sched_4bsd.c revision 284665
1/*-
2 * Copyright (c) 1982, 1986, 1990, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/10/sys/kern/sched_4bsd.c 284665 2015-06-21 06:28:26Z trasz $");
37
38#include "opt_hwpmc_hooks.h"
39#include "opt_sched.h"
40#include "opt_kdtrace.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/cpuset.h>
45#include <sys/kernel.h>
46#include <sys/ktr.h>
47#include <sys/lock.h>
48#include <sys/kthread.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/resourcevar.h>
52#include <sys/sched.h>
53#include <sys/sdt.h>
54#include <sys/smp.h>
55#include <sys/sysctl.h>
56#include <sys/sx.h>
57#include <sys/turnstile.h>
58#include <sys/umtx.h>
59#include <machine/pcb.h>
60#include <machine/smp.h>
61
62#ifdef HWPMC_HOOKS
63#include <sys/pmckern.h>
64#endif
65
66#ifdef KDTRACE_HOOKS
67#include <sys/dtrace_bsd.h>
68int				dtrace_vtime_active;
69dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
70#endif
71
72/*
73 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
74 * the range 100-256 Hz (approximately).
75 */
76#define	ESTCPULIM(e) \
77    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
78    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
79#ifdef SMP
80#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
81#else
82#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
83#endif
84#define	NICE_WEIGHT		1	/* Priorities per nice level. */
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87
88/*
89 * The schedulable entity that runs a context.
90 * This is  an extension to the thread structure and is tailored to
91 * the requirements of this scheduler
92 */
93struct td_sched {
94	fixpt_t		ts_pctcpu;	/* (j) %cpu during p_swtime. */
95	int		ts_cpticks;	/* (j) Ticks of cpu time. */
96	int		ts_slptime;	/* (j) Seconds !RUNNING. */
97	int		ts_slice;	/* Remaining part of time slice. */
98	int		ts_flags;
99	struct runq	*ts_runq;	/* runq the thread is currently on */
100#ifdef KTR
101	char		ts_name[TS_NAME_LEN];
102#endif
103};
104
105/* flags kept in td_flags */
106#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
107#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
108#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
109
110/* flags kept in ts_flags */
111#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
112
113#define SKE_RUNQ_PCPU(ts)						\
114    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
115
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119static struct td_sched td_sched0;
120struct mtx sched_lock;
121
122static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
123static int	sched_tdcnt;	/* Total runnable threads in the system. */
124static int	sched_slice = 12; /* Thread run time before rescheduling. */
125
126static void	setup_runqs(void);
127static void	schedcpu(void);
128static void	schedcpu_thread(void);
129static void	sched_priority(struct thread *td, u_char prio);
130static void	sched_setup(void *dummy);
131static void	maybe_resched(struct thread *td);
132static void	updatepri(struct thread *td);
133static void	resetpriority(struct thread *td);
134static void	resetpriority_thread(struct thread *td);
135#ifdef SMP
136static int	sched_pickcpu(struct thread *td);
137static int	forward_wakeup(int cpunum);
138static void	kick_other_cpu(int pri, int cpuid);
139#endif
140
141static struct kproc_desc sched_kp = {
142        "schedcpu",
143        schedcpu_thread,
144        NULL
145};
146SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
147    &sched_kp);
148SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
149
150static void sched_initticks(void *dummy);
151SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
152    NULL);
153
154/*
155 * Global run queue.
156 */
157static struct runq runq;
158
159#ifdef SMP
160/*
161 * Per-CPU run queues
162 */
163static struct runq runq_pcpu[MAXCPU];
164long runq_length[MAXCPU];
165
166static cpuset_t idle_cpus_mask;
167#endif
168
169struct pcpuidlestat {
170	u_int idlecalls;
171	u_int oldidlecalls;
172};
173static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
174
175static void
176setup_runqs(void)
177{
178#ifdef SMP
179	int i;
180
181	for (i = 0; i < MAXCPU; ++i)
182		runq_init(&runq_pcpu[i]);
183#endif
184
185	runq_init(&runq);
186}
187
188static int
189sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
190{
191	int error, new_val, period;
192
193	period = 1000000 / realstathz;
194	new_val = period * sched_slice;
195	error = sysctl_handle_int(oidp, &new_val, 0, req);
196	if (error != 0 || req->newptr == NULL)
197		return (error);
198	if (new_val <= 0)
199		return (EINVAL);
200	sched_slice = imax(1, (new_val + period / 2) / period);
201	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
202	    realstathz);
203	return (0);
204}
205
206SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
207
208SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
209    "Scheduler name");
210SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
211    NULL, 0, sysctl_kern_quantum, "I",
212    "Quantum for timeshare threads in microseconds");
213SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
214    "Quantum for timeshare threads in stathz ticks");
215#ifdef SMP
216/* Enable forwarding of wakeups to all other cpus */
217static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
218    "Kernel SMP");
219
220static int runq_fuzz = 1;
221SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
222
223static int forward_wakeup_enabled = 1;
224SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
225	   &forward_wakeup_enabled, 0,
226	   "Forwarding of wakeup to idle CPUs");
227
228static int forward_wakeups_requested = 0;
229SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
230	   &forward_wakeups_requested, 0,
231	   "Requests for Forwarding of wakeup to idle CPUs");
232
233static int forward_wakeups_delivered = 0;
234SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
235	   &forward_wakeups_delivered, 0,
236	   "Completed Forwarding of wakeup to idle CPUs");
237
238static int forward_wakeup_use_mask = 1;
239SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
240	   &forward_wakeup_use_mask, 0,
241	   "Use the mask of idle cpus");
242
243static int forward_wakeup_use_loop = 0;
244SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
245	   &forward_wakeup_use_loop, 0,
246	   "Use a loop to find idle cpus");
247
248#endif
249#if 0
250static int sched_followon = 0;
251SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
252	   &sched_followon, 0,
253	   "allow threads to share a quantum");
254#endif
255
256SDT_PROVIDER_DEFINE(sched);
257
258SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
259    "struct proc *", "uint8_t");
260SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
261    "struct proc *", "void *");
262SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
263    "struct proc *", "void *", "int");
264SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
265    "struct proc *", "uint8_t", "struct thread *");
266SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
267SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
268    "struct proc *");
269SDT_PROBE_DEFINE(sched, , , on__cpu);
270SDT_PROBE_DEFINE(sched, , , remain__cpu);
271SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
272    "struct proc *");
273
274static __inline void
275sched_load_add(void)
276{
277
278	sched_tdcnt++;
279	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
280	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
281}
282
283static __inline void
284sched_load_rem(void)
285{
286
287	sched_tdcnt--;
288	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
289	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
290}
291/*
292 * Arrange to reschedule if necessary, taking the priorities and
293 * schedulers into account.
294 */
295static void
296maybe_resched(struct thread *td)
297{
298
299	THREAD_LOCK_ASSERT(td, MA_OWNED);
300	if (td->td_priority < curthread->td_priority)
301		curthread->td_flags |= TDF_NEEDRESCHED;
302}
303
304/*
305 * This function is called when a thread is about to be put on run queue
306 * because it has been made runnable or its priority has been adjusted.  It
307 * determines if the new thread should be immediately preempted to.  If so,
308 * it switches to it and eventually returns true.  If not, it returns false
309 * so that the caller may place the thread on an appropriate run queue.
310 */
311int
312maybe_preempt(struct thread *td)
313{
314#ifdef PREEMPTION
315	struct thread *ctd;
316	int cpri, pri;
317
318	/*
319	 * The new thread should not preempt the current thread if any of the
320	 * following conditions are true:
321	 *
322	 *  - The kernel is in the throes of crashing (panicstr).
323	 *  - The current thread has a higher (numerically lower) or
324	 *    equivalent priority.  Note that this prevents curthread from
325	 *    trying to preempt to itself.
326	 *  - It is too early in the boot for context switches (cold is set).
327	 *  - The current thread has an inhibitor set or is in the process of
328	 *    exiting.  In this case, the current thread is about to switch
329	 *    out anyways, so there's no point in preempting.  If we did,
330	 *    the current thread would not be properly resumed as well, so
331	 *    just avoid that whole landmine.
332	 *  - If the new thread's priority is not a realtime priority and
333	 *    the current thread's priority is not an idle priority and
334	 *    FULL_PREEMPTION is disabled.
335	 *
336	 * If all of these conditions are false, but the current thread is in
337	 * a nested critical section, then we have to defer the preemption
338	 * until we exit the critical section.  Otherwise, switch immediately
339	 * to the new thread.
340	 */
341	ctd = curthread;
342	THREAD_LOCK_ASSERT(td, MA_OWNED);
343	KASSERT((td->td_inhibitors == 0),
344			("maybe_preempt: trying to run inhibited thread"));
345	pri = td->td_priority;
346	cpri = ctd->td_priority;
347	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
348	    TD_IS_INHIBITED(ctd))
349		return (0);
350#ifndef FULL_PREEMPTION
351	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
352		return (0);
353#endif
354
355	if (ctd->td_critnest > 1) {
356		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
357		    ctd->td_critnest);
358		ctd->td_owepreempt = 1;
359		return (0);
360	}
361	/*
362	 * Thread is runnable but not yet put on system run queue.
363	 */
364	MPASS(ctd->td_lock == td->td_lock);
365	MPASS(TD_ON_RUNQ(td));
366	TD_SET_RUNNING(td);
367	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
368	    td->td_proc->p_pid, td->td_name);
369	mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
370	/*
371	 * td's lock pointer may have changed.  We have to return with it
372	 * locked.
373	 */
374	spinlock_enter();
375	thread_unlock(ctd);
376	thread_lock(td);
377	spinlock_exit();
378	return (1);
379#else
380	return (0);
381#endif
382}
383
384/*
385 * Constants for digital decay and forget:
386 *	90% of (td_estcpu) usage in 5 * loadav time
387 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
388 *          Note that, as ps(1) mentions, this can let percentages
389 *          total over 100% (I've seen 137.9% for 3 processes).
390 *
391 * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
392 *
393 * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
394 * That is, the system wants to compute a value of decay such
395 * that the following for loop:
396 * 	for (i = 0; i < (5 * loadavg); i++)
397 * 		td_estcpu *= decay;
398 * will compute
399 * 	td_estcpu *= 0.1;
400 * for all values of loadavg:
401 *
402 * Mathematically this loop can be expressed by saying:
403 * 	decay ** (5 * loadavg) ~= .1
404 *
405 * The system computes decay as:
406 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
407 *
408 * We wish to prove that the system's computation of decay
409 * will always fulfill the equation:
410 * 	decay ** (5 * loadavg) ~= .1
411 *
412 * If we compute b as:
413 * 	b = 2 * loadavg
414 * then
415 * 	decay = b / (b + 1)
416 *
417 * We now need to prove two things:
418 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
419 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
420 *
421 * Facts:
422 *         For x close to zero, exp(x) =~ 1 + x, since
423 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
424 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
425 *         For x close to zero, ln(1+x) =~ x, since
426 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
427 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
428 *         ln(.1) =~ -2.30
429 *
430 * Proof of (1):
431 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
432 *	solving for factor,
433 *      ln(factor) =~ (-2.30/5*loadav), or
434 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
435 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
436 *
437 * Proof of (2):
438 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
439 *	solving for power,
440 *      power*ln(b/(b+1)) =~ -2.30, or
441 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
442 *
443 * Actual power values for the implemented algorithm are as follows:
444 *      loadav: 1       2       3       4
445 *      power:  5.68    10.32   14.94   19.55
446 */
447
448/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
449#define	loadfactor(loadav)	(2 * (loadav))
450#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
451
452/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
453static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
454SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
455
456/*
457 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
458 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
459 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
460 *
461 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
462 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
463 *
464 * If you don't want to bother with the faster/more-accurate formula, you
465 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
466 * (more general) method of calculating the %age of CPU used by a process.
467 */
468#define	CCPU_SHIFT	11
469
470/*
471 * Recompute process priorities, every hz ticks.
472 * MP-safe, called without the Giant mutex.
473 */
474/* ARGSUSED */
475static void
476schedcpu(void)
477{
478	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
479	struct thread *td;
480	struct proc *p;
481	struct td_sched *ts;
482	int awake;
483
484	sx_slock(&allproc_lock);
485	FOREACH_PROC_IN_SYSTEM(p) {
486		PROC_LOCK(p);
487		if (p->p_state == PRS_NEW) {
488			PROC_UNLOCK(p);
489			continue;
490		}
491		FOREACH_THREAD_IN_PROC(p, td) {
492			awake = 0;
493			thread_lock(td);
494			ts = td->td_sched;
495			/*
496			 * Increment sleep time (if sleeping).  We
497			 * ignore overflow, as above.
498			 */
499			/*
500			 * The td_sched slptimes are not touched in wakeup
501			 * because the thread may not HAVE everything in
502			 * memory? XXX I think this is out of date.
503			 */
504			if (TD_ON_RUNQ(td)) {
505				awake = 1;
506				td->td_flags &= ~TDF_DIDRUN;
507			} else if (TD_IS_RUNNING(td)) {
508				awake = 1;
509				/* Do not clear TDF_DIDRUN */
510			} else if (td->td_flags & TDF_DIDRUN) {
511				awake = 1;
512				td->td_flags &= ~TDF_DIDRUN;
513			}
514
515			/*
516			 * ts_pctcpu is only for ps and ttyinfo().
517			 */
518			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
519			/*
520			 * If the td_sched has been idle the entire second,
521			 * stop recalculating its priority until
522			 * it wakes up.
523			 */
524			if (ts->ts_cpticks != 0) {
525#if	(FSHIFT >= CCPU_SHIFT)
526				ts->ts_pctcpu += (realstathz == 100)
527				    ? ((fixpt_t) ts->ts_cpticks) <<
528				    (FSHIFT - CCPU_SHIFT) :
529				    100 * (((fixpt_t) ts->ts_cpticks)
530				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
531#else
532				ts->ts_pctcpu += ((FSCALE - ccpu) *
533				    (ts->ts_cpticks *
534				    FSCALE / realstathz)) >> FSHIFT;
535#endif
536				ts->ts_cpticks = 0;
537			}
538			/*
539			 * If there are ANY running threads in this process,
540			 * then don't count it as sleeping.
541			 * XXX: this is broken.
542			 */
543			if (awake) {
544				if (ts->ts_slptime > 1) {
545					/*
546					 * In an ideal world, this should not
547					 * happen, because whoever woke us
548					 * up from the long sleep should have
549					 * unwound the slptime and reset our
550					 * priority before we run at the stale
551					 * priority.  Should KASSERT at some
552					 * point when all the cases are fixed.
553					 */
554					updatepri(td);
555				}
556				ts->ts_slptime = 0;
557			} else
558				ts->ts_slptime++;
559			if (ts->ts_slptime > 1) {
560				thread_unlock(td);
561				continue;
562			}
563			td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
564		      	resetpriority(td);
565			resetpriority_thread(td);
566			thread_unlock(td);
567		}
568		PROC_UNLOCK(p);
569	}
570	sx_sunlock(&allproc_lock);
571}
572
573/*
574 * Main loop for a kthread that executes schedcpu once a second.
575 */
576static void
577schedcpu_thread(void)
578{
579
580	for (;;) {
581		schedcpu();
582		pause("-", hz);
583	}
584}
585
586/*
587 * Recalculate the priority of a process after it has slept for a while.
588 * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
589 * least six times the loadfactor will decay td_estcpu to zero.
590 */
591static void
592updatepri(struct thread *td)
593{
594	struct td_sched *ts;
595	fixpt_t loadfac;
596	unsigned int newcpu;
597
598	ts = td->td_sched;
599	loadfac = loadfactor(averunnable.ldavg[0]);
600	if (ts->ts_slptime > 5 * loadfac)
601		td->td_estcpu = 0;
602	else {
603		newcpu = td->td_estcpu;
604		ts->ts_slptime--;	/* was incremented in schedcpu() */
605		while (newcpu && --ts->ts_slptime)
606			newcpu = decay_cpu(loadfac, newcpu);
607		td->td_estcpu = newcpu;
608	}
609}
610
611/*
612 * Compute the priority of a process when running in user mode.
613 * Arrange to reschedule if the resulting priority is better
614 * than that of the current process.
615 */
616static void
617resetpriority(struct thread *td)
618{
619	register unsigned int newpriority;
620
621	if (td->td_pri_class == PRI_TIMESHARE) {
622		newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
623		    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
624		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
625		    PRI_MAX_TIMESHARE);
626		sched_user_prio(td, newpriority);
627	}
628}
629
630/*
631 * Update the thread's priority when the associated process's user
632 * priority changes.
633 */
634static void
635resetpriority_thread(struct thread *td)
636{
637
638	/* Only change threads with a time sharing user priority. */
639	if (td->td_priority < PRI_MIN_TIMESHARE ||
640	    td->td_priority > PRI_MAX_TIMESHARE)
641		return;
642
643	/* XXX the whole needresched thing is broken, but not silly. */
644	maybe_resched(td);
645
646	sched_prio(td, td->td_user_pri);
647}
648
649/* ARGSUSED */
650static void
651sched_setup(void *dummy)
652{
653
654	setup_runqs();
655
656	/* Account for thread0. */
657	sched_load_add();
658}
659
660/*
661 * This routine determines time constants after stathz and hz are setup.
662 */
663static void
664sched_initticks(void *dummy)
665{
666
667	realstathz = stathz ? stathz : hz;
668	sched_slice = realstathz / 10;	/* ~100ms */
669	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
670	    realstathz);
671}
672
673/* External interfaces start here */
674
675/*
676 * Very early in the boot some setup of scheduler-specific
677 * parts of proc0 and of some scheduler resources needs to be done.
678 * Called from:
679 *  proc0_init()
680 */
681void
682schedinit(void)
683{
684	/*
685	 * Set up the scheduler specific parts of proc0.
686	 */
687	proc0.p_sched = NULL; /* XXX */
688	thread0.td_sched = &td_sched0;
689	thread0.td_lock = &sched_lock;
690	td_sched0.ts_slice = sched_slice;
691	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
692}
693
694int
695sched_runnable(void)
696{
697#ifdef SMP
698	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
699#else
700	return runq_check(&runq);
701#endif
702}
703
704int
705sched_rr_interval(void)
706{
707
708	/* Convert sched_slice from stathz to hz. */
709	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
710}
711
712/*
713 * We adjust the priority of the current process.  The priority of
714 * a process gets worse as it accumulates CPU time.  The cpu usage
715 * estimator (td_estcpu) is increased here.  resetpriority() will
716 * compute a different priority each time td_estcpu increases by
717 * INVERSE_ESTCPU_WEIGHT
718 * (until MAXPRI is reached).  The cpu usage estimator ramps up
719 * quite quickly when the process is running (linearly), and decays
720 * away exponentially, at a rate which is proportionally slower when
721 * the system is busy.  The basic principle is that the system will
722 * 90% forget that the process used a lot of CPU time in 5 * loadav
723 * seconds.  This causes the system to favor processes which haven't
724 * run much recently, and to round-robin among other processes.
725 */
726void
727sched_clock(struct thread *td)
728{
729	struct pcpuidlestat *stat;
730	struct td_sched *ts;
731
732	THREAD_LOCK_ASSERT(td, MA_OWNED);
733	ts = td->td_sched;
734
735	ts->ts_cpticks++;
736	td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
737	if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
738		resetpriority(td);
739		resetpriority_thread(td);
740	}
741
742	/*
743	 * Force a context switch if the current thread has used up a full
744	 * time slice (default is 100ms).
745	 */
746	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
747		ts->ts_slice = sched_slice;
748		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
749	}
750
751	stat = DPCPU_PTR(idlestat);
752	stat->oldidlecalls = stat->idlecalls;
753	stat->idlecalls = 0;
754}
755
756/*
757 * Charge child's scheduling CPU usage to parent.
758 */
759void
760sched_exit(struct proc *p, struct thread *td)
761{
762
763	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
764	    "prio:%d", td->td_priority);
765
766	PROC_LOCK_ASSERT(p, MA_OWNED);
767	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
768}
769
770void
771sched_exit_thread(struct thread *td, struct thread *child)
772{
773
774	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
775	    "prio:%d", child->td_priority);
776	thread_lock(td);
777	td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
778	thread_unlock(td);
779	thread_lock(child);
780	if ((child->td_flags & TDF_NOLOAD) == 0)
781		sched_load_rem();
782	thread_unlock(child);
783}
784
785void
786sched_fork(struct thread *td, struct thread *childtd)
787{
788	sched_fork_thread(td, childtd);
789}
790
791void
792sched_fork_thread(struct thread *td, struct thread *childtd)
793{
794	struct td_sched *ts;
795
796	childtd->td_estcpu = td->td_estcpu;
797	childtd->td_lock = &sched_lock;
798	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
799	childtd->td_priority = childtd->td_base_pri;
800	ts = childtd->td_sched;
801	bzero(ts, sizeof(*ts));
802	ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
803	ts->ts_slice = 1;
804}
805
806void
807sched_nice(struct proc *p, int nice)
808{
809	struct thread *td;
810
811	PROC_LOCK_ASSERT(p, MA_OWNED);
812	p->p_nice = nice;
813	FOREACH_THREAD_IN_PROC(p, td) {
814		thread_lock(td);
815		resetpriority(td);
816		resetpriority_thread(td);
817		thread_unlock(td);
818	}
819}
820
821void
822sched_class(struct thread *td, int class)
823{
824	THREAD_LOCK_ASSERT(td, MA_OWNED);
825	td->td_pri_class = class;
826}
827
828/*
829 * Adjust the priority of a thread.
830 */
831static void
832sched_priority(struct thread *td, u_char prio)
833{
834
835
836	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
837	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
838	    sched_tdname(curthread));
839	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
840	if (td != curthread && prio > td->td_priority) {
841		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
842		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
843		    prio, KTR_ATTR_LINKED, sched_tdname(td));
844		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
845		    curthread);
846	}
847	THREAD_LOCK_ASSERT(td, MA_OWNED);
848	if (td->td_priority == prio)
849		return;
850	td->td_priority = prio;
851	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
852		sched_rem(td);
853		sched_add(td, SRQ_BORING);
854	}
855}
856
857/*
858 * Update a thread's priority when it is lent another thread's
859 * priority.
860 */
861void
862sched_lend_prio(struct thread *td, u_char prio)
863{
864
865	td->td_flags |= TDF_BORROWING;
866	sched_priority(td, prio);
867}
868
869/*
870 * Restore a thread's priority when priority propagation is
871 * over.  The prio argument is the minimum priority the thread
872 * needs to have to satisfy other possible priority lending
873 * requests.  If the thread's regulary priority is less
874 * important than prio the thread will keep a priority boost
875 * of prio.
876 */
877void
878sched_unlend_prio(struct thread *td, u_char prio)
879{
880	u_char base_pri;
881
882	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
883	    td->td_base_pri <= PRI_MAX_TIMESHARE)
884		base_pri = td->td_user_pri;
885	else
886		base_pri = td->td_base_pri;
887	if (prio >= base_pri) {
888		td->td_flags &= ~TDF_BORROWING;
889		sched_prio(td, base_pri);
890	} else
891		sched_lend_prio(td, prio);
892}
893
894void
895sched_prio(struct thread *td, u_char prio)
896{
897	u_char oldprio;
898
899	/* First, update the base priority. */
900	td->td_base_pri = prio;
901
902	/*
903	 * If the thread is borrowing another thread's priority, don't ever
904	 * lower the priority.
905	 */
906	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
907		return;
908
909	/* Change the real priority. */
910	oldprio = td->td_priority;
911	sched_priority(td, prio);
912
913	/*
914	 * If the thread is on a turnstile, then let the turnstile update
915	 * its state.
916	 */
917	if (TD_ON_LOCK(td) && oldprio != prio)
918		turnstile_adjust(td, oldprio);
919}
920
921void
922sched_user_prio(struct thread *td, u_char prio)
923{
924
925	THREAD_LOCK_ASSERT(td, MA_OWNED);
926	td->td_base_user_pri = prio;
927	if (td->td_lend_user_pri <= prio)
928		return;
929	td->td_user_pri = prio;
930}
931
932void
933sched_lend_user_prio(struct thread *td, u_char prio)
934{
935
936	THREAD_LOCK_ASSERT(td, MA_OWNED);
937	td->td_lend_user_pri = prio;
938	td->td_user_pri = min(prio, td->td_base_user_pri);
939	if (td->td_priority > td->td_user_pri)
940		sched_prio(td, td->td_user_pri);
941	else if (td->td_priority != td->td_user_pri)
942		td->td_flags |= TDF_NEEDRESCHED;
943}
944
945void
946sched_sleep(struct thread *td, int pri)
947{
948
949	THREAD_LOCK_ASSERT(td, MA_OWNED);
950	td->td_slptick = ticks;
951	td->td_sched->ts_slptime = 0;
952	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
953		sched_prio(td, pri);
954	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
955		td->td_flags |= TDF_CANSWAP;
956}
957
958void
959sched_switch(struct thread *td, struct thread *newtd, int flags)
960{
961	struct mtx *tmtx;
962	struct td_sched *ts;
963	struct proc *p;
964	int preempted;
965
966	tmtx = NULL;
967	ts = td->td_sched;
968	p = td->td_proc;
969
970	THREAD_LOCK_ASSERT(td, MA_OWNED);
971
972	/*
973	 * Switch to the sched lock to fix things up and pick
974	 * a new thread.
975	 * Block the td_lock in order to avoid breaking the critical path.
976	 */
977	if (td->td_lock != &sched_lock) {
978		mtx_lock_spin(&sched_lock);
979		tmtx = thread_lock_block(td);
980	}
981
982	if ((td->td_flags & TDF_NOLOAD) == 0)
983		sched_load_rem();
984
985	td->td_lastcpu = td->td_oncpu;
986	preempted = !((td->td_flags & TDF_SLICEEND) ||
987	    (flags & SWT_RELINQUISH));
988	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
989	td->td_owepreempt = 0;
990	td->td_oncpu = NOCPU;
991
992	/*
993	 * At the last moment, if this thread is still marked RUNNING,
994	 * then put it back on the run queue as it has not been suspended
995	 * or stopped or any thing else similar.  We never put the idle
996	 * threads on the run queue, however.
997	 */
998	if (td->td_flags & TDF_IDLETD) {
999		TD_SET_CAN_RUN(td);
1000#ifdef SMP
1001		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1002#endif
1003	} else {
1004		if (TD_IS_RUNNING(td)) {
1005			/* Put us back on the run queue. */
1006			sched_add(td, preempted ?
1007			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1008			    SRQ_OURSELF|SRQ_YIELDING);
1009		}
1010	}
1011	if (newtd) {
1012		/*
1013		 * The thread we are about to run needs to be counted
1014		 * as if it had been added to the run queue and selected.
1015		 * It came from:
1016		 * * A preemption
1017		 * * An upcall
1018		 * * A followon
1019		 */
1020		KASSERT((newtd->td_inhibitors == 0),
1021			("trying to run inhibited thread"));
1022		newtd->td_flags |= TDF_DIDRUN;
1023        	TD_SET_RUNNING(newtd);
1024		if ((newtd->td_flags & TDF_NOLOAD) == 0)
1025			sched_load_add();
1026	} else {
1027		newtd = choosethread();
1028		MPASS(newtd->td_lock == &sched_lock);
1029	}
1030
1031	if (td != newtd) {
1032#ifdef	HWPMC_HOOKS
1033		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1034			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1035#endif
1036
1037		SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
1038
1039                /* I feel sleepy */
1040		lock_profile_release_lock(&sched_lock.lock_object);
1041#ifdef KDTRACE_HOOKS
1042		/*
1043		 * If DTrace has set the active vtime enum to anything
1044		 * other than INACTIVE (0), then it should have set the
1045		 * function to call.
1046		 */
1047		if (dtrace_vtime_active)
1048			(*dtrace_vtime_switch_func)(newtd);
1049#endif
1050
1051		cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
1052		lock_profile_obtain_lock_success(&sched_lock.lock_object,
1053		    0, 0, __FILE__, __LINE__);
1054		/*
1055		 * Where am I?  What year is it?
1056		 * We are in the same thread that went to sleep above,
1057		 * but any amount of time may have passed. All our context
1058		 * will still be available as will local variables.
1059		 * PCPU values however may have changed as we may have
1060		 * changed CPU so don't trust cached values of them.
1061		 * New threads will go to fork_exit() instead of here
1062		 * so if you change things here you may need to change
1063		 * things there too.
1064		 *
1065		 * If the thread above was exiting it will never wake
1066		 * up again here, so either it has saved everything it
1067		 * needed to, or the thread_wait() or wait() will
1068		 * need to reap it.
1069		 */
1070
1071		SDT_PROBE0(sched, , , on__cpu);
1072#ifdef	HWPMC_HOOKS
1073		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1074			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1075#endif
1076	} else
1077		SDT_PROBE0(sched, , , remain__cpu);
1078
1079#ifdef SMP
1080	if (td->td_flags & TDF_IDLETD)
1081		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1082#endif
1083	sched_lock.mtx_lock = (uintptr_t)td;
1084	td->td_oncpu = PCPU_GET(cpuid);
1085	MPASS(td->td_lock == &sched_lock);
1086}
1087
1088void
1089sched_wakeup(struct thread *td)
1090{
1091	struct td_sched *ts;
1092
1093	THREAD_LOCK_ASSERT(td, MA_OWNED);
1094	ts = td->td_sched;
1095	td->td_flags &= ~TDF_CANSWAP;
1096	if (ts->ts_slptime > 1) {
1097		updatepri(td);
1098		resetpriority(td);
1099	}
1100	td->td_slptick = 0;
1101	ts->ts_slptime = 0;
1102	ts->ts_slice = sched_slice;
1103	sched_add(td, SRQ_BORING);
1104}
1105
1106#ifdef SMP
1107static int
1108forward_wakeup(int cpunum)
1109{
1110	struct pcpu *pc;
1111	cpuset_t dontuse, map, map2;
1112	u_int id, me;
1113	int iscpuset;
1114
1115	mtx_assert(&sched_lock, MA_OWNED);
1116
1117	CTR0(KTR_RUNQ, "forward_wakeup()");
1118
1119	if ((!forward_wakeup_enabled) ||
1120	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1121		return (0);
1122	if (!smp_started || cold || panicstr)
1123		return (0);
1124
1125	forward_wakeups_requested++;
1126
1127	/*
1128	 * Check the idle mask we received against what we calculated
1129	 * before in the old version.
1130	 */
1131	me = PCPU_GET(cpuid);
1132
1133	/* Don't bother if we should be doing it ourself. */
1134	if (CPU_ISSET(me, &idle_cpus_mask) &&
1135	    (cpunum == NOCPU || me == cpunum))
1136		return (0);
1137
1138	CPU_SETOF(me, &dontuse);
1139	CPU_OR(&dontuse, &stopped_cpus);
1140	CPU_OR(&dontuse, &hlt_cpus_mask);
1141	CPU_ZERO(&map2);
1142	if (forward_wakeup_use_loop) {
1143		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1144			id = pc->pc_cpuid;
1145			if (!CPU_ISSET(id, &dontuse) &&
1146			    pc->pc_curthread == pc->pc_idlethread) {
1147				CPU_SET(id, &map2);
1148			}
1149		}
1150	}
1151
1152	if (forward_wakeup_use_mask) {
1153		map = idle_cpus_mask;
1154		CPU_NAND(&map, &dontuse);
1155
1156		/* If they are both on, compare and use loop if different. */
1157		if (forward_wakeup_use_loop) {
1158			if (CPU_CMP(&map, &map2)) {
1159				printf("map != map2, loop method preferred\n");
1160				map = map2;
1161			}
1162		}
1163	} else {
1164		map = map2;
1165	}
1166
1167	/* If we only allow a specific CPU, then mask off all the others. */
1168	if (cpunum != NOCPU) {
1169		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1170		iscpuset = CPU_ISSET(cpunum, &map);
1171		if (iscpuset == 0)
1172			CPU_ZERO(&map);
1173		else
1174			CPU_SETOF(cpunum, &map);
1175	}
1176	if (!CPU_EMPTY(&map)) {
1177		forward_wakeups_delivered++;
1178		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1179			id = pc->pc_cpuid;
1180			if (!CPU_ISSET(id, &map))
1181				continue;
1182			if (cpu_idle_wakeup(pc->pc_cpuid))
1183				CPU_CLR(id, &map);
1184		}
1185		if (!CPU_EMPTY(&map))
1186			ipi_selected(map, IPI_AST);
1187		return (1);
1188	}
1189	if (cpunum == NOCPU)
1190		printf("forward_wakeup: Idle processor not found\n");
1191	return (0);
1192}
1193
1194static void
1195kick_other_cpu(int pri, int cpuid)
1196{
1197	struct pcpu *pcpu;
1198	int cpri;
1199
1200	pcpu = pcpu_find(cpuid);
1201	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1202		forward_wakeups_delivered++;
1203		if (!cpu_idle_wakeup(cpuid))
1204			ipi_cpu(cpuid, IPI_AST);
1205		return;
1206	}
1207
1208	cpri = pcpu->pc_curthread->td_priority;
1209	if (pri >= cpri)
1210		return;
1211
1212#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1213#if !defined(FULL_PREEMPTION)
1214	if (pri <= PRI_MAX_ITHD)
1215#endif /* ! FULL_PREEMPTION */
1216	{
1217		ipi_cpu(cpuid, IPI_PREEMPT);
1218		return;
1219	}
1220#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1221
1222	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1223	ipi_cpu(cpuid, IPI_AST);
1224	return;
1225}
1226#endif /* SMP */
1227
1228#ifdef SMP
1229static int
1230sched_pickcpu(struct thread *td)
1231{
1232	int best, cpu;
1233
1234	mtx_assert(&sched_lock, MA_OWNED);
1235
1236	if (THREAD_CAN_SCHED(td, td->td_lastcpu))
1237		best = td->td_lastcpu;
1238	else
1239		best = NOCPU;
1240	CPU_FOREACH(cpu) {
1241		if (!THREAD_CAN_SCHED(td, cpu))
1242			continue;
1243
1244		if (best == NOCPU)
1245			best = cpu;
1246		else if (runq_length[cpu] < runq_length[best])
1247			best = cpu;
1248	}
1249	KASSERT(best != NOCPU, ("no valid CPUs"));
1250
1251	return (best);
1252}
1253#endif
1254
1255void
1256sched_add(struct thread *td, int flags)
1257#ifdef SMP
1258{
1259	cpuset_t tidlemsk;
1260	struct td_sched *ts;
1261	u_int cpu, cpuid;
1262	int forwarded = 0;
1263	int single_cpu = 0;
1264
1265	ts = td->td_sched;
1266	THREAD_LOCK_ASSERT(td, MA_OWNED);
1267	KASSERT((td->td_inhibitors == 0),
1268	    ("sched_add: trying to run inhibited thread"));
1269	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1270	    ("sched_add: bad thread state"));
1271	KASSERT(td->td_flags & TDF_INMEM,
1272	    ("sched_add: thread swapped out"));
1273
1274	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1275	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1276	    sched_tdname(curthread));
1277	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1278	    KTR_ATTR_LINKED, sched_tdname(td));
1279	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1280	    flags & SRQ_PREEMPTED);
1281
1282
1283	/*
1284	 * Now that the thread is moving to the run-queue, set the lock
1285	 * to the scheduler's lock.
1286	 */
1287	if (td->td_lock != &sched_lock) {
1288		mtx_lock_spin(&sched_lock);
1289		thread_lock_set(td, &sched_lock);
1290	}
1291	TD_SET_RUNQ(td);
1292
1293	/*
1294	 * If SMP is started and the thread is pinned or otherwise limited to
1295	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1296	 * Otherwise, queue the thread to the global run queue.
1297	 *
1298	 * If SMP has not yet been started we must use the global run queue
1299	 * as per-CPU state may not be initialized yet and we may crash if we
1300	 * try to access the per-CPU run queues.
1301	 */
1302	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1303	    ts->ts_flags & TSF_AFFINITY)) {
1304		if (td->td_pinned != 0)
1305			cpu = td->td_lastcpu;
1306		else if (td->td_flags & TDF_BOUND) {
1307			/* Find CPU from bound runq. */
1308			KASSERT(SKE_RUNQ_PCPU(ts),
1309			    ("sched_add: bound td_sched not on cpu runq"));
1310			cpu = ts->ts_runq - &runq_pcpu[0];
1311		} else
1312			/* Find a valid CPU for our cpuset */
1313			cpu = sched_pickcpu(td);
1314		ts->ts_runq = &runq_pcpu[cpu];
1315		single_cpu = 1;
1316		CTR3(KTR_RUNQ,
1317		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1318		    cpu);
1319	} else {
1320		CTR2(KTR_RUNQ,
1321		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1322		    td);
1323		cpu = NOCPU;
1324		ts->ts_runq = &runq;
1325	}
1326
1327	cpuid = PCPU_GET(cpuid);
1328	if (single_cpu && cpu != cpuid) {
1329	        kick_other_cpu(td->td_priority, cpu);
1330	} else {
1331		if (!single_cpu) {
1332			tidlemsk = idle_cpus_mask;
1333			CPU_NAND(&tidlemsk, &hlt_cpus_mask);
1334			CPU_CLR(cpuid, &tidlemsk);
1335
1336			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1337			    ((flags & SRQ_INTR) == 0) &&
1338			    !CPU_EMPTY(&tidlemsk))
1339				forwarded = forward_wakeup(cpu);
1340		}
1341
1342		if (!forwarded) {
1343			if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1344				return;
1345			else
1346				maybe_resched(td);
1347		}
1348	}
1349
1350	if ((td->td_flags & TDF_NOLOAD) == 0)
1351		sched_load_add();
1352	runq_add(ts->ts_runq, td, flags);
1353	if (cpu != NOCPU)
1354		runq_length[cpu]++;
1355}
1356#else /* SMP */
1357{
1358	struct td_sched *ts;
1359
1360	ts = td->td_sched;
1361	THREAD_LOCK_ASSERT(td, MA_OWNED);
1362	KASSERT((td->td_inhibitors == 0),
1363	    ("sched_add: trying to run inhibited thread"));
1364	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1365	    ("sched_add: bad thread state"));
1366	KASSERT(td->td_flags & TDF_INMEM,
1367	    ("sched_add: thread swapped out"));
1368	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1369	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1370	    sched_tdname(curthread));
1371	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1372	    KTR_ATTR_LINKED, sched_tdname(td));
1373	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1374	    flags & SRQ_PREEMPTED);
1375
1376	/*
1377	 * Now that the thread is moving to the run-queue, set the lock
1378	 * to the scheduler's lock.
1379	 */
1380	if (td->td_lock != &sched_lock) {
1381		mtx_lock_spin(&sched_lock);
1382		thread_lock_set(td, &sched_lock);
1383	}
1384	TD_SET_RUNQ(td);
1385	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1386	ts->ts_runq = &runq;
1387
1388	/*
1389	 * If we are yielding (on the way out anyhow) or the thread
1390	 * being saved is US, then don't try be smart about preemption
1391	 * or kicking off another CPU as it won't help and may hinder.
1392	 * In the YIEDLING case, we are about to run whoever is being
1393	 * put in the queue anyhow, and in the OURSELF case, we are
1394	 * puting ourself on the run queue which also only happens
1395	 * when we are about to yield.
1396	 */
1397	if ((flags & SRQ_YIELDING) == 0) {
1398		if (maybe_preempt(td))
1399			return;
1400	}
1401	if ((td->td_flags & TDF_NOLOAD) == 0)
1402		sched_load_add();
1403	runq_add(ts->ts_runq, td, flags);
1404	maybe_resched(td);
1405}
1406#endif /* SMP */
1407
1408void
1409sched_rem(struct thread *td)
1410{
1411	struct td_sched *ts;
1412
1413	ts = td->td_sched;
1414	KASSERT(td->td_flags & TDF_INMEM,
1415	    ("sched_rem: thread swapped out"));
1416	KASSERT(TD_ON_RUNQ(td),
1417	    ("sched_rem: thread not on run queue"));
1418	mtx_assert(&sched_lock, MA_OWNED);
1419	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1420	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1421	    sched_tdname(curthread));
1422	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1423
1424	if ((td->td_flags & TDF_NOLOAD) == 0)
1425		sched_load_rem();
1426#ifdef SMP
1427	if (ts->ts_runq != &runq)
1428		runq_length[ts->ts_runq - runq_pcpu]--;
1429#endif
1430	runq_remove(ts->ts_runq, td);
1431	TD_SET_CAN_RUN(td);
1432}
1433
1434/*
1435 * Select threads to run.  Note that running threads still consume a
1436 * slot.
1437 */
1438struct thread *
1439sched_choose(void)
1440{
1441	struct thread *td;
1442	struct runq *rq;
1443
1444	mtx_assert(&sched_lock,  MA_OWNED);
1445#ifdef SMP
1446	struct thread *tdcpu;
1447
1448	rq = &runq;
1449	td = runq_choose_fuzz(&runq, runq_fuzz);
1450	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1451
1452	if (td == NULL ||
1453	    (tdcpu != NULL &&
1454	     tdcpu->td_priority < td->td_priority)) {
1455		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1456		     PCPU_GET(cpuid));
1457		td = tdcpu;
1458		rq = &runq_pcpu[PCPU_GET(cpuid)];
1459	} else {
1460		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1461	}
1462
1463#else
1464	rq = &runq;
1465	td = runq_choose(&runq);
1466#endif
1467
1468	if (td) {
1469#ifdef SMP
1470		if (td == tdcpu)
1471			runq_length[PCPU_GET(cpuid)]--;
1472#endif
1473		runq_remove(rq, td);
1474		td->td_flags |= TDF_DIDRUN;
1475
1476		KASSERT(td->td_flags & TDF_INMEM,
1477		    ("sched_choose: thread swapped out"));
1478		return (td);
1479	}
1480	return (PCPU_GET(idlethread));
1481}
1482
1483void
1484sched_preempt(struct thread *td)
1485{
1486
1487	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1488	thread_lock(td);
1489	if (td->td_critnest > 1)
1490		td->td_owepreempt = 1;
1491	else
1492		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
1493	thread_unlock(td);
1494}
1495
1496void
1497sched_userret(struct thread *td)
1498{
1499	/*
1500	 * XXX we cheat slightly on the locking here to avoid locking in
1501	 * the usual case.  Setting td_priority here is essentially an
1502	 * incomplete workaround for not setting it properly elsewhere.
1503	 * Now that some interrupt handlers are threads, not setting it
1504	 * properly elsewhere can clobber it in the window between setting
1505	 * it here and returning to user mode, so don't waste time setting
1506	 * it perfectly here.
1507	 */
1508	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1509	    ("thread with borrowed priority returning to userland"));
1510	if (td->td_priority != td->td_user_pri) {
1511		thread_lock(td);
1512		td->td_priority = td->td_user_pri;
1513		td->td_base_pri = td->td_user_pri;
1514		thread_unlock(td);
1515	}
1516}
1517
1518void
1519sched_bind(struct thread *td, int cpu)
1520{
1521	struct td_sched *ts;
1522
1523	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1524	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1525
1526	ts = td->td_sched;
1527
1528	td->td_flags |= TDF_BOUND;
1529#ifdef SMP
1530	ts->ts_runq = &runq_pcpu[cpu];
1531	if (PCPU_GET(cpuid) == cpu)
1532		return;
1533
1534	mi_switch(SW_VOL, NULL);
1535#endif
1536}
1537
1538void
1539sched_unbind(struct thread* td)
1540{
1541	THREAD_LOCK_ASSERT(td, MA_OWNED);
1542	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1543	td->td_flags &= ~TDF_BOUND;
1544}
1545
1546int
1547sched_is_bound(struct thread *td)
1548{
1549	THREAD_LOCK_ASSERT(td, MA_OWNED);
1550	return (td->td_flags & TDF_BOUND);
1551}
1552
1553void
1554sched_relinquish(struct thread *td)
1555{
1556	thread_lock(td);
1557	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
1558	thread_unlock(td);
1559}
1560
1561int
1562sched_load(void)
1563{
1564	return (sched_tdcnt);
1565}
1566
1567int
1568sched_sizeof_proc(void)
1569{
1570	return (sizeof(struct proc));
1571}
1572
1573int
1574sched_sizeof_thread(void)
1575{
1576	return (sizeof(struct thread) + sizeof(struct td_sched));
1577}
1578
1579fixpt_t
1580sched_pctcpu(struct thread *td)
1581{
1582	struct td_sched *ts;
1583
1584	THREAD_LOCK_ASSERT(td, MA_OWNED);
1585	ts = td->td_sched;
1586	return (ts->ts_pctcpu);
1587}
1588
1589#ifdef RACCT
1590/*
1591 * Calculates the contribution to the thread cpu usage for the latest
1592 * (unfinished) second.
1593 */
1594fixpt_t
1595sched_pctcpu_delta(struct thread *td)
1596{
1597	struct td_sched *ts;
1598	fixpt_t delta;
1599	int realstathz;
1600
1601	THREAD_LOCK_ASSERT(td, MA_OWNED);
1602	ts = td->td_sched;
1603	delta = 0;
1604	realstathz = stathz ? stathz : hz;
1605	if (ts->ts_cpticks != 0) {
1606#if	(FSHIFT >= CCPU_SHIFT)
1607		delta = (realstathz == 100)
1608		    ? ((fixpt_t) ts->ts_cpticks) <<
1609		    (FSHIFT - CCPU_SHIFT) :
1610		    100 * (((fixpt_t) ts->ts_cpticks)
1611		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1612#else
1613		delta = ((FSCALE - ccpu) *
1614		    (ts->ts_cpticks *
1615		    FSCALE / realstathz)) >> FSHIFT;
1616#endif
1617	}
1618
1619	return (delta);
1620}
1621#endif
1622
1623void
1624sched_tick(int cnt)
1625{
1626}
1627
1628/*
1629 * The actual idle process.
1630 */
1631void
1632sched_idletd(void *dummy)
1633{
1634	struct pcpuidlestat *stat;
1635
1636	THREAD_NO_SLEEPING();
1637	stat = DPCPU_PTR(idlestat);
1638	for (;;) {
1639		mtx_assert(&Giant, MA_NOTOWNED);
1640
1641		while (sched_runnable() == 0) {
1642			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1643			stat->idlecalls++;
1644		}
1645
1646		mtx_lock_spin(&sched_lock);
1647		mi_switch(SW_VOL | SWT_IDLE, NULL);
1648		mtx_unlock_spin(&sched_lock);
1649	}
1650}
1651
1652/*
1653 * A CPU is entering for the first time or a thread is exiting.
1654 */
1655void
1656sched_throw(struct thread *td)
1657{
1658	/*
1659	 * Correct spinlock nesting.  The idle thread context that we are
1660	 * borrowing was created so that it would start out with a single
1661	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1662	 * explicitly acquired locks in this function, the nesting count
1663	 * is now 2 rather than 1.  Since we are nested, calling
1664	 * spinlock_exit() will simply adjust the counts without allowing
1665	 * spin lock using code to interrupt us.
1666	 */
1667	if (td == NULL) {
1668		mtx_lock_spin(&sched_lock);
1669		spinlock_exit();
1670		PCPU_SET(switchtime, cpu_ticks());
1671		PCPU_SET(switchticks, ticks);
1672	} else {
1673		lock_profile_release_lock(&sched_lock.lock_object);
1674		MPASS(td->td_lock == &sched_lock);
1675	}
1676	mtx_assert(&sched_lock, MA_OWNED);
1677	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1678	cpu_throw(td, choosethread());	/* doesn't return */
1679}
1680
1681void
1682sched_fork_exit(struct thread *td)
1683{
1684
1685	/*
1686	 * Finish setting up thread glue so that it begins execution in a
1687	 * non-nested critical section with sched_lock held but not recursed.
1688	 */
1689	td->td_oncpu = PCPU_GET(cpuid);
1690	sched_lock.mtx_lock = (uintptr_t)td;
1691	lock_profile_obtain_lock_success(&sched_lock.lock_object,
1692	    0, 0, __FILE__, __LINE__);
1693	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1694}
1695
1696char *
1697sched_tdname(struct thread *td)
1698{
1699#ifdef KTR
1700	struct td_sched *ts;
1701
1702	ts = td->td_sched;
1703	if (ts->ts_name[0] == '\0')
1704		snprintf(ts->ts_name, sizeof(ts->ts_name),
1705		    "%s tid %d", td->td_name, td->td_tid);
1706	return (ts->ts_name);
1707#else
1708	return (td->td_name);
1709#endif
1710}
1711
1712#ifdef KTR
1713void
1714sched_clear_tdname(struct thread *td)
1715{
1716	struct td_sched *ts;
1717
1718	ts = td->td_sched;
1719	ts->ts_name[0] = '\0';
1720}
1721#endif
1722
1723void
1724sched_affinity(struct thread *td)
1725{
1726#ifdef SMP
1727	struct td_sched *ts;
1728	int cpu;
1729
1730	THREAD_LOCK_ASSERT(td, MA_OWNED);
1731
1732	/*
1733	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1734	 * thread can't run on.
1735	 */
1736	ts = td->td_sched;
1737	ts->ts_flags &= ~TSF_AFFINITY;
1738	CPU_FOREACH(cpu) {
1739		if (!THREAD_CAN_SCHED(td, cpu)) {
1740			ts->ts_flags |= TSF_AFFINITY;
1741			break;
1742		}
1743	}
1744
1745	/*
1746	 * If this thread can run on all CPUs, nothing else to do.
1747	 */
1748	if (!(ts->ts_flags & TSF_AFFINITY))
1749		return;
1750
1751	/* Pinned threads and bound threads should be left alone. */
1752	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1753		return;
1754
1755	switch (td->td_state) {
1756	case TDS_RUNQ:
1757		/*
1758		 * If we are on a per-CPU runqueue that is in the set,
1759		 * then nothing needs to be done.
1760		 */
1761		if (ts->ts_runq != &runq &&
1762		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1763			return;
1764
1765		/* Put this thread on a valid per-CPU runqueue. */
1766		sched_rem(td);
1767		sched_add(td, SRQ_BORING);
1768		break;
1769	case TDS_RUNNING:
1770		/*
1771		 * See if our current CPU is in the set.  If not, force a
1772		 * context switch.
1773		 */
1774		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1775			return;
1776
1777		td->td_flags |= TDF_NEEDRESCHED;
1778		if (td != curthread)
1779			ipi_cpu(cpu, IPI_AST);
1780		break;
1781	default:
1782		break;
1783	}
1784#endif
1785}
1786