sched_ule.c revision 260817
1/*-
2 * Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * This file implements the ULE scheduler.  ULE supports independent CPU
29 * run queues and fine grain locking.  It has superior interactive
30 * performance under load even on uni-processor systems.
31 *
32 * etymology:
33 *   ULE is the last three letters in schedule.  It owes its name to a
34 * generic user created for a scheduling system by Paul Mikesell at
35 * Isilon Systems and a general lack of creativity on the part of the author.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD: stable/10/sys/kern/sched_ule.c 260817 2014-01-17 10:58:59Z avg $");
40
41#include "opt_hwpmc_hooks.h"
42#include "opt_kdtrace.h"
43#include "opt_sched.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/kdb.h>
48#include <sys/kernel.h>
49#include <sys/ktr.h>
50#include <sys/lock.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resource.h>
54#include <sys/resourcevar.h>
55#include <sys/sched.h>
56#include <sys/sdt.h>
57#include <sys/smp.h>
58#include <sys/sx.h>
59#include <sys/sysctl.h>
60#include <sys/sysproto.h>
61#include <sys/turnstile.h>
62#include <sys/umtx.h>
63#include <sys/vmmeter.h>
64#include <sys/cpuset.h>
65#include <sys/sbuf.h>
66
67#ifdef HWPMC_HOOKS
68#include <sys/pmckern.h>
69#endif
70
71#ifdef KDTRACE_HOOKS
72#include <sys/dtrace_bsd.h>
73int				dtrace_vtime_active;
74dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
75#endif
76
77#include <machine/cpu.h>
78#include <machine/smp.h>
79
80#if defined(__powerpc__) && defined(BOOKE_E500)
81#error "This architecture is not currently compatible with ULE"
82#endif
83
84#define	KTR_ULE	0
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87#define	TDQ_NAME_LEN	(sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
88#define	TDQ_LOADNAME_LEN	(sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
89
90/*
91 * Thread scheduler specific section.  All fields are protected
92 * by the thread lock.
93 */
94struct td_sched {
95	struct runq	*ts_runq;	/* Run-queue we're queued on. */
96	short		ts_flags;	/* TSF_* flags. */
97	u_char		ts_cpu;		/* CPU that we have affinity for. */
98	int		ts_rltick;	/* Real last tick, for affinity. */
99	int		ts_slice;	/* Ticks of slice remaining. */
100	u_int		ts_slptime;	/* Number of ticks we vol. slept */
101	u_int		ts_runtime;	/* Number of ticks we were running */
102	int		ts_ltick;	/* Last tick that we were running on */
103	int		ts_ftick;	/* First tick that we were running on */
104	int		ts_ticks;	/* Tick count */
105#ifdef KTR
106	char		ts_name[TS_NAME_LEN];
107#endif
108};
109/* flags kept in ts_flags */
110#define	TSF_BOUND	0x0001		/* Thread can not migrate. */
111#define	TSF_XFERABLE	0x0002		/* Thread was added as transferable. */
112
113static struct td_sched td_sched0;
114
115#define	THREAD_CAN_MIGRATE(td)	((td)->td_pinned == 0)
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119/*
120 * Priority ranges used for interactive and non-interactive timeshare
121 * threads.  The timeshare priorities are split up into four ranges.
122 * The first range handles interactive threads.  The last three ranges
123 * (NHALF, x, and NHALF) handle non-interactive threads with the outer
124 * ranges supporting nice values.
125 */
126#define	PRI_TIMESHARE_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
127#define	PRI_INTERACT_RANGE	((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
128#define	PRI_BATCH_RANGE		(PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
129
130#define	PRI_MIN_INTERACT	PRI_MIN_TIMESHARE
131#define	PRI_MAX_INTERACT	(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
132#define	PRI_MIN_BATCH		(PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
133#define	PRI_MAX_BATCH		PRI_MAX_TIMESHARE
134
135/*
136 * Cpu percentage computation macros and defines.
137 *
138 * SCHED_TICK_SECS:	Number of seconds to average the cpu usage across.
139 * SCHED_TICK_TARG:	Number of hz ticks to average the cpu usage across.
140 * SCHED_TICK_MAX:	Maximum number of ticks before scaling back.
141 * SCHED_TICK_SHIFT:	Shift factor to avoid rounding away results.
142 * SCHED_TICK_HZ:	Compute the number of hz ticks for a given ticks count.
143 * SCHED_TICK_TOTAL:	Gives the amount of time we've been recording ticks.
144 */
145#define	SCHED_TICK_SECS		10
146#define	SCHED_TICK_TARG		(hz * SCHED_TICK_SECS)
147#define	SCHED_TICK_MAX		(SCHED_TICK_TARG + hz)
148#define	SCHED_TICK_SHIFT	10
149#define	SCHED_TICK_HZ(ts)	((ts)->ts_ticks >> SCHED_TICK_SHIFT)
150#define	SCHED_TICK_TOTAL(ts)	(max((ts)->ts_ltick - (ts)->ts_ftick, hz))
151
152/*
153 * These macros determine priorities for non-interactive threads.  They are
154 * assigned a priority based on their recent cpu utilization as expressed
155 * by the ratio of ticks to the tick total.  NHALF priorities at the start
156 * and end of the MIN to MAX timeshare range are only reachable with negative
157 * or positive nice respectively.
158 *
159 * PRI_RANGE:	Priority range for utilization dependent priorities.
160 * PRI_NRESV:	Number of nice values.
161 * PRI_TICKS:	Compute a priority in PRI_RANGE from the ticks count and total.
162 * PRI_NICE:	Determines the part of the priority inherited from nice.
163 */
164#define	SCHED_PRI_NRESV		(PRIO_MAX - PRIO_MIN)
165#define	SCHED_PRI_NHALF		(SCHED_PRI_NRESV / 2)
166#define	SCHED_PRI_MIN		(PRI_MIN_BATCH + SCHED_PRI_NHALF)
167#define	SCHED_PRI_MAX		(PRI_MAX_BATCH - SCHED_PRI_NHALF)
168#define	SCHED_PRI_RANGE		(SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
169#define	SCHED_PRI_TICKS(ts)						\
170    (SCHED_TICK_HZ((ts)) /						\
171    (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
172#define	SCHED_PRI_NICE(nice)	(nice)
173
174/*
175 * These determine the interactivity of a process.  Interactivity differs from
176 * cpu utilization in that it expresses the voluntary time slept vs time ran
177 * while cpu utilization includes all time not running.  This more accurately
178 * models the intent of the thread.
179 *
180 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
181 *		before throttling back.
182 * SLP_RUN_FORK:	Maximum slp+run time to inherit at fork time.
183 * INTERACT_MAX:	Maximum interactivity value.  Smaller is better.
184 * INTERACT_THRESH:	Threshold for placement on the current runq.
185 */
186#define	SCHED_SLP_RUN_MAX	((hz * 5) << SCHED_TICK_SHIFT)
187#define	SCHED_SLP_RUN_FORK	((hz / 2) << SCHED_TICK_SHIFT)
188#define	SCHED_INTERACT_MAX	(100)
189#define	SCHED_INTERACT_HALF	(SCHED_INTERACT_MAX / 2)
190#define	SCHED_INTERACT_THRESH	(30)
191
192/*
193 * These parameters determine the slice behavior for batch work.
194 */
195#define	SCHED_SLICE_DEFAULT_DIVISOR	10	/* ~94 ms, 12 stathz ticks. */
196#define	SCHED_SLICE_MIN_DIVISOR		6	/* DEFAULT/MIN = ~16 ms. */
197
198/* Flags kept in td_flags. */
199#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
200
201/*
202 * tickincr:		Converts a stathz tick into a hz domain scaled by
203 *			the shift factor.  Without the shift the error rate
204 *			due to rounding would be unacceptably high.
205 * realstathz:		stathz is sometimes 0 and run off of hz.
206 * sched_slice:		Runtime of each thread before rescheduling.
207 * preempt_thresh:	Priority threshold for preemption and remote IPIs.
208 */
209static int sched_interact = SCHED_INTERACT_THRESH;
210static int tickincr = 8 << SCHED_TICK_SHIFT;
211static int realstathz = 127;	/* reset during boot. */
212static int sched_slice = 10;	/* reset during boot. */
213static int sched_slice_min = 1;	/* reset during boot. */
214#ifdef PREEMPTION
215#ifdef FULL_PREEMPTION
216static int preempt_thresh = PRI_MAX_IDLE;
217#else
218static int preempt_thresh = PRI_MIN_KERN;
219#endif
220#else
221static int preempt_thresh = 0;
222#endif
223static int static_boost = PRI_MIN_BATCH;
224static int sched_idlespins = 10000;
225static int sched_idlespinthresh = -1;
226
227/*
228 * tdq - per processor runqs and statistics.  All fields are protected by the
229 * tdq_lock.  The load and lowpri may be accessed without to avoid excess
230 * locking in sched_pickcpu();
231 */
232struct tdq {
233	/*
234	 * Ordered to improve efficiency of cpu_search() and switch().
235	 * tdq_lock is padded to avoid false sharing with tdq_load and
236	 * tdq_cpu_idle.
237	 */
238	struct mtx_padalign tdq_lock;		/* run queue lock. */
239	struct cpu_group *tdq_cg;		/* Pointer to cpu topology. */
240	volatile int	tdq_load;		/* Aggregate load. */
241	volatile int	tdq_cpu_idle;		/* cpu_idle() is active. */
242	int		tdq_sysload;		/* For loadavg, !ITHD load. */
243	int		tdq_transferable;	/* Transferable thread count. */
244	short		tdq_switchcnt;		/* Switches this tick. */
245	short		tdq_oldswitchcnt;	/* Switches last tick. */
246	u_char		tdq_lowpri;		/* Lowest priority thread. */
247	u_char		tdq_ipipending;		/* IPI pending. */
248	u_char		tdq_idx;		/* Current insert index. */
249	u_char		tdq_ridx;		/* Current removal index. */
250	struct runq	tdq_realtime;		/* real-time run queue. */
251	struct runq	tdq_timeshare;		/* timeshare run queue. */
252	struct runq	tdq_idle;		/* Queue of IDLE threads. */
253	char		tdq_name[TDQ_NAME_LEN];
254#ifdef KTR
255	char		tdq_loadname[TDQ_LOADNAME_LEN];
256#endif
257} __aligned(64);
258
259/* Idle thread states and config. */
260#define	TDQ_RUNNING	1
261#define	TDQ_IDLE	2
262
263#ifdef SMP
264struct cpu_group *cpu_top;		/* CPU topology */
265
266#define	SCHED_AFFINITY_DEFAULT	(max(1, hz / 1000))
267#define	SCHED_AFFINITY(ts, t)	((ts)->ts_rltick > ticks - ((t) * affinity))
268
269/*
270 * Run-time tunables.
271 */
272static int rebalance = 1;
273static int balance_interval = 128;	/* Default set in sched_initticks(). */
274static int affinity;
275static int steal_idle = 1;
276static int steal_thresh = 2;
277
278/*
279 * One thread queue per processor.
280 */
281static struct tdq	tdq_cpu[MAXCPU];
282static struct tdq	*balance_tdq;
283static int balance_ticks;
284static DPCPU_DEFINE(uint32_t, randomval);
285
286#define	TDQ_SELF()	(&tdq_cpu[PCPU_GET(cpuid)])
287#define	TDQ_CPU(x)	(&tdq_cpu[(x)])
288#define	TDQ_ID(x)	((int)((x) - tdq_cpu))
289#else	/* !SMP */
290static struct tdq	tdq_cpu;
291
292#define	TDQ_ID(x)	(0)
293#define	TDQ_SELF()	(&tdq_cpu)
294#define	TDQ_CPU(x)	(&tdq_cpu)
295#endif
296
297#define	TDQ_LOCK_ASSERT(t, type)	mtx_assert(TDQ_LOCKPTR((t)), (type))
298#define	TDQ_LOCK(t)		mtx_lock_spin(TDQ_LOCKPTR((t)))
299#define	TDQ_LOCK_FLAGS(t, f)	mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
300#define	TDQ_UNLOCK(t)		mtx_unlock_spin(TDQ_LOCKPTR((t)))
301#define	TDQ_LOCKPTR(t)		((struct mtx *)(&(t)->tdq_lock))
302
303static void sched_priority(struct thread *);
304static void sched_thread_priority(struct thread *, u_char);
305static int sched_interact_score(struct thread *);
306static void sched_interact_update(struct thread *);
307static void sched_interact_fork(struct thread *);
308static void sched_pctcpu_update(struct td_sched *, int);
309
310/* Operations on per processor queues */
311static struct thread *tdq_choose(struct tdq *);
312static void tdq_setup(struct tdq *);
313static void tdq_load_add(struct tdq *, struct thread *);
314static void tdq_load_rem(struct tdq *, struct thread *);
315static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
316static __inline void tdq_runq_rem(struct tdq *, struct thread *);
317static inline int sched_shouldpreempt(int, int, int);
318void tdq_print(int cpu);
319static void runq_print(struct runq *rq);
320static void tdq_add(struct tdq *, struct thread *, int);
321#ifdef SMP
322static int tdq_move(struct tdq *, struct tdq *);
323static int tdq_idled(struct tdq *);
324static void tdq_notify(struct tdq *, struct thread *);
325static struct thread *tdq_steal(struct tdq *, int);
326static struct thread *runq_steal(struct runq *, int);
327static int sched_pickcpu(struct thread *, int);
328static void sched_balance(void);
329static int sched_balance_pair(struct tdq *, struct tdq *);
330static inline struct tdq *sched_setcpu(struct thread *, int, int);
331static inline void thread_unblock_switch(struct thread *, struct mtx *);
332static struct mtx *sched_switch_migrate(struct tdq *, struct thread *, int);
333static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
334static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
335    struct cpu_group *cg, int indent);
336#endif
337
338static void sched_setup(void *dummy);
339SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
340
341static void sched_initticks(void *dummy);
342SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
343    NULL);
344
345SDT_PROVIDER_DEFINE(sched);
346
347SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
348    "struct proc *", "uint8_t");
349SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
350    "struct proc *", "void *");
351SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
352    "struct proc *", "void *", "int");
353SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
354    "struct proc *", "uint8_t", "struct thread *");
355SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
356SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
357    "struct proc *");
358SDT_PROBE_DEFINE(sched, , , on__cpu);
359SDT_PROBE_DEFINE(sched, , , remain__cpu);
360SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
361    "struct proc *");
362
363/*
364 * Print the threads waiting on a run-queue.
365 */
366static void
367runq_print(struct runq *rq)
368{
369	struct rqhead *rqh;
370	struct thread *td;
371	int pri;
372	int j;
373	int i;
374
375	for (i = 0; i < RQB_LEN; i++) {
376		printf("\t\trunq bits %d 0x%zx\n",
377		    i, rq->rq_status.rqb_bits[i]);
378		for (j = 0; j < RQB_BPW; j++)
379			if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
380				pri = j + (i << RQB_L2BPW);
381				rqh = &rq->rq_queues[pri];
382				TAILQ_FOREACH(td, rqh, td_runq) {
383					printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
384					    td, td->td_name, td->td_priority,
385					    td->td_rqindex, pri);
386				}
387			}
388	}
389}
390
391/*
392 * Print the status of a per-cpu thread queue.  Should be a ddb show cmd.
393 */
394void
395tdq_print(int cpu)
396{
397	struct tdq *tdq;
398
399	tdq = TDQ_CPU(cpu);
400
401	printf("tdq %d:\n", TDQ_ID(tdq));
402	printf("\tlock            %p\n", TDQ_LOCKPTR(tdq));
403	printf("\tLock name:      %s\n", tdq->tdq_name);
404	printf("\tload:           %d\n", tdq->tdq_load);
405	printf("\tswitch cnt:     %d\n", tdq->tdq_switchcnt);
406	printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
407	printf("\ttimeshare idx:  %d\n", tdq->tdq_idx);
408	printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
409	printf("\tload transferable: %d\n", tdq->tdq_transferable);
410	printf("\tlowest priority:   %d\n", tdq->tdq_lowpri);
411	printf("\trealtime runq:\n");
412	runq_print(&tdq->tdq_realtime);
413	printf("\ttimeshare runq:\n");
414	runq_print(&tdq->tdq_timeshare);
415	printf("\tidle runq:\n");
416	runq_print(&tdq->tdq_idle);
417}
418
419static inline int
420sched_shouldpreempt(int pri, int cpri, int remote)
421{
422	/*
423	 * If the new priority is not better than the current priority there is
424	 * nothing to do.
425	 */
426	if (pri >= cpri)
427		return (0);
428	/*
429	 * Always preempt idle.
430	 */
431	if (cpri >= PRI_MIN_IDLE)
432		return (1);
433	/*
434	 * If preemption is disabled don't preempt others.
435	 */
436	if (preempt_thresh == 0)
437		return (0);
438	/*
439	 * Preempt if we exceed the threshold.
440	 */
441	if (pri <= preempt_thresh)
442		return (1);
443	/*
444	 * If we're interactive or better and there is non-interactive
445	 * or worse running preempt only remote processors.
446	 */
447	if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
448		return (1);
449	return (0);
450}
451
452/*
453 * Add a thread to the actual run-queue.  Keeps transferable counts up to
454 * date with what is actually on the run-queue.  Selects the correct
455 * queue position for timeshare threads.
456 */
457static __inline void
458tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
459{
460	struct td_sched *ts;
461	u_char pri;
462
463	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
464	THREAD_LOCK_ASSERT(td, MA_OWNED);
465
466	pri = td->td_priority;
467	ts = td->td_sched;
468	TD_SET_RUNQ(td);
469	if (THREAD_CAN_MIGRATE(td)) {
470		tdq->tdq_transferable++;
471		ts->ts_flags |= TSF_XFERABLE;
472	}
473	if (pri < PRI_MIN_BATCH) {
474		ts->ts_runq = &tdq->tdq_realtime;
475	} else if (pri <= PRI_MAX_BATCH) {
476		ts->ts_runq = &tdq->tdq_timeshare;
477		KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
478			("Invalid priority %d on timeshare runq", pri));
479		/*
480		 * This queue contains only priorities between MIN and MAX
481		 * realtime.  Use the whole queue to represent these values.
482		 */
483		if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
484			pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
485			pri = (pri + tdq->tdq_idx) % RQ_NQS;
486			/*
487			 * This effectively shortens the queue by one so we
488			 * can have a one slot difference between idx and
489			 * ridx while we wait for threads to drain.
490			 */
491			if (tdq->tdq_ridx != tdq->tdq_idx &&
492			    pri == tdq->tdq_ridx)
493				pri = (unsigned char)(pri - 1) % RQ_NQS;
494		} else
495			pri = tdq->tdq_ridx;
496		runq_add_pri(ts->ts_runq, td, pri, flags);
497		return;
498	} else
499		ts->ts_runq = &tdq->tdq_idle;
500	runq_add(ts->ts_runq, td, flags);
501}
502
503/*
504 * Remove a thread from a run-queue.  This typically happens when a thread
505 * is selected to run.  Running threads are not on the queue and the
506 * transferable count does not reflect them.
507 */
508static __inline void
509tdq_runq_rem(struct tdq *tdq, struct thread *td)
510{
511	struct td_sched *ts;
512
513	ts = td->td_sched;
514	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
515	KASSERT(ts->ts_runq != NULL,
516	    ("tdq_runq_remove: thread %p null ts_runq", td));
517	if (ts->ts_flags & TSF_XFERABLE) {
518		tdq->tdq_transferable--;
519		ts->ts_flags &= ~TSF_XFERABLE;
520	}
521	if (ts->ts_runq == &tdq->tdq_timeshare) {
522		if (tdq->tdq_idx != tdq->tdq_ridx)
523			runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
524		else
525			runq_remove_idx(ts->ts_runq, td, NULL);
526	} else
527		runq_remove(ts->ts_runq, td);
528}
529
530/*
531 * Load is maintained for all threads RUNNING and ON_RUNQ.  Add the load
532 * for this thread to the referenced thread queue.
533 */
534static void
535tdq_load_add(struct tdq *tdq, struct thread *td)
536{
537
538	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
539	THREAD_LOCK_ASSERT(td, MA_OWNED);
540
541	tdq->tdq_load++;
542	if ((td->td_flags & TDF_NOLOAD) == 0)
543		tdq->tdq_sysload++;
544	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
545	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
546}
547
548/*
549 * Remove the load from a thread that is transitioning to a sleep state or
550 * exiting.
551 */
552static void
553tdq_load_rem(struct tdq *tdq, struct thread *td)
554{
555
556	THREAD_LOCK_ASSERT(td, MA_OWNED);
557	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
558	KASSERT(tdq->tdq_load != 0,
559	    ("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
560
561	tdq->tdq_load--;
562	if ((td->td_flags & TDF_NOLOAD) == 0)
563		tdq->tdq_sysload--;
564	KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
565	SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
566}
567
568/*
569 * Bound timeshare latency by decreasing slice size as load increases.  We
570 * consider the maximum latency as the sum of the threads waiting to run
571 * aside from curthread and target no more than sched_slice latency but
572 * no less than sched_slice_min runtime.
573 */
574static inline int
575tdq_slice(struct tdq *tdq)
576{
577	int load;
578
579	/*
580	 * It is safe to use sys_load here because this is called from
581	 * contexts where timeshare threads are running and so there
582	 * cannot be higher priority load in the system.
583	 */
584	load = tdq->tdq_sysload - 1;
585	if (load >= SCHED_SLICE_MIN_DIVISOR)
586		return (sched_slice_min);
587	if (load <= 1)
588		return (sched_slice);
589	return (sched_slice / load);
590}
591
592/*
593 * Set lowpri to its exact value by searching the run-queue and
594 * evaluating curthread.  curthread may be passed as an optimization.
595 */
596static void
597tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
598{
599	struct thread *td;
600
601	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
602	if (ctd == NULL)
603		ctd = pcpu_find(TDQ_ID(tdq))->pc_curthread;
604	td = tdq_choose(tdq);
605	if (td == NULL || td->td_priority > ctd->td_priority)
606		tdq->tdq_lowpri = ctd->td_priority;
607	else
608		tdq->tdq_lowpri = td->td_priority;
609}
610
611#ifdef SMP
612struct cpu_search {
613	cpuset_t cs_mask;
614	u_int	cs_prefer;
615	int	cs_pri;		/* Min priority for low. */
616	int	cs_limit;	/* Max load for low, min load for high. */
617	int	cs_cpu;
618	int	cs_load;
619};
620
621#define	CPU_SEARCH_LOWEST	0x1
622#define	CPU_SEARCH_HIGHEST	0x2
623#define	CPU_SEARCH_BOTH		(CPU_SEARCH_LOWEST|CPU_SEARCH_HIGHEST)
624
625#define	CPUSET_FOREACH(cpu, mask)				\
626	for ((cpu) = 0; (cpu) <= mp_maxid; (cpu)++)		\
627		if (CPU_ISSET(cpu, &mask))
628
629static __inline int cpu_search(const struct cpu_group *cg, struct cpu_search *low,
630    struct cpu_search *high, const int match);
631int cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low);
632int cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high);
633int cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
634    struct cpu_search *high);
635
636/*
637 * Search the tree of cpu_groups for the lowest or highest loaded cpu
638 * according to the match argument.  This routine actually compares the
639 * load on all paths through the tree and finds the least loaded cpu on
640 * the least loaded path, which may differ from the least loaded cpu in
641 * the system.  This balances work among caches and busses.
642 *
643 * This inline is instantiated in three forms below using constants for the
644 * match argument.  It is reduced to the minimum set for each case.  It is
645 * also recursive to the depth of the tree.
646 */
647static __inline int
648cpu_search(const struct cpu_group *cg, struct cpu_search *low,
649    struct cpu_search *high, const int match)
650{
651	struct cpu_search lgroup;
652	struct cpu_search hgroup;
653	cpuset_t cpumask;
654	struct cpu_group *child;
655	struct tdq *tdq;
656	int cpu, i, hload, lload, load, total, rnd, *rndptr;
657
658	total = 0;
659	cpumask = cg->cg_mask;
660	if (match & CPU_SEARCH_LOWEST) {
661		lload = INT_MAX;
662		lgroup = *low;
663	}
664	if (match & CPU_SEARCH_HIGHEST) {
665		hload = INT_MIN;
666		hgroup = *high;
667	}
668
669	/* Iterate through the child CPU groups and then remaining CPUs. */
670	for (i = cg->cg_children, cpu = mp_maxid; ; ) {
671		if (i == 0) {
672#ifdef HAVE_INLINE_FFSL
673			cpu = CPU_FFS(&cpumask) - 1;
674#else
675			while (cpu >= 0 && !CPU_ISSET(cpu, &cpumask))
676				cpu--;
677#endif
678			if (cpu < 0)
679				break;
680			child = NULL;
681		} else
682			child = &cg->cg_child[i - 1];
683
684		if (match & CPU_SEARCH_LOWEST)
685			lgroup.cs_cpu = -1;
686		if (match & CPU_SEARCH_HIGHEST)
687			hgroup.cs_cpu = -1;
688		if (child) {			/* Handle child CPU group. */
689			CPU_NAND(&cpumask, &child->cg_mask);
690			switch (match) {
691			case CPU_SEARCH_LOWEST:
692				load = cpu_search_lowest(child, &lgroup);
693				break;
694			case CPU_SEARCH_HIGHEST:
695				load = cpu_search_highest(child, &hgroup);
696				break;
697			case CPU_SEARCH_BOTH:
698				load = cpu_search_both(child, &lgroup, &hgroup);
699				break;
700			}
701		} else {			/* Handle child CPU. */
702			CPU_CLR(cpu, &cpumask);
703			tdq = TDQ_CPU(cpu);
704			load = tdq->tdq_load * 256;
705			rndptr = DPCPU_PTR(randomval);
706			rnd = (*rndptr = *rndptr * 69069 + 5) >> 26;
707			if (match & CPU_SEARCH_LOWEST) {
708				if (cpu == low->cs_prefer)
709					load -= 64;
710				/* If that CPU is allowed and get data. */
711				if (tdq->tdq_lowpri > lgroup.cs_pri &&
712				    tdq->tdq_load <= lgroup.cs_limit &&
713				    CPU_ISSET(cpu, &lgroup.cs_mask)) {
714					lgroup.cs_cpu = cpu;
715					lgroup.cs_load = load - rnd;
716				}
717			}
718			if (match & CPU_SEARCH_HIGHEST)
719				if (tdq->tdq_load >= hgroup.cs_limit &&
720				    tdq->tdq_transferable &&
721				    CPU_ISSET(cpu, &hgroup.cs_mask)) {
722					hgroup.cs_cpu = cpu;
723					hgroup.cs_load = load - rnd;
724				}
725		}
726		total += load;
727
728		/* We have info about child item. Compare it. */
729		if (match & CPU_SEARCH_LOWEST) {
730			if (lgroup.cs_cpu >= 0 &&
731			    (load < lload ||
732			     (load == lload && lgroup.cs_load < low->cs_load))) {
733				lload = load;
734				low->cs_cpu = lgroup.cs_cpu;
735				low->cs_load = lgroup.cs_load;
736			}
737		}
738		if (match & CPU_SEARCH_HIGHEST)
739			if (hgroup.cs_cpu >= 0 &&
740			    (load > hload ||
741			     (load == hload && hgroup.cs_load > high->cs_load))) {
742				hload = load;
743				high->cs_cpu = hgroup.cs_cpu;
744				high->cs_load = hgroup.cs_load;
745			}
746		if (child) {
747			i--;
748			if (i == 0 && CPU_EMPTY(&cpumask))
749				break;
750		}
751#ifndef HAVE_INLINE_FFSL
752		else
753			cpu--;
754#endif
755	}
756	return (total);
757}
758
759/*
760 * cpu_search instantiations must pass constants to maintain the inline
761 * optimization.
762 */
763int
764cpu_search_lowest(const struct cpu_group *cg, struct cpu_search *low)
765{
766	return cpu_search(cg, low, NULL, CPU_SEARCH_LOWEST);
767}
768
769int
770cpu_search_highest(const struct cpu_group *cg, struct cpu_search *high)
771{
772	return cpu_search(cg, NULL, high, CPU_SEARCH_HIGHEST);
773}
774
775int
776cpu_search_both(const struct cpu_group *cg, struct cpu_search *low,
777    struct cpu_search *high)
778{
779	return cpu_search(cg, low, high, CPU_SEARCH_BOTH);
780}
781
782/*
783 * Find the cpu with the least load via the least loaded path that has a
784 * lowpri greater than pri  pri.  A pri of -1 indicates any priority is
785 * acceptable.
786 */
787static inline int
788sched_lowest(const struct cpu_group *cg, cpuset_t mask, int pri, int maxload,
789    int prefer)
790{
791	struct cpu_search low;
792
793	low.cs_cpu = -1;
794	low.cs_prefer = prefer;
795	low.cs_mask = mask;
796	low.cs_pri = pri;
797	low.cs_limit = maxload;
798	cpu_search_lowest(cg, &low);
799	return low.cs_cpu;
800}
801
802/*
803 * Find the cpu with the highest load via the highest loaded path.
804 */
805static inline int
806sched_highest(const struct cpu_group *cg, cpuset_t mask, int minload)
807{
808	struct cpu_search high;
809
810	high.cs_cpu = -1;
811	high.cs_mask = mask;
812	high.cs_limit = minload;
813	cpu_search_highest(cg, &high);
814	return high.cs_cpu;
815}
816
817static void
818sched_balance_group(struct cpu_group *cg)
819{
820	cpuset_t hmask, lmask;
821	int high, low, anylow;
822
823	CPU_FILL(&hmask);
824	for (;;) {
825		high = sched_highest(cg, hmask, 1);
826		/* Stop if there is no more CPU with transferrable threads. */
827		if (high == -1)
828			break;
829		CPU_CLR(high, &hmask);
830		CPU_COPY(&hmask, &lmask);
831		/* Stop if there is no more CPU left for low. */
832		if (CPU_EMPTY(&lmask))
833			break;
834		anylow = 1;
835nextlow:
836		low = sched_lowest(cg, lmask, -1,
837		    TDQ_CPU(high)->tdq_load - 1, high);
838		/* Stop if we looked well and found no less loaded CPU. */
839		if (anylow && low == -1)
840			break;
841		/* Go to next high if we found no less loaded CPU. */
842		if (low == -1)
843			continue;
844		/* Transfer thread from high to low. */
845		if (sched_balance_pair(TDQ_CPU(high), TDQ_CPU(low))) {
846			/* CPU that got thread can no longer be a donor. */
847			CPU_CLR(low, &hmask);
848		} else {
849			/*
850			 * If failed, then there is no threads on high
851			 * that can run on this low. Drop low from low
852			 * mask and look for different one.
853			 */
854			CPU_CLR(low, &lmask);
855			anylow = 0;
856			goto nextlow;
857		}
858	}
859}
860
861static void
862sched_balance(void)
863{
864	struct tdq *tdq;
865
866	/*
867	 * Select a random time between .5 * balance_interval and
868	 * 1.5 * balance_interval.
869	 */
870	balance_ticks = max(balance_interval / 2, 1);
871	balance_ticks += random() % balance_interval;
872	if (smp_started == 0 || rebalance == 0)
873		return;
874	tdq = TDQ_SELF();
875	TDQ_UNLOCK(tdq);
876	sched_balance_group(cpu_top);
877	TDQ_LOCK(tdq);
878}
879
880/*
881 * Lock two thread queues using their address to maintain lock order.
882 */
883static void
884tdq_lock_pair(struct tdq *one, struct tdq *two)
885{
886	if (one < two) {
887		TDQ_LOCK(one);
888		TDQ_LOCK_FLAGS(two, MTX_DUPOK);
889	} else {
890		TDQ_LOCK(two);
891		TDQ_LOCK_FLAGS(one, MTX_DUPOK);
892	}
893}
894
895/*
896 * Unlock two thread queues.  Order is not important here.
897 */
898static void
899tdq_unlock_pair(struct tdq *one, struct tdq *two)
900{
901	TDQ_UNLOCK(one);
902	TDQ_UNLOCK(two);
903}
904
905/*
906 * Transfer load between two imbalanced thread queues.
907 */
908static int
909sched_balance_pair(struct tdq *high, struct tdq *low)
910{
911	int moved;
912	int cpu;
913
914	tdq_lock_pair(high, low);
915	moved = 0;
916	/*
917	 * Determine what the imbalance is and then adjust that to how many
918	 * threads we actually have to give up (transferable).
919	 */
920	if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load &&
921	    (moved = tdq_move(high, low)) > 0) {
922		/*
923		 * In case the target isn't the current cpu IPI it to force a
924		 * reschedule with the new workload.
925		 */
926		cpu = TDQ_ID(low);
927		if (cpu != PCPU_GET(cpuid))
928			ipi_cpu(cpu, IPI_PREEMPT);
929	}
930	tdq_unlock_pair(high, low);
931	return (moved);
932}
933
934/*
935 * Move a thread from one thread queue to another.
936 */
937static int
938tdq_move(struct tdq *from, struct tdq *to)
939{
940	struct td_sched *ts;
941	struct thread *td;
942	struct tdq *tdq;
943	int cpu;
944
945	TDQ_LOCK_ASSERT(from, MA_OWNED);
946	TDQ_LOCK_ASSERT(to, MA_OWNED);
947
948	tdq = from;
949	cpu = TDQ_ID(to);
950	td = tdq_steal(tdq, cpu);
951	if (td == NULL)
952		return (0);
953	ts = td->td_sched;
954	/*
955	 * Although the run queue is locked the thread may be blocked.  Lock
956	 * it to clear this and acquire the run-queue lock.
957	 */
958	thread_lock(td);
959	/* Drop recursive lock on from acquired via thread_lock(). */
960	TDQ_UNLOCK(from);
961	sched_rem(td);
962	ts->ts_cpu = cpu;
963	td->td_lock = TDQ_LOCKPTR(to);
964	tdq_add(to, td, SRQ_YIELDING);
965	return (1);
966}
967
968/*
969 * This tdq has idled.  Try to steal a thread from another cpu and switch
970 * to it.
971 */
972static int
973tdq_idled(struct tdq *tdq)
974{
975	struct cpu_group *cg;
976	struct tdq *steal;
977	cpuset_t mask;
978	int thresh;
979	int cpu;
980
981	if (smp_started == 0 || steal_idle == 0)
982		return (1);
983	CPU_FILL(&mask);
984	CPU_CLR(PCPU_GET(cpuid), &mask);
985	/* We don't want to be preempted while we're iterating. */
986	spinlock_enter();
987	for (cg = tdq->tdq_cg; cg != NULL; ) {
988		if ((cg->cg_flags & CG_FLAG_THREAD) == 0)
989			thresh = steal_thresh;
990		else
991			thresh = 1;
992		cpu = sched_highest(cg, mask, thresh);
993		if (cpu == -1) {
994			cg = cg->cg_parent;
995			continue;
996		}
997		steal = TDQ_CPU(cpu);
998		CPU_CLR(cpu, &mask);
999		tdq_lock_pair(tdq, steal);
1000		if (steal->tdq_load < thresh || steal->tdq_transferable == 0) {
1001			tdq_unlock_pair(tdq, steal);
1002			continue;
1003		}
1004		/*
1005		 * If a thread was added while interrupts were disabled don't
1006		 * steal one here.  If we fail to acquire one due to affinity
1007		 * restrictions loop again with this cpu removed from the
1008		 * set.
1009		 */
1010		if (tdq->tdq_load == 0 && tdq_move(steal, tdq) == 0) {
1011			tdq_unlock_pair(tdq, steal);
1012			continue;
1013		}
1014		spinlock_exit();
1015		TDQ_UNLOCK(steal);
1016		mi_switch(SW_VOL | SWT_IDLE, NULL);
1017		thread_unlock(curthread);
1018
1019		return (0);
1020	}
1021	spinlock_exit();
1022	return (1);
1023}
1024
1025/*
1026 * Notify a remote cpu of new work.  Sends an IPI if criteria are met.
1027 */
1028static void
1029tdq_notify(struct tdq *tdq, struct thread *td)
1030{
1031	struct thread *ctd;
1032	int pri;
1033	int cpu;
1034
1035	if (tdq->tdq_ipipending)
1036		return;
1037	cpu = td->td_sched->ts_cpu;
1038	pri = td->td_priority;
1039	ctd = pcpu_find(cpu)->pc_curthread;
1040	if (!sched_shouldpreempt(pri, ctd->td_priority, 1))
1041		return;
1042	if (TD_IS_IDLETHREAD(ctd)) {
1043		/*
1044		 * If the MD code has an idle wakeup routine try that before
1045		 * falling back to IPI.
1046		 */
1047		if (!tdq->tdq_cpu_idle || cpu_idle_wakeup(cpu))
1048			return;
1049	}
1050	tdq->tdq_ipipending = 1;
1051	ipi_cpu(cpu, IPI_PREEMPT);
1052}
1053
1054/*
1055 * Steals load from a timeshare queue.  Honors the rotating queue head
1056 * index.
1057 */
1058static struct thread *
1059runq_steal_from(struct runq *rq, int cpu, u_char start)
1060{
1061	struct rqbits *rqb;
1062	struct rqhead *rqh;
1063	struct thread *td, *first;
1064	int bit;
1065	int pri;
1066	int i;
1067
1068	rqb = &rq->rq_status;
1069	bit = start & (RQB_BPW -1);
1070	pri = 0;
1071	first = NULL;
1072again:
1073	for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
1074		if (rqb->rqb_bits[i] == 0)
1075			continue;
1076		if (bit != 0) {
1077			for (pri = bit; pri < RQB_BPW; pri++)
1078				if (rqb->rqb_bits[i] & (1ul << pri))
1079					break;
1080			if (pri >= RQB_BPW)
1081				continue;
1082		} else
1083			pri = RQB_FFS(rqb->rqb_bits[i]);
1084		pri += (i << RQB_L2BPW);
1085		rqh = &rq->rq_queues[pri];
1086		TAILQ_FOREACH(td, rqh, td_runq) {
1087			if (first && THREAD_CAN_MIGRATE(td) &&
1088			    THREAD_CAN_SCHED(td, cpu))
1089				return (td);
1090			first = td;
1091		}
1092	}
1093	if (start != 0) {
1094		start = 0;
1095		goto again;
1096	}
1097
1098	if (first && THREAD_CAN_MIGRATE(first) &&
1099	    THREAD_CAN_SCHED(first, cpu))
1100		return (first);
1101	return (NULL);
1102}
1103
1104/*
1105 * Steals load from a standard linear queue.
1106 */
1107static struct thread *
1108runq_steal(struct runq *rq, int cpu)
1109{
1110	struct rqhead *rqh;
1111	struct rqbits *rqb;
1112	struct thread *td;
1113	int word;
1114	int bit;
1115
1116	rqb = &rq->rq_status;
1117	for (word = 0; word < RQB_LEN; word++) {
1118		if (rqb->rqb_bits[word] == 0)
1119			continue;
1120		for (bit = 0; bit < RQB_BPW; bit++) {
1121			if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
1122				continue;
1123			rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
1124			TAILQ_FOREACH(td, rqh, td_runq)
1125				if (THREAD_CAN_MIGRATE(td) &&
1126				    THREAD_CAN_SCHED(td, cpu))
1127					return (td);
1128		}
1129	}
1130	return (NULL);
1131}
1132
1133/*
1134 * Attempt to steal a thread in priority order from a thread queue.
1135 */
1136static struct thread *
1137tdq_steal(struct tdq *tdq, int cpu)
1138{
1139	struct thread *td;
1140
1141	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1142	if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
1143		return (td);
1144	if ((td = runq_steal_from(&tdq->tdq_timeshare,
1145	    cpu, tdq->tdq_ridx)) != NULL)
1146		return (td);
1147	return (runq_steal(&tdq->tdq_idle, cpu));
1148}
1149
1150/*
1151 * Sets the thread lock and ts_cpu to match the requested cpu.  Unlocks the
1152 * current lock and returns with the assigned queue locked.
1153 */
1154static inline struct tdq *
1155sched_setcpu(struct thread *td, int cpu, int flags)
1156{
1157
1158	struct tdq *tdq;
1159
1160	THREAD_LOCK_ASSERT(td, MA_OWNED);
1161	tdq = TDQ_CPU(cpu);
1162	td->td_sched->ts_cpu = cpu;
1163	/*
1164	 * If the lock matches just return the queue.
1165	 */
1166	if (td->td_lock == TDQ_LOCKPTR(tdq))
1167		return (tdq);
1168#ifdef notyet
1169	/*
1170	 * If the thread isn't running its lockptr is a
1171	 * turnstile or a sleepqueue.  We can just lock_set without
1172	 * blocking.
1173	 */
1174	if (TD_CAN_RUN(td)) {
1175		TDQ_LOCK(tdq);
1176		thread_lock_set(td, TDQ_LOCKPTR(tdq));
1177		return (tdq);
1178	}
1179#endif
1180	/*
1181	 * The hard case, migration, we need to block the thread first to
1182	 * prevent order reversals with other cpus locks.
1183	 */
1184	spinlock_enter();
1185	thread_lock_block(td);
1186	TDQ_LOCK(tdq);
1187	thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
1188	spinlock_exit();
1189	return (tdq);
1190}
1191
1192SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
1193SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
1194SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
1195SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
1196SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
1197SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
1198
1199static int
1200sched_pickcpu(struct thread *td, int flags)
1201{
1202	struct cpu_group *cg, *ccg;
1203	struct td_sched *ts;
1204	struct tdq *tdq;
1205	cpuset_t mask;
1206	int cpu, pri, self;
1207
1208	self = PCPU_GET(cpuid);
1209	ts = td->td_sched;
1210	if (smp_started == 0)
1211		return (self);
1212	/*
1213	 * Don't migrate a running thread from sched_switch().
1214	 */
1215	if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
1216		return (ts->ts_cpu);
1217	/*
1218	 * Prefer to run interrupt threads on the processors that generate
1219	 * the interrupt.
1220	 */
1221	pri = td->td_priority;
1222	if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
1223	    curthread->td_intr_nesting_level && ts->ts_cpu != self) {
1224		SCHED_STAT_INC(pickcpu_intrbind);
1225		ts->ts_cpu = self;
1226		if (TDQ_CPU(self)->tdq_lowpri > pri) {
1227			SCHED_STAT_INC(pickcpu_affinity);
1228			return (ts->ts_cpu);
1229		}
1230	}
1231	/*
1232	 * If the thread can run on the last cpu and the affinity has not
1233	 * expired or it is idle run it there.
1234	 */
1235	tdq = TDQ_CPU(ts->ts_cpu);
1236	cg = tdq->tdq_cg;
1237	if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
1238	    tdq->tdq_lowpri >= PRI_MIN_IDLE &&
1239	    SCHED_AFFINITY(ts, CG_SHARE_L2)) {
1240		if (cg->cg_flags & CG_FLAG_THREAD) {
1241			CPUSET_FOREACH(cpu, cg->cg_mask) {
1242				if (TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE)
1243					break;
1244			}
1245		} else
1246			cpu = INT_MAX;
1247		if (cpu > mp_maxid) {
1248			SCHED_STAT_INC(pickcpu_idle_affinity);
1249			return (ts->ts_cpu);
1250		}
1251	}
1252	/*
1253	 * Search for the last level cache CPU group in the tree.
1254	 * Skip caches with expired affinity time and SMT groups.
1255	 * Affinity to higher level caches will be handled less aggressively.
1256	 */
1257	for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
1258		if (cg->cg_flags & CG_FLAG_THREAD)
1259			continue;
1260		if (!SCHED_AFFINITY(ts, cg->cg_level))
1261			continue;
1262		ccg = cg;
1263	}
1264	if (ccg != NULL)
1265		cg = ccg;
1266	cpu = -1;
1267	/* Search the group for the less loaded idle CPU we can run now. */
1268	mask = td->td_cpuset->cs_mask;
1269	if (cg != NULL && cg != cpu_top &&
1270	    CPU_CMP(&cg->cg_mask, &cpu_top->cg_mask) != 0)
1271		cpu = sched_lowest(cg, mask, max(pri, PRI_MAX_TIMESHARE),
1272		    INT_MAX, ts->ts_cpu);
1273	/* Search globally for the less loaded CPU we can run now. */
1274	if (cpu == -1)
1275		cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu);
1276	/* Search globally for the less loaded CPU. */
1277	if (cpu == -1)
1278		cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu);
1279	KASSERT(cpu != -1, ("sched_pickcpu: Failed to find a cpu."));
1280	/*
1281	 * Compare the lowest loaded cpu to current cpu.
1282	 */
1283	if (THREAD_CAN_SCHED(td, self) && TDQ_CPU(self)->tdq_lowpri > pri &&
1284	    TDQ_CPU(cpu)->tdq_lowpri < PRI_MIN_IDLE &&
1285	    TDQ_CPU(self)->tdq_load <= TDQ_CPU(cpu)->tdq_load + 1) {
1286		SCHED_STAT_INC(pickcpu_local);
1287		cpu = self;
1288	} else
1289		SCHED_STAT_INC(pickcpu_lowest);
1290	if (cpu != ts->ts_cpu)
1291		SCHED_STAT_INC(pickcpu_migration);
1292	return (cpu);
1293}
1294#endif
1295
1296/*
1297 * Pick the highest priority task we have and return it.
1298 */
1299static struct thread *
1300tdq_choose(struct tdq *tdq)
1301{
1302	struct thread *td;
1303
1304	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
1305	td = runq_choose(&tdq->tdq_realtime);
1306	if (td != NULL)
1307		return (td);
1308	td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
1309	if (td != NULL) {
1310		KASSERT(td->td_priority >= PRI_MIN_BATCH,
1311		    ("tdq_choose: Invalid priority on timeshare queue %d",
1312		    td->td_priority));
1313		return (td);
1314	}
1315	td = runq_choose(&tdq->tdq_idle);
1316	if (td != NULL) {
1317		KASSERT(td->td_priority >= PRI_MIN_IDLE,
1318		    ("tdq_choose: Invalid priority on idle queue %d",
1319		    td->td_priority));
1320		return (td);
1321	}
1322
1323	return (NULL);
1324}
1325
1326/*
1327 * Initialize a thread queue.
1328 */
1329static void
1330tdq_setup(struct tdq *tdq)
1331{
1332
1333	if (bootverbose)
1334		printf("ULE: setup cpu %d\n", TDQ_ID(tdq));
1335	runq_init(&tdq->tdq_realtime);
1336	runq_init(&tdq->tdq_timeshare);
1337	runq_init(&tdq->tdq_idle);
1338	snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
1339	    "sched lock %d", (int)TDQ_ID(tdq));
1340	mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock",
1341	    MTX_SPIN | MTX_RECURSE);
1342#ifdef KTR
1343	snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
1344	    "CPU %d load", (int)TDQ_ID(tdq));
1345#endif
1346}
1347
1348#ifdef SMP
1349static void
1350sched_setup_smp(void)
1351{
1352	struct tdq *tdq;
1353	int i;
1354
1355	cpu_top = smp_topo();
1356	CPU_FOREACH(i) {
1357		tdq = TDQ_CPU(i);
1358		tdq_setup(tdq);
1359		tdq->tdq_cg = smp_topo_find(cpu_top, i);
1360		if (tdq->tdq_cg == NULL)
1361			panic("Can't find cpu group for %d\n", i);
1362	}
1363	balance_tdq = TDQ_SELF();
1364	sched_balance();
1365}
1366#endif
1367
1368/*
1369 * Setup the thread queues and initialize the topology based on MD
1370 * information.
1371 */
1372static void
1373sched_setup(void *dummy)
1374{
1375	struct tdq *tdq;
1376
1377	tdq = TDQ_SELF();
1378#ifdef SMP
1379	sched_setup_smp();
1380#else
1381	tdq_setup(tdq);
1382#endif
1383
1384	/* Add thread0's load since it's running. */
1385	TDQ_LOCK(tdq);
1386	thread0.td_lock = TDQ_LOCKPTR(TDQ_SELF());
1387	tdq_load_add(tdq, &thread0);
1388	tdq->tdq_lowpri = thread0.td_priority;
1389	TDQ_UNLOCK(tdq);
1390}
1391
1392/*
1393 * This routine determines time constants after stathz and hz are setup.
1394 */
1395/* ARGSUSED */
1396static void
1397sched_initticks(void *dummy)
1398{
1399	int incr;
1400
1401	realstathz = stathz ? stathz : hz;
1402	sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
1403	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
1404	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
1405	    realstathz);
1406
1407	/*
1408	 * tickincr is shifted out by 10 to avoid rounding errors due to
1409	 * hz not being evenly divisible by stathz on all platforms.
1410	 */
1411	incr = (hz << SCHED_TICK_SHIFT) / realstathz;
1412	/*
1413	 * This does not work for values of stathz that are more than
1414	 * 1 << SCHED_TICK_SHIFT * hz.  In practice this does not happen.
1415	 */
1416	if (incr == 0)
1417		incr = 1;
1418	tickincr = incr;
1419#ifdef SMP
1420	/*
1421	 * Set the default balance interval now that we know
1422	 * what realstathz is.
1423	 */
1424	balance_interval = realstathz;
1425	affinity = SCHED_AFFINITY_DEFAULT;
1426#endif
1427	if (sched_idlespinthresh < 0)
1428		sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
1429}
1430
1431
1432/*
1433 * This is the core of the interactivity algorithm.  Determines a score based
1434 * on past behavior.  It is the ratio of sleep time to run time scaled to
1435 * a [0, 100] integer.  This is the voluntary sleep time of a process, which
1436 * differs from the cpu usage because it does not account for time spent
1437 * waiting on a run-queue.  Would be prettier if we had floating point.
1438 */
1439static int
1440sched_interact_score(struct thread *td)
1441{
1442	struct td_sched *ts;
1443	int div;
1444
1445	ts = td->td_sched;
1446	/*
1447	 * The score is only needed if this is likely to be an interactive
1448	 * task.  Don't go through the expense of computing it if there's
1449	 * no chance.
1450	 */
1451	if (sched_interact <= SCHED_INTERACT_HALF &&
1452		ts->ts_runtime >= ts->ts_slptime)
1453			return (SCHED_INTERACT_HALF);
1454
1455	if (ts->ts_runtime > ts->ts_slptime) {
1456		div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
1457		return (SCHED_INTERACT_HALF +
1458		    (SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
1459	}
1460	if (ts->ts_slptime > ts->ts_runtime) {
1461		div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
1462		return (ts->ts_runtime / div);
1463	}
1464	/* runtime == slptime */
1465	if (ts->ts_runtime)
1466		return (SCHED_INTERACT_HALF);
1467
1468	/*
1469	 * This can happen if slptime and runtime are 0.
1470	 */
1471	return (0);
1472
1473}
1474
1475/*
1476 * Scale the scheduling priority according to the "interactivity" of this
1477 * process.
1478 */
1479static void
1480sched_priority(struct thread *td)
1481{
1482	int score;
1483	int pri;
1484
1485	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1486		return;
1487	/*
1488	 * If the score is interactive we place the thread in the realtime
1489	 * queue with a priority that is less than kernel and interrupt
1490	 * priorities.  These threads are not subject to nice restrictions.
1491	 *
1492	 * Scores greater than this are placed on the normal timeshare queue
1493	 * where the priority is partially decided by the most recent cpu
1494	 * utilization and the rest is decided by nice value.
1495	 *
1496	 * The nice value of the process has a linear effect on the calculated
1497	 * score.  Negative nice values make it easier for a thread to be
1498	 * considered interactive.
1499	 */
1500	score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
1501	if (score < sched_interact) {
1502		pri = PRI_MIN_INTERACT;
1503		pri += ((PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) /
1504		    sched_interact) * score;
1505		KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
1506		    ("sched_priority: invalid interactive priority %d score %d",
1507		    pri, score));
1508	} else {
1509		pri = SCHED_PRI_MIN;
1510		if (td->td_sched->ts_ticks)
1511			pri += min(SCHED_PRI_TICKS(td->td_sched),
1512			    SCHED_PRI_RANGE - 1);
1513		pri += SCHED_PRI_NICE(td->td_proc->p_nice);
1514		KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
1515		    ("sched_priority: invalid priority %d: nice %d, "
1516		    "ticks %d ftick %d ltick %d tick pri %d",
1517		    pri, td->td_proc->p_nice, td->td_sched->ts_ticks,
1518		    td->td_sched->ts_ftick, td->td_sched->ts_ltick,
1519		    SCHED_PRI_TICKS(td->td_sched)));
1520	}
1521	sched_user_prio(td, pri);
1522
1523	return;
1524}
1525
1526/*
1527 * This routine enforces a maximum limit on the amount of scheduling history
1528 * kept.  It is called after either the slptime or runtime is adjusted.  This
1529 * function is ugly due to integer math.
1530 */
1531static void
1532sched_interact_update(struct thread *td)
1533{
1534	struct td_sched *ts;
1535	u_int sum;
1536
1537	ts = td->td_sched;
1538	sum = ts->ts_runtime + ts->ts_slptime;
1539	if (sum < SCHED_SLP_RUN_MAX)
1540		return;
1541	/*
1542	 * This only happens from two places:
1543	 * 1) We have added an unusual amount of run time from fork_exit.
1544	 * 2) We have added an unusual amount of sleep time from sched_sleep().
1545	 */
1546	if (sum > SCHED_SLP_RUN_MAX * 2) {
1547		if (ts->ts_runtime > ts->ts_slptime) {
1548			ts->ts_runtime = SCHED_SLP_RUN_MAX;
1549			ts->ts_slptime = 1;
1550		} else {
1551			ts->ts_slptime = SCHED_SLP_RUN_MAX;
1552			ts->ts_runtime = 1;
1553		}
1554		return;
1555	}
1556	/*
1557	 * If we have exceeded by more than 1/5th then the algorithm below
1558	 * will not bring us back into range.  Dividing by two here forces
1559	 * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
1560	 */
1561	if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
1562		ts->ts_runtime /= 2;
1563		ts->ts_slptime /= 2;
1564		return;
1565	}
1566	ts->ts_runtime = (ts->ts_runtime / 5) * 4;
1567	ts->ts_slptime = (ts->ts_slptime / 5) * 4;
1568}
1569
1570/*
1571 * Scale back the interactivity history when a child thread is created.  The
1572 * history is inherited from the parent but the thread may behave totally
1573 * differently.  For example, a shell spawning a compiler process.  We want
1574 * to learn that the compiler is behaving badly very quickly.
1575 */
1576static void
1577sched_interact_fork(struct thread *td)
1578{
1579	int ratio;
1580	int sum;
1581
1582	sum = td->td_sched->ts_runtime + td->td_sched->ts_slptime;
1583	if (sum > SCHED_SLP_RUN_FORK) {
1584		ratio = sum / SCHED_SLP_RUN_FORK;
1585		td->td_sched->ts_runtime /= ratio;
1586		td->td_sched->ts_slptime /= ratio;
1587	}
1588}
1589
1590/*
1591 * Called from proc0_init() to setup the scheduler fields.
1592 */
1593void
1594schedinit(void)
1595{
1596
1597	/*
1598	 * Set up the scheduler specific parts of proc0.
1599	 */
1600	proc0.p_sched = NULL; /* XXX */
1601	thread0.td_sched = &td_sched0;
1602	td_sched0.ts_ltick = ticks;
1603	td_sched0.ts_ftick = ticks;
1604	td_sched0.ts_slice = 0;
1605}
1606
1607/*
1608 * This is only somewhat accurate since given many processes of the same
1609 * priority they will switch when their slices run out, which will be
1610 * at most sched_slice stathz ticks.
1611 */
1612int
1613sched_rr_interval(void)
1614{
1615
1616	/* Convert sched_slice from stathz to hz. */
1617	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
1618}
1619
1620/*
1621 * Update the percent cpu tracking information when it is requested or
1622 * the total history exceeds the maximum.  We keep a sliding history of
1623 * tick counts that slowly decays.  This is less precise than the 4BSD
1624 * mechanism since it happens with less regular and frequent events.
1625 */
1626static void
1627sched_pctcpu_update(struct td_sched *ts, int run)
1628{
1629	int t = ticks;
1630
1631	if (t - ts->ts_ltick >= SCHED_TICK_TARG) {
1632		ts->ts_ticks = 0;
1633		ts->ts_ftick = t - SCHED_TICK_TARG;
1634	} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
1635		ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
1636		    (ts->ts_ltick - (t - SCHED_TICK_TARG));
1637		ts->ts_ftick = t - SCHED_TICK_TARG;
1638	}
1639	if (run)
1640		ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
1641	ts->ts_ltick = t;
1642}
1643
1644/*
1645 * Adjust the priority of a thread.  Move it to the appropriate run-queue
1646 * if necessary.  This is the back-end for several priority related
1647 * functions.
1648 */
1649static void
1650sched_thread_priority(struct thread *td, u_char prio)
1651{
1652	struct td_sched *ts;
1653	struct tdq *tdq;
1654	int oldpri;
1655
1656	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
1657	    "prio:%d", td->td_priority, "new prio:%d", prio,
1658	    KTR_ATTR_LINKED, sched_tdname(curthread));
1659	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
1660	if (td != curthread && prio < td->td_priority) {
1661		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
1662		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
1663		    prio, KTR_ATTR_LINKED, sched_tdname(td));
1664		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
1665		    curthread);
1666	}
1667	ts = td->td_sched;
1668	THREAD_LOCK_ASSERT(td, MA_OWNED);
1669	if (td->td_priority == prio)
1670		return;
1671	/*
1672	 * If the priority has been elevated due to priority
1673	 * propagation, we may have to move ourselves to a new
1674	 * queue.  This could be optimized to not re-add in some
1675	 * cases.
1676	 */
1677	if (TD_ON_RUNQ(td) && prio < td->td_priority) {
1678		sched_rem(td);
1679		td->td_priority = prio;
1680		sched_add(td, SRQ_BORROWING);
1681		return;
1682	}
1683	/*
1684	 * If the thread is currently running we may have to adjust the lowpri
1685	 * information so other cpus are aware of our current priority.
1686	 */
1687	if (TD_IS_RUNNING(td)) {
1688		tdq = TDQ_CPU(ts->ts_cpu);
1689		oldpri = td->td_priority;
1690		td->td_priority = prio;
1691		if (prio < tdq->tdq_lowpri)
1692			tdq->tdq_lowpri = prio;
1693		else if (tdq->tdq_lowpri == oldpri)
1694			tdq_setlowpri(tdq, td);
1695		return;
1696	}
1697	td->td_priority = prio;
1698}
1699
1700/*
1701 * Update a thread's priority when it is lent another thread's
1702 * priority.
1703 */
1704void
1705sched_lend_prio(struct thread *td, u_char prio)
1706{
1707
1708	td->td_flags |= TDF_BORROWING;
1709	sched_thread_priority(td, prio);
1710}
1711
1712/*
1713 * Restore a thread's priority when priority propagation is
1714 * over.  The prio argument is the minimum priority the thread
1715 * needs to have to satisfy other possible priority lending
1716 * requests.  If the thread's regular priority is less
1717 * important than prio, the thread will keep a priority boost
1718 * of prio.
1719 */
1720void
1721sched_unlend_prio(struct thread *td, u_char prio)
1722{
1723	u_char base_pri;
1724
1725	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
1726	    td->td_base_pri <= PRI_MAX_TIMESHARE)
1727		base_pri = td->td_user_pri;
1728	else
1729		base_pri = td->td_base_pri;
1730	if (prio >= base_pri) {
1731		td->td_flags &= ~TDF_BORROWING;
1732		sched_thread_priority(td, base_pri);
1733	} else
1734		sched_lend_prio(td, prio);
1735}
1736
1737/*
1738 * Standard entry for setting the priority to an absolute value.
1739 */
1740void
1741sched_prio(struct thread *td, u_char prio)
1742{
1743	u_char oldprio;
1744
1745	/* First, update the base priority. */
1746	td->td_base_pri = prio;
1747
1748	/*
1749	 * If the thread is borrowing another thread's priority, don't
1750	 * ever lower the priority.
1751	 */
1752	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
1753		return;
1754
1755	/* Change the real priority. */
1756	oldprio = td->td_priority;
1757	sched_thread_priority(td, prio);
1758
1759	/*
1760	 * If the thread is on a turnstile, then let the turnstile update
1761	 * its state.
1762	 */
1763	if (TD_ON_LOCK(td) && oldprio != prio)
1764		turnstile_adjust(td, oldprio);
1765}
1766
1767/*
1768 * Set the base user priority, does not effect current running priority.
1769 */
1770void
1771sched_user_prio(struct thread *td, u_char prio)
1772{
1773
1774	td->td_base_user_pri = prio;
1775	if (td->td_lend_user_pri <= prio)
1776		return;
1777	td->td_user_pri = prio;
1778}
1779
1780void
1781sched_lend_user_prio(struct thread *td, u_char prio)
1782{
1783
1784	THREAD_LOCK_ASSERT(td, MA_OWNED);
1785	td->td_lend_user_pri = prio;
1786	td->td_user_pri = min(prio, td->td_base_user_pri);
1787	if (td->td_priority > td->td_user_pri)
1788		sched_prio(td, td->td_user_pri);
1789	else if (td->td_priority != td->td_user_pri)
1790		td->td_flags |= TDF_NEEDRESCHED;
1791}
1792
1793/*
1794 * Handle migration from sched_switch().  This happens only for
1795 * cpu binding.
1796 */
1797static struct mtx *
1798sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
1799{
1800	struct tdq *tdn;
1801
1802	tdn = TDQ_CPU(td->td_sched->ts_cpu);
1803#ifdef SMP
1804	tdq_load_rem(tdq, td);
1805	/*
1806	 * Do the lock dance required to avoid LOR.  We grab an extra
1807	 * spinlock nesting to prevent preemption while we're
1808	 * not holding either run-queue lock.
1809	 */
1810	spinlock_enter();
1811	thread_lock_block(td);	/* This releases the lock on tdq. */
1812
1813	/*
1814	 * Acquire both run-queue locks before placing the thread on the new
1815	 * run-queue to avoid deadlocks created by placing a thread with a
1816	 * blocked lock on the run-queue of a remote processor.  The deadlock
1817	 * occurs when a third processor attempts to lock the two queues in
1818	 * question while the target processor is spinning with its own
1819	 * run-queue lock held while waiting for the blocked lock to clear.
1820	 */
1821	tdq_lock_pair(tdn, tdq);
1822	tdq_add(tdn, td, flags);
1823	tdq_notify(tdn, td);
1824	TDQ_UNLOCK(tdn);
1825	spinlock_exit();
1826#endif
1827	return (TDQ_LOCKPTR(tdn));
1828}
1829
1830/*
1831 * Variadic version of thread_lock_unblock() that does not assume td_lock
1832 * is blocked.
1833 */
1834static inline void
1835thread_unblock_switch(struct thread *td, struct mtx *mtx)
1836{
1837	atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
1838	    (uintptr_t)mtx);
1839}
1840
1841/*
1842 * Switch threads.  This function has to handle threads coming in while
1843 * blocked for some reason, running, or idle.  It also must deal with
1844 * migrating a thread from one queue to another as running threads may
1845 * be assigned elsewhere via binding.
1846 */
1847void
1848sched_switch(struct thread *td, struct thread *newtd, int flags)
1849{
1850	struct tdq *tdq;
1851	struct td_sched *ts;
1852	struct mtx *mtx;
1853	int srqflag;
1854	int cpuid, preempted;
1855
1856	THREAD_LOCK_ASSERT(td, MA_OWNED);
1857	KASSERT(newtd == NULL, ("sched_switch: Unsupported newtd argument"));
1858
1859	cpuid = PCPU_GET(cpuid);
1860	tdq = TDQ_CPU(cpuid);
1861	ts = td->td_sched;
1862	mtx = td->td_lock;
1863	sched_pctcpu_update(ts, 1);
1864	ts->ts_rltick = ticks;
1865	td->td_lastcpu = td->td_oncpu;
1866	td->td_oncpu = NOCPU;
1867	preempted = !(td->td_flags & TDF_SLICEEND);
1868	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
1869	td->td_owepreempt = 0;
1870	if (!TD_IS_IDLETHREAD(td))
1871		tdq->tdq_switchcnt++;
1872	/*
1873	 * The lock pointer in an idle thread should never change.  Reset it
1874	 * to CAN_RUN as well.
1875	 */
1876	if (TD_IS_IDLETHREAD(td)) {
1877		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1878		TD_SET_CAN_RUN(td);
1879	} else if (TD_IS_RUNNING(td)) {
1880		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1881		srqflag = preempted ?
1882		    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1883		    SRQ_OURSELF|SRQ_YIELDING;
1884#ifdef SMP
1885		if (THREAD_CAN_MIGRATE(td) && !THREAD_CAN_SCHED(td, ts->ts_cpu))
1886			ts->ts_cpu = sched_pickcpu(td, 0);
1887#endif
1888		if (ts->ts_cpu == cpuid)
1889			tdq_runq_add(tdq, td, srqflag);
1890		else {
1891			KASSERT(THREAD_CAN_MIGRATE(td) ||
1892			    (ts->ts_flags & TSF_BOUND) != 0,
1893			    ("Thread %p shouldn't migrate", td));
1894			mtx = sched_switch_migrate(tdq, td, srqflag);
1895		}
1896	} else {
1897		/* This thread must be going to sleep. */
1898		TDQ_LOCK(tdq);
1899		mtx = thread_lock_block(td);
1900		tdq_load_rem(tdq, td);
1901	}
1902	/*
1903	 * We enter here with the thread blocked and assigned to the
1904	 * appropriate cpu run-queue or sleep-queue and with the current
1905	 * thread-queue locked.
1906	 */
1907	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
1908	newtd = choosethread();
1909	/*
1910	 * Call the MD code to switch contexts if necessary.
1911	 */
1912	if (td != newtd) {
1913#ifdef	HWPMC_HOOKS
1914		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1915			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1916#endif
1917		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1918		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
1919		TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
1920		sched_pctcpu_update(newtd->td_sched, 0);
1921
1922#ifdef KDTRACE_HOOKS
1923		/*
1924		 * If DTrace has set the active vtime enum to anything
1925		 * other than INACTIVE (0), then it should have set the
1926		 * function to call.
1927		 */
1928		if (dtrace_vtime_active)
1929			(*dtrace_vtime_switch_func)(newtd);
1930#endif
1931
1932		cpu_switch(td, newtd, mtx);
1933		/*
1934		 * We may return from cpu_switch on a different cpu.  However,
1935		 * we always return with td_lock pointing to the current cpu's
1936		 * run queue lock.
1937		 */
1938		cpuid = PCPU_GET(cpuid);
1939		tdq = TDQ_CPU(cpuid);
1940		lock_profile_obtain_lock_success(
1941		    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
1942
1943		SDT_PROBE0(sched, , , on__cpu);
1944#ifdef	HWPMC_HOOKS
1945		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1946			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1947#endif
1948	} else {
1949		thread_unblock_switch(td, mtx);
1950		SDT_PROBE0(sched, , , remain__cpu);
1951	}
1952	/*
1953	 * Assert that all went well and return.
1954	 */
1955	TDQ_LOCK_ASSERT(tdq, MA_OWNED|MA_NOTRECURSED);
1956	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
1957	td->td_oncpu = cpuid;
1958}
1959
1960/*
1961 * Adjust thread priorities as a result of a nice request.
1962 */
1963void
1964sched_nice(struct proc *p, int nice)
1965{
1966	struct thread *td;
1967
1968	PROC_LOCK_ASSERT(p, MA_OWNED);
1969
1970	p->p_nice = nice;
1971	FOREACH_THREAD_IN_PROC(p, td) {
1972		thread_lock(td);
1973		sched_priority(td);
1974		sched_prio(td, td->td_base_user_pri);
1975		thread_unlock(td);
1976	}
1977}
1978
1979/*
1980 * Record the sleep time for the interactivity scorer.
1981 */
1982void
1983sched_sleep(struct thread *td, int prio)
1984{
1985
1986	THREAD_LOCK_ASSERT(td, MA_OWNED);
1987
1988	td->td_slptick = ticks;
1989	if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
1990		td->td_flags |= TDF_CANSWAP;
1991	if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
1992		return;
1993	if (static_boost == 1 && prio)
1994		sched_prio(td, prio);
1995	else if (static_boost && td->td_priority > static_boost)
1996		sched_prio(td, static_boost);
1997}
1998
1999/*
2000 * Schedule a thread to resume execution and record how long it voluntarily
2001 * slept.  We also update the pctcpu, interactivity, and priority.
2002 */
2003void
2004sched_wakeup(struct thread *td)
2005{
2006	struct td_sched *ts;
2007	int slptick;
2008
2009	THREAD_LOCK_ASSERT(td, MA_OWNED);
2010	ts = td->td_sched;
2011	td->td_flags &= ~TDF_CANSWAP;
2012	/*
2013	 * If we slept for more than a tick update our interactivity and
2014	 * priority.
2015	 */
2016	slptick = td->td_slptick;
2017	td->td_slptick = 0;
2018	if (slptick && slptick != ticks) {
2019		ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
2020		sched_interact_update(td);
2021		sched_pctcpu_update(ts, 0);
2022	}
2023	/*
2024	 * Reset the slice value since we slept and advanced the round-robin.
2025	 */
2026	ts->ts_slice = 0;
2027	sched_add(td, SRQ_BORING);
2028}
2029
2030/*
2031 * Penalize the parent for creating a new child and initialize the child's
2032 * priority.
2033 */
2034void
2035sched_fork(struct thread *td, struct thread *child)
2036{
2037	THREAD_LOCK_ASSERT(td, MA_OWNED);
2038	sched_pctcpu_update(td->td_sched, 1);
2039	sched_fork_thread(td, child);
2040	/*
2041	 * Penalize the parent and child for forking.
2042	 */
2043	sched_interact_fork(child);
2044	sched_priority(child);
2045	td->td_sched->ts_runtime += tickincr;
2046	sched_interact_update(td);
2047	sched_priority(td);
2048}
2049
2050/*
2051 * Fork a new thread, may be within the same process.
2052 */
2053void
2054sched_fork_thread(struct thread *td, struct thread *child)
2055{
2056	struct td_sched *ts;
2057	struct td_sched *ts2;
2058	struct tdq *tdq;
2059
2060	tdq = TDQ_SELF();
2061	THREAD_LOCK_ASSERT(td, MA_OWNED);
2062	/*
2063	 * Initialize child.
2064	 */
2065	ts = td->td_sched;
2066	ts2 = child->td_sched;
2067	child->td_lock = TDQ_LOCKPTR(tdq);
2068	child->td_cpuset = cpuset_ref(td->td_cpuset);
2069	ts2->ts_cpu = ts->ts_cpu;
2070	ts2->ts_flags = 0;
2071	/*
2072	 * Grab our parents cpu estimation information.
2073	 */
2074	ts2->ts_ticks = ts->ts_ticks;
2075	ts2->ts_ltick = ts->ts_ltick;
2076	ts2->ts_ftick = ts->ts_ftick;
2077	/*
2078	 * Do not inherit any borrowed priority from the parent.
2079	 */
2080	child->td_priority = child->td_base_pri;
2081	/*
2082	 * And update interactivity score.
2083	 */
2084	ts2->ts_slptime = ts->ts_slptime;
2085	ts2->ts_runtime = ts->ts_runtime;
2086	/* Attempt to quickly learn interactivity. */
2087	ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
2088#ifdef KTR
2089	bzero(ts2->ts_name, sizeof(ts2->ts_name));
2090#endif
2091}
2092
2093/*
2094 * Adjust the priority class of a thread.
2095 */
2096void
2097sched_class(struct thread *td, int class)
2098{
2099
2100	THREAD_LOCK_ASSERT(td, MA_OWNED);
2101	if (td->td_pri_class == class)
2102		return;
2103	td->td_pri_class = class;
2104}
2105
2106/*
2107 * Return some of the child's priority and interactivity to the parent.
2108 */
2109void
2110sched_exit(struct proc *p, struct thread *child)
2111{
2112	struct thread *td;
2113
2114	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
2115	    "prio:%d", child->td_priority);
2116	PROC_LOCK_ASSERT(p, MA_OWNED);
2117	td = FIRST_THREAD_IN_PROC(p);
2118	sched_exit_thread(td, child);
2119}
2120
2121/*
2122 * Penalize another thread for the time spent on this one.  This helps to
2123 * worsen the priority and interactivity of processes which schedule batch
2124 * jobs such as make.  This has little effect on the make process itself but
2125 * causes new processes spawned by it to receive worse scores immediately.
2126 */
2127void
2128sched_exit_thread(struct thread *td, struct thread *child)
2129{
2130
2131	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
2132	    "prio:%d", child->td_priority);
2133	/*
2134	 * Give the child's runtime to the parent without returning the
2135	 * sleep time as a penalty to the parent.  This causes shells that
2136	 * launch expensive things to mark their children as expensive.
2137	 */
2138	thread_lock(td);
2139	td->td_sched->ts_runtime += child->td_sched->ts_runtime;
2140	sched_interact_update(td);
2141	sched_priority(td);
2142	thread_unlock(td);
2143}
2144
2145void
2146sched_preempt(struct thread *td)
2147{
2148	struct tdq *tdq;
2149
2150	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
2151
2152	thread_lock(td);
2153	tdq = TDQ_SELF();
2154	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2155	tdq->tdq_ipipending = 0;
2156	if (td->td_priority > tdq->tdq_lowpri) {
2157		int flags;
2158
2159		flags = SW_INVOL | SW_PREEMPT;
2160		if (td->td_critnest > 1)
2161			td->td_owepreempt = 1;
2162		else if (TD_IS_IDLETHREAD(td))
2163			mi_switch(flags | SWT_REMOTEWAKEIDLE, NULL);
2164		else
2165			mi_switch(flags | SWT_REMOTEPREEMPT, NULL);
2166	}
2167	thread_unlock(td);
2168}
2169
2170/*
2171 * Fix priorities on return to user-space.  Priorities may be elevated due
2172 * to static priorities in msleep() or similar.
2173 */
2174void
2175sched_userret(struct thread *td)
2176{
2177	/*
2178	 * XXX we cheat slightly on the locking here to avoid locking in
2179	 * the usual case.  Setting td_priority here is essentially an
2180	 * incomplete workaround for not setting it properly elsewhere.
2181	 * Now that some interrupt handlers are threads, not setting it
2182	 * properly elsewhere can clobber it in the window between setting
2183	 * it here and returning to user mode, so don't waste time setting
2184	 * it perfectly here.
2185	 */
2186	KASSERT((td->td_flags & TDF_BORROWING) == 0,
2187	    ("thread with borrowed priority returning to userland"));
2188	if (td->td_priority != td->td_user_pri) {
2189		thread_lock(td);
2190		td->td_priority = td->td_user_pri;
2191		td->td_base_pri = td->td_user_pri;
2192		tdq_setlowpri(TDQ_SELF(), td);
2193		thread_unlock(td);
2194        }
2195}
2196
2197/*
2198 * Handle a stathz tick.  This is really only relevant for timeshare
2199 * threads.
2200 */
2201void
2202sched_clock(struct thread *td)
2203{
2204	struct tdq *tdq;
2205	struct td_sched *ts;
2206
2207	THREAD_LOCK_ASSERT(td, MA_OWNED);
2208	tdq = TDQ_SELF();
2209#ifdef SMP
2210	/*
2211	 * We run the long term load balancer infrequently on the first cpu.
2212	 */
2213	if (balance_tdq == tdq) {
2214		if (balance_ticks && --balance_ticks == 0)
2215			sched_balance();
2216	}
2217#endif
2218	/*
2219	 * Save the old switch count so we have a record of the last ticks
2220	 * activity.   Initialize the new switch count based on our load.
2221	 * If there is some activity seed it to reflect that.
2222	 */
2223	tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
2224	tdq->tdq_switchcnt = tdq->tdq_load;
2225	/*
2226	 * Advance the insert index once for each tick to ensure that all
2227	 * threads get a chance to run.
2228	 */
2229	if (tdq->tdq_idx == tdq->tdq_ridx) {
2230		tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
2231		if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
2232			tdq->tdq_ridx = tdq->tdq_idx;
2233	}
2234	ts = td->td_sched;
2235	sched_pctcpu_update(ts, 1);
2236	if (td->td_pri_class & PRI_FIFO_BIT)
2237		return;
2238	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
2239		/*
2240		 * We used a tick; charge it to the thread so
2241		 * that we can compute our interactivity.
2242		 */
2243		td->td_sched->ts_runtime += tickincr;
2244		sched_interact_update(td);
2245		sched_priority(td);
2246	}
2247
2248	/*
2249	 * Force a context switch if the current thread has used up a full
2250	 * time slice (default is 100ms).
2251	 */
2252	if (!TD_IS_IDLETHREAD(td) && ++ts->ts_slice >= tdq_slice(tdq)) {
2253		ts->ts_slice = 0;
2254		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
2255	}
2256}
2257
2258/*
2259 * Called once per hz tick.
2260 */
2261void
2262sched_tick(int cnt)
2263{
2264
2265}
2266
2267/*
2268 * Return whether the current CPU has runnable tasks.  Used for in-kernel
2269 * cooperative idle threads.
2270 */
2271int
2272sched_runnable(void)
2273{
2274	struct tdq *tdq;
2275	int load;
2276
2277	load = 1;
2278
2279	tdq = TDQ_SELF();
2280	if ((curthread->td_flags & TDF_IDLETD) != 0) {
2281		if (tdq->tdq_load > 0)
2282			goto out;
2283	} else
2284		if (tdq->tdq_load - 1 > 0)
2285			goto out;
2286	load = 0;
2287out:
2288	return (load);
2289}
2290
2291/*
2292 * Choose the highest priority thread to run.  The thread is removed from
2293 * the run-queue while running however the load remains.  For SMP we set
2294 * the tdq in the global idle bitmask if it idles here.
2295 */
2296struct thread *
2297sched_choose(void)
2298{
2299	struct thread *td;
2300	struct tdq *tdq;
2301
2302	tdq = TDQ_SELF();
2303	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2304	td = tdq_choose(tdq);
2305	if (td) {
2306		tdq_runq_rem(tdq, td);
2307		tdq->tdq_lowpri = td->td_priority;
2308		return (td);
2309	}
2310	tdq->tdq_lowpri = PRI_MAX_IDLE;
2311	return (PCPU_GET(idlethread));
2312}
2313
2314/*
2315 * Set owepreempt if necessary.  Preemption never happens directly in ULE,
2316 * we always request it once we exit a critical section.
2317 */
2318static inline void
2319sched_setpreempt(struct thread *td)
2320{
2321	struct thread *ctd;
2322	int cpri;
2323	int pri;
2324
2325	THREAD_LOCK_ASSERT(curthread, MA_OWNED);
2326
2327	ctd = curthread;
2328	pri = td->td_priority;
2329	cpri = ctd->td_priority;
2330	if (pri < cpri)
2331		ctd->td_flags |= TDF_NEEDRESCHED;
2332	if (panicstr != NULL || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
2333		return;
2334	if (!sched_shouldpreempt(pri, cpri, 0))
2335		return;
2336	ctd->td_owepreempt = 1;
2337}
2338
2339/*
2340 * Add a thread to a thread queue.  Select the appropriate runq and add the
2341 * thread to it.  This is the internal function called when the tdq is
2342 * predetermined.
2343 */
2344void
2345tdq_add(struct tdq *tdq, struct thread *td, int flags)
2346{
2347
2348	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2349	KASSERT((td->td_inhibitors == 0),
2350	    ("sched_add: trying to run inhibited thread"));
2351	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
2352	    ("sched_add: bad thread state"));
2353	KASSERT(td->td_flags & TDF_INMEM,
2354	    ("sched_add: thread swapped out"));
2355
2356	if (td->td_priority < tdq->tdq_lowpri)
2357		tdq->tdq_lowpri = td->td_priority;
2358	tdq_runq_add(tdq, td, flags);
2359	tdq_load_add(tdq, td);
2360}
2361
2362/*
2363 * Select the target thread queue and add a thread to it.  Request
2364 * preemption or IPI a remote processor if required.
2365 */
2366void
2367sched_add(struct thread *td, int flags)
2368{
2369	struct tdq *tdq;
2370#ifdef SMP
2371	int cpu;
2372#endif
2373
2374	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
2375	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
2376	    sched_tdname(curthread));
2377	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
2378	    KTR_ATTR_LINKED, sched_tdname(td));
2379	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
2380	    flags & SRQ_PREEMPTED);
2381	THREAD_LOCK_ASSERT(td, MA_OWNED);
2382	/*
2383	 * Recalculate the priority before we select the target cpu or
2384	 * run-queue.
2385	 */
2386	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
2387		sched_priority(td);
2388#ifdef SMP
2389	/*
2390	 * Pick the destination cpu and if it isn't ours transfer to the
2391	 * target cpu.
2392	 */
2393	cpu = sched_pickcpu(td, flags);
2394	tdq = sched_setcpu(td, cpu, flags);
2395	tdq_add(tdq, td, flags);
2396	if (cpu != PCPU_GET(cpuid)) {
2397		tdq_notify(tdq, td);
2398		return;
2399	}
2400#else
2401	tdq = TDQ_SELF();
2402	TDQ_LOCK(tdq);
2403	/*
2404	 * Now that the thread is moving to the run-queue, set the lock
2405	 * to the scheduler's lock.
2406	 */
2407	thread_lock_set(td, TDQ_LOCKPTR(tdq));
2408	tdq_add(tdq, td, flags);
2409#endif
2410	if (!(flags & SRQ_YIELDING))
2411		sched_setpreempt(td);
2412}
2413
2414/*
2415 * Remove a thread from a run-queue without running it.  This is used
2416 * when we're stealing a thread from a remote queue.  Otherwise all threads
2417 * exit by calling sched_exit_thread() and sched_throw() themselves.
2418 */
2419void
2420sched_rem(struct thread *td)
2421{
2422	struct tdq *tdq;
2423
2424	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
2425	    "prio:%d", td->td_priority);
2426	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
2427	tdq = TDQ_CPU(td->td_sched->ts_cpu);
2428	TDQ_LOCK_ASSERT(tdq, MA_OWNED);
2429	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2430	KASSERT(TD_ON_RUNQ(td),
2431	    ("sched_rem: thread not on run queue"));
2432	tdq_runq_rem(tdq, td);
2433	tdq_load_rem(tdq, td);
2434	TD_SET_CAN_RUN(td);
2435	if (td->td_priority == tdq->tdq_lowpri)
2436		tdq_setlowpri(tdq, NULL);
2437}
2438
2439/*
2440 * Fetch cpu utilization information.  Updates on demand.
2441 */
2442fixpt_t
2443sched_pctcpu(struct thread *td)
2444{
2445	fixpt_t pctcpu;
2446	struct td_sched *ts;
2447
2448	pctcpu = 0;
2449	ts = td->td_sched;
2450	if (ts == NULL)
2451		return (0);
2452
2453	THREAD_LOCK_ASSERT(td, MA_OWNED);
2454	sched_pctcpu_update(ts, TD_IS_RUNNING(td));
2455	if (ts->ts_ticks) {
2456		int rtick;
2457
2458		/* How many rtick per second ? */
2459		rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
2460		pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
2461	}
2462
2463	return (pctcpu);
2464}
2465
2466/*
2467 * Enforce affinity settings for a thread.  Called after adjustments to
2468 * cpumask.
2469 */
2470void
2471sched_affinity(struct thread *td)
2472{
2473#ifdef SMP
2474	struct td_sched *ts;
2475
2476	THREAD_LOCK_ASSERT(td, MA_OWNED);
2477	ts = td->td_sched;
2478	if (THREAD_CAN_SCHED(td, ts->ts_cpu))
2479		return;
2480	if (TD_ON_RUNQ(td)) {
2481		sched_rem(td);
2482		sched_add(td, SRQ_BORING);
2483		return;
2484	}
2485	if (!TD_IS_RUNNING(td))
2486		return;
2487	/*
2488	 * Force a switch before returning to userspace.  If the
2489	 * target thread is not running locally send an ipi to force
2490	 * the issue.
2491	 */
2492	td->td_flags |= TDF_NEEDRESCHED;
2493	if (td != curthread)
2494		ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
2495#endif
2496}
2497
2498/*
2499 * Bind a thread to a target cpu.
2500 */
2501void
2502sched_bind(struct thread *td, int cpu)
2503{
2504	struct td_sched *ts;
2505
2506	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
2507	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
2508	ts = td->td_sched;
2509	if (ts->ts_flags & TSF_BOUND)
2510		sched_unbind(td);
2511	KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
2512	ts->ts_flags |= TSF_BOUND;
2513	sched_pin();
2514	if (PCPU_GET(cpuid) == cpu)
2515		return;
2516	ts->ts_cpu = cpu;
2517	/* When we return from mi_switch we'll be on the correct cpu. */
2518	mi_switch(SW_VOL, NULL);
2519}
2520
2521/*
2522 * Release a bound thread.
2523 */
2524void
2525sched_unbind(struct thread *td)
2526{
2527	struct td_sched *ts;
2528
2529	THREAD_LOCK_ASSERT(td, MA_OWNED);
2530	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
2531	ts = td->td_sched;
2532	if ((ts->ts_flags & TSF_BOUND) == 0)
2533		return;
2534	ts->ts_flags &= ~TSF_BOUND;
2535	sched_unpin();
2536}
2537
2538int
2539sched_is_bound(struct thread *td)
2540{
2541	THREAD_LOCK_ASSERT(td, MA_OWNED);
2542	return (td->td_sched->ts_flags & TSF_BOUND);
2543}
2544
2545/*
2546 * Basic yield call.
2547 */
2548void
2549sched_relinquish(struct thread *td)
2550{
2551	thread_lock(td);
2552	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
2553	thread_unlock(td);
2554}
2555
2556/*
2557 * Return the total system load.
2558 */
2559int
2560sched_load(void)
2561{
2562#ifdef SMP
2563	int total;
2564	int i;
2565
2566	total = 0;
2567	CPU_FOREACH(i)
2568		total += TDQ_CPU(i)->tdq_sysload;
2569	return (total);
2570#else
2571	return (TDQ_SELF()->tdq_sysload);
2572#endif
2573}
2574
2575int
2576sched_sizeof_proc(void)
2577{
2578	return (sizeof(struct proc));
2579}
2580
2581int
2582sched_sizeof_thread(void)
2583{
2584	return (sizeof(struct thread) + sizeof(struct td_sched));
2585}
2586
2587#ifdef SMP
2588#define	TDQ_IDLESPIN(tdq)						\
2589    ((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
2590#else
2591#define	TDQ_IDLESPIN(tdq)	1
2592#endif
2593
2594/*
2595 * The actual idle process.
2596 */
2597void
2598sched_idletd(void *dummy)
2599{
2600	struct thread *td;
2601	struct tdq *tdq;
2602	int oldswitchcnt, switchcnt;
2603	int i;
2604
2605	mtx_assert(&Giant, MA_NOTOWNED);
2606	td = curthread;
2607	tdq = TDQ_SELF();
2608	THREAD_NO_SLEEPING();
2609	oldswitchcnt = -1;
2610	for (;;) {
2611		if (tdq->tdq_load) {
2612			thread_lock(td);
2613			mi_switch(SW_VOL | SWT_IDLE, NULL);
2614			thread_unlock(td);
2615		}
2616		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2617#ifdef SMP
2618		if (switchcnt != oldswitchcnt) {
2619			oldswitchcnt = switchcnt;
2620			if (tdq_idled(tdq) == 0)
2621				continue;
2622		}
2623		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2624#else
2625		oldswitchcnt = switchcnt;
2626#endif
2627		/*
2628		 * If we're switching very frequently, spin while checking
2629		 * for load rather than entering a low power state that
2630		 * may require an IPI.  However, don't do any busy
2631		 * loops while on SMT machines as this simply steals
2632		 * cycles from cores doing useful work.
2633		 */
2634		if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
2635			for (i = 0; i < sched_idlespins; i++) {
2636				if (tdq->tdq_load)
2637					break;
2638				cpu_spinwait();
2639			}
2640		}
2641
2642		/* If there was context switch during spin, restart it. */
2643		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2644		if (tdq->tdq_load != 0 || switchcnt != oldswitchcnt)
2645			continue;
2646
2647		/* Run main MD idle handler. */
2648		tdq->tdq_cpu_idle = 1;
2649		cpu_idle(switchcnt * 4 > sched_idlespinthresh);
2650		tdq->tdq_cpu_idle = 0;
2651
2652		/*
2653		 * Account thread-less hardware interrupts and
2654		 * other wakeup reasons equal to context switches.
2655		 */
2656		switchcnt = tdq->tdq_switchcnt + tdq->tdq_oldswitchcnt;
2657		if (switchcnt != oldswitchcnt)
2658			continue;
2659		tdq->tdq_switchcnt++;
2660		oldswitchcnt++;
2661	}
2662}
2663
2664/*
2665 * A CPU is entering for the first time or a thread is exiting.
2666 */
2667void
2668sched_throw(struct thread *td)
2669{
2670	struct thread *newtd;
2671	struct tdq *tdq;
2672
2673	tdq = TDQ_SELF();
2674	if (td == NULL) {
2675		/* Correct spinlock nesting and acquire the correct lock. */
2676		TDQ_LOCK(tdq);
2677		spinlock_exit();
2678		PCPU_SET(switchtime, cpu_ticks());
2679		PCPU_SET(switchticks, ticks);
2680	} else {
2681		MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2682		tdq_load_rem(tdq, td);
2683		lock_profile_release_lock(&TDQ_LOCKPTR(tdq)->lock_object);
2684	}
2685	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
2686	newtd = choosethread();
2687	TDQ_LOCKPTR(tdq)->mtx_lock = (uintptr_t)newtd;
2688	cpu_throw(td, newtd);		/* doesn't return */
2689}
2690
2691/*
2692 * This is called from fork_exit().  Just acquire the correct locks and
2693 * let fork do the rest of the work.
2694 */
2695void
2696sched_fork_exit(struct thread *td)
2697{
2698	struct td_sched *ts;
2699	struct tdq *tdq;
2700	int cpuid;
2701
2702	/*
2703	 * Finish setting up thread glue so that it begins execution in a
2704	 * non-nested critical section with the scheduler lock held.
2705	 */
2706	cpuid = PCPU_GET(cpuid);
2707	tdq = TDQ_CPU(cpuid);
2708	ts = td->td_sched;
2709	if (TD_IS_IDLETHREAD(td))
2710		td->td_lock = TDQ_LOCKPTR(tdq);
2711	MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
2712	td->td_oncpu = cpuid;
2713	TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
2714	lock_profile_obtain_lock_success(
2715	    &TDQ_LOCKPTR(tdq)->lock_object, 0, 0, __FILE__, __LINE__);
2716}
2717
2718/*
2719 * Create on first use to catch odd startup conditons.
2720 */
2721char *
2722sched_tdname(struct thread *td)
2723{
2724#ifdef KTR
2725	struct td_sched *ts;
2726
2727	ts = td->td_sched;
2728	if (ts->ts_name[0] == '\0')
2729		snprintf(ts->ts_name, sizeof(ts->ts_name),
2730		    "%s tid %d", td->td_name, td->td_tid);
2731	return (ts->ts_name);
2732#else
2733	return (td->td_name);
2734#endif
2735}
2736
2737#ifdef KTR
2738void
2739sched_clear_tdname(struct thread *td)
2740{
2741	struct td_sched *ts;
2742
2743	ts = td->td_sched;
2744	ts->ts_name[0] = '\0';
2745}
2746#endif
2747
2748#ifdef SMP
2749
2750/*
2751 * Build the CPU topology dump string. Is recursively called to collect
2752 * the topology tree.
2753 */
2754static int
2755sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
2756    int indent)
2757{
2758	char cpusetbuf[CPUSETBUFSIZ];
2759	int i, first;
2760
2761	sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
2762	    "", 1 + indent / 2, cg->cg_level);
2763	sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
2764	    cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
2765	first = TRUE;
2766	for (i = 0; i < MAXCPU; i++) {
2767		if (CPU_ISSET(i, &cg->cg_mask)) {
2768			if (!first)
2769				sbuf_printf(sb, ", ");
2770			else
2771				first = FALSE;
2772			sbuf_printf(sb, "%d", i);
2773		}
2774	}
2775	sbuf_printf(sb, "</cpu>\n");
2776
2777	if (cg->cg_flags != 0) {
2778		sbuf_printf(sb, "%*s <flags>", indent, "");
2779		if ((cg->cg_flags & CG_FLAG_HTT) != 0)
2780			sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
2781		if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
2782			sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
2783		if ((cg->cg_flags & CG_FLAG_SMT) != 0)
2784			sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
2785		sbuf_printf(sb, "</flags>\n");
2786	}
2787
2788	if (cg->cg_children > 0) {
2789		sbuf_printf(sb, "%*s <children>\n", indent, "");
2790		for (i = 0; i < cg->cg_children; i++)
2791			sysctl_kern_sched_topology_spec_internal(sb,
2792			    &cg->cg_child[i], indent+2);
2793		sbuf_printf(sb, "%*s </children>\n", indent, "");
2794	}
2795	sbuf_printf(sb, "%*s</group>\n", indent, "");
2796	return (0);
2797}
2798
2799/*
2800 * Sysctl handler for retrieving topology dump. It's a wrapper for
2801 * the recursive sysctl_kern_smp_topology_spec_internal().
2802 */
2803static int
2804sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
2805{
2806	struct sbuf *topo;
2807	int err;
2808
2809	KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
2810
2811	topo = sbuf_new(NULL, NULL, 500, SBUF_AUTOEXTEND);
2812	if (topo == NULL)
2813		return (ENOMEM);
2814
2815	sbuf_printf(topo, "<groups>\n");
2816	err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
2817	sbuf_printf(topo, "</groups>\n");
2818
2819	if (err == 0) {
2820		sbuf_finish(topo);
2821		err = SYSCTL_OUT(req, sbuf_data(topo), sbuf_len(topo));
2822	}
2823	sbuf_delete(topo);
2824	return (err);
2825}
2826
2827#endif
2828
2829static int
2830sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
2831{
2832	int error, new_val, period;
2833
2834	period = 1000000 / realstathz;
2835	new_val = period * sched_slice;
2836	error = sysctl_handle_int(oidp, &new_val, 0, req);
2837	if (error != 0 || req->newptr == NULL)
2838		return (error);
2839	if (new_val <= 0)
2840		return (EINVAL);
2841	sched_slice = imax(1, (new_val + period / 2) / period);
2842	sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
2843	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
2844	    realstathz);
2845	return (0);
2846}
2847
2848SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler");
2849SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
2850    "Scheduler name");
2851SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
2852    NULL, 0, sysctl_kern_quantum, "I",
2853    "Quantum for timeshare threads in microseconds");
2854SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
2855    "Quantum for timeshare threads in stathz ticks");
2856SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
2857    "Interactivity score threshold");
2858SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
2859    &preempt_thresh, 0,
2860    "Maximal (lowest) priority for preemption");
2861SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
2862    "Assign static kernel priorities to sleeping threads");
2863SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
2864    "Number of times idle thread will spin waiting for new work");
2865SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
2866    &sched_idlespinthresh, 0,
2867    "Threshold before we will permit idle thread spinning");
2868#ifdef SMP
2869SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
2870    "Number of hz ticks to keep thread affinity for");
2871SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
2872    "Enables the long-term load balancer");
2873SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
2874    &balance_interval, 0,
2875    "Average period in stathz ticks to run the long-term balancer");
2876SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
2877    "Attempts to steal work from other cores before idling");
2878SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
2879    "Minimum load on remote CPU before we'll steal");
2880SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
2881    CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
2882    "XML dump of detected CPU topology");
2883#endif
2884
2885/* ps compat.  All cpu percentages from ULE are weighted. */
2886static int ccpu = 0;
2887SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
2888