sched_4bsd.c revision 260817
1323275Sasomers/*-
2323275Sasomers * Copyright (c) 1982, 1986, 1990, 1991, 1993
3323275Sasomers *	The Regents of the University of California.  All rights reserved.
4323275Sasomers * (c) UNIX System Laboratories, Inc.
5323275Sasomers * All or some portions of this file are derived from material licensed
6323275Sasomers * to the University of California by American Telephone and Telegraph
7323275Sasomers * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8323275Sasomers * the permission of UNIX System Laboratories, Inc.
9323275Sasomers *
10323275Sasomers * Redistribution and use in source and binary forms, with or without
11323275Sasomers * modification, are permitted provided that the following conditions
12323275Sasomers * are met:
13323275Sasomers * 1. Redistributions of source code must retain the above copyright
14323275Sasomers *    notice, this list of conditions and the following disclaimer.
15323275Sasomers * 2. Redistributions in binary form must reproduce the above copyright
16323275Sasomers *    notice, this list of conditions and the following disclaimer in the
17323275Sasomers *    documentation and/or other materials provided with the distribution.
18323275Sasomers * 4. Neither the name of the University nor the names of its contributors
19323275Sasomers *    may be used to endorse or promote products derived from this software
20323275Sasomers *    without specific prior written permission.
21323275Sasomers *
22323275Sasomers * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23323275Sasomers * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24323275Sasomers * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25323275Sasomers * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26323275Sasomers * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27323275Sasomers * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28323275Sasomers * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29323275Sasomers * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30323275Sasomers * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31323275Sasomers * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32323275Sasomers * SUCH DAMAGE.
33323275Sasomers */
34323275Sasomers
35323275Sasomers#include <sys/cdefs.h>
36323275Sasomers__FBSDID("$FreeBSD: stable/10/sys/kern/sched_4bsd.c 260817 2014-01-17 10:58:59Z avg $");
37323275Sasomers
38323275Sasomers#include "opt_hwpmc_hooks.h"
39323275Sasomers#include "opt_sched.h"
40323275Sasomers#include "opt_kdtrace.h"
41323275Sasomers
42323275Sasomers#include <sys/param.h>
43323275Sasomers#include <sys/systm.h>
44323275Sasomers#include <sys/cpuset.h>
45323275Sasomers#include <sys/kernel.h>
46323275Sasomers#include <sys/ktr.h>
47323275Sasomers#include <sys/lock.h>
48323275Sasomers#include <sys/kthread.h>
49323275Sasomers#include <sys/mutex.h>
50323275Sasomers#include <sys/proc.h>
51323275Sasomers#include <sys/resourcevar.h>
52323275Sasomers#include <sys/sched.h>
53323275Sasomers#include <sys/sdt.h>
54323275Sasomers#include <sys/smp.h>
55323275Sasomers#include <sys/sysctl.h>
56323275Sasomers#include <sys/sx.h>
57323275Sasomers#include <sys/turnstile.h>
58323275Sasomers#include <sys/umtx.h>
59323275Sasomers#include <machine/pcb.h>
60323275Sasomers#include <machine/smp.h>
61323275Sasomers
62323275Sasomers#ifdef HWPMC_HOOKS
63323275Sasomers#include <sys/pmckern.h>
64#endif
65
66#ifdef KDTRACE_HOOKS
67#include <sys/dtrace_bsd.h>
68int				dtrace_vtime_active;
69dtrace_vtime_switch_func_t	dtrace_vtime_switch_func;
70#endif
71
72/*
73 * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in
74 * the range 100-256 Hz (approximately).
75 */
76#define	ESTCPULIM(e) \
77    min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \
78    RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1)
79#ifdef SMP
80#define	INVERSE_ESTCPU_WEIGHT	(8 * smp_cpus)
81#else
82#define	INVERSE_ESTCPU_WEIGHT	8	/* 1 / (priorities per estcpu level). */
83#endif
84#define	NICE_WEIGHT		1	/* Priorities per nice level. */
85
86#define	TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
87
88/*
89 * The schedulable entity that runs a context.
90 * This is  an extension to the thread structure and is tailored to
91 * the requirements of this scheduler
92 */
93struct td_sched {
94	fixpt_t		ts_pctcpu;	/* (j) %cpu during p_swtime. */
95	int		ts_cpticks;	/* (j) Ticks of cpu time. */
96	int		ts_slptime;	/* (j) Seconds !RUNNING. */
97	int		ts_slice;	/* Remaining part of time slice. */
98	int		ts_flags;
99	struct runq	*ts_runq;	/* runq the thread is currently on */
100#ifdef KTR
101	char		ts_name[TS_NAME_LEN];
102#endif
103};
104
105/* flags kept in td_flags */
106#define TDF_DIDRUN	TDF_SCHED0	/* thread actually ran. */
107#define TDF_BOUND	TDF_SCHED1	/* Bound to one CPU. */
108#define	TDF_SLICEEND	TDF_SCHED2	/* Thread time slice is over. */
109
110/* flags kept in ts_flags */
111#define	TSF_AFFINITY	0x0001		/* Has a non-"full" CPU set. */
112
113#define SKE_RUNQ_PCPU(ts)						\
114    ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq)
115
116#define	THREAD_CAN_SCHED(td, cpu)	\
117    CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
118
119static struct td_sched td_sched0;
120struct mtx sched_lock;
121
122static int	realstathz = 127; /* stathz is sometimes 0 and run off of hz. */
123static int	sched_tdcnt;	/* Total runnable threads in the system. */
124static int	sched_slice = 12; /* Thread run time before rescheduling. */
125
126static void	setup_runqs(void);
127static void	schedcpu(void);
128static void	schedcpu_thread(void);
129static void	sched_priority(struct thread *td, u_char prio);
130static void	sched_setup(void *dummy);
131static void	maybe_resched(struct thread *td);
132static void	updatepri(struct thread *td);
133static void	resetpriority(struct thread *td);
134static void	resetpriority_thread(struct thread *td);
135#ifdef SMP
136static int	sched_pickcpu(struct thread *td);
137static int	forward_wakeup(int cpunum);
138static void	kick_other_cpu(int pri, int cpuid);
139#endif
140
141static struct kproc_desc sched_kp = {
142        "schedcpu",
143        schedcpu_thread,
144        NULL
145};
146SYSINIT(schedcpu, SI_SUB_LAST, SI_ORDER_FIRST, kproc_start,
147    &sched_kp);
148SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
149
150static void sched_initticks(void *dummy);
151SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
152    NULL);
153
154/*
155 * Global run queue.
156 */
157static struct runq runq;
158
159#ifdef SMP
160/*
161 * Per-CPU run queues
162 */
163static struct runq runq_pcpu[MAXCPU];
164long runq_length[MAXCPU];
165
166static cpuset_t idle_cpus_mask;
167#endif
168
169struct pcpuidlestat {
170	u_int idlecalls;
171	u_int oldidlecalls;
172};
173static DPCPU_DEFINE(struct pcpuidlestat, idlestat);
174
175static void
176setup_runqs(void)
177{
178#ifdef SMP
179	int i;
180
181	for (i = 0; i < MAXCPU; ++i)
182		runq_init(&runq_pcpu[i]);
183#endif
184
185	runq_init(&runq);
186}
187
188static int
189sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
190{
191	int error, new_val, period;
192
193	period = 1000000 / realstathz;
194	new_val = period * sched_slice;
195	error = sysctl_handle_int(oidp, &new_val, 0, req);
196	if (error != 0 || req->newptr == NULL)
197		return (error);
198	if (new_val <= 0)
199		return (EINVAL);
200	sched_slice = imax(1, (new_val + period / 2) / period);
201	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
202	    realstathz);
203	return (0);
204}
205
206SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler");
207
208SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0,
209    "Scheduler name");
210SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW,
211    NULL, 0, sysctl_kern_quantum, "I",
212    "Quantum for timeshare threads in microseconds");
213SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
214    "Quantum for timeshare threads in stathz ticks");
215#ifdef SMP
216/* Enable forwarding of wakeups to all other cpus */
217static SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL,
218    "Kernel SMP");
219
220static int runq_fuzz = 1;
221SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
222
223static int forward_wakeup_enabled = 1;
224SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW,
225	   &forward_wakeup_enabled, 0,
226	   "Forwarding of wakeup to idle CPUs");
227
228static int forward_wakeups_requested = 0;
229SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD,
230	   &forward_wakeups_requested, 0,
231	   "Requests for Forwarding of wakeup to idle CPUs");
232
233static int forward_wakeups_delivered = 0;
234SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD,
235	   &forward_wakeups_delivered, 0,
236	   "Completed Forwarding of wakeup to idle CPUs");
237
238static int forward_wakeup_use_mask = 1;
239SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW,
240	   &forward_wakeup_use_mask, 0,
241	   "Use the mask of idle cpus");
242
243static int forward_wakeup_use_loop = 0;
244SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW,
245	   &forward_wakeup_use_loop, 0,
246	   "Use a loop to find idle cpus");
247
248#endif
249#if 0
250static int sched_followon = 0;
251SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW,
252	   &sched_followon, 0,
253	   "allow threads to share a quantum");
254#endif
255
256SDT_PROVIDER_DEFINE(sched);
257
258SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
259    "struct proc *", "uint8_t");
260SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
261    "struct proc *", "void *");
262SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
263    "struct proc *", "void *", "int");
264SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
265    "struct proc *", "uint8_t", "struct thread *");
266SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
267SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
268    "struct proc *");
269SDT_PROBE_DEFINE(sched, , , on__cpu);
270SDT_PROBE_DEFINE(sched, , , remain__cpu);
271SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
272    "struct proc *");
273
274static __inline void
275sched_load_add(void)
276{
277
278	sched_tdcnt++;
279	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
280	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
281}
282
283static __inline void
284sched_load_rem(void)
285{
286
287	sched_tdcnt--;
288	KTR_COUNTER0(KTR_SCHED, "load", "global load", sched_tdcnt);
289	SDT_PROBE2(sched, , , load__change, NOCPU, sched_tdcnt);
290}
291/*
292 * Arrange to reschedule if necessary, taking the priorities and
293 * schedulers into account.
294 */
295static void
296maybe_resched(struct thread *td)
297{
298
299	THREAD_LOCK_ASSERT(td, MA_OWNED);
300	if (td->td_priority < curthread->td_priority)
301		curthread->td_flags |= TDF_NEEDRESCHED;
302}
303
304/*
305 * This function is called when a thread is about to be put on run queue
306 * because it has been made runnable or its priority has been adjusted.  It
307 * determines if the new thread should be immediately preempted to.  If so,
308 * it switches to it and eventually returns true.  If not, it returns false
309 * so that the caller may place the thread on an appropriate run queue.
310 */
311int
312maybe_preempt(struct thread *td)
313{
314#ifdef PREEMPTION
315	struct thread *ctd;
316	int cpri, pri;
317
318	/*
319	 * The new thread should not preempt the current thread if any of the
320	 * following conditions are true:
321	 *
322	 *  - The kernel is in the throes of crashing (panicstr).
323	 *  - The current thread has a higher (numerically lower) or
324	 *    equivalent priority.  Note that this prevents curthread from
325	 *    trying to preempt to itself.
326	 *  - It is too early in the boot for context switches (cold is set).
327	 *  - The current thread has an inhibitor set or is in the process of
328	 *    exiting.  In this case, the current thread is about to switch
329	 *    out anyways, so there's no point in preempting.  If we did,
330	 *    the current thread would not be properly resumed as well, so
331	 *    just avoid that whole landmine.
332	 *  - If the new thread's priority is not a realtime priority and
333	 *    the current thread's priority is not an idle priority and
334	 *    FULL_PREEMPTION is disabled.
335	 *
336	 * If all of these conditions are false, but the current thread is in
337	 * a nested critical section, then we have to defer the preemption
338	 * until we exit the critical section.  Otherwise, switch immediately
339	 * to the new thread.
340	 */
341	ctd = curthread;
342	THREAD_LOCK_ASSERT(td, MA_OWNED);
343	KASSERT((td->td_inhibitors == 0),
344			("maybe_preempt: trying to run inhibited thread"));
345	pri = td->td_priority;
346	cpri = ctd->td_priority;
347	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
348	    TD_IS_INHIBITED(ctd))
349		return (0);
350#ifndef FULL_PREEMPTION
351	if (pri > PRI_MAX_ITHD && cpri < PRI_MIN_IDLE)
352		return (0);
353#endif
354
355	if (ctd->td_critnest > 1) {
356		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
357		    ctd->td_critnest);
358		ctd->td_owepreempt = 1;
359		return (0);
360	}
361	/*
362	 * Thread is runnable but not yet put on system run queue.
363	 */
364	MPASS(ctd->td_lock == td->td_lock);
365	MPASS(TD_ON_RUNQ(td));
366	TD_SET_RUNNING(td);
367	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
368	    td->td_proc->p_pid, td->td_name);
369	mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, td);
370	/*
371	 * td's lock pointer may have changed.  We have to return with it
372	 * locked.
373	 */
374	spinlock_enter();
375	thread_unlock(ctd);
376	thread_lock(td);
377	spinlock_exit();
378	return (1);
379#else
380	return (0);
381#endif
382}
383
384/*
385 * Constants for digital decay and forget:
386 *	90% of (td_estcpu) usage in 5 * loadav time
387 *	95% of (ts_pctcpu) usage in 60 seconds (load insensitive)
388 *          Note that, as ps(1) mentions, this can let percentages
389 *          total over 100% (I've seen 137.9% for 3 processes).
390 *
391 * Note that schedclock() updates td_estcpu and p_cpticks asynchronously.
392 *
393 * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds.
394 * That is, the system wants to compute a value of decay such
395 * that the following for loop:
396 * 	for (i = 0; i < (5 * loadavg); i++)
397 * 		td_estcpu *= decay;
398 * will compute
399 * 	td_estcpu *= 0.1;
400 * for all values of loadavg:
401 *
402 * Mathematically this loop can be expressed by saying:
403 * 	decay ** (5 * loadavg) ~= .1
404 *
405 * The system computes decay as:
406 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
407 *
408 * We wish to prove that the system's computation of decay
409 * will always fulfill the equation:
410 * 	decay ** (5 * loadavg) ~= .1
411 *
412 * If we compute b as:
413 * 	b = 2 * loadavg
414 * then
415 * 	decay = b / (b + 1)
416 *
417 * We now need to prove two things:
418 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
419 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
420 *
421 * Facts:
422 *         For x close to zero, exp(x) =~ 1 + x, since
423 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
424 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
425 *         For x close to zero, ln(1+x) =~ x, since
426 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
427 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
428 *         ln(.1) =~ -2.30
429 *
430 * Proof of (1):
431 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
432 *	solving for factor,
433 *      ln(factor) =~ (-2.30/5*loadav), or
434 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
435 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
436 *
437 * Proof of (2):
438 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
439 *	solving for power,
440 *      power*ln(b/(b+1)) =~ -2.30, or
441 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
442 *
443 * Actual power values for the implemented algorithm are as follows:
444 *      loadav: 1       2       3       4
445 *      power:  5.68    10.32   14.94   19.55
446 */
447
448/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
449#define	loadfactor(loadav)	(2 * (loadav))
450#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
451
452/* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
453static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
454SYSCTL_UINT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
455
456/*
457 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
458 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
459 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
460 *
461 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
462 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
463 *
464 * If you don't want to bother with the faster/more-accurate formula, you
465 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
466 * (more general) method of calculating the %age of CPU used by a process.
467 */
468#define	CCPU_SHIFT	11
469
470/*
471 * Recompute process priorities, every hz ticks.
472 * MP-safe, called without the Giant mutex.
473 */
474/* ARGSUSED */
475static void
476schedcpu(void)
477{
478	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
479	struct thread *td;
480	struct proc *p;
481	struct td_sched *ts;
482	int awake;
483
484	sx_slock(&allproc_lock);
485	FOREACH_PROC_IN_SYSTEM(p) {
486		PROC_LOCK(p);
487		if (p->p_state == PRS_NEW) {
488			PROC_UNLOCK(p);
489			continue;
490		}
491		FOREACH_THREAD_IN_PROC(p, td) {
492			awake = 0;
493			thread_lock(td);
494			ts = td->td_sched;
495			/*
496			 * Increment sleep time (if sleeping).  We
497			 * ignore overflow, as above.
498			 */
499			/*
500			 * The td_sched slptimes are not touched in wakeup
501			 * because the thread may not HAVE everything in
502			 * memory? XXX I think this is out of date.
503			 */
504			if (TD_ON_RUNQ(td)) {
505				awake = 1;
506				td->td_flags &= ~TDF_DIDRUN;
507			} else if (TD_IS_RUNNING(td)) {
508				awake = 1;
509				/* Do not clear TDF_DIDRUN */
510			} else if (td->td_flags & TDF_DIDRUN) {
511				awake = 1;
512				td->td_flags &= ~TDF_DIDRUN;
513			}
514
515			/*
516			 * ts_pctcpu is only for ps and ttyinfo().
517			 */
518			ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT;
519			/*
520			 * If the td_sched has been idle the entire second,
521			 * stop recalculating its priority until
522			 * it wakes up.
523			 */
524			if (ts->ts_cpticks != 0) {
525#if	(FSHIFT >= CCPU_SHIFT)
526				ts->ts_pctcpu += (realstathz == 100)
527				    ? ((fixpt_t) ts->ts_cpticks) <<
528				    (FSHIFT - CCPU_SHIFT) :
529				    100 * (((fixpt_t) ts->ts_cpticks)
530				    << (FSHIFT - CCPU_SHIFT)) / realstathz;
531#else
532				ts->ts_pctcpu += ((FSCALE - ccpu) *
533				    (ts->ts_cpticks *
534				    FSCALE / realstathz)) >> FSHIFT;
535#endif
536				ts->ts_cpticks = 0;
537			}
538			/*
539			 * If there are ANY running threads in this process,
540			 * then don't count it as sleeping.
541			 * XXX: this is broken.
542			 */
543			if (awake) {
544				if (ts->ts_slptime > 1) {
545					/*
546					 * In an ideal world, this should not
547					 * happen, because whoever woke us
548					 * up from the long sleep should have
549					 * unwound the slptime and reset our
550					 * priority before we run at the stale
551					 * priority.  Should KASSERT at some
552					 * point when all the cases are fixed.
553					 */
554					updatepri(td);
555				}
556				ts->ts_slptime = 0;
557			} else
558				ts->ts_slptime++;
559			if (ts->ts_slptime > 1) {
560				thread_unlock(td);
561				continue;
562			}
563			td->td_estcpu = decay_cpu(loadfac, td->td_estcpu);
564		      	resetpriority(td);
565			resetpriority_thread(td);
566			thread_unlock(td);
567		}
568		PROC_UNLOCK(p);
569	}
570	sx_sunlock(&allproc_lock);
571}
572
573/*
574 * Main loop for a kthread that executes schedcpu once a second.
575 */
576static void
577schedcpu_thread(void)
578{
579
580	for (;;) {
581		schedcpu();
582		pause("-", hz);
583	}
584}
585
586/*
587 * Recalculate the priority of a process after it has slept for a while.
588 * For all load averages >= 1 and max td_estcpu of 255, sleeping for at
589 * least six times the loadfactor will decay td_estcpu to zero.
590 */
591static void
592updatepri(struct thread *td)
593{
594	struct td_sched *ts;
595	fixpt_t loadfac;
596	unsigned int newcpu;
597
598	ts = td->td_sched;
599	loadfac = loadfactor(averunnable.ldavg[0]);
600	if (ts->ts_slptime > 5 * loadfac)
601		td->td_estcpu = 0;
602	else {
603		newcpu = td->td_estcpu;
604		ts->ts_slptime--;	/* was incremented in schedcpu() */
605		while (newcpu && --ts->ts_slptime)
606			newcpu = decay_cpu(loadfac, newcpu);
607		td->td_estcpu = newcpu;
608	}
609}
610
611/*
612 * Compute the priority of a process when running in user mode.
613 * Arrange to reschedule if the resulting priority is better
614 * than that of the current process.
615 */
616static void
617resetpriority(struct thread *td)
618{
619	register unsigned int newpriority;
620
621	if (td->td_pri_class == PRI_TIMESHARE) {
622		newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT +
623		    NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN);
624		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
625		    PRI_MAX_TIMESHARE);
626		sched_user_prio(td, newpriority);
627	}
628}
629
630/*
631 * Update the thread's priority when the associated process's user
632 * priority changes.
633 */
634static void
635resetpriority_thread(struct thread *td)
636{
637
638	/* Only change threads with a time sharing user priority. */
639	if (td->td_priority < PRI_MIN_TIMESHARE ||
640	    td->td_priority > PRI_MAX_TIMESHARE)
641		return;
642
643	/* XXX the whole needresched thing is broken, but not silly. */
644	maybe_resched(td);
645
646	sched_prio(td, td->td_user_pri);
647}
648
649/* ARGSUSED */
650static void
651sched_setup(void *dummy)
652{
653
654	setup_runqs();
655
656	/* Account for thread0. */
657	sched_load_add();
658}
659
660/*
661 * This routine determines time constants after stathz and hz are setup.
662 */
663static void
664sched_initticks(void *dummy)
665{
666
667	realstathz = stathz ? stathz : hz;
668	sched_slice = realstathz / 10;	/* ~100ms */
669	hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
670	    realstathz);
671}
672
673/* External interfaces start here */
674
675/*
676 * Very early in the boot some setup of scheduler-specific
677 * parts of proc0 and of some scheduler resources needs to be done.
678 * Called from:
679 *  proc0_init()
680 */
681void
682schedinit(void)
683{
684	/*
685	 * Set up the scheduler specific parts of proc0.
686	 */
687	proc0.p_sched = NULL; /* XXX */
688	thread0.td_sched = &td_sched0;
689	thread0.td_lock = &sched_lock;
690	td_sched0.ts_slice = sched_slice;
691	mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
692}
693
694int
695sched_runnable(void)
696{
697#ifdef SMP
698	return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]);
699#else
700	return runq_check(&runq);
701#endif
702}
703
704int
705sched_rr_interval(void)
706{
707
708	/* Convert sched_slice from stathz to hz. */
709	return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
710}
711
712/*
713 * We adjust the priority of the current process.  The priority of
714 * a process gets worse as it accumulates CPU time.  The cpu usage
715 * estimator (td_estcpu) is increased here.  resetpriority() will
716 * compute a different priority each time td_estcpu increases by
717 * INVERSE_ESTCPU_WEIGHT
718 * (until MAXPRI is reached).  The cpu usage estimator ramps up
719 * quite quickly when the process is running (linearly), and decays
720 * away exponentially, at a rate which is proportionally slower when
721 * the system is busy.  The basic principle is that the system will
722 * 90% forget that the process used a lot of CPU time in 5 * loadav
723 * seconds.  This causes the system to favor processes which haven't
724 * run much recently, and to round-robin among other processes.
725 */
726void
727sched_clock(struct thread *td)
728{
729	struct pcpuidlestat *stat;
730	struct td_sched *ts;
731
732	THREAD_LOCK_ASSERT(td, MA_OWNED);
733	ts = td->td_sched;
734
735	ts->ts_cpticks++;
736	td->td_estcpu = ESTCPULIM(td->td_estcpu + 1);
737	if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
738		resetpriority(td);
739		resetpriority_thread(td);
740	}
741
742	/*
743	 * Force a context switch if the current thread has used up a full
744	 * time slice (default is 100ms).
745	 */
746	if (!TD_IS_IDLETHREAD(td) && --ts->ts_slice <= 0) {
747		ts->ts_slice = sched_slice;
748		td->td_flags |= TDF_NEEDRESCHED | TDF_SLICEEND;
749	}
750
751	stat = DPCPU_PTR(idlestat);
752	stat->oldidlecalls = stat->idlecalls;
753	stat->idlecalls = 0;
754}
755
756/*
757 * Charge child's scheduling CPU usage to parent.
758 */
759void
760sched_exit(struct proc *p, struct thread *td)
761{
762
763	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "proc exit",
764	    "prio:%d", td->td_priority);
765
766	PROC_LOCK_ASSERT(p, MA_OWNED);
767	sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
768}
769
770void
771sched_exit_thread(struct thread *td, struct thread *child)
772{
773
774	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "exit",
775	    "prio:%d", child->td_priority);
776	thread_lock(td);
777	td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu);
778	thread_unlock(td);
779	thread_lock(child);
780	if ((child->td_flags & TDF_NOLOAD) == 0)
781		sched_load_rem();
782	thread_unlock(child);
783}
784
785void
786sched_fork(struct thread *td, struct thread *childtd)
787{
788	sched_fork_thread(td, childtd);
789}
790
791void
792sched_fork_thread(struct thread *td, struct thread *childtd)
793{
794	struct td_sched *ts;
795
796	childtd->td_estcpu = td->td_estcpu;
797	childtd->td_lock = &sched_lock;
798	childtd->td_cpuset = cpuset_ref(td->td_cpuset);
799	childtd->td_priority = childtd->td_base_pri;
800	ts = childtd->td_sched;
801	bzero(ts, sizeof(*ts));
802	ts->ts_flags |= (td->td_sched->ts_flags & TSF_AFFINITY);
803	ts->ts_slice = 1;
804}
805
806void
807sched_nice(struct proc *p, int nice)
808{
809	struct thread *td;
810
811	PROC_LOCK_ASSERT(p, MA_OWNED);
812	p->p_nice = nice;
813	FOREACH_THREAD_IN_PROC(p, td) {
814		thread_lock(td);
815		resetpriority(td);
816		resetpriority_thread(td);
817		thread_unlock(td);
818	}
819}
820
821void
822sched_class(struct thread *td, int class)
823{
824	THREAD_LOCK_ASSERT(td, MA_OWNED);
825	td->td_pri_class = class;
826}
827
828/*
829 * Adjust the priority of a thread.
830 */
831static void
832sched_priority(struct thread *td, u_char prio)
833{
834
835
836	KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "priority change",
837	    "prio:%d", td->td_priority, "new prio:%d", prio, KTR_ATTR_LINKED,
838	    sched_tdname(curthread));
839	SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
840	if (td != curthread && prio > td->td_priority) {
841		KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
842		    "lend prio", "prio:%d", td->td_priority, "new prio:%d",
843		    prio, KTR_ATTR_LINKED, sched_tdname(td));
844		SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
845		    curthread);
846	}
847	THREAD_LOCK_ASSERT(td, MA_OWNED);
848	if (td->td_priority == prio)
849		return;
850	td->td_priority = prio;
851	if (TD_ON_RUNQ(td) && td->td_rqindex != (prio / RQ_PPQ)) {
852		sched_rem(td);
853		sched_add(td, SRQ_BORING);
854	}
855}
856
857/*
858 * Update a thread's priority when it is lent another thread's
859 * priority.
860 */
861void
862sched_lend_prio(struct thread *td, u_char prio)
863{
864
865	td->td_flags |= TDF_BORROWING;
866	sched_priority(td, prio);
867}
868
869/*
870 * Restore a thread's priority when priority propagation is
871 * over.  The prio argument is the minimum priority the thread
872 * needs to have to satisfy other possible priority lending
873 * requests.  If the thread's regulary priority is less
874 * important than prio the thread will keep a priority boost
875 * of prio.
876 */
877void
878sched_unlend_prio(struct thread *td, u_char prio)
879{
880	u_char base_pri;
881
882	if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
883	    td->td_base_pri <= PRI_MAX_TIMESHARE)
884		base_pri = td->td_user_pri;
885	else
886		base_pri = td->td_base_pri;
887	if (prio >= base_pri) {
888		td->td_flags &= ~TDF_BORROWING;
889		sched_prio(td, base_pri);
890	} else
891		sched_lend_prio(td, prio);
892}
893
894void
895sched_prio(struct thread *td, u_char prio)
896{
897	u_char oldprio;
898
899	/* First, update the base priority. */
900	td->td_base_pri = prio;
901
902	/*
903	 * If the thread is borrowing another thread's priority, don't ever
904	 * lower the priority.
905	 */
906	if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
907		return;
908
909	/* Change the real priority. */
910	oldprio = td->td_priority;
911	sched_priority(td, prio);
912
913	/*
914	 * If the thread is on a turnstile, then let the turnstile update
915	 * its state.
916	 */
917	if (TD_ON_LOCK(td) && oldprio != prio)
918		turnstile_adjust(td, oldprio);
919}
920
921void
922sched_user_prio(struct thread *td, u_char prio)
923{
924
925	THREAD_LOCK_ASSERT(td, MA_OWNED);
926	td->td_base_user_pri = prio;
927	if (td->td_lend_user_pri <= prio)
928		return;
929	td->td_user_pri = prio;
930}
931
932void
933sched_lend_user_prio(struct thread *td, u_char prio)
934{
935
936	THREAD_LOCK_ASSERT(td, MA_OWNED);
937	td->td_lend_user_pri = prio;
938	td->td_user_pri = min(prio, td->td_base_user_pri);
939	if (td->td_priority > td->td_user_pri)
940		sched_prio(td, td->td_user_pri);
941	else if (td->td_priority != td->td_user_pri)
942		td->td_flags |= TDF_NEEDRESCHED;
943}
944
945void
946sched_sleep(struct thread *td, int pri)
947{
948
949	THREAD_LOCK_ASSERT(td, MA_OWNED);
950	td->td_slptick = ticks;
951	td->td_sched->ts_slptime = 0;
952	if (pri != 0 && PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
953		sched_prio(td, pri);
954	if (TD_IS_SUSPENDED(td) || pri >= PSOCK)
955		td->td_flags |= TDF_CANSWAP;
956}
957
958void
959sched_switch(struct thread *td, struct thread *newtd, int flags)
960{
961	struct mtx *tmtx;
962	struct td_sched *ts;
963	struct proc *p;
964	int preempted;
965
966	tmtx = NULL;
967	ts = td->td_sched;
968	p = td->td_proc;
969
970	THREAD_LOCK_ASSERT(td, MA_OWNED);
971
972	/*
973	 * Switch to the sched lock to fix things up and pick
974	 * a new thread.
975	 * Block the td_lock in order to avoid breaking the critical path.
976	 */
977	if (td->td_lock != &sched_lock) {
978		mtx_lock_spin(&sched_lock);
979		tmtx = thread_lock_block(td);
980	}
981
982	if ((td->td_flags & TDF_NOLOAD) == 0)
983		sched_load_rem();
984
985	td->td_lastcpu = td->td_oncpu;
986	preempted = !(td->td_flags & TDF_SLICEEND);
987	td->td_flags &= ~(TDF_NEEDRESCHED | TDF_SLICEEND);
988	td->td_owepreempt = 0;
989	td->td_oncpu = NOCPU;
990
991	/*
992	 * At the last moment, if this thread is still marked RUNNING,
993	 * then put it back on the run queue as it has not been suspended
994	 * or stopped or any thing else similar.  We never put the idle
995	 * threads on the run queue, however.
996	 */
997	if (td->td_flags & TDF_IDLETD) {
998		TD_SET_CAN_RUN(td);
999#ifdef SMP
1000		CPU_CLR(PCPU_GET(cpuid), &idle_cpus_mask);
1001#endif
1002	} else {
1003		if (TD_IS_RUNNING(td)) {
1004			/* Put us back on the run queue. */
1005			sched_add(td, preempted ?
1006			    SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
1007			    SRQ_OURSELF|SRQ_YIELDING);
1008		}
1009	}
1010	if (newtd) {
1011		/*
1012		 * The thread we are about to run needs to be counted
1013		 * as if it had been added to the run queue and selected.
1014		 * It came from:
1015		 * * A preemption
1016		 * * An upcall
1017		 * * A followon
1018		 */
1019		KASSERT((newtd->td_inhibitors == 0),
1020			("trying to run inhibited thread"));
1021		newtd->td_flags |= TDF_DIDRUN;
1022        	TD_SET_RUNNING(newtd);
1023		if ((newtd->td_flags & TDF_NOLOAD) == 0)
1024			sched_load_add();
1025	} else {
1026		newtd = choosethread();
1027		MPASS(newtd->td_lock == &sched_lock);
1028	}
1029
1030	if (td != newtd) {
1031#ifdef	HWPMC_HOOKS
1032		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1033			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
1034#endif
1035
1036		SDT_PROBE2(sched, , , off__cpu, td, td->td_proc);
1037
1038                /* I feel sleepy */
1039		lock_profile_release_lock(&sched_lock.lock_object);
1040#ifdef KDTRACE_HOOKS
1041		/*
1042		 * If DTrace has set the active vtime enum to anything
1043		 * other than INACTIVE (0), then it should have set the
1044		 * function to call.
1045		 */
1046		if (dtrace_vtime_active)
1047			(*dtrace_vtime_switch_func)(newtd);
1048#endif
1049
1050		cpu_switch(td, newtd, tmtx != NULL ? tmtx : td->td_lock);
1051		lock_profile_obtain_lock_success(&sched_lock.lock_object,
1052		    0, 0, __FILE__, __LINE__);
1053		/*
1054		 * Where am I?  What year is it?
1055		 * We are in the same thread that went to sleep above,
1056		 * but any amount of time may have passed. All our context
1057		 * will still be available as will local variables.
1058		 * PCPU values however may have changed as we may have
1059		 * changed CPU so don't trust cached values of them.
1060		 * New threads will go to fork_exit() instead of here
1061		 * so if you change things here you may need to change
1062		 * things there too.
1063		 *
1064		 * If the thread above was exiting it will never wake
1065		 * up again here, so either it has saved everything it
1066		 * needed to, or the thread_wait() or wait() will
1067		 * need to reap it.
1068		 */
1069
1070		SDT_PROBE0(sched, , , on__cpu);
1071#ifdef	HWPMC_HOOKS
1072		if (PMC_PROC_IS_USING_PMCS(td->td_proc))
1073			PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
1074#endif
1075	} else
1076		SDT_PROBE0(sched, , , remain__cpu);
1077
1078#ifdef SMP
1079	if (td->td_flags & TDF_IDLETD)
1080		CPU_SET(PCPU_GET(cpuid), &idle_cpus_mask);
1081#endif
1082	sched_lock.mtx_lock = (uintptr_t)td;
1083	td->td_oncpu = PCPU_GET(cpuid);
1084	MPASS(td->td_lock == &sched_lock);
1085}
1086
1087void
1088sched_wakeup(struct thread *td)
1089{
1090	struct td_sched *ts;
1091
1092	THREAD_LOCK_ASSERT(td, MA_OWNED);
1093	ts = td->td_sched;
1094	td->td_flags &= ~TDF_CANSWAP;
1095	if (ts->ts_slptime > 1) {
1096		updatepri(td);
1097		resetpriority(td);
1098	}
1099	td->td_slptick = 0;
1100	ts->ts_slptime = 0;
1101	ts->ts_slice = sched_slice;
1102	sched_add(td, SRQ_BORING);
1103}
1104
1105#ifdef SMP
1106static int
1107forward_wakeup(int cpunum)
1108{
1109	struct pcpu *pc;
1110	cpuset_t dontuse, map, map2;
1111	u_int id, me;
1112	int iscpuset;
1113
1114	mtx_assert(&sched_lock, MA_OWNED);
1115
1116	CTR0(KTR_RUNQ, "forward_wakeup()");
1117
1118	if ((!forward_wakeup_enabled) ||
1119	     (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0))
1120		return (0);
1121	if (!smp_started || cold || panicstr)
1122		return (0);
1123
1124	forward_wakeups_requested++;
1125
1126	/*
1127	 * Check the idle mask we received against what we calculated
1128	 * before in the old version.
1129	 */
1130	me = PCPU_GET(cpuid);
1131
1132	/* Don't bother if we should be doing it ourself. */
1133	if (CPU_ISSET(me, &idle_cpus_mask) &&
1134	    (cpunum == NOCPU || me == cpunum))
1135		return (0);
1136
1137	CPU_SETOF(me, &dontuse);
1138	CPU_OR(&dontuse, &stopped_cpus);
1139	CPU_OR(&dontuse, &hlt_cpus_mask);
1140	CPU_ZERO(&map2);
1141	if (forward_wakeup_use_loop) {
1142		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1143			id = pc->pc_cpuid;
1144			if (!CPU_ISSET(id, &dontuse) &&
1145			    pc->pc_curthread == pc->pc_idlethread) {
1146				CPU_SET(id, &map2);
1147			}
1148		}
1149	}
1150
1151	if (forward_wakeup_use_mask) {
1152		map = idle_cpus_mask;
1153		CPU_NAND(&map, &dontuse);
1154
1155		/* If they are both on, compare and use loop if different. */
1156		if (forward_wakeup_use_loop) {
1157			if (CPU_CMP(&map, &map2)) {
1158				printf("map != map2, loop method preferred\n");
1159				map = map2;
1160			}
1161		}
1162	} else {
1163		map = map2;
1164	}
1165
1166	/* If we only allow a specific CPU, then mask off all the others. */
1167	if (cpunum != NOCPU) {
1168		KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum."));
1169		iscpuset = CPU_ISSET(cpunum, &map);
1170		if (iscpuset == 0)
1171			CPU_ZERO(&map);
1172		else
1173			CPU_SETOF(cpunum, &map);
1174	}
1175	if (!CPU_EMPTY(&map)) {
1176		forward_wakeups_delivered++;
1177		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
1178			id = pc->pc_cpuid;
1179			if (!CPU_ISSET(id, &map))
1180				continue;
1181			if (cpu_idle_wakeup(pc->pc_cpuid))
1182				CPU_CLR(id, &map);
1183		}
1184		if (!CPU_EMPTY(&map))
1185			ipi_selected(map, IPI_AST);
1186		return (1);
1187	}
1188	if (cpunum == NOCPU)
1189		printf("forward_wakeup: Idle processor not found\n");
1190	return (0);
1191}
1192
1193static void
1194kick_other_cpu(int pri, int cpuid)
1195{
1196	struct pcpu *pcpu;
1197	int cpri;
1198
1199	pcpu = pcpu_find(cpuid);
1200	if (CPU_ISSET(cpuid, &idle_cpus_mask)) {
1201		forward_wakeups_delivered++;
1202		if (!cpu_idle_wakeup(cpuid))
1203			ipi_cpu(cpuid, IPI_AST);
1204		return;
1205	}
1206
1207	cpri = pcpu->pc_curthread->td_priority;
1208	if (pri >= cpri)
1209		return;
1210
1211#if defined(IPI_PREEMPTION) && defined(PREEMPTION)
1212#if !defined(FULL_PREEMPTION)
1213	if (pri <= PRI_MAX_ITHD)
1214#endif /* ! FULL_PREEMPTION */
1215	{
1216		ipi_cpu(cpuid, IPI_PREEMPT);
1217		return;
1218	}
1219#endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */
1220
1221	pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
1222	ipi_cpu(cpuid, IPI_AST);
1223	return;
1224}
1225#endif /* SMP */
1226
1227#ifdef SMP
1228static int
1229sched_pickcpu(struct thread *td)
1230{
1231	int best, cpu;
1232
1233	mtx_assert(&sched_lock, MA_OWNED);
1234
1235	if (THREAD_CAN_SCHED(td, td->td_lastcpu))
1236		best = td->td_lastcpu;
1237	else
1238		best = NOCPU;
1239	CPU_FOREACH(cpu) {
1240		if (!THREAD_CAN_SCHED(td, cpu))
1241			continue;
1242
1243		if (best == NOCPU)
1244			best = cpu;
1245		else if (runq_length[cpu] < runq_length[best])
1246			best = cpu;
1247	}
1248	KASSERT(best != NOCPU, ("no valid CPUs"));
1249
1250	return (best);
1251}
1252#endif
1253
1254void
1255sched_add(struct thread *td, int flags)
1256#ifdef SMP
1257{
1258	cpuset_t tidlemsk;
1259	struct td_sched *ts;
1260	u_int cpu, cpuid;
1261	int forwarded = 0;
1262	int single_cpu = 0;
1263
1264	ts = td->td_sched;
1265	THREAD_LOCK_ASSERT(td, MA_OWNED);
1266	KASSERT((td->td_inhibitors == 0),
1267	    ("sched_add: trying to run inhibited thread"));
1268	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1269	    ("sched_add: bad thread state"));
1270	KASSERT(td->td_flags & TDF_INMEM,
1271	    ("sched_add: thread swapped out"));
1272
1273	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1274	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1275	    sched_tdname(curthread));
1276	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1277	    KTR_ATTR_LINKED, sched_tdname(td));
1278	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1279	    flags & SRQ_PREEMPTED);
1280
1281
1282	/*
1283	 * Now that the thread is moving to the run-queue, set the lock
1284	 * to the scheduler's lock.
1285	 */
1286	if (td->td_lock != &sched_lock) {
1287		mtx_lock_spin(&sched_lock);
1288		thread_lock_set(td, &sched_lock);
1289	}
1290	TD_SET_RUNQ(td);
1291
1292	/*
1293	 * If SMP is started and the thread is pinned or otherwise limited to
1294	 * a specific set of CPUs, queue the thread to a per-CPU run queue.
1295	 * Otherwise, queue the thread to the global run queue.
1296	 *
1297	 * If SMP has not yet been started we must use the global run queue
1298	 * as per-CPU state may not be initialized yet and we may crash if we
1299	 * try to access the per-CPU run queues.
1300	 */
1301	if (smp_started && (td->td_pinned != 0 || td->td_flags & TDF_BOUND ||
1302	    ts->ts_flags & TSF_AFFINITY)) {
1303		if (td->td_pinned != 0)
1304			cpu = td->td_lastcpu;
1305		else if (td->td_flags & TDF_BOUND) {
1306			/* Find CPU from bound runq. */
1307			KASSERT(SKE_RUNQ_PCPU(ts),
1308			    ("sched_add: bound td_sched not on cpu runq"));
1309			cpu = ts->ts_runq - &runq_pcpu[0];
1310		} else
1311			/* Find a valid CPU for our cpuset */
1312			cpu = sched_pickcpu(td);
1313		ts->ts_runq = &runq_pcpu[cpu];
1314		single_cpu = 1;
1315		CTR3(KTR_RUNQ,
1316		    "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td,
1317		    cpu);
1318	} else {
1319		CTR2(KTR_RUNQ,
1320		    "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts,
1321		    td);
1322		cpu = NOCPU;
1323		ts->ts_runq = &runq;
1324	}
1325
1326	cpuid = PCPU_GET(cpuid);
1327	if (single_cpu && cpu != cpuid) {
1328	        kick_other_cpu(td->td_priority, cpu);
1329	} else {
1330		if (!single_cpu) {
1331			tidlemsk = idle_cpus_mask;
1332			CPU_NAND(&tidlemsk, &hlt_cpus_mask);
1333			CPU_CLR(cpuid, &tidlemsk);
1334
1335			if (!CPU_ISSET(cpuid, &idle_cpus_mask) &&
1336			    ((flags & SRQ_INTR) == 0) &&
1337			    !CPU_EMPTY(&tidlemsk))
1338				forwarded = forward_wakeup(cpu);
1339		}
1340
1341		if (!forwarded) {
1342			if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td))
1343				return;
1344			else
1345				maybe_resched(td);
1346		}
1347	}
1348
1349	if ((td->td_flags & TDF_NOLOAD) == 0)
1350		sched_load_add();
1351	runq_add(ts->ts_runq, td, flags);
1352	if (cpu != NOCPU)
1353		runq_length[cpu]++;
1354}
1355#else /* SMP */
1356{
1357	struct td_sched *ts;
1358
1359	ts = td->td_sched;
1360	THREAD_LOCK_ASSERT(td, MA_OWNED);
1361	KASSERT((td->td_inhibitors == 0),
1362	    ("sched_add: trying to run inhibited thread"));
1363	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
1364	    ("sched_add: bad thread state"));
1365	KASSERT(td->td_flags & TDF_INMEM,
1366	    ("sched_add: thread swapped out"));
1367	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
1368	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1369	    sched_tdname(curthread));
1370	KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
1371	    KTR_ATTR_LINKED, sched_tdname(td));
1372	SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
1373	    flags & SRQ_PREEMPTED);
1374
1375	/*
1376	 * Now that the thread is moving to the run-queue, set the lock
1377	 * to the scheduler's lock.
1378	 */
1379	if (td->td_lock != &sched_lock) {
1380		mtx_lock_spin(&sched_lock);
1381		thread_lock_set(td, &sched_lock);
1382	}
1383	TD_SET_RUNQ(td);
1384	CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td);
1385	ts->ts_runq = &runq;
1386
1387	/*
1388	 * If we are yielding (on the way out anyhow) or the thread
1389	 * being saved is US, then don't try be smart about preemption
1390	 * or kicking off another CPU as it won't help and may hinder.
1391	 * In the YIEDLING case, we are about to run whoever is being
1392	 * put in the queue anyhow, and in the OURSELF case, we are
1393	 * puting ourself on the run queue which also only happens
1394	 * when we are about to yield.
1395	 */
1396	if ((flags & SRQ_YIELDING) == 0) {
1397		if (maybe_preempt(td))
1398			return;
1399	}
1400	if ((td->td_flags & TDF_NOLOAD) == 0)
1401		sched_load_add();
1402	runq_add(ts->ts_runq, td, flags);
1403	maybe_resched(td);
1404}
1405#endif /* SMP */
1406
1407void
1408sched_rem(struct thread *td)
1409{
1410	struct td_sched *ts;
1411
1412	ts = td->td_sched;
1413	KASSERT(td->td_flags & TDF_INMEM,
1414	    ("sched_rem: thread swapped out"));
1415	KASSERT(TD_ON_RUNQ(td),
1416	    ("sched_rem: thread not on run queue"));
1417	mtx_assert(&sched_lock, MA_OWNED);
1418	KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
1419	    "prio:%d", td->td_priority, KTR_ATTR_LINKED,
1420	    sched_tdname(curthread));
1421	SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
1422
1423	if ((td->td_flags & TDF_NOLOAD) == 0)
1424		sched_load_rem();
1425#ifdef SMP
1426	if (ts->ts_runq != &runq)
1427		runq_length[ts->ts_runq - runq_pcpu]--;
1428#endif
1429	runq_remove(ts->ts_runq, td);
1430	TD_SET_CAN_RUN(td);
1431}
1432
1433/*
1434 * Select threads to run.  Note that running threads still consume a
1435 * slot.
1436 */
1437struct thread *
1438sched_choose(void)
1439{
1440	struct thread *td;
1441	struct runq *rq;
1442
1443	mtx_assert(&sched_lock,  MA_OWNED);
1444#ifdef SMP
1445	struct thread *tdcpu;
1446
1447	rq = &runq;
1448	td = runq_choose_fuzz(&runq, runq_fuzz);
1449	tdcpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]);
1450
1451	if (td == NULL ||
1452	    (tdcpu != NULL &&
1453	     tdcpu->td_priority < td->td_priority)) {
1454		CTR2(KTR_RUNQ, "choosing td %p from pcpu runq %d", tdcpu,
1455		     PCPU_GET(cpuid));
1456		td = tdcpu;
1457		rq = &runq_pcpu[PCPU_GET(cpuid)];
1458	} else {
1459		CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", td);
1460	}
1461
1462#else
1463	rq = &runq;
1464	td = runq_choose(&runq);
1465#endif
1466
1467	if (td) {
1468#ifdef SMP
1469		if (td == tdcpu)
1470			runq_length[PCPU_GET(cpuid)]--;
1471#endif
1472		runq_remove(rq, td);
1473		td->td_flags |= TDF_DIDRUN;
1474
1475		KASSERT(td->td_flags & TDF_INMEM,
1476		    ("sched_choose: thread swapped out"));
1477		return (td);
1478	}
1479	return (PCPU_GET(idlethread));
1480}
1481
1482void
1483sched_preempt(struct thread *td)
1484{
1485
1486	SDT_PROBE2(sched, , , surrender, td, td->td_proc);
1487	thread_lock(td);
1488	if (td->td_critnest > 1)
1489		td->td_owepreempt = 1;
1490	else
1491		mi_switch(SW_INVOL | SW_PREEMPT | SWT_PREEMPT, NULL);
1492	thread_unlock(td);
1493}
1494
1495void
1496sched_userret(struct thread *td)
1497{
1498	/*
1499	 * XXX we cheat slightly on the locking here to avoid locking in
1500	 * the usual case.  Setting td_priority here is essentially an
1501	 * incomplete workaround for not setting it properly elsewhere.
1502	 * Now that some interrupt handlers are threads, not setting it
1503	 * properly elsewhere can clobber it in the window between setting
1504	 * it here and returning to user mode, so don't waste time setting
1505	 * it perfectly here.
1506	 */
1507	KASSERT((td->td_flags & TDF_BORROWING) == 0,
1508	    ("thread with borrowed priority returning to userland"));
1509	if (td->td_priority != td->td_user_pri) {
1510		thread_lock(td);
1511		td->td_priority = td->td_user_pri;
1512		td->td_base_pri = td->td_user_pri;
1513		thread_unlock(td);
1514	}
1515}
1516
1517void
1518sched_bind(struct thread *td, int cpu)
1519{
1520	struct td_sched *ts;
1521
1522	THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
1523	KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
1524
1525	ts = td->td_sched;
1526
1527	td->td_flags |= TDF_BOUND;
1528#ifdef SMP
1529	ts->ts_runq = &runq_pcpu[cpu];
1530	if (PCPU_GET(cpuid) == cpu)
1531		return;
1532
1533	mi_switch(SW_VOL, NULL);
1534#endif
1535}
1536
1537void
1538sched_unbind(struct thread* td)
1539{
1540	THREAD_LOCK_ASSERT(td, MA_OWNED);
1541	KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
1542	td->td_flags &= ~TDF_BOUND;
1543}
1544
1545int
1546sched_is_bound(struct thread *td)
1547{
1548	THREAD_LOCK_ASSERT(td, MA_OWNED);
1549	return (td->td_flags & TDF_BOUND);
1550}
1551
1552void
1553sched_relinquish(struct thread *td)
1554{
1555	thread_lock(td);
1556	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
1557	thread_unlock(td);
1558}
1559
1560int
1561sched_load(void)
1562{
1563	return (sched_tdcnt);
1564}
1565
1566int
1567sched_sizeof_proc(void)
1568{
1569	return (sizeof(struct proc));
1570}
1571
1572int
1573sched_sizeof_thread(void)
1574{
1575	return (sizeof(struct thread) + sizeof(struct td_sched));
1576}
1577
1578fixpt_t
1579sched_pctcpu(struct thread *td)
1580{
1581	struct td_sched *ts;
1582
1583	THREAD_LOCK_ASSERT(td, MA_OWNED);
1584	ts = td->td_sched;
1585	return (ts->ts_pctcpu);
1586}
1587
1588#ifdef	RACCT
1589/*
1590 * Calculates the contribution to the thread cpu usage for the latest
1591 * (unfinished) second.
1592 */
1593fixpt_t
1594sched_pctcpu_delta(struct thread *td)
1595{
1596	struct td_sched *ts;
1597	fixpt_t delta;
1598	int realstathz;
1599
1600	THREAD_LOCK_ASSERT(td, MA_OWNED);
1601	ts = td->td_sched;
1602	delta = 0;
1603	realstathz = stathz ? stathz : hz;
1604	if (ts->ts_cpticks != 0) {
1605#if	(FSHIFT >= CCPU_SHIFT)
1606		delta = (realstathz == 100)
1607		    ? ((fixpt_t) ts->ts_cpticks) <<
1608		    (FSHIFT - CCPU_SHIFT) :
1609		    100 * (((fixpt_t) ts->ts_cpticks)
1610		    << (FSHIFT - CCPU_SHIFT)) / realstathz;
1611#else
1612		delta = ((FSCALE - ccpu) *
1613		    (ts->ts_cpticks *
1614		    FSCALE / realstathz)) >> FSHIFT;
1615#endif
1616	}
1617
1618	return (delta);
1619}
1620#endif
1621
1622void
1623sched_tick(int cnt)
1624{
1625}
1626
1627/*
1628 * The actual idle process.
1629 */
1630void
1631sched_idletd(void *dummy)
1632{
1633	struct pcpuidlestat *stat;
1634
1635	THREAD_NO_SLEEPING();
1636	stat = DPCPU_PTR(idlestat);
1637	for (;;) {
1638		mtx_assert(&Giant, MA_NOTOWNED);
1639
1640		while (sched_runnable() == 0) {
1641			cpu_idle(stat->idlecalls + stat->oldidlecalls > 64);
1642			stat->idlecalls++;
1643		}
1644
1645		mtx_lock_spin(&sched_lock);
1646		mi_switch(SW_VOL | SWT_IDLE, NULL);
1647		mtx_unlock_spin(&sched_lock);
1648	}
1649}
1650
1651/*
1652 * A CPU is entering for the first time or a thread is exiting.
1653 */
1654void
1655sched_throw(struct thread *td)
1656{
1657	/*
1658	 * Correct spinlock nesting.  The idle thread context that we are
1659	 * borrowing was created so that it would start out with a single
1660	 * spin lock (sched_lock) held in fork_trampoline().  Since we've
1661	 * explicitly acquired locks in this function, the nesting count
1662	 * is now 2 rather than 1.  Since we are nested, calling
1663	 * spinlock_exit() will simply adjust the counts without allowing
1664	 * spin lock using code to interrupt us.
1665	 */
1666	if (td == NULL) {
1667		mtx_lock_spin(&sched_lock);
1668		spinlock_exit();
1669		PCPU_SET(switchtime, cpu_ticks());
1670		PCPU_SET(switchticks, ticks);
1671	} else {
1672		lock_profile_release_lock(&sched_lock.lock_object);
1673		MPASS(td->td_lock == &sched_lock);
1674	}
1675	mtx_assert(&sched_lock, MA_OWNED);
1676	KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count"));
1677	cpu_throw(td, choosethread());	/* doesn't return */
1678}
1679
1680void
1681sched_fork_exit(struct thread *td)
1682{
1683
1684	/*
1685	 * Finish setting up thread glue so that it begins execution in a
1686	 * non-nested critical section with sched_lock held but not recursed.
1687	 */
1688	td->td_oncpu = PCPU_GET(cpuid);
1689	sched_lock.mtx_lock = (uintptr_t)td;
1690	lock_profile_obtain_lock_success(&sched_lock.lock_object,
1691	    0, 0, __FILE__, __LINE__);
1692	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
1693}
1694
1695char *
1696sched_tdname(struct thread *td)
1697{
1698#ifdef KTR
1699	struct td_sched *ts;
1700
1701	ts = td->td_sched;
1702	if (ts->ts_name[0] == '\0')
1703		snprintf(ts->ts_name, sizeof(ts->ts_name),
1704		    "%s tid %d", td->td_name, td->td_tid);
1705	return (ts->ts_name);
1706#else
1707	return (td->td_name);
1708#endif
1709}
1710
1711#ifdef KTR
1712void
1713sched_clear_tdname(struct thread *td)
1714{
1715	struct td_sched *ts;
1716
1717	ts = td->td_sched;
1718	ts->ts_name[0] = '\0';
1719}
1720#endif
1721
1722void
1723sched_affinity(struct thread *td)
1724{
1725#ifdef SMP
1726	struct td_sched *ts;
1727	int cpu;
1728
1729	THREAD_LOCK_ASSERT(td, MA_OWNED);
1730
1731	/*
1732	 * Set the TSF_AFFINITY flag if there is at least one CPU this
1733	 * thread can't run on.
1734	 */
1735	ts = td->td_sched;
1736	ts->ts_flags &= ~TSF_AFFINITY;
1737	CPU_FOREACH(cpu) {
1738		if (!THREAD_CAN_SCHED(td, cpu)) {
1739			ts->ts_flags |= TSF_AFFINITY;
1740			break;
1741		}
1742	}
1743
1744	/*
1745	 * If this thread can run on all CPUs, nothing else to do.
1746	 */
1747	if (!(ts->ts_flags & TSF_AFFINITY))
1748		return;
1749
1750	/* Pinned threads and bound threads should be left alone. */
1751	if (td->td_pinned != 0 || td->td_flags & TDF_BOUND)
1752		return;
1753
1754	switch (td->td_state) {
1755	case TDS_RUNQ:
1756		/*
1757		 * If we are on a per-CPU runqueue that is in the set,
1758		 * then nothing needs to be done.
1759		 */
1760		if (ts->ts_runq != &runq &&
1761		    THREAD_CAN_SCHED(td, ts->ts_runq - runq_pcpu))
1762			return;
1763
1764		/* Put this thread on a valid per-CPU runqueue. */
1765		sched_rem(td);
1766		sched_add(td, SRQ_BORING);
1767		break;
1768	case TDS_RUNNING:
1769		/*
1770		 * See if our current CPU is in the set.  If not, force a
1771		 * context switch.
1772		 */
1773		if (THREAD_CAN_SCHED(td, td->td_oncpu))
1774			return;
1775
1776		td->td_flags |= TDF_NEEDRESCHED;
1777		if (td != curthread)
1778			ipi_cpu(cpu, IPI_AST);
1779		break;
1780	default:
1781		break;
1782	}
1783#endif
1784}
1785