is not empty", i));
314			KASSERT(sq->sq_blockedcnt[i] == 0,
315			    ("thread's sleep queue %d count mismatches", i));
316		}
317		KASSERT(LIST_EMPTY(&sq->sq_free),
318		    ("thread's sleep queue has a non-empty free list"));
319		KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer"));
320		sq->sq_lock = lock;
321#endif
322#ifdef SLEEPQUEUE_PROFILING
323		sc->sc_depth++;
324		if (sc->sc_depth > sc->sc_max_depth) {
325			sc->sc_max_depth = sc->sc_depth;
326			if (sc->sc_max_depth > sleepq_max_depth)
327				sleepq_max_depth = sc->sc_max_depth;
328		}
329#endif
330		sq = td->td_sleepqueue;
331		LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash);
332		sq->sq_wchan = wchan;
333		sq->sq_type = flags & SLEEPQ_TYPE;
334	} else {
335		MPASS(wchan == sq->sq_wchan);
336		MPASS(lock == sq->sq_lock);
337		MPASS((flags & SLEEPQ_TYPE) == sq->sq_type);
338		LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash);
339	}
340	thread_lock(td);
341	TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq);
342	sq->sq_blockedcnt[queue]++;
343	td->td_sleepqueue = NULL;
344	td->td_sqqueue = queue;
345	td->td_wchan = wchan;
346	td->td_wmesg = wmesg;
347	if (flags & SLEEPQ_INTERRUPTIBLE) {
348		td->td_flags |= TDF_SINTR;
349		td->td_flags &= ~TDF_SLEEPABORT;
350	}
351	thread_unlock(td);
352}
353
354/*
355 * Sets a timeout that will remove the current thread from the specified
356 * sleep queue after timo ticks if the thread has not already been awakened.
357 */
358void
359sleepq_set_timeout_sbt(void *wchan, sbintime_t sbt, sbintime_t pr,
360    int flags)
361{
362	struct sleepqueue_chain *sc;
363	struct thread *td;
364
365	td = curthread;
366	sc = SC_LOOKUP(wchan);
367	mtx_assert(&sc->sc_lock, MA_OWNED);
368	MPASS(TD_ON_SLEEPQ(td));
369	MPASS(td->td_sleepqueue == NULL);
370	MPASS(wchan != NULL);
371	callout_reset_sbt_on(&td->td_slpcallout, sbt, pr,
372	    sleepq_timeout, td, PCPU_GET(cpuid), flags | C_DIRECT_EXEC);
373}
374
375/*
376 * Return the number of actual sleepers for the specified queue.
377 */
378u_int
379sleepq_sleepcnt(void *wchan, int queue)
380{
381	struct sleepqueue *sq;
382
383	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
384	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
385	sq = sleepq_lookup(wchan);
386	if (sq == NULL)
387		return (0);
388	return (sq->sq_blockedcnt[queue]);
389}
390
391/*
392 * Marks the pending sleep of the current thread as interruptible and
393 * makes an initial check for pending signals before putting a thread
394 * to sleep. Enters and exits with the thread lock held.  Thread lock
395 * may have transitioned from the sleepq lock to a run lock.
396 */
397static int
398sleepq_catch_signals(void *wchan, int pri)
399{
400	struct sleepqueue_chain *sc;
401	struct sleepqueue *sq;
402	struct thread *td;
403	struct proc *p;
404	struct sigacts *ps;
405	int sig, ret;
406
407	td = curthread;
408	p = curproc;
409	sc = SC_LOOKUP(wchan);
410	mtx_assert(&sc->sc_lock, MA_OWNED);
411	MPASS(wchan != NULL);
412	if ((td->td_pflags & TDP_WAKEUP) != 0) {
413		td->td_pflags &= ~TDP_WAKEUP;
414		ret = EINTR;
415		thread_lock(td);
416		goto out;
417	}
418
419	/*
420	 * See if there are any pending signals for this thread.  If not
421	 * we can switch immediately.  Otherwise do the signal processing
422	 * directly.
423	 */
424	thread_lock(td);
425	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) {
426		sleepq_switch(wchan, pri);
427		return (0);
428	}
429	thread_unlock(td);
430	mtx_unlock_spin(&sc->sc_lock);
431	CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)",
432		(void *)td, (long)p->p_pid, td->td_name);
433	PROC_LOCK(p);
434	ps = p->p_sigacts;
435	mtx_lock(&ps->ps_mtx);
436	sig = cursig(td);
437	if (sig == 0) {
438		mtx_unlock(&ps->ps_mtx);
439		ret = thread_suspend_check(1);
440		MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
441	} else {
442		if (SIGISMEMBER(ps->ps_sigintr, sig))
443			ret = EINTR;
444		else
445			ret = ERESTART;
446		mtx_unlock(&ps->ps_mtx);
447	}
448	/*
449	 * Lock the per-process spinlock prior to dropping the PROC_LOCK
450	 * to avoid a signal delivery race.  PROC_LOCK, PROC_SLOCK, and
451	 * thread_lock() are currently held in tdsendsignal().
452	 */
453	PROC_SLOCK(p);
454	mtx_lock_spin(&sc->sc_lock);
455	PROC_UNLOCK(p);
456	thread_lock(td);
457	PROC_SUNLOCK(p);
458	if (ret == 0) {
459		sleepq_switch(wchan, pri);
460		return (0);
461	}
462out:
463	/*
464	 * There were pending signals and this thread is still
465	 * on the sleep queue, remove it from the sleep queue.
466	 */
467	if (TD_ON_SLEEPQ(td)) {
468		sq = sleepq_lookup(wchan);
469		if (sleepq_resume_thread(sq, td, 0)) {
470#ifdef INVARIANTS
471			/*
472			 * This thread hasn't gone to sleep yet, so it
473			 * should not be swapped out.
474			 */
475			panic("not waking up swapper");
476#endif
477		}
478	}
479	mtx_unlock_spin(&sc->sc_lock);
480	MPASS(td->td_lock != &sc->sc_lock);
481	return (ret);
482}
483
484/*
485 * Switches to another thread if we are still asleep on a sleep queue.
486 * Returns with thread lock.
487 */
488static void
489sleepq_switch(void *wchan, int pri)
490{
491	struct sleepqueue_chain *sc;
492	struct sleepqueue *sq;
493	struct thread *td;
494
495	td = curthread;
496	sc = SC_LOOKUP(wchan);
497	mtx_assert(&sc->sc_lock, MA_OWNED);
498	THREAD_LOCK_ASSERT(td, MA_OWNED);
499
500	/*
501	 * If we have a sleep queue, then we've already been woken up, so
502	 * just return.
503	 */
504	if (td->td_sleepqueue != NULL) {
505		mtx_unlock_spin(&sc->sc_lock);
506		return;
507	}
508
509	/*
510	 * If TDF_TIMEOUT is set, then our sleep has been timed out
511	 * already but we are still on the sleep queue, so dequeue the
512	 * thread and return.
513	 */
514	if (td->td_flags & TDF_TIMEOUT) {
515		MPASS(TD_ON_SLEEPQ(td));
516		sq = sleepq_lookup(wchan);
517		if (sleepq_resume_thread(sq, td, 0)) {
518#ifdef INVARIANTS
519			/*
520			 * This thread hasn't gone to sleep yet, so it
521			 * should not be swapped out.
522			 */
523			panic("not waking up swapper");
524#endif
525		}
526		mtx_unlock_spin(&sc->sc_lock);
527		return;
528	}
529#ifdef SLEEPQUEUE_PROFILING
530	if (prof_enabled)
531		sleepq_profile(td->td_wmesg);
532#endif
533	MPASS(td->td_sleepqueue == NULL);
534	sched_sleep(td, pri);
535	thread_lock_set(td, &sc->sc_lock);
536	SDT_PROBE0(sched, , , sleep);
537	TD_SET_SLEEPING(td);
538	mi_switch(SW_VOL | SWT_SLEEPQ, NULL);
539	KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING"));
540	CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)",
541	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
542}
543
544/*
545 * Check to see if we timed out.
546 */
547static int
548sleepq_check_timeout(void)
549{
550	struct thread *td;
551
552	td = curthread;
553	THREAD_LOCK_ASSERT(td, MA_OWNED);
554
555	/*
556	 * If TDF_TIMEOUT is set, we timed out.
557	 */
558	if (td->td_flags & TDF_TIMEOUT) {
559		td->td_flags &= ~TDF_TIMEOUT;
560		return (EWOULDBLOCK);
561	}
562
563	/*
564	 * If TDF_TIMOFAIL is set, the timeout ran after we had
565	 * already been woken up.
566	 */
567	if (td->td_flags & TDF_TIMOFAIL)
568		td->td_flags &= ~TDF_TIMOFAIL;
569
570	/*
571	 * If callout_stop() fails, then the timeout is running on
572	 * another CPU, so synchronize with it to avoid having it
573	 * accidentally wake up a subsequent sleep.
574	 */
575	else if (callout_stop(&td->td_slpcallout) == 0) {
576		td->td_flags |= TDF_TIMEOUT;
577		TD_SET_SLEEPING(td);
578		mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL);
579	}
580	return (0);
581}
582
583/*
584 * Check to see if we were awoken by a signal.
585 */
586static int
587sleepq_check_signals(void)
588{
589	struct thread *td;
590
591	td = curthread;
592	THREAD_LOCK_ASSERT(td, MA_OWNED);
593
594	/* We are no longer in an interruptible sleep. */
595	if (td->td_flags & TDF_SINTR)
596		td->td_flags &= ~TDF_SINTR;
597
598	if (td->td_flags & TDF_SLEEPABORT) {
599		td->td_flags &= ~TDF_SLEEPABORT;
600		return (td->td_intrval);
601	}
602
603	return (0);
604}
605
606/*
607 * Block the current thread until it is awakened from its sleep queue.
608 */
609void
610sleepq_wait(void *wchan, int pri)
611{
612	struct thread *td;
613
614	td = curthread;
615	MPASS(!(td->td_flags & TDF_SINTR));
616	thread_lock(td);
617	sleepq_switch(wchan, pri);
618	thread_unlock(td);
619}
620
621/*
622 * Block the current thread until it is awakened from its sleep queue
623 * or it is interrupted by a signal.
624 */
625int
626sleepq_wait_sig(void *wchan, int pri)
627{
628	int rcatch;
629	int rval;
630
631	rcatch = sleepq_catch_signals(wchan, pri);
632	rval = sleepq_check_signals();
633	thread_unlock(curthread);
634	if (rcatch)
635		return (rcatch);
636	return (rval);
637}
638
639/*
640 * Block the current thread until it is awakened from its sleep queue
641 * or it times out while waiting.
642 */
643int
644sleepq_timedwait(void *wchan, int pri)
645{
646	struct thread *td;
647	int rval;
648
649	td = curthread;
650	MPASS(!(td->td_flags & TDF_SINTR));
651	thread_lock(td);
652	sleepq_switch(wchan, pri);
653	rval = sleepq_check_timeout();
654	thread_unlock(td);
655
656	return (rval);
657}
658
659/*
660 * Block the current thread until it is awakened from its sleep queue,
661 * it is interrupted by a signal, or it times out waiting to be awakened.
662 */
663int
664sleepq_timedwait_sig(void *wchan, int pri)
665{
666	int rcatch, rvalt, rvals;
667
668	rcatch = sleepq_catch_signals(wchan, pri);
669	rvalt = sleepq_check_timeout();
670	rvals = sleepq_check_signals();
671	thread_unlock(curthread);
672	if (rcatch)
673		return (rcatch);
674	if (rvals)
675		return (rvals);
676	return (rvalt);
677}
678
679/*
680 * Returns the type of sleepqueue given a waitchannel.
681 */
682int
683sleepq_type(void *wchan)
684{
685	struct sleepqueue *sq;
686	int type;
687
688	MPASS(wchan != NULL);
689
690	sleepq_lock(wchan);
691	sq = sleepq_lookup(wchan);
692	if (sq == NULL) {
693		sleepq_release(wchan);
694		return (-1);
695	}
696	type = sq->sq_type;
697	sleepq_release(wchan);
698	return (type);
699}
700
701/*
702 * Removes a thread from a sleep queue and makes it
703 * runnable.
704 */
705static int
706sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri)
707{
708	struct sleepqueue_chain *sc;
709
710	MPASS(td != NULL);
711	MPASS(sq->sq_wchan != NULL);
712	MPASS(td->td_wchan == sq->sq_wchan);
713	MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0);
714	THREAD_LOCK_ASSERT(td, MA_OWNED);
715	sc = SC_LOOKUP(sq->sq_wchan);
716	mtx_assert(&sc->sc_lock, MA_OWNED);
717
718	SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
719
720	/* Remove the thread from the queue. */
721	sq->sq_blockedcnt[td->td_sqqueue]--;
722	TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq);
723
724	/*
725	 * Get a sleep queue for this thread.  If this is the last waiter,
726	 * use the queue itself and take it out of the chain, otherwise,
727	 * remove a queue from the free list.
728	 */
729	if (LIST_EMPTY(&sq->sq_free)) {
730		td->td_sleepqueue = sq;
731#ifdef INVARIANTS
732		sq->sq_wchan = NULL;
733#endif
734#ifdef SLEEPQUEUE_PROFILING
735		sc->sc_depth--;
736#endif
737	} else
738		td->td_sleepqueue = LIST_FIRST(&sq->sq_free);
739	LIST_REMOVE(td->td_sleepqueue, sq_hash);
740
741	td->td_wmesg = NULL;
742	td->td_wchan = NULL;
743	td->td_flags &= ~TDF_SINTR;
744
745	CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)",
746	    (void *)td, (long)td->td_proc->p_pid, td->td_name);
747
748	/* Adjust priority if requested. */
749	MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX));
750	if (pri != 0 && td->td_priority > pri &&
751	    PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
752		sched_prio(td, pri);
753
754	/*
755	 * Note that thread td might not be sleeping if it is running
756	 * sleepq_catch_signals() on another CPU or is blocked on its
757	 * proc lock to check signals.  There's no need to mark the
758	 * thread runnable in that case.
759	 */
760	if (TD_IS_SLEEPING(td)) {
761		TD_CLR_SLEEPING(td);
762		return (setrunnable(td));
763	}
764	return (0);
765}
766
767#ifdef INVARIANTS
768/*
769 * UMA zone item deallocator.
770 */
771static void
772sleepq_dtor(void *mem, int size, void *arg)
773{
774	struct sleepqueue *sq;
775	int i;
776
777	sq = mem;
778	for (i = 0; i < NR_SLEEPQS; i++) {
779		MPASS(TAILQ_EMPTY(&sq->sq_blocked[i]));
780		MPASS(sq->sq_blockedcnt[i] == 0);
781	}
782}
783#endif
784
785/*
786 * UMA zone item initializer.
787 */
788static int
789sleepq_init(void *mem, int size, int flags)
790{
791	struct sleepqueue *sq;
792	int i;
793
794	bzero(mem, size);
795	sq = mem;
796	for (i = 0; i < NR_SLEEPQS; i++) {
797		TAILQ_INIT(&sq->sq_blocked[i]);
798		sq->sq_blockedcnt[i] = 0;
799	}
800	LIST_INIT(&sq->sq_free);
801	return (0);
802}
803
804/*
805 * Find the highest priority thread sleeping on a wait channel and resume it.
806 */
807int
808sleepq_signal(void *wchan, int flags, int pri, int queue)
809{
810	struct sleepqueue *sq;
811	struct thread *td, *besttd;
812	int wakeup_swapper;
813
814	CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags);
815	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
816	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
817	sq = sleepq_lookup(wchan);
818	if (sq == NULL)
819		return (0);
820	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
821	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
822
823	/*
824	 * Find the highest priority thread on the queue.  If there is a
825	 * tie, use the thread that first appears in the queue as it has
826	 * been sleeping the longest since threads are always added to
827	 * the tail of sleep queues.
828	 */
829	besttd = NULL;
830	TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) {
831		if (besttd == NULL || td->td_priority < besttd->td_priority)
832			besttd = td;
833	}
834	MPASS(besttd != NULL);
835	thread_lock(besttd);
836	wakeup_swapper = sleepq_resume_thread(sq, besttd, pri);
837	thread_unlock(besttd);
838	return (wakeup_swapper);
839}
840
841/*
842 * Resume all threads sleeping on a specified wait channel.
843 */
844int
845sleepq_broadcast(void *wchan, int flags, int pri, int queue)
846{
847	struct sleepqueue *sq;
848	struct thread *td, *tdn;
849	int wakeup_swapper;
850
851	CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags);
852	KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__));
853	MPASS((queue >= 0) && (queue < NR_SLEEPQS));
854	sq = sleepq_lookup(wchan);
855	if (sq == NULL)
856		return (0);
857	KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE),
858	    ("%s: mismatch between sleep/wakeup and cv_*", __func__));
859
860	/* Resume all blocked threads on the sleep queue. */
861	wakeup_swapper = 0;
862	TAILQ_FOREACH_SAFE(td, &sq->sq_blocked[queue], td_slpq, tdn) {
863		thread_lock(td);
864		if (sleepq_resume_thread(sq, td, pri))
865			wakeup_swapper = 1;
866		thread_unlock(td);
867	}
868	return (wakeup_swapper);
869}
870
871/*
872 * Time sleeping threads out.  When the timeout expires, the thread is
873 * removed from the sleep queue and made runnable if it is still asleep.
874 */
875static void
876sleepq_timeout(void *arg)
877{
878	struct sleepqueue_chain *sc;
879	struct sleepqueue *sq;
880	struct thread *td;
881	void *wchan;
882	int wakeup_swapper;
883
884	td = arg;
885	wakeup_swapper = 0;
886	CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)",
887	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
888
889	/*
890	 * First, see if the thread is asleep and get the wait channel if
891	 * it is.
892	 */
893	thread_lock(td);
894	if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) {
895		wchan = td->td_wchan;
896		sc = SC_LOOKUP(wchan);
897		THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock);
898		sq = sleepq_lookup(wchan);
899		MPASS(sq != NULL);
900		td->td_flags |= TDF_TIMEOUT;
901		wakeup_swapper = sleepq_resume_thread(sq, td, 0);
902		thread_unlock(td);
903		if (wakeup_swapper)
904			kick_proc0();
905		return;
906	}
907
908	/*
909	 * If the thread is on the SLEEPQ but isn't sleeping yet, it
910	 * can either be on another CPU in between sleepq_add() and
911	 * one of the sleepq_*wait*() routines or it can be in
912	 * sleepq_catch_signals().
913	 */
914	if (TD_ON_SLEEPQ(td)) {
915		td->td_flags |= TDF_TIMEOUT;
916		thread_unlock(td);
917		return;
918	}
919
920	/*
921	 * Now check for the edge cases.  First, if TDF_TIMEOUT is set,
922	 * then the other thread has already yielded to us, so clear
923	 * the flag and resume it.  If TDF_TIMEOUT is not set, then the
924	 * we know that the other thread is not on a sleep queue, but it
925	 * hasn't resumed execution yet.  In that case, set TDF_TIMOFAIL
926	 * to let it know that the timeout has already run and doesn't
927	 * need to be canceled.
928	 */
929	if (td->td_flags & TDF_TIMEOUT) {
930		MPASS(TD_IS_SLEEPING(td));
931		td->td_flags &= ~TDF_TIMEOUT;
932		TD_CLR_SLEEPING(td);
933		wakeup_swapper = setrunnable(td);
934	} else
935		td->td_flags |= TDF_TIMOFAIL;
936	thread_unlock(td);
937	if (wakeup_swapper)
938		kick_proc0();
939}
940
941/*
942 * Resumes a specific thread from the sleep queue associated with a specific
943 * wait channel if it is on that queue.
944 */
945void
946sleepq_remove(struct thread *td, void *wchan)
947{
948	struct sleepqueue *sq;
949	int wakeup_swapper;
950
951	/*
952	 * Look up the sleep queue for this wait channel, then re-check
953	 * that the thread is asleep on that channel, if it is not, then
954	 * bail.
955	 */
956	MPASS(wchan != NULL);
957	sleepq_lock(wchan);
958	sq = sleepq_lookup(wchan);
959	/*
960	 * We can not lock the thread here as it may be sleeping on a
961	 * different sleepq.  However, holding the sleepq lock for this
962	 * wchan can guarantee that we do not miss a wakeup for this
963	 * channel.  The asserts below will catch any false positives.
964	 */
965	if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) {
966		sleepq_release(wchan);
967		return;
968	}
969	/* Thread is asleep on sleep queue sq, so wake it up. */
970	thread_lock(td);
971	MPASS(sq != NULL);
972	MPASS(td->td_wchan == wchan);
973	wakeup_swapper = sleepq_resume_thread(sq, td, 0);
974	thread_unlock(td);
975	sleepq_release(wchan);
976	if (wakeup_swapper)
977		kick_proc0();
978}
979
980/*
981 * Abort a thread as if an interrupt had occurred.  Only abort
982 * interruptible waits (unfortunately it isn't safe to abort others).
983 */
984int
985sleepq_abort(struct thread *td, int intrval)
986{
987	struct sleepqueue *sq;
988	void *wchan;
989
990	THREAD_LOCK_ASSERT(td, MA_OWNED);
991	MPASS(TD_ON_SLEEPQ(td));
992	MPASS(td->td_flags & TDF_SINTR);
993	MPASS(intrval == EINTR || intrval == ERESTART);
994
995	/*
996	 * If the TDF_TIMEOUT flag is set, just leave. A
997	 * timeout is scheduled anyhow.
998	 */
999	if (td->td_flags & TDF_TIMEOUT)
1000		return (0);
1001
1002	CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)",
1003	    (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name);
1004	td->td_intrval = intrval;
1005	td->td_flags |= TDF_SLEEPABORT;
1006	/*
1007	 * If the thread has not slept yet it will find the signal in
1008	 * sleepq_catch_signals() and call sleepq_resume_thread.  Otherwise
1009	 * we have to do it here.
1010	 */
1011	if (!TD_IS_SLEEPING(td))
1012		return (0);
1013	wchan = td->td_wchan;
1014	MPASS(wchan != NULL);
1015	sq = sleepq_lookup(wchan);
1016	MPASS(sq != NULL);
1017
1018	/* Thread is asleep on sleep queue sq, so wake it up. */
1019	return (sleepq_resume_thread(sq, td, 0));
1020}
1021
1022#ifdef SLEEPQUEUE_PROFILING
1023#define	SLEEPQ_PROF_LOCATIONS	1024
1024#define	SLEEPQ_SBUFSIZE		512
1025struct sleepq_prof {
1026	LIST_ENTRY(sleepq_prof) sp_link;
1027	const char	*sp_wmesg;
1028	long		sp_count;
1029};
1030
1031LIST_HEAD(sqphead, sleepq_prof);
1032
1033struct sqphead sleepq_prof_free;
1034struct sqphead sleepq_hash[SC_TABLESIZE];
1035static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS];
1036static struct mtx sleepq_prof_lock;
1037MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN);
1038
1039static void
1040sleepq_profile(const char *wmesg)
1041{
1042	struct sleepq_prof *sp;
1043
1044	mtx_lock_spin(&sleepq_prof_lock);
1045	if (prof_enabled == 0)
1046		goto unlock;
1047	LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link)
1048		if (sp->sp_wmesg == wmesg)
1049			goto done;
1050	sp = LIST_FIRST(&sleepq_prof_free);
1051	if (sp == NULL)
1052		goto unlock;
1053	sp->sp_wmesg = wmesg;
1054	LIST_REMOVE(sp, sp_link);
1055	LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link);
1056done:
1057	sp->sp_count++;
1058unlock:
1059	mtx_unlock_spin(&sleepq_prof_lock);
1060	return;
1061}
1062
1063static void
1064sleepq_prof_reset(void)
1065{
1066	struct sleepq_prof *sp;
1067	int enabled;
1068	int i;
1069
1070	mtx_lock_spin(&sleepq_prof_lock);
1071	enabled = prof_enabled;
1072	prof_enabled = 0;
1073	for (i = 0; i < SC_TABLESIZE; i++)
1074		LIST_INIT(&sleepq_hash[i]);
1075	LIST_INIT(&sleepq_prof_free);
1076	for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) {
1077		sp = &sleepq_profent[i];
1078		sp->sp_wmesg = NULL;
1079		sp->sp_count = 0;
1080		LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link);
1081	}
1082	prof_enabled = enabled;
1083	mtx_unlock_spin(&sleepq_prof_lock);
1084}
1085
1086static int
1087enable_sleepq_prof(SYSCTL_HANDLER_ARGS)
1088{
1089	int error, v;
1090
1091	v = prof_enabled;
1092	error = sysctl_handle_int(oidp, &v, v, req);
1093	if (error)
1094		return (error);
1095	if (req->newptr == NULL)
1096		return (error);
1097	if (v == prof_enabled)
1098		return (0);
1099	if (v == 1)
1100		sleepq_prof_reset();
1101	mtx_lock_spin(&sleepq_prof_lock);
1102	prof_enabled = !!v;
1103	mtx_unlock_spin(&sleepq_prof_lock);
1104
1105	return (0);
1106}
1107
1108static int
1109reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1110{
1111	int error, v;
1112
1113	v = 0;
1114	error = sysctl_handle_int(oidp, &v, 0, req);
1115	if (error)
1116		return (error);
1117	if (req->newptr == NULL)
1118		return (error);
1119	if (v == 0)
1120		return (0);
1121	sleepq_prof_reset();
1122
1123	return (0);
1124}
1125
1126static int
1127dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS)
1128{
1129	struct sleepq_prof *sp;
1130	struct sbuf *sb;
1131	int enabled;
1132	int error;
1133	int i;
1134
1135	error = sysctl_wire_old_buffer(req, 0);
1136	if (error != 0)
1137		return (error);
1138	sb = sbuf_new_for_sysctl(NULL, NULL, SLEEPQ_SBUFSIZE, req);
1139	sbuf_printf(sb, "\nwmesg\tcount\n");
1140	enabled = prof_enabled;
1141	mtx_lock_spin(&sleepq_prof_lock);
1142	prof_enabled = 0;
1143	mtx_unlock_spin(&sleepq_prof_lock);
1144	for (i = 0; i < SC_TABLESIZE; i++) {
1145		LIST_FOREACH(sp, &sleepq_hash[i], sp_link) {
1146			sbuf_printf(sb, "%s\t%ld\n",
1147			    sp->sp_wmesg, sp->sp_count);
1148		}
1149	}
1150	mtx_lock_spin(&sleepq_prof_lock);
1151	prof_enabled = enabled;
1152	mtx_unlock_spin(&sleepq_prof_lock);
1153
1154	error = sbuf_finish(sb);
1155	sbuf_delete(sb);
1156	return (error);
1157}
1158
1159SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
1160    NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics");
1161SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
1162    NULL, 0, reset_sleepq_prof_stats, "I",
1163    "Reset sleepqueue profiling statistics");
1164SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW,
1165    NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling");
1166#endif
1167
1168#ifdef DDB
1169DB_SHOW_COMMAND(sleepq, db_show_sleepqueue)
1170{
1171	struct sleepqueue_chain *sc;
1172	struct sleepqueue *sq;
1173#ifdef INVARIANTS
1174	struct lock_object *lock;
1175#endif
1176	struct thread *td;
1177	void *wchan;
1178	int i;
1179
1180	if (!have_addr)
1181		return;
1182
1183	/*
1184	 * First, see if there is an active sleep queue for the wait channel
1185	 * indicated by the address.
1186	 */
1187	wchan = (void *)addr;
1188	sc = SC_LOOKUP(wchan);
1189	LIST_FOREACH(sq, &sc->sc_queues, sq_hash)
1190		if (sq->sq_wchan == wchan)
1191			goto found;
1192
1193	/*
1194	 * Second, see if there is an active sleep queue at the address
1195	 * indicated.
1196	 */
1197	for (i = 0; i < SC_TABLESIZE; i++)
1198		LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) {
1199			if (sq == (struct sleepqueue *)addr)
1200				goto found;
1201		}
1202
1203	db_printf("Unable to locate a sleep queue via %p\n", (void *)addr);
1204	return;
1205found:
1206	db_printf("Wait channel: %p\n", sq->sq_wchan);
1207	db_printf("Queue type: %d\n", sq->sq_type);
1208#ifdef INVARIANTS
1209	if (sq->sq_lock) {
1210		lock = sq->sq_lock;
1211		db_printf("Associated Interlock: %p - (%s) %s\n", lock,
1212		    LOCK_CLASS(lock)->lc_name, lock->lo_name);
1213	}
1214#endif
1215	db_printf("Blocked threads:\n");
1216	for (i = 0; i < NR_SLEEPQS; i++) {
1217		db_printf("\nQueue[%d]:\n", i);
1218		if (TAILQ_EMPTY(&sq->sq_blocked[i]))
1219			db_printf("\tempty\n");
1220		else
1221			TAILQ_FOREACH(td, &sq->sq_blocked[0],
1222				      td_slpq) {
1223				db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td,
1224					  td->td_tid, td->td_proc->p_pid,
1225					  td->td_name);
1226			}
1227		db_printf("(expected: %u)\n", sq->sq_blockedcnt[i]);
1228	}
1229}
1230
1231/* Alias 'show sleepqueue' to 'show sleepq'. */
1232DB_SHOW_ALIAS(sleepqueue, db_show_sleepqueue);
1233#endif
1234