sched_ule.c revision 266330
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/10/sys/kern/sched_ule.c 266330 2014-05-17 17:18:35Z ian $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#define	KTR_ULE	0
81
82#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
83#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
84#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
85
86/*
87 * Thread scheduler specific section.  All fields are protected
88 * by the thread lock.
89 */
90struct td_sched {
91	struct runq	*ts_runq;	/* Run-queue we're queued on. */
92	short		ts_flags;	/* TSF_* flags. */
93	u_char		ts_cpu;		/* CPU that we have affinity for. */
94	int		ts_rltick;	/* Real last tick, for affinity. */
95	int		ts_slice;	/* Ticks of slice remaining. */
96	u_int		ts_slptime;	/* Number of ticks we vol. slept */
97	u_int		ts_runtime;	/* Number of ticks we were running */
98	int		ts_ltick;	/* Last tick that we were running on */
99	int		ts_ftick;	/* First tick that we were running on */
100	int		ts_ticks;	/* Tick count */
101#ifdef KTR
102	char		ts_name[TS_NAME_LEN];
103#endif
104};
105/* flags kept in ts_flags */
106#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
107#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
108
109static struct td_sched td_sched0;
110
111#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
112#define	THREAD_CAN_SCHED(td, cpu)	\
113    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
114
115/*
116 * Priority ranges used for interactive and non-interactive timeshare
117 * threads.  The timeshare priorities are split up into four ranges.
118 * The first range handles interactive threads.  The last three ranges
119 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
120 * ranges supporting nice values.
121 */
122#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
123#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
124#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
125
126#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
127#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
128#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
129#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
130
131/*
132 * Cpu percentage computation macros and defines.
133 *
134 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
135 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
136 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
137 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
138 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
139 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
140 */
141#define	SCHED_TICK_SECS		10
142#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
143#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
144#define	SCHED_TICK_SHIFT	10
145#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
146#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
147
148/*
149 * These macros determine priorities for non-interactive threads.  They are
150 * assigned a priority based on their recent cpu utilization as expressed
151 * by the ratio of ticks to the tick total.  NHALF priorities at the start
152 * and end of the MIN to MAX timeshare range are only reachable with negative
153 * or positive nice respectively.
154 *
155 * PRI_RANGE:	Priority range for utilization dependent priorities.
156 * PRI_NRESV:	Number of nice values.
157 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
158 * PRI_NICE:	Determines the part of the priority inherited from nice.
159 */
160#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
161#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
162#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
163#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
164#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
165#define	SCHED_PRI_TICKS(ts)						\
166    (SCHED_TICK_HZ((ts)) /						\
167    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
168#define	SCHED_PRI_NICE(nice)	(nice)
169
170/*
171 * These determine the interactivity of a process.  Interactivity differs from
172 * cpu utilization in that it expresses the voluntary time slept vs time ran
173 * while cpu utilization includes all time not running.  This more accurately
174 * models the intent of the thread.
175 *
176 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
177 *		before throttling back.
178 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
179 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
180 * INTERACT_THRESH:	Threshold for placement on the current runq.
181 */
182#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
183#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
184#define	SCHED_INTERACT_MAX	(100)
185#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
186#define	SCHED_INTERACT_THRESH	(30)
187
188/*
189 * These parameters determine the slice behavior for batch work.
190 */
191#define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
192#define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
193
194/* Flags kept in td_flags. */
195#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
196
197/*
198 * tickincr:		Converts a stathz tick into a hz domain scaled by
199 *			the shift factor.  Without the shift the error rate
200 *			due to rounding would be unacceptably high.
201 * realstathz:		stathz is sometimes 0 and run off of hz.
202 * sched_slice:		Runtime of each thread before rescheduling.
203 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
204 */
205static int sched_interact = SCHED_INTERACT_THRESH;
206static int tickincr = 8 << SCHED_TICK_SHIFT;
207static int realstathz = 127;	/* reset during boot. */
208static int sched_slice = 10;	/* reset during boot. */
209static int sched_slice_min = 1;	/* reset during boot. */
210#ifdef PREEMPTION
211#ifdef FULL_PREEMPTION
212static int preempt_thresh = PRI_MAX_IDLE;
213#else
214static int preempt_thresh = PRI_MIN_KERN;
215#endif
216#else
217static int preempt_thresh = 0;
218#endif
219static int static_boost = PRI_MIN_BATCH;
220static int sched_idlespins = 10000;
221static int sched_idlespinthresh = -1;
222
223/*
224 * tdq - per processor runqs and statistics.  All fields are protected by the
225 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
226 * locking in sched_pickcpu();
227 */
228struct tdq {
229	/*
230	 * Ordered to improve efficiency of cpu_search() and switch().
231	 * tdq_lock is padded to avoid false sharing with tdq_load and
232	 * tdq_cpu_idle.
233	 */
234	struct mtx_padalign tdq_lock;		/* run queue lock. */
235	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
236	volatile int	tdq_load;		/* Aggregate load. */
237	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
238	int		tdq_sysload;		/* For loadavg, !ITHD load. */
239	int		tdq_transferable;	/* Transferable thread count. */
240	short		tdq_switchcnt;		/* Switches this tick. */
241	short		tdq_oldswitchcnt;	/* Switches last tick. */
242	u_char		tdq_lowpri;		/* Lowest priority thread. */
243	u_char		tdq_ipipending;		/* IPI pending. */
244	u_char		tdq_idx;		/* Current insert index. */
245	u_char		tdq_ridx;		/* Current removal index. */
246	struct runq	tdq_realtime;		/* real-time run queue. */
247	struct runq	tdq_timeshare;		/* timeshare run queue. */
248	struct runq	tdq_idle;		/* Queue of IDLE threads. */
249	char		tdq_name[TDQ_NAME_LEN];
250#ifdef KTR
251	char		tdq_loadname[TDQ_LOADNAME_LEN];
252#endif
253} __aligned(64);
254
255/* Idle thread states and config. */
256#define	TDQ_RUNNING	1
257#define	TDQ_IDLE	2
258
259#ifdef SMP
260struct cpu_group *cpu_top;		/* CPU topology */
261
262#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
263#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
264
265/*
266 * Run-time tunables.
267 */
268static int rebalance = 1;
269static int balance_interval = 128;	/* Default set in sched_initticks(). */
270static int affinity;
271static int steal_idle = 1;
272static int steal_thresh = 2;
273
274/*
275 * One thread queue per processor.
276 */
277static struct tdq	tdq_cpu[MAXCPU];
278static struct tdq	*balance_tdq;
279static int balance_ticks;
280static DPCPU_DEFINE(uint32_t, randomval);
281
282#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
283#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
284#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
285#else	/* !SMP */
286static struct tdq	tdq_cpu;
287
288#define	TDQ_ID(x)	(0)
289#define	TDQ_SELF()	(&tdq_cpu)
290#define	TDQ_CPU(x)	(&tdq_cpu)
291#endif
292
293#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
294#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
295#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
296#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
297#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
298
299static void sched_priority(struct thread *);
300static void sched_thread_priority(struct thread *, u_char);
301static int sched_interact_score(struct thread *);
302static void sched_interact_update(struct thread *);
303static void sched_interact_fork(struct thread *);
304static void sched_pctcpu_update(struct td_sched *, int);
305
306/* Operations on per processor queues */
307static struct thread *tdq_choose(struct tdq *);
308static void tdq_setup(struct tdq *);
309static void tdq_load_add(struct tdq *, struct thread *);
310static void tdq_load_rem(struct tdq *, struct thread *);
311static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
312static __inline void tdq_runq_rem(struct tdq *, struct thread *);
313static inline int sched_shouldpreempt(int, int, int);
314void tdq_print(int cpu);
315static void runq_print(struct runq *rq);
316static void tdq_add(struct tdq *, struct thread *, int);
317#ifdef SMP
318static int tdq_move(struct tdq *, struct tdq *);
319static int tdq_idled(struct tdq *);
320static void tdq_notify(struct tdq *, struct thread *);
321static struct thread *tdq_steal(struct tdq *, int);
322static struct thread *runq_steal(struct runq *, int);
323static int sched_pickcpu(struct thread *, int);
324static void sched_balance(void);
325static int sched_balance_pair(struct tdq *, struct tdq *);
326static inline struct tdq *sched_setcpu(struct thread *, int, int);
327static inline void thread_unblock_switch(struct thread *, struct mtx *);
328static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
329static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
330static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
331    struct cpu_group *cg, int indent);
332#endif
333
334static void sched_setup(void *dummy);
335SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
336
337static void sched_initticks(void *dummy);
338SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
339    NULL);
340
341SDT_PROVIDER_DEFINE(sched);
342
343SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
344    "struct proc *", "uint8_t");
345SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
346    "struct proc *", "void *");
347SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
348    "struct proc *", "void *", "int");
349SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
350    "struct proc *", "uint8_t", "struct thread *");
351SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
352SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
353    "struct proc *");
354SDT_PROBE_DEFINE(sched, , , on__cpu);
355SDT_PROBE_DEFINE(sched, , , remain__cpu);
356SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
357    "struct proc *");
358
359/*
360 * Print the threads waiting on a run-queue.
361 */
362static void
363runq_print(struct runq *rq)
364{
365	struct rqhead *rqh;
366	struct thread *td;
367	int pri;
368	int j;
369	int i;
370
371	for (i = 0; i < RQB_LEN; i++) {
372		printf("\t\trunq bits %d 0x%zx\n",
373		    i, rq->rq_status.rqb_bits[i]);
374		for (j = 0; j < RQB_BPW; j++)
375			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
376				pri = j + (i << RQB_L2BPW);
377				rqh = &rq->rq_queues[pri];
378				TAILQ_FOREACH(td, rqh, td_runq) {
379					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
380					    td, td->td_name, td->td_priority,
381					    td->td_rqindex, pri);
382				}
383			}
384	}
385}
386
387/*
388 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
389 */
390void
391tdq_print(int cpu)
392{
393	struct tdq *tdq;
394
395	tdq = TDQ_CPU(cpu);
396
397	printf("tdq %d:\n", TDQ_ID(tdq));
398	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
399	printf("\tLock name:      %s\n", tdq->tdq_name);
400	printf("\tload:           %d\n", tdq->tdq_load);
401	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
402	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
403	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
404	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
405	printf("\tload transferable: %d\n", tdq->tdq_transferable);
406	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
407	printf("\trealtime runq:\n");
408	runq_print(&tdq->tdq_realtime);
409	printf("\ttimeshare runq:\n");
410	runq_print(&tdq->tdq_timeshare);
411	printf("\tidle runq:\n");
412	runq_print(&tdq->tdq_idle);
413}
414
415static inline int
416sched_shouldpreempt(int pri, int cpri, int remote)
417{
418	/*
419	 * If the new priority is not better than the current priority there is
420	 * nothing to do.
421	 */
422	if (pri >= cpri)
423		return (0);
424	/*
425	 * Always preempt idle.
426	 */
427	if (cpri >= PRI_MIN_IDLE)
428		return (1);
429	/*
430	 * If preemption is disabled don't preempt others.
431	 */
432	if (preempt_thresh == 0)
433		return (0);
434	/*
435	 * Preempt if we exceed the threshold.
436	 */
437	if (pri <= preempt_thresh)
438		return (1);
439	/*
440	 * If we're interactive or better and there is non-interactive
441	 * or worse running preempt only remote processors.
442	 */
443	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
444		return (1);
445	return (0);
446}
447
448/*
449 * Add a thread to the actual run-queue.  Keeps transferable counts up to
450 * date with what is actually on the run-queue.  Selects the correct
451 * queue position for timeshare threads.
452 */
453static __inline void
454tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
455{
456	struct td_sched *ts;
457	u_char pri;
458
459	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
460	THREAD_LOCK_ASSERT(td, MA_OWNED);
461
462	pri = td->td_priority;
463	ts = td->td_sched;
464	TD_SET_RUNQ(td);
465	if (THREAD_CAN_MIGRATE(td)) {
466		tdq->tdq_transferable++;
467		ts->ts_flags |= TSF_XFERABLE;
468	}
469	if (pri < PRI_MIN_BATCH) {
470		ts->ts_runq = &tdq->tdq_realtime;
471	} else if (pri <= PRI_MAX_BATCH) {
472		ts->ts_runq = &tdq->tdq_timeshare;
473		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
474			("Invalid priority %d on timeshare runq", pri));
475		/*
476		 * This queue contains only priorities between MIN and MAX
477		 * realtime.  Use the whole queue to represent these values.
478		 */
479		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
480			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
481			pri = (pri + tdq->tdq_idx) % RQ_NQS;
482			/*
483			 * This effectively shortens the queue by one so we
484			 * can have a one slot difference between idx and
485			 * ridx while we wait for threads to drain.
486			 */
487			if (tdq->tdq_ridx != tdq->tdq_idx &&
488			    pri == tdq->tdq_ridx)
489				pri = (unsigned char)(pri - 1) % RQ_NQS;
490		} else
491			pri = tdq->tdq_ridx;
492		runq_add_pri(ts->ts_runq, td, pri, flags);
493		return;
494	} else
495		ts->ts_runq = &tdq->tdq_idle;
496	runq_add(ts->ts_runq, td, flags);
497}
498
499/*
500 * Remove a thread from a run-queue.  This typically happens when a thread
501 * is selected to run.  Running threads are not on the queue and the
502 * transferable count does not reflect them.
503 */
504static __inline void
505tdq_runq_rem(struct tdq *tdq, struct thread *td)
506{
507	struct td_sched *ts;
508
509	ts = td->td_sched;
510	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
511	KASSERT(ts->ts_runq != NULL,
512	    ("tdq_runq_remove: thread %p null ts_runq", td));
513	if (ts->ts_flags & TSF_XFERABLE) {
514		tdq->tdq_transferable--;
515		ts->ts_flags &= ~TSF_XFERABLE;
516	}
517	if (ts->ts_runq == &tdq->tdq_timeshare) {
518		if (tdq->tdq_idx != tdq->tdq_ridx)
519			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
520		else
521			runq_remove_idx(ts->ts_runq, td, NULL);
522	} else
523		runq_remove(ts->ts_runq, td);
524}
525
526/*
527 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
528 * for this thread to the referenced thread queue.
529 */
530static void
531tdq_load_add(struct tdq *tdq, struct thread *td)
532{
533
534	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
535	THREAD_LOCK_ASSERT(td, MA_OWNED);
536
537	tdq->tdq_load++;
538	if ((td->td_flags & TDF_NOLOAD) == 0)
539		tdq->tdq_sysload++;
540	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
541	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
542}
543
544/*
545 * Remove the load from a thread that is transitioning to a sleep state or
546 * exiting.
547 */
548static void
549tdq_load_rem(struct tdq *tdq, struct thread *td)
550{
551
552	THREAD_LOCK_ASSERT(td, MA_OWNED);
553	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
554	KASSERT(tdq->tdq_load != 0,
555	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
556
557	tdq->tdq_load--;
558	if ((td->td_flags & TDF_NOLOAD) == 0)
559		tdq->tdq_sysload--;
560	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
561	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
562}
563
564/*
565 * Bound timeshare latency by decreasing slice size as load increases.  We
566 * consider the maximum latency as the sum of the threads waiting to run
567 * aside from curthread and target no more than sched_slice latency but
568 * no less than sched_slice_min runtime.
569 */
570static inline int
571tdq_slice(struct tdq *tdq)
572{
573	int load;
574
575	/*
576	 * It is safe to use sys_load here because this is called from
577	 * contexts where timeshare threads are running and so there
578	 * cannot be higher priority load in the system.
579	 */
580	load = tdq->tdq_sysload - 1;
581	if (load >= SCHED_SLICE_MIN_DIVISOR)
582		return (sched_slice_min);
583	if (load <= 1)
584		return (sched_slice);
585	return (sched_slice / load);
586}
587
588/*
589 * Set lowpri to its exact value by searching the run-queue and
590 * evaluating curthread.  curthread may be passed as an optimization.
591 */
592static void
593tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
594{
595	struct thread *td;
596
597	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
598	if (ctd == NULL)
599		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
600	td = tdq_choose(tdq);
601	if (td == NULL || td->td_priority > ctd->td_priority)
602		tdq->tdq_lowpri = ctd->td_priority;
603	else
604		tdq->tdq_lowpri = td->td_priority;
605}
606
607#ifdef SMP
608struct cpu_search {
609	cpuset_t cs_mask;
610	u_int	cs_prefer;
611	int	cs_pri;		/* Min priority for low. */
612	int	cs_limit;	/* Max load for low, min load for high. */
613	int	cs_cpu;
614	int	cs_load;
615};
616
617#define	CPU_SEARCH_LOWEST	0x1
618#define	CPU_SEARCH_HIGHEST	0x2
619#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
620
621#define	CPUSET_FOREACH(cpu, mask)				\
622	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
623		if (CPU_ISSET(cpu, &mask))
624
625static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
626    struct cpu_search *high, const int match);
627int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
628int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
629int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
630    struct cpu_search *high);
631
632/*
633 * Search the tree of cpu_groups for the lowest or highest loaded cpu
634 * according to the match argument.  This routine actually compares the
635 * load on all paths through the tree and finds the least loaded cpu on
636 * the least loaded path, which may differ from the least loaded cpu in
637 * the system.  This balances work among caches and busses.
638 *
639 * This inline is instantiated in three forms below using constants for the
640 * match argument.  It is reduced to the minimum set for each case.  It is
641 * also recursive to the depth of the tree.
642 */
643static __inline int
644cpu_search(const struct cpu_group *cg, struct cpu_search *low,
645    struct cpu_search *high, const int match)
646{
647	struct cpu_search lgroup;
648	struct cpu_search hgroup;
649	cpuset_t cpumask;
650	struct cpu_group *child;
651	struct tdq *tdq;
652	int cpu, i, hload, lload, load, total, rnd, *rndptr;
653
654	total = 0;
655	cpumask = cg->cg_mask;
656	if (match & CPU_SEARCH_LOWEST) {
657		lload = INT_MAX;
658		lgroup = *low;
659	}
660	if (match & CPU_SEARCH_HIGHEST) {
661		hload = INT_MIN;
662		hgroup = *high;
663	}
664
665	/* Iterate through the child CPU groups and then remaining CPUs. */
666	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
667		if (i == 0) {
668#ifdef HAVE_INLINE_FFSL
669			cpu = CPU_FFS(&cpumask) - 1;
670#else
671			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
672				cpu--;
673#endif
674			if (cpu < 0)
675				break;
676			child = NULL;
677		} else
678			child = &cg->cg_child[i - 1];
679
680		if (match & CPU_SEARCH_LOWEST)
681			lgroup.cs_cpu = -1;
682		if (match & CPU_SEARCH_HIGHEST)
683			hgroup.cs_cpu = -1;
684		if (child) {			/* Handle child CPU group. */
685			CPU_NAND(&cpumask, &child->cg_mask);
686			switch (match) {
687			case CPU_SEARCH_LOWEST:
688				load = cpu_search_lowest(child, &lgroup);
689				break;
690			case CPU_SEARCH_HIGHEST:
691				load = cpu_search_highest(child, &hgroup);
692				break;
693			case CPU_SEARCH_BOTH:
694				load = cpu_search_both(child, &lgroup, &hgroup);
695				break;
696			}
697		} else {			/* Handle child CPU. */
698			CPU_CLR(cpu, &cpumask);
699			tdq = TDQ_CPU(cpu);
700			load = tdq->tdq_load * 256;
701			rndptr = DPCPU_PTR(randomval);
702			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
703			if (match & CPU_SEARCH_LOWEST) {
704				if (cpu == low->cs_prefer)
705					load -= 64;
706				/* If that CPU is allowed and get data. */
707				if (tdq->tdq_lowpri > lgroup.cs_pri &&
708				    tdq->tdq_load <= lgroup.cs_limit &&
709				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
710					lgroup.cs_cpu = cpu;
711					lgroup.cs_load = load - rnd;
712				}
713			}
714			if (match & CPU_SEARCH_HIGHEST)
715				if (tdq->tdq_load >= hgroup.cs_limit &&
716				    tdq->tdq_transferable &&
717				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
718					hgroup.cs_cpu = cpu;
719					hgroup.cs_load = load - rnd;
720				}
721		}
722		total += load;
723
724		/* We have info about child item. Compare it. */
725		if (match & CPU_SEARCH_LOWEST) {
726			if (lgroup.cs_cpu >= 0 &&
727			    (load < lload ||
728			     (load == lload && lgroup.cs_load < low->cs_load))) {
729				lload = load;
730				low->cs_cpu = lgroup.cs_cpu;
731				low->cs_load = lgroup.cs_load;
732			}
733		}
734		if (match & CPU_SEARCH_HIGHEST)
735			if (hgroup.cs_cpu >= 0 &&
736			    (load > hload ||
737			     (load == hload && hgroup.cs_load > high->cs_load))) {
738				hload = load;
739				high->cs_cpu = hgroup.cs_cpu;
740				high->cs_load = hgroup.cs_load;
741			}
742		if (child) {
743			i--;
744			if (i == 0 && CPU_EMPTY(&cpumask))
745				break;
746		}
747#ifndef HAVE_INLINE_FFSL
748		else
749			cpu--;
750#endif
751	}
752	return (total);
753}
754
755/*
756 * cpu_search instantiations must pass constants to maintain the inline
757 * optimization.
758 */
759int
760cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
761{
762	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
763}
764
765int
766cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
767{
768	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
769}
770
771int
772cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
773    struct cpu_search *high)
774{
775	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
776}
777
778/*
779 * Find the cpu with the least load via the least loaded path that has a
780 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
781 * acceptable.
782 */
783static inline int
784sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
785    int prefer)
786{
787	struct cpu_search low;
788
789	low.cs_cpu = -1;
790	low.cs_prefer = prefer;
791	low.cs_mask = mask;
792	low.cs_pri = pri;
793	low.cs_limit = maxload;
794	cpu_search_lowest(cg, &low);
795	return low.cs_cpu;
796}
797
798/*
799 * Find the cpu with the highest load via the highest loaded path.
800 */
801static inline int
802sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
803{
804	struct cpu_search high;
805
806	high.cs_cpu = -1;
807	high.cs_mask = mask;
808	high.cs_limit = minload;
809	cpu_search_highest(cg, &high);
810	return high.cs_cpu;
811}
812
813static void
814sched_balance_group(struct cpu_group *cg)
815{
816	cpuset_t hmask, lmask;
817	int high, low, anylow;
818
819	CPU_FILL(&hmask);
820	for (;;) {
821		high = sched_highest(cg, hmask, 1);
822		/* Stop if there is no more CPU with transferrable threads. */
823		if (high == -1)
824			break;
825		CPU_CLR(high, &hmask);
826		CPU_COPY(&hmask, &lmask);
827		/* Stop if there is no more CPU left for low. */
828		if (CPU_EMPTY(&lmask))
829			break;
830		anylow = 1;
831nextlow:
832		low = sched_lowest(cg, lmask, -1,
833		    TDQ_CPU(high)->tdq_load - 1, high);
834		/* Stop if we looked well and found no less loaded CPU. */
835		if (anylow && low == -1)
836			break;
837		/* Go to next high if we found no less loaded CPU. */
838		if (low == -1)
839			continue;
840		/* Transfer thread from high to low. */
841		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
842			/* CPU that got thread can no longer be a donor. */
843			CPU_CLR(low, &hmask);
844		} else {
845			/*
846			 * If failed, then there is no threads on high
847			 * that can run on this low. Drop low from low
848			 * mask and look for different one.
849			 */
850			CPU_CLR(low, &lmask);
851			anylow = 0;
852			goto nextlow;
853		}
854	}
855}
856
857static void
858sched_balance(void)
859{
860	struct tdq *tdq;
861
862	/*
863	 * Select a random time between .5 * balance_interval and
864	 * 1.5 * balance_interval.
865	 */
866	balance_ticks = max(balance_interval / 2, 1);
867	balance_ticks += random() % balance_interval;
868	if (smp_started == 0 || rebalance == 0)
869		return;
870	tdq = TDQ_SELF();
871	TDQ_UNLOCK(tdq);
872	sched_balance_group(cpu_top);
873	TDQ_LOCK(tdq);
874}
875
876/*
877 * Lock two thread queues using their address to maintain lock order.
878 */
879static void
880tdq_lock_pair(struct tdq *one, struct tdq *two)
881{
882	if (one < two) {
883		TDQ_LOCK(one);
884		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
885	} else {
886		TDQ_LOCK(two);
887		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
888	}
889}
890
891/*
892 * Unlock two thread queues.  Order is not important here.
893 */
894static void
895tdq_unlock_pair(struct tdq *one, struct tdq *two)
896{
897	TDQ_UNLOCK(one);
898	TDQ_UNLOCK(two);
899}
900
901/*
902 * Transfer load between two imbalanced thread queues.
903 */
904static int
905sched_balance_pair(struct tdq *high, struct tdq *low)
906{
907	int moved;
908	int cpu;
909
910	tdq_lock_pair(high, low);
911	moved = 0;
912	/*
913	 * Determine what the imbalance is and then adjust that to how many
914	 * threads we actually have to give up (transferable).
915	 */
916	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
917	    (moved = tdq_move(high, low)) > 0) {
918		/*
919		 * In case the target isn't the current cpu IPI it to force a
920		 * reschedule with the new workload.
921		 */
922		cpu = TDQ_ID(low);
923		if (cpu != PCPU_GET(cpuid))
924			ipi_cpu(cpu, IPI_PREEMPT);
925	}
926	tdq_unlock_pair(high, low);
927	return (moved);
928}
929
930/*
931 * Move a thread from one thread queue to another.
932 */
933static int
934tdq_move(struct tdq *from, struct tdq *to)
935{
936	struct td_sched *ts;
937	struct thread *td;
938	struct tdq *tdq;
939	int cpu;
940
941	TDQ_LOCK_ASSERT(from, MA_OWNED);
942	TDQ_LOCK_ASSERT(to, MA_OWNED);
943
944	tdq = from;
945	cpu = TDQ_ID(to);
946	td = tdq_steal(tdq, cpu);
947	if (td == NULL)
948		return (0);
949	ts = td->td_sched;
950	/*
951	 * Although the run queue is locked the thread may be blocked.  Lock
952	 * it to clear this and acquire the run-queue lock.
953	 */
954	thread_lock(td);
955	/* Drop recursive lock on from acquired via thread_lock(). */
956	TDQ_UNLOCK(from);
957	sched_rem(td);
958	ts->ts_cpu = cpu;
959	td->td_lock = TDQ_LOCKPTR(to);
960	tdq_add(to, td, SRQ_YIELDING);
961	return (1);
962}
963
964/*
965 * This tdq has idled.  Try to steal a thread from another cpu and switch
966 * to it.
967 */
968static int
969tdq_idled(struct tdq *tdq)
970{
971	struct cpu_group *cg;
972	struct tdq *steal;
973	cpuset_t mask;
974	int thresh;
975	int cpu;
976
977	if (smp_started == 0 || steal_idle == 0)
978		return (1);
979	CPU_FILL(&mask);
980	CPU_CLR(PCPU_GET(cpuid), &mask);
981	/* We don't want to be preempted while we're iterating. */
982	spinlock_enter();
983	for (cg = tdq->tdq_cg; cg != NULL; ) {
984		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
985			thresh = steal_thresh;
986		else
987			thresh = 1;
988		cpu = sched_highest(cg, mask, thresh);
989		if (cpu == -1) {
990			cg = cg->cg_parent;
991			continue;
992		}
993		steal = TDQ_CPU(cpu);
994		CPU_CLR(cpu, &mask);
995		tdq_lock_pair(tdq, steal);
996		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
997			tdq_unlock_pair(tdq, steal);
998			continue;
999		}
1000		/*
1001		 * If a thread was added while interrupts were disabled don't
1002		 * steal one here.  If we fail to acquire one due to affinity
1003		 * restrictions loop again with this cpu removed from the
1004		 * set.
1005		 */
1006		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1007			tdq_unlock_pair(tdq, steal);
1008			continue;
1009		}
1010		spinlock_exit();
1011		TDQ_UNLOCK(steal);
1012		mi_switch(SW_VOL | SWT_IDLE, NULL);
1013		thread_unlock(curthread);
1014
1015		return (0);
1016	}
1017	spinlock_exit();
1018	return (1);
1019}
1020
1021/*
1022 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1023 */
1024static void
1025tdq_notify(struct tdq *tdq, struct thread *td)
1026{
1027	struct thread *ctd;
1028	int pri;
1029	int cpu;
1030
1031	if (tdq->tdq_ipipending)
1032		return;
1033	cpu = td->td_sched->ts_cpu;
1034	pri = td->td_priority;
1035	ctd = pcpu_find(cpu)->pc_curthread;
1036	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1037		return;
1038	if (TD_IS_IDLETHREAD(ctd)) {
1039		/*
1040		 * If the MD code has an idle wakeup routine try that before
1041		 * falling back to IPI.
1042		 */
1043		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1044			return;
1045	}
1046	tdq->tdq_ipipending = 1;
1047	ipi_cpu(cpu, IPI_PREEMPT);
1048}
1049
1050/*
1051 * Steals load from a timeshare queue.  Honors the rotating queue head
1052 * index.
1053 */
1054static struct thread *
1055runq_steal_from(struct runq *rq, int cpu, u_char start)
1056{
1057	struct rqbits *rqb;
1058	struct rqhead *rqh;
1059	struct thread *td, *first;
1060	int bit;
1061	int pri;
1062	int i;
1063
1064	rqb = &rq->rq_status;
1065	bit = start & (RQB_BPW -1);
1066	pri = 0;
1067	first = NULL;
1068again:
1069	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1070		if (rqb->rqb_bits[i] == 0)
1071			continue;
1072		if (bit != 0) {
1073			for (pri = bit; pri < RQB_BPW; pri++)
1074				if (rqb->rqb_bits[i] & (1ul << pri))
1075					break;
1076			if (pri >= RQB_BPW)
1077				continue;
1078		} else
1079			pri = RQB_FFS(rqb->rqb_bits[i]);
1080		pri += (i << RQB_L2BPW);
1081		rqh = &rq->rq_queues[pri];
1082		TAILQ_FOREACH(td, rqh, td_runq) {
1083			if (first && THREAD_CAN_MIGRATE(td) &&
1084			    THREAD_CAN_SCHED(td, cpu))
1085				return (td);
1086			first = td;
1087		}
1088	}
1089	if (start != 0) {
1090		start = 0;
1091		goto again;
1092	}
1093
1094	if (first && THREAD_CAN_MIGRATE(first) &&
1095	    THREAD_CAN_SCHED(first, cpu))
1096		return (first);
1097	return (NULL);
1098}
1099
1100/*
1101 * Steals load from a standard linear queue.
1102 */
1103static struct thread *
1104runq_steal(struct runq *rq, int cpu)
1105{
1106	struct rqhead *rqh;
1107	struct rqbits *rqb;
1108	struct thread *td;
1109	int word;
1110	int bit;
1111
1112	rqb = &rq->rq_status;
1113	for (word = 0; word < RQB_LEN; word++) {
1114		if (rqb->rqb_bits[word] == 0)
1115			continue;
1116		for (bit = 0; bit < RQB_BPW; bit++) {
1117			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1118				continue;
1119			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1120			TAILQ_FOREACH(td, rqh, td_runq)
1121				if (THREAD_CAN_MIGRATE(td) &&
1122				    THREAD_CAN_SCHED(td, cpu))
1123					return (td);
1124		}
1125	}
1126	return (NULL);
1127}
1128
1129/*
1130 * Attempt to steal a thread in priority order from a thread queue.
1131 */
1132static struct thread *
1133tdq_steal(struct tdq *tdq, int cpu)
1134{
1135	struct thread *td;
1136
1137	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1138	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1139		return (td);
1140	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1141	    cpu, tdq->tdq_ridx)) != NULL)
1142		return (td);
1143	return (runq_steal(&tdq->tdq_idle, cpu));
1144}
1145
1146/*
1147 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1148 * current lock and returns with the assigned queue locked.
1149 */
1150static inline struct tdq *
1151sched_setcpu(struct thread *td, int cpu, int flags)
1152{
1153
1154	struct tdq *tdq;
1155
1156	THREAD_LOCK_ASSERT(td, MA_OWNED);
1157	tdq = TDQ_CPU(cpu);
1158	td->td_sched->ts_cpu = cpu;
1159	/*
1160	 * If the lock matches just return the queue.
1161	 */
1162	if (td->td_lock == TDQ_LOCKPTR(tdq))
1163		return (tdq);
1164#ifdef notyet
1165	/*
1166	 * If the thread isn't running its lockptr is a
1167	 * turnstile or a sleepqueue.  We can just lock_set without
1168	 * blocking.
1169	 */
1170	if (TD_CAN_RUN(td)) {
1171		TDQ_LOCK(tdq);
1172		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1173		return (tdq);
1174	}
1175#endif
1176	/*
1177	 * The hard case, migration, we need to block the thread first to
1178	 * prevent order reversals with other cpus locks.
1179	 */
1180	spinlock_enter();
1181	thread_lock_block(td);
1182	TDQ_LOCK(tdq);
1183	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1184	spinlock_exit();
1185	return (tdq);
1186}
1187
1188SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1189SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1190SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1191SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1192SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1193SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1194
1195static int
1196sched_pickcpu(struct thread *td, int flags)
1197{
1198	struct cpu_group *cg, *ccg;
1199	struct td_sched *ts;
1200	struct tdq *tdq;
1201	cpuset_t mask;
1202	int cpu, pri, self;
1203
1204	self = PCPU_GET(cpuid);
1205	ts = td->td_sched;
1206	if (smp_started == 0)
1207		return (self);
1208	/*
1209	 * Don't migrate a running thread from sched_switch().
1210	 */
1211	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1212		return (ts->ts_cpu);
1213	/*
1214	 * Prefer to run interrupt threads on the processors that generate
1215	 * the interrupt.
1216	 */
1217	pri = td->td_priority;
1218	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1219	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1220		SCHED_STAT_INC(pickcpu_intrbind);
1221		ts->ts_cpu = self;
1222		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1223			SCHED_STAT_INC(pickcpu_affinity);
1224			return (ts->ts_cpu);
1225		}
1226	}
1227	/*
1228	 * If the thread can run on the last cpu and the affinity has not
1229	 * expired or it is idle run it there.
1230	 */
1231	tdq = TDQ_CPU(ts->ts_cpu);
1232	cg = tdq->tdq_cg;
1233	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1234	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1235	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1236		if (cg->cg_flags & CG_FLAG_THREAD) {
1237			CPUSET_FOREACH(cpu, cg->cg_mask) {
1238				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1239					break;
1240			}
1241		} else
1242			cpu = INT_MAX;
1243		if (cpu > mp_maxid) {
1244			SCHED_STAT_INC(pickcpu_idle_affinity);
1245			return (ts->ts_cpu);
1246		}
1247	}
1248	/*
1249	 * Search for the last level cache CPU group in the tree.
1250	 * Skip caches with expired affinity time and SMT groups.
1251	 * Affinity to higher level caches will be handled less aggressively.
1252	 */
1253	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1254		if (cg->cg_flags & CG_FLAG_THREAD)
1255			continue;
1256		if (!SCHED_AFFINITY(ts, cg->cg_level))
1257			continue;
1258		ccg = cg;
1259	}
1260	if (ccg != NULL)
1261		cg = ccg;
1262	cpu = -1;
1263	/* Search the group for the less loaded idle CPU we can run now. */
1264	mask = td->td_cpuset->cs_mask;
1265	if (cg != NULL && cg != cpu_top &&
1266	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1267		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1268		    INT_MAX, ts->ts_cpu);
1269	/* Search globally for the less loaded CPU we can run now. */
1270	if (cpu == -1)
1271		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1272	/* Search globally for the less loaded CPU. */
1273	if (cpu == -1)
1274		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1275	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1276	/*
1277	 * Compare the lowest loaded cpu to current cpu.
1278	 */
1279	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1280	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1281	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1282		SCHED_STAT_INC(pickcpu_local);
1283		cpu = self;
1284	} else
1285		SCHED_STAT_INC(pickcpu_lowest);
1286	if (cpu != ts->ts_cpu)
1287		SCHED_STAT_INC(pickcpu_migration);
1288	return (cpu);
1289}
1290#endif
1291
1292/*
1293 * Pick the highest priority task we have and return it.
1294 */
1295static struct thread *
1296tdq_choose(struct tdq *tdq)
1297{
1298	struct thread *td;
1299
1300	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1301	td = runq_choose(&tdq->tdq_realtime);
1302	if (td != NULL)
1303		return (td);
1304	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1305	if (td != NULL) {
1306		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1307		    ("tdq_choose: Invalid priority on timeshare queue %d",
1308		    td->td_priority));
1309		return (td);
1310	}
1311	td = runq_choose(&tdq->tdq_idle);
1312	if (td != NULL) {
1313		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1314		    ("tdq_choose: Invalid priority on idle queue %d",
1315		    td->td_priority));
1316		return (td);
1317	}
1318
1319	return (NULL);
1320}
1321
1322/*
1323 * Initialize a thread queue.
1324 */
1325static void
1326tdq_setup(struct tdq *tdq)
1327{
1328
1329	if (bootverbose)
1330		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1331	runq_init(&tdq->tdq_realtime);
1332	runq_init(&tdq->tdq_timeshare);
1333	runq_init(&tdq->tdq_idle);
1334	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1335	    "sched lock %d", (int)TDQ_ID(tdq));
1336	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1337	    MTX_SPIN | MTX_RECURSE);
1338#ifdef KTR
1339	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1340	    "CPU %d load", (int)TDQ_ID(tdq));
1341#endif
1342}
1343
1344#ifdef SMP
1345static void
1346sched_setup_smp(void)
1347{
1348	struct tdq *tdq;
1349	int i;
1350
1351	cpu_top = smp_topo();
1352	CPU_FOREACH(i) {
1353		tdq = TDQ_CPU(i);
1354		tdq_setup(tdq);
1355		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1356		if (tdq->tdq_cg == NULL)
1357			panic("Can't find cpu group for %d\n", i);
1358	}
1359	balance_tdq = TDQ_SELF();
1360	sched_balance();
1361}
1362#endif
1363
1364/*
1365 * Setup the thread queues and initialize the topology based on MD
1366 * information.
1367 */
1368static void
1369sched_setup(void *dummy)
1370{
1371	struct tdq *tdq;
1372
1373	tdq = TDQ_SELF();
1374#ifdef SMP
1375	sched_setup_smp();
1376#else
1377	tdq_setup(tdq);
1378#endif
1379
1380	/* Add thread0's load since it's running. */
1381	TDQ_LOCK(tdq);
1382	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1383	tdq_load_add(tdq, &thread0);
1384	tdq->tdq_lowpri = thread0.td_priority;
1385	TDQ_UNLOCK(tdq);
1386}
1387
1388/*
1389 * This routine determines time constants after stathz and hz are setup.
1390 */
1391/* ARGSUSED */
1392static void
1393sched_initticks(void *dummy)
1394{
1395	int incr;
1396
1397	realstathz = stathz ? stathz : hz;
1398	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1399	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1400	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1401	    realstathz);
1402
1403	/*
1404	 * tickincr is shifted out by 10 to avoid rounding errors due to
1405	 * hz not being evenly divisible by stathz on all platforms.
1406	 */
1407	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1408	/*
1409	 * This does not work for values of stathz that are more than
1410	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1411	 */
1412	if (incr == 0)
1413		incr = 1;
1414	tickincr = incr;
1415#ifdef SMP
1416	/*
1417	 * Set the default balance interval now that we know
1418	 * what realstathz is.
1419	 */
1420	balance_interval = realstathz;
1421	affinity = SCHED_AFFINITY_DEFAULT;
1422#endif
1423	if (sched_idlespinthresh < 0)
1424		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1425}
1426
1427
1428/*
1429 * This is the core of the interactivity algorithm.  Determines a score based
1430 * on past behavior.  It is the ratio of sleep time to run time scaled to
1431 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1432 * differs from the cpu usage because it does not account for time spent
1433 * waiting on a run-queue.  Would be prettier if we had floating point.
1434 */
1435static int
1436sched_interact_score(struct thread *td)
1437{
1438	struct td_sched *ts;
1439	int div;
1440
1441	ts = td->td_sched;
1442	/*
1443	 * The score is only needed if this is likely to be an interactive
1444	 * task.  Don't go through the expense of computing it if there's
1445	 * no chance.
1446	 */
1447	if (sched_interact <= SCHED_INTERACT_HALF &&
1448		ts->ts_runtime >= ts->ts_slptime)
1449			return (SCHED_INTERACT_HALF);
1450
1451	if (ts->ts_runtime > ts->ts_slptime) {
1452		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1453		return (SCHED_INTERACT_HALF +
1454		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1455	}
1456	if (ts->ts_slptime > ts->ts_runtime) {
1457		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1458		return (ts->ts_runtime / div);
1459	}
1460	/* runtime == slptime */
1461	if (ts->ts_runtime)
1462		return (SCHED_INTERACT_HALF);
1463
1464	/*
1465	 * This can happen if slptime and runtime are 0.
1466	 */
1467	return (0);
1468
1469}
1470
1471/*
1472 * Scale the scheduling priority according to the "interactivity" of this
1473 * process.
1474 */
1475static void
1476sched_priority(struct thread *td)
1477{
1478	int score;
1479	int pri;
1480
1481	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1482		return;
1483	/*
1484	 * If the score is interactive we place the thread in the realtime
1485	 * queue with a priority that is less than kernel and interrupt
1486	 * priorities.  These threads are not subject to nice restrictions.
1487	 *
1488	 * Scores greater than this are placed on the normal timeshare queue
1489	 * where the priority is partially decided by the most recent cpu
1490	 * utilization and the rest is decided by nice value.
1491	 *
1492	 * The nice value of the process has a linear effect on the calculated
1493	 * score.  Negative nice values make it easier for a thread to be
1494	 * considered interactive.
1495	 */
1496	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1497	if (score < sched_interact) {
1498		pri = PRI_MIN_INTERACT;
1499		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1500		    sched_interact) * score;
1501		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1502		    ("sched_priority: invalid interactive priority %d score %d",
1503		    pri, score));
1504	} else {
1505		pri = SCHED_PRI_MIN;
1506		if (td->td_sched->ts_ticks)
1507			pri += min(SCHED_PRI_TICKS(td->td_sched),
1508			    SCHED_PRI_RANGE - 1);
1509		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1510		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1511		    ("sched_priority: invalid priority %d: nice %d, "
1512		    "ticks %d ftick %d ltick %d tick pri %d",
1513		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1514		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1515		    SCHED_PRI_TICKS(td->td_sched)));
1516	}
1517	sched_user_prio(td, pri);
1518
1519	return;
1520}
1521
1522/*
1523 * This routine enforces a maximum limit on the amount of scheduling history
1524 * kept.  It is called after either the slptime or runtime is adjusted.  This
1525 * function is ugly due to integer math.
1526 */
1527static void
1528sched_interact_update(struct thread *td)
1529{
1530	struct td_sched *ts;
1531	u_int sum;
1532
1533	ts = td->td_sched;
1534	sum = ts->ts_runtime + ts->ts_slptime;
1535	if (sum < SCHED_SLP_RUN_MAX)
1536		return;
1537	/*
1538	 * This only happens from two places:
1539	 * 1) We have added an unusual amount of run time from fork_exit.
1540	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1541	 */
1542	if (sum > SCHED_SLP_RUN_MAX * 2) {
1543		if (ts->ts_runtime > ts->ts_slptime) {
1544			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1545			ts->ts_slptime = 1;
1546		} else {
1547			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1548			ts->ts_runtime = 1;
1549		}
1550		return;
1551	}
1552	/*
1553	 * If we have exceeded by more than 1/5th then the algorithm below
1554	 * will not bring us back into range.  Dividing by two here forces
1555	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1556	 */
1557	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1558		ts->ts_runtime /= 2;
1559		ts->ts_slptime /= 2;
1560		return;
1561	}
1562	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1563	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1564}
1565
1566/*
1567 * Scale back the interactivity history when a child thread is created.  The
1568 * history is inherited from the parent but the thread may behave totally
1569 * differently.  For example, a shell spawning a compiler process.  We want
1570 * to learn that the compiler is behaving badly very quickly.
1571 */
1572static void
1573sched_interact_fork(struct thread *td)
1574{
1575	int ratio;
1576	int sum;
1577
1578	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1579	if (sum > SCHED_SLP_RUN_FORK) {
1580		ratio = sum / SCHED_SLP_RUN_FORK;
1581		td->td_sched->ts_runtime /= ratio;
1582		td->td_sched->ts_slptime /= ratio;
1583	}
1584}
1585
1586/*
1587 * Called from proc0_init() to setup the scheduler fields.
1588 */
1589void
1590schedinit(void)
1591{
1592
1593	/*
1594	 * Set up the scheduler specific parts of proc0.
1595	 */
1596	proc0.p_sched = NULL; /* XXX */
1597	thread0.td_sched = &td_sched0;
1598	td_sched0.ts_ltick = ticks;
1599	td_sched0.ts_ftick = ticks;
1600	td_sched0.ts_slice = 0;
1601}
1602
1603/*
1604 * This is only somewhat accurate since given many processes of the same
1605 * priority they will switch when their slices run out, which will be
1606 * at most sched_slice stathz ticks.
1607 */
1608int
1609sched_rr_interval(void)
1610{
1611
1612	/* Convert sched_slice from stathz to hz. */
1613	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1614}
1615
1616/*
1617 * Update the percent cpu tracking information when it is requested or
1618 * the total history exceeds the maximum.  We keep a sliding history of
1619 * tick counts that slowly decays.  This is less precise than the 4BSD
1620 * mechanism since it happens with less regular and frequent events.
1621 */
1622static void
1623sched_pctcpu_update(struct td_sched *ts, int run)
1624{
1625	int t = ticks;
1626
1627	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1628		ts->ts_ticks = 0;
1629		ts->ts_ftick = t - SCHED_TICK_TARG;
1630	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1631		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1632		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1633		ts->ts_ftick = t - SCHED_TICK_TARG;
1634	}
1635	if (run)
1636		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1637	ts->ts_ltick = t;
1638}
1639
1640/*
1641 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1642 * if necessary.  This is the back-end for several priority related
1643 * functions.
1644 */
1645static void
1646sched_thread_priority(struct thread *td, u_char prio)
1647{
1648	struct td_sched *ts;
1649	struct tdq *tdq;
1650	int oldpri;
1651
1652	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1653	    "prio:%d", td->td_priority, "new prio:%d", prio,
1654	    KTR_ATTR_LINKED, sched_tdname(curthread));
1655	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1656	if (td != curthread && prio < td->td_priority) {
1657		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1658		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1659		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1660		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1661		    curthread);
1662	}
1663	ts = td->td_sched;
1664	THREAD_LOCK_ASSERT(td, MA_OWNED);
1665	if (td->td_priority == prio)
1666		return;
1667	/*
1668	 * If the priority has been elevated due to priority
1669	 * propagation, we may have to move ourselves to a new
1670	 * queue.  This could be optimized to not re-add in some
1671	 * cases.
1672	 */
1673	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1674		sched_rem(td);
1675		td->td_priority = prio;
1676		sched_add(td, SRQ_BORROWING);
1677		return;
1678	}
1679	/*
1680	 * If the thread is currently running we may have to adjust the lowpri
1681	 * information so other cpus are aware of our current priority.
1682	 */
1683	if (TD_IS_RUNNING(td)) {
1684		tdq = TDQ_CPU(ts->ts_cpu);
1685		oldpri = td->td_priority;
1686		td->td_priority = prio;
1687		if (prio < tdq->tdq_lowpri)
1688			tdq->tdq_lowpri = prio;
1689		else if (tdq->tdq_lowpri == oldpri)
1690			tdq_setlowpri(tdq, td);
1691		return;
1692	}
1693	td->td_priority = prio;
1694}
1695
1696/*
1697 * Update a thread's priority when it is lent another thread's
1698 * priority.
1699 */
1700void
1701sched_lend_prio(struct thread *td, u_char prio)
1702{
1703
1704	td->td_flags |= TDF_BORROWING;
1705	sched_thread_priority(td, prio);
1706}
1707
1708/*
1709 * Restore a thread's priority when priority propagation is
1710 * over.  The prio argument is the minimum priority the thread
1711 * needs to have to satisfy other possible priority lending
1712 * requests.  If the thread's regular priority is less
1713 * important than prio, the thread will keep a priority boost
1714 * of prio.
1715 */
1716void
1717sched_unlend_prio(struct thread *td, u_char prio)
1718{
1719	u_char base_pri;
1720
1721	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1722	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1723		base_pri = td->td_user_pri;
1724	else
1725		base_pri = td->td_base_pri;
1726	if (prio >= base_pri) {
1727		td->td_flags &= ~TDF_BORROWING;
1728		sched_thread_priority(td, base_pri);
1729	} else
1730		sched_lend_prio(td, prio);
1731}
1732
1733/*
1734 * Standard entry for setting the priority to an absolute value.
1735 */
1736void
1737sched_prio(struct thread *td, u_char prio)
1738{
1739	u_char oldprio;
1740
1741	/* First, update the base priority. */
1742	td->td_base_pri = prio;
1743
1744	/*
1745	 * If the thread is borrowing another thread's priority, don't
1746	 * ever lower the priority.
1747	 */
1748	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1749		return;
1750
1751	/* Change the real priority. */
1752	oldprio = td->td_priority;
1753	sched_thread_priority(td, prio);
1754
1755	/*
1756	 * If the thread is on a turnstile, then let the turnstile update
1757	 * its state.
1758	 */
1759	if (TD_ON_LOCK(td) && oldprio != prio)
1760		turnstile_adjust(td, oldprio);
1761}
1762
1763/*
1764 * Set the base user priority, does not effect current running priority.
1765 */
1766void
1767sched_user_prio(struct thread *td, u_char prio)
1768{
1769
1770	td->td_base_user_pri = prio;
1771	if (td->td_lend_user_pri <= prio)
1772		return;
1773	td->td_user_pri = prio;
1774}
1775
1776void
1777sched_lend_user_prio(struct thread *td, u_char prio)
1778{
1779
1780	THREAD_LOCK_ASSERT(td, MA_OWNED);
1781	td->td_lend_user_pri = prio;
1782	td->td_user_pri = min(prio, td->td_base_user_pri);
1783	if (td->td_priority > td->td_user_pri)
1784		sched_prio(td, td->td_user_pri);
1785	else if (td->td_priority != td->td_user_pri)
1786		td->td_flags |= TDF_NEEDRESCHED;
1787}
1788
1789/*
1790 * Handle migration from sched_switch().  This happens only for
1791 * cpu binding.
1792 */
1793static struct mtx *
1794sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1795{
1796	struct tdq *tdn;
1797
1798	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1799#ifdef SMP
1800	tdq_load_rem(tdq, td);
1801	/*
1802	 * Do the lock dance required to avoid LOR.  We grab an extra
1803	 * spinlock nesting to prevent preemption while we're
1804	 * not holding either run-queue lock.
1805	 */
1806	spinlock_enter();
1807	thread_lock_block(td);	/* This releases the lock on tdq. */
1808
1809	/*
1810	 * Acquire both run-queue locks before placing the thread on the new
1811	 * run-queue to avoid deadlocks created by placing a thread with a
1812	 * blocked lock on the run-queue of a remote processor.  The deadlock
1813	 * occurs when a third processor attempts to lock the two queues in
1814	 * question while the target processor is spinning with its own
1815	 * run-queue lock held while waiting for the blocked lock to clear.
1816	 */
1817	tdq_lock_pair(tdn, tdq);
1818	tdq_add(tdn, td, flags);
1819	tdq_notify(tdn, td);
1820	TDQ_UNLOCK(tdn);
1821	spinlock_exit();
1822#endif
1823	return (TDQ_LOCKPTR(tdn));
1824}
1825
1826/*
1827 * Variadic version of thread_lock_unblock() that does not assume td_lock
1828 * is blocked.
1829 */
1830static inline void
1831thread_unblock_switch(struct thread *td, struct mtx *mtx)
1832{
1833	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1834	    (uintptr_t)mtx);
1835}
1836
1837/*
1838 * Switch threads.  This function has to handle threads coming in while
1839 * blocked for some reason, running, or idle.  It also must deal with
1840 * migrating a thread from one queue to another as running threads may
1841 * be assigned elsewhere via binding.
1842 */
1843void
1844sched_switch(struct thread *td, struct thread *newtd, int flags)
1845{
1846	struct tdq *tdq;
1847	struct td_sched *ts;
1848	struct mtx *mtx;
1849	int srqflag;
1850	int cpuid, preempted;
1851
1852	THREAD_LOCK_ASSERT(td, MA_OWNED);
1853	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1854
1855	cpuid = PCPU_GET(cpuid);
1856	tdq = TDQ_CPU(cpuid);
1857	ts = td->td_sched;
1858	mtx = td->td_lock;
1859	sched_pctcpu_update(ts, 1);
1860	ts->ts_rltick = ticks;
1861	td->td_lastcpu = td->td_oncpu;
1862	td->td_oncpu = NOCPU;
1863	preempted = !(td->td_flags & TDF_SLICEEND);
1864	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1865	td->td_owepreempt = 0;
1866	if (!TD_IS_IDLETHREAD(td))
1867		tdq->tdq_switchcnt++;
1868	/*
1869	 * The lock pointer in an idle thread should never change.  Reset it
1870	 * to CAN_RUN as well.
1871	 */
1872	if (TD_IS_IDLETHREAD(td)) {
1873		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1874		TD_SET_CAN_RUN(td);
1875	} else if (TD_IS_RUNNING(td)) {
1876		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1877		srqflag = preempted ?
1878		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1879		    SRQ_OURSELF|SRQ_YIELDING;
1880#ifdef SMP
1881		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1882			ts->ts_cpu = sched_pickcpu(td, 0);
1883#endif
1884		if (ts->ts_cpu == cpuid)
1885			tdq_runq_add(tdq, td, srqflag);
1886		else {
1887			KASSERT(THREAD_CAN_MIGRATE(td) ||
1888			    (ts->ts_flags & TSF_BOUND) != 0,
1889			    ("Thread %p shouldn't migrate", td));
1890			mtx = sched_switch_migrate(tdq, td, srqflag);
1891		}
1892	} else {
1893		/* This thread must be going to sleep. */
1894		TDQ_LOCK(tdq);
1895		mtx = thread_lock_block(td);
1896		tdq_load_rem(tdq, td);
1897	}
1898	/*
1899	 * We enter here with the thread blocked and assigned to the
1900	 * appropriate cpu run-queue or sleep-queue and with the current
1901	 * thread-queue locked.
1902	 */
1903	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1904	newtd = choosethread();
1905	/*
1906	 * Call the MD code to switch contexts if necessary.
1907	 */
1908	if (td != newtd) {
1909#ifdef	HWPMC_HOOKS
1910		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1911			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1912#endif
1913		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1914		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1915		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1916		sched_pctcpu_update(newtd->td_sched, 0);
1917
1918#ifdef KDTRACE_HOOKS
1919		/*
1920		 * If DTrace has set the active vtime enum to anything
1921		 * other than INACTIVE (0), then it should have set the
1922		 * function to call.
1923		 */
1924		if (dtrace_vtime_active)
1925			(*dtrace_vtime_switch_func)(newtd);
1926#endif
1927
1928		cpu_switch(td, newtd, mtx);
1929		/*
1930		 * We may return from cpu_switch on a different cpu.  However,
1931		 * we always return with td_lock pointing to the current cpu's
1932		 * run queue lock.
1933		 */
1934		cpuid = PCPU_GET(cpuid);
1935		tdq = TDQ_CPU(cpuid);
1936		lock_profile_obtain_lock_success(
1937		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1938
1939		SDT_PROBE0(sched, , , on__cpu);
1940#ifdef	HWPMC_HOOKS
1941		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1942			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1943#endif
1944	} else {
1945		thread_unblock_switch(td, mtx);
1946		SDT_PROBE0(sched, , , remain__cpu);
1947	}
1948	/*
1949	 * Assert that all went well and return.
1950	 */
1951	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1952	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1953	td->td_oncpu = cpuid;
1954}
1955
1956/*
1957 * Adjust thread priorities as a result of a nice request.
1958 */
1959void
1960sched_nice(struct proc *p, int nice)
1961{
1962	struct thread *td;
1963
1964	PROC_LOCK_ASSERT(p, MA_OWNED);
1965
1966	p->p_nice = nice;
1967	FOREACH_THREAD_IN_PROC(p, td) {
1968		thread_lock(td);
1969		sched_priority(td);
1970		sched_prio(td, td->td_base_user_pri);
1971		thread_unlock(td);
1972	}
1973}
1974
1975/*
1976 * Record the sleep time for the interactivity scorer.
1977 */
1978void
1979sched_sleep(struct thread *td, int prio)
1980{
1981
1982	THREAD_LOCK_ASSERT(td, MA_OWNED);
1983
1984	td->td_slptick = ticks;
1985	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1986		td->td_flags |= TDF_CANSWAP;
1987	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1988		return;
1989	if (static_boost == 1 && prio)
1990		sched_prio(td, prio);
1991	else if (static_boost && td->td_priority > static_boost)
1992		sched_prio(td, static_boost);
1993}
1994
1995/*
1996 * Schedule a thread to resume execution and record how long it voluntarily
1997 * slept.  We also update the pctcpu, interactivity, and priority.
1998 */
1999void
2000sched_wakeup(struct thread *td)
2001{
2002	struct td_sched *ts;
2003	int slptick;
2004
2005	THREAD_LOCK_ASSERT(td, MA_OWNED);
2006	ts = td->td_sched;
2007	td->td_flags &= ~TDF_CANSWAP;
2008	/*
2009	 * If we slept for more than a tick update our interactivity and
2010	 * priority.
2011	 */
2012	slptick = td->td_slptick;
2013	td->td_slptick = 0;
2014	if (slptick && slptick != ticks) {
2015		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2016		sched_interact_update(td);
2017		sched_pctcpu_update(ts, 0);
2018	}
2019	/*
2020	 * Reset the slice value since we slept and advanced the round-robin.
2021	 */
2022	ts->ts_slice = 0;
2023	sched_add(td, SRQ_BORING);
2024}
2025
2026/*
2027 * Penalize the parent for creating a new child and initialize the child's
2028 * priority.
2029 */
2030void
2031sched_fork(struct thread *td, struct thread *child)
2032{
2033	THREAD_LOCK_ASSERT(td, MA_OWNED);
2034	sched_pctcpu_update(td->td_sched, 1);
2035	sched_fork_thread(td, child);
2036	/*
2037	 * Penalize the parent and child for forking.
2038	 */
2039	sched_interact_fork(child);
2040	sched_priority(child);
2041	td->td_sched->ts_runtime += tickincr;
2042	sched_interact_update(td);
2043	sched_priority(td);
2044}
2045
2046/*
2047 * Fork a new thread, may be within the same process.
2048 */
2049void
2050sched_fork_thread(struct thread *td, struct thread *child)
2051{
2052	struct td_sched *ts;
2053	struct td_sched *ts2;
2054	struct tdq *tdq;
2055
2056	tdq = TDQ_SELF();
2057	THREAD_LOCK_ASSERT(td, MA_OWNED);
2058	/*
2059	 * Initialize child.
2060	 */
2061	ts = td->td_sched;
2062	ts2 = child->td_sched;
2063	child->td_lock = TDQ_LOCKPTR(tdq);
2064	child->td_cpuset = cpuset_ref(td->td_cpuset);
2065	ts2->ts_cpu = ts->ts_cpu;
2066	ts2->ts_flags = 0;
2067	/*
2068	 * Grab our parents cpu estimation information.
2069	 */
2070	ts2->ts_ticks = ts->ts_ticks;
2071	ts2->ts_ltick = ts->ts_ltick;
2072	ts2->ts_ftick = ts->ts_ftick;
2073	/*
2074	 * Do not inherit any borrowed priority from the parent.
2075	 */
2076	child->td_priority = child->td_base_pri;
2077	/*
2078	 * And update interactivity score.
2079	 */
2080	ts2->ts_slptime = ts->ts_slptime;
2081	ts2->ts_runtime = ts->ts_runtime;
2082	/* Attempt to quickly learn interactivity. */
2083	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2084#ifdef KTR
2085	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2086#endif
2087}
2088
2089/*
2090 * Adjust the priority class of a thread.
2091 */
2092void
2093sched_class(struct thread *td, int class)
2094{
2095
2096	THREAD_LOCK_ASSERT(td, MA_OWNED);
2097	if (td->td_pri_class == class)
2098		return;
2099	td->td_pri_class = class;
2100}
2101
2102/*
2103 * Return some of the child's priority and interactivity to the parent.
2104 */
2105void
2106sched_exit(struct proc *p, struct thread *child)
2107{
2108	struct thread *td;
2109
2110	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2111	    "prio:%d", child->td_priority);
2112	PROC_LOCK_ASSERT(p, MA_OWNED);
2113	td = FIRST_THREAD_IN_PROC(p);
2114	sched_exit_thread(td, child);
2115}
2116
2117/*
2118 * Penalize another thread for the time spent on this one.  This helps to
2119 * worsen the priority and interactivity of processes which schedule batch
2120 * jobs such as make.  This has little effect on the make process itself but
2121 * causes new processes spawned by it to receive worse scores immediately.
2122 */
2123void
2124sched_exit_thread(struct thread *td, struct thread *child)
2125{
2126
2127	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2128	    "prio:%d", child->td_priority);
2129	/*
2130	 * Give the child's runtime to the parent without returning the
2131	 * sleep time as a penalty to the parent.  This causes shells that
2132	 * launch expensive things to mark their children as expensive.
2133	 */
2134	thread_lock(td);
2135	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2136	sched_interact_update(td);
2137	sched_priority(td);
2138	thread_unlock(td);
2139}
2140
2141void
2142sched_preempt(struct thread *td)
2143{
2144	struct tdq *tdq;
2145
2146	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2147
2148	thread_lock(td);
2149	tdq = TDQ_SELF();
2150	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2151	tdq->tdq_ipipending = 0;
2152	if (td->td_priority > tdq->tdq_lowpri) {
2153		int flags;
2154
2155		flags = SW_INVOL | SW_PREEMPT;
2156		if (td->td_critnest > 1)
2157			td->td_owepreempt = 1;
2158		else if (TD_IS_IDLETHREAD(td))
2159			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2160		else
2161			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2162	}
2163	thread_unlock(td);
2164}
2165
2166/*
2167 * Fix priorities on return to user-space.  Priorities may be elevated due
2168 * to static priorities in msleep() or similar.
2169 */
2170void
2171sched_userret(struct thread *td)
2172{
2173	/*
2174	 * XXX we cheat slightly on the locking here to avoid locking in
2175	 * the usual case.  Setting td_priority here is essentially an
2176	 * incomplete workaround for not setting it properly elsewhere.
2177	 * Now that some interrupt handlers are threads, not setting it
2178	 * properly elsewhere can clobber it in the window between setting
2179	 * it here and returning to user mode, so don't waste time setting
2180	 * it perfectly here.
2181	 */
2182	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2183	    ("thread with borrowed priority returning to userland"));
2184	if (td->td_priority != td->td_user_pri) {
2185		thread_lock(td);
2186		td->td_priority = td->td_user_pri;
2187		td->td_base_pri = td->td_user_pri;
2188		tdq_setlowpri(TDQ_SELF(), td);
2189		thread_unlock(td);
2190        }
2191}
2192
2193/*
2194 * Handle a stathz tick.  This is really only relevant for timeshare
2195 * threads.
2196 */
2197void
2198sched_clock(struct thread *td)
2199{
2200	struct tdq *tdq;
2201	struct td_sched *ts;
2202
2203	THREAD_LOCK_ASSERT(td, MA_OWNED);
2204	tdq = TDQ_SELF();
2205#ifdef SMP
2206	/*
2207	 * We run the long term load balancer infrequently on the first cpu.
2208	 */
2209	if (balance_tdq == tdq) {
2210		if (balance_ticks && --balance_ticks == 0)
2211			sched_balance();
2212	}
2213#endif
2214	/*
2215	 * Save the old switch count so we have a record of the last ticks
2216	 * activity.   Initialize the new switch count based on our load.
2217	 * If there is some activity seed it to reflect that.
2218	 */
2219	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2220	tdq->tdq_switchcnt = tdq->tdq_load;
2221	/*
2222	 * Advance the insert index once for each tick to ensure that all
2223	 * threads get a chance to run.
2224	 */
2225	if (tdq->tdq_idx == tdq->tdq_ridx) {
2226		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2227		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2228			tdq->tdq_ridx = tdq->tdq_idx;
2229	}
2230	ts = td->td_sched;
2231	sched_pctcpu_update(ts, 1);
2232	if (td->td_pri_class & PRI_FIFO_BIT)
2233		return;
2234	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2235		/*
2236		 * We used a tick; charge it to the thread so
2237		 * that we can compute our interactivity.
2238		 */
2239		td->td_sched->ts_runtime += tickincr;
2240		sched_interact_update(td);
2241		sched_priority(td);
2242	}
2243
2244	/*
2245	 * Force a context switch if the current thread has used up a full
2246	 * time slice (default is 100ms).
2247	 */
2248	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2249		ts->ts_slice = 0;
2250		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2251	}
2252}
2253
2254/*
2255 * Called once per hz tick.
2256 */
2257void
2258sched_tick(int cnt)
2259{
2260
2261}
2262
2263/*
2264 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2265 * cooperative idle threads.
2266 */
2267int
2268sched_runnable(void)
2269{
2270	struct tdq *tdq;
2271	int load;
2272
2273	load = 1;
2274
2275	tdq = TDQ_SELF();
2276	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2277		if (tdq->tdq_load > 0)
2278			goto out;
2279	} else
2280		if (tdq->tdq_load - 1 > 0)
2281			goto out;
2282	load = 0;
2283out:
2284	return (load);
2285}
2286
2287/*
2288 * Choose the highest priority thread to run.  The thread is removed from
2289 * the run-queue while running however the load remains.  For SMP we set
2290 * the tdq in the global idle bitmask if it idles here.
2291 */
2292struct thread *
2293sched_choose(void)
2294{
2295	struct thread *td;
2296	struct tdq *tdq;
2297
2298	tdq = TDQ_SELF();
2299	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2300	td = tdq_choose(tdq);
2301	if (td) {
2302		tdq_runq_rem(tdq, td);
2303		tdq->tdq_lowpri = td->td_priority;
2304		return (td);
2305	}
2306	tdq->tdq_lowpri = PRI_MAX_IDLE;
2307	return (PCPU_GET(idlethread));
2308}
2309
2310/*
2311 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2312 * we always request it once we exit a critical section.
2313 */
2314static inline void
2315sched_setpreempt(struct thread *td)
2316{
2317	struct thread *ctd;
2318	int cpri;
2319	int pri;
2320
2321	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2322
2323	ctd = curthread;
2324	pri = td->td_priority;
2325	cpri = ctd->td_priority;
2326	if (pri < cpri)
2327		ctd->td_flags |= TDF_NEEDRESCHED;
2328	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2329		return;
2330	if (!sched_shouldpreempt(pri, cpri, 0))
2331		return;
2332	ctd->td_owepreempt = 1;
2333}
2334
2335/*
2336 * Add a thread to a thread queue.  Select the appropriate runq and add the
2337 * thread to it.  This is the internal function called when the tdq is
2338 * predetermined.
2339 */
2340void
2341tdq_add(struct tdq *tdq, struct thread *td, int flags)
2342{
2343
2344	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2345	KASSERT((td->td_inhibitors == 0),
2346	    ("sched_add: trying to run inhibited thread"));
2347	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2348	    ("sched_add: bad thread state"));
2349	KASSERT(td->td_flags & TDF_INMEM,
2350	    ("sched_add: thread swapped out"));
2351
2352	if (td->td_priority < tdq->tdq_lowpri)
2353		tdq->tdq_lowpri = td->td_priority;
2354	tdq_runq_add(tdq, td, flags);
2355	tdq_load_add(tdq, td);
2356}
2357
2358/*
2359 * Select the target thread queue and add a thread to it.  Request
2360 * preemption or IPI a remote processor if required.
2361 */
2362void
2363sched_add(struct thread *td, int flags)
2364{
2365	struct tdq *tdq;
2366#ifdef SMP
2367	int cpu;
2368#endif
2369
2370	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2371	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2372	    sched_tdname(curthread));
2373	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2374	    KTR_ATTR_LINKED, sched_tdname(td));
2375	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2376	    flags & SRQ_PREEMPTED);
2377	THREAD_LOCK_ASSERT(td, MA_OWNED);
2378	/*
2379	 * Recalculate the priority before we select the target cpu or
2380	 * run-queue.
2381	 */
2382	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2383		sched_priority(td);
2384#ifdef SMP
2385	/*
2386	 * Pick the destination cpu and if it isn't ours transfer to the
2387	 * target cpu.
2388	 */
2389	cpu = sched_pickcpu(td, flags);
2390	tdq = sched_setcpu(td, cpu, flags);
2391	tdq_add(tdq, td, flags);
2392	if (cpu != PCPU_GET(cpuid)) {
2393		tdq_notify(tdq, td);
2394		return;
2395	}
2396#else
2397	tdq = TDQ_SELF();
2398	TDQ_LOCK(tdq);
2399	/*
2400	 * Now that the thread is moving to the run-queue, set the lock
2401	 * to the scheduler's lock.
2402	 */
2403	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2404	tdq_add(tdq, td, flags);
2405#endif
2406	if (!(flags & SRQ_YIELDING))
2407		sched_setpreempt(td);
2408}
2409
2410/*
2411 * Remove a thread from a run-queue without running it.  This is used
2412 * when we're stealing a thread from a remote queue.  Otherwise all threads
2413 * exit by calling sched_exit_thread() and sched_throw() themselves.
2414 */
2415void
2416sched_rem(struct thread *td)
2417{
2418	struct tdq *tdq;
2419
2420	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2421	    "prio:%d", td->td_priority);
2422	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2423	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2424	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2425	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2426	KASSERT(TD_ON_RUNQ(td),
2427	    ("sched_rem: thread not on run queue"));
2428	tdq_runq_rem(tdq, td);
2429	tdq_load_rem(tdq, td);
2430	TD_SET_CAN_RUN(td);
2431	if (td->td_priority == tdq->tdq_lowpri)
2432		tdq_setlowpri(tdq, NULL);
2433}
2434
2435/*
2436 * Fetch cpu utilization information.  Updates on demand.
2437 */
2438fixpt_t
2439sched_pctcpu(struct thread *td)
2440{
2441	fixpt_t pctcpu;
2442	struct td_sched *ts;
2443
2444	pctcpu = 0;
2445	ts = td->td_sched;
2446	if (ts == NULL)
2447		return (0);
2448
2449	THREAD_LOCK_ASSERT(td, MA_OWNED);
2450	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2451	if (ts->ts_ticks) {
2452		int rtick;
2453
2454		/* How many rtick per second ? */
2455		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2456		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2457	}
2458
2459	return (pctcpu);
2460}
2461
2462/*
2463 * Enforce affinity settings for a thread.  Called after adjustments to
2464 * cpumask.
2465 */
2466void
2467sched_affinity(struct thread *td)
2468{
2469#ifdef SMP
2470	struct td_sched *ts;
2471
2472	THREAD_LOCK_ASSERT(td, MA_OWNED);
2473	ts = td->td_sched;
2474	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2475		return;
2476	if (TD_ON_RUNQ(td)) {
2477		sched_rem(td);
2478		sched_add(td, SRQ_BORING);
2479		return;
2480	}
2481	if (!TD_IS_RUNNING(td))
2482		return;
2483	/*
2484	 * Force a switch before returning to userspace.  If the
2485	 * target thread is not running locally send an ipi to force
2486	 * the issue.
2487	 */
2488	td->td_flags |= TDF_NEEDRESCHED;
2489	if (td != curthread)
2490		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2491#endif
2492}
2493
2494/*
2495 * Bind a thread to a target cpu.
2496 */
2497void
2498sched_bind(struct thread *td, int cpu)
2499{
2500	struct td_sched *ts;
2501
2502	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2503	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2504	ts = td->td_sched;
2505	if (ts->ts_flags & TSF_BOUND)
2506		sched_unbind(td);
2507	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2508	ts->ts_flags |= TSF_BOUND;
2509	sched_pin();
2510	if (PCPU_GET(cpuid) == cpu)
2511		return;
2512	ts->ts_cpu = cpu;
2513	/* When we return from mi_switch we'll be on the correct cpu. */
2514	mi_switch(SW_VOL, NULL);
2515}
2516
2517/*
2518 * Release a bound thread.
2519 */
2520void
2521sched_unbind(struct thread *td)
2522{
2523	struct td_sched *ts;
2524
2525	THREAD_LOCK_ASSERT(td, MA_OWNED);
2526	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2527	ts = td->td_sched;
2528	if ((ts->ts_flags & TSF_BOUND) == 0)
2529		return;
2530	ts->ts_flags &= ~TSF_BOUND;
2531	sched_unpin();
2532}
2533
2534int
2535sched_is_bound(struct thread *td)
2536{
2537	THREAD_LOCK_ASSERT(td, MA_OWNED);
2538	return (td->td_sched->ts_flags & TSF_BOUND);
2539}
2540
2541/*
2542 * Basic yield call.
2543 */
2544void
2545sched_relinquish(struct thread *td)
2546{
2547	thread_lock(td);
2548	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2549	thread_unlock(td);
2550}
2551
2552/*
2553 * Return the total system load.
2554 */
2555int
2556sched_load(void)
2557{
2558#ifdef SMP
2559	int total;
2560	int i;
2561
2562	total = 0;
2563	CPU_FOREACH(i)
2564		total += TDQ_CPU(i)->tdq_sysload;
2565	return (total);
2566#else
2567	return (TDQ_SELF()->tdq_sysload);
2568#endif
2569}
2570
2571int
2572sched_sizeof_proc(void)
2573{
2574	return (sizeof(struct proc));
2575}
2576
2577int
2578sched_sizeof_thread(void)
2579{
2580	return (sizeof(struct thread) + sizeof(struct td_sched));
2581}
2582
2583#ifdef SMP
2584#define	TDQ_IDLESPIN(tdq)						\
2585    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2586#else
2587#define	TDQ_IDLESPIN(tdq)	1
2588#endif
2589
2590/*
2591 * The actual idle process.
2592 */
2593void
2594sched_idletd(void *dummy)
2595{
2596	struct thread *td;
2597	struct tdq *tdq;
2598	int oldswitchcnt, switchcnt;
2599	int i;
2600
2601	mtx_assert(&Giant, MA_NOTOWNED);
2602	td = curthread;
2603	tdq = TDQ_SELF();
2604	THREAD_NO_SLEEPING();
2605	oldswitchcnt = -1;
2606	for (;;) {
2607		if (tdq->tdq_load) {
2608			thread_lock(td);
2609			mi_switch(SW_VOL | SWT_IDLE, NULL);
2610			thread_unlock(td);
2611		}
2612		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2613#ifdef SMP
2614		if (switchcnt != oldswitchcnt) {
2615			oldswitchcnt = switchcnt;
2616			if (tdq_idled(tdq) == 0)
2617				continue;
2618		}
2619		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2620#else
2621		oldswitchcnt = switchcnt;
2622#endif
2623		/*
2624		 * If we're switching very frequently, spin while checking
2625		 * for load rather than entering a low power state that
2626		 * may require an IPI.  However, don't do any busy
2627		 * loops while on SMT machines as this simply steals
2628		 * cycles from cores doing useful work.
2629		 */
2630		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2631			for (i = 0; i < sched_idlespins; i++) {
2632				if (tdq->tdq_load)
2633					break;
2634				cpu_spinwait();
2635			}
2636		}
2637
2638		/* If there was context switch during spin, restart it. */
2639		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2640		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2641			continue;
2642
2643		/* Run main MD idle handler. */
2644		tdq->tdq_cpu_idle = 1;
2645		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2646		tdq->tdq_cpu_idle = 0;
2647
2648		/*
2649		 * Account thread-less hardware interrupts and
2650		 * other wakeup reasons equal to context switches.
2651		 */
2652		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2653		if (switchcnt != oldswitchcnt)
2654			continue;
2655		tdq->tdq_switchcnt++;
2656		oldswitchcnt++;
2657	}
2658}
2659
2660/*
2661 * A CPU is entering for the first time or a thread is exiting.
2662 */
2663void
2664sched_throw(struct thread *td)
2665{
2666	struct thread *newtd;
2667	struct tdq *tdq;
2668
2669	tdq = TDQ_SELF();
2670	if (td == NULL) {
2671		/* Correct spinlock nesting and acquire the correct lock. */
2672		TDQ_LOCK(tdq);
2673		spinlock_exit();
2674		PCPU_SET(switchtime, cpu_ticks());
2675		PCPU_SET(switchticks, ticks);
2676	} else {
2677		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2678		tdq_load_rem(tdq, td);
2679		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2680	}
2681	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2682	newtd = choosethread();
2683	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2684	cpu_throw(td, newtd);		/* doesn't return */
2685}
2686
2687/*
2688 * This is called from fork_exit().  Just acquire the correct locks and
2689 * let fork do the rest of the work.
2690 */
2691void
2692sched_fork_exit(struct thread *td)
2693{
2694	struct td_sched *ts;
2695	struct tdq *tdq;
2696	int cpuid;
2697
2698	/*
2699	 * Finish setting up thread glue so that it begins execution in a
2700	 * non-nested critical section with the scheduler lock held.
2701	 */
2702	cpuid = PCPU_GET(cpuid);
2703	tdq = TDQ_CPU(cpuid);
2704	ts = td->td_sched;
2705	if (TD_IS_IDLETHREAD(td))
2706		td->td_lock = TDQ_LOCKPTR(tdq);
2707	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2708	td->td_oncpu = cpuid;
2709	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2710	lock_profile_obtain_lock_success(
2711	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2712}
2713
2714/*
2715 * Create on first use to catch odd startup conditons.
2716 */
2717char *
2718sched_tdname(struct thread *td)
2719{
2720#ifdef KTR
2721	struct td_sched *ts;
2722
2723	ts = td->td_sched;
2724	if (ts->ts_name[0] == '\0')
2725		snprintf(ts->ts_name, sizeof(ts->ts_name),
2726		    "%s tid %d", td->td_name, td->td_tid);
2727	return (ts->ts_name);
2728#else
2729	return (td->td_name);
2730#endif
2731}
2732
2733#ifdef KTR
2734void
2735sched_clear_tdname(struct thread *td)
2736{
2737	struct td_sched *ts;
2738
2739	ts = td->td_sched;
2740	ts->ts_name[0] = '\0';
2741}
2742#endif
2743
2744#ifdef SMP
2745
2746/*
2747 * Build the CPU topology dump string. Is recursively called to collect
2748 * the topology tree.
2749 */
2750static int
2751sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2752    int indent)
2753{
2754	char cpusetbuf[CPUSETBUFSIZ];
2755	int i, first;
2756
2757	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2758	    "", 1 + indent / 2, cg->cg_level);
2759	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2760	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2761	first = TRUE;
2762	for (i = 0; i < MAXCPU; i++) {
2763		if (CPU_ISSET(i, &cg->cg_mask)) {
2764			if (!first)
2765				sbuf_printf(sb, ", ");
2766			else
2767				first = FALSE;
2768			sbuf_printf(sb, "%d", i);
2769		}
2770	}
2771	sbuf_printf(sb, "</cpu>\n");
2772
2773	if (cg->cg_flags != 0) {
2774		sbuf_printf(sb, "%*s <flags>", indent, "");
2775		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2776			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2777		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2778			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2779		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2780			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2781		sbuf_printf(sb, "</flags>\n");
2782	}
2783
2784	if (cg->cg_children > 0) {
2785		sbuf_printf(sb, "%*s <children>\n", indent, "");
2786		for (i = 0; i < cg->cg_children; i++)
2787			sysctl_kern_sched_topology_spec_internal(sb,
2788			    &cg->cg_child[i], indent+2);
2789		sbuf_printf(sb, "%*s </children>\n", indent, "");
2790	}
2791	sbuf_printf(sb, "%*s</group>\n", indent, "");
2792	return (0);
2793}
2794
2795/*
2796 * Sysctl handler for retrieving topology dump. It's a wrapper for
2797 * the recursive sysctl_kern_smp_topology_spec_internal().
2798 */
2799static int
2800sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2801{
2802	struct sbuf *topo;
2803	int err;
2804
2805	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2806
2807	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2808	if (topo == NULL)
2809		return (ENOMEM);
2810
2811	sbuf_printf(topo, "<groups>\n");
2812	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2813	sbuf_printf(topo, "</groups>\n");
2814
2815	if (err == 0) {
2816		sbuf_finish(topo);
2817		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2818	}
2819	sbuf_delete(topo);
2820	return (err);
2821}
2822
2823#endif
2824
2825static int
2826sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2827{
2828	int error, new_val, period;
2829
2830	period = 1000000 / realstathz;
2831	new_val = period * sched_slice;
2832	error = sysctl_handle_int(oidp, &new_val, 0, req);
2833	if (error != 0 || req->newptr == NULL)
2834		return (error);
2835	if (new_val <= 0)
2836		return (EINVAL);
2837	sched_slice = imax(1, (new_val + period / 2) / period);
2838	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
2839	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2840	    realstathz);
2841	return (0);
2842}
2843
2844SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2845SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2846    "Scheduler name");
2847SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2848    NULL, 0, sysctl_kern_quantum, "I",
2849    "Quantum for timeshare threads in microseconds");
2850SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2851    "Quantum for timeshare threads in stathz ticks");
2852SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2853    "Interactivity score threshold");
2854SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2855    &preempt_thresh, 0,
2856    "Maximal (lowest) priority for preemption");
2857SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2858    "Assign static kernel priorities to sleeping threads");
2859SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2860    "Number of times idle thread will spin waiting for new work");
2861SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2862    &sched_idlespinthresh, 0,
2863    "Threshold before we will permit idle thread spinning");
2864#ifdef SMP
2865SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2866    "Number of hz ticks to keep thread affinity for");
2867SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2868    "Enables the long-term load balancer");
2869SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2870    &balance_interval, 0,
2871    "Average period in stathz ticks to run the long-term balancer");
2872SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2873    "Attempts to steal work from other cores before idling");
2874SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2875    "Minimum load on remote CPU before we'll steal");
2876SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2877    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2878    "XML dump of detected CPU topology");
2879#endif
2880
2881/* ps compat.  All cpu percentages from ULE are weighted. */
2882static int ccpu = 0;
2883SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2884