kern_time.c revision 293473
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/kern/kern_time.c 293473 2016-01-09 14:08:10Z dchagin $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/limits.h>
38#include <sys/clock.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/sysproto.h>
42#include <sys/eventhandler.h>
43#include <sys/resourcevar.h>
44#include <sys/signalvar.h>
45#include <sys/kernel.h>
46#include <sys/sleepqueue.h>
47#include <sys/syscallsubr.h>
48#include <sys/sysctl.h>
49#include <sys/sysent.h>
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/posix4.h>
53#include <sys/time.h>
54#include <sys/timers.h>
55#include <sys/timetc.h>
56#include <sys/vnode.h>
57
58#include <vm/vm.h>
59#include <vm/vm_extern.h>
60
61#define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
62#define CPUCLOCK_BIT		0x80000000
63#define CPUCLOCK_PROCESS_BIT	0x40000000
64#define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
65#define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
66#define MAKE_PROCESS_CPUCLOCK(pid)	\
67	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
68
69static struct kclock	posix_clocks[MAX_CLOCKS];
70static uma_zone_t	itimer_zone = NULL;
71
72/*
73 * Time of day and interval timer support.
74 *
75 * These routines provide the kernel entry points to get and set
76 * the time-of-day and per-process interval timers.  Subroutines
77 * here provide support for adding and subtracting timeval structures
78 * and decrementing interval timers, optionally reloading the interval
79 * timers when they expire.
80 */
81
82static int	settime(struct thread *, struct timeval *);
83static void	timevalfix(struct timeval *);
84
85static void	itimer_start(void);
86static int	itimer_init(void *, int, int);
87static void	itimer_fini(void *, int);
88static void	itimer_enter(struct itimer *);
89static void	itimer_leave(struct itimer *);
90static struct itimer *itimer_find(struct proc *, int);
91static void	itimers_alloc(struct proc *);
92static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
93static void	itimers_event_hook_exit(void *arg, struct proc *p);
94static int	realtimer_create(struct itimer *);
95static int	realtimer_gettime(struct itimer *, struct itimerspec *);
96static int	realtimer_settime(struct itimer *, int,
97			struct itimerspec *, struct itimerspec *);
98static int	realtimer_delete(struct itimer *);
99static void	realtimer_clocktime(clockid_t, struct timespec *);
100static void	realtimer_expire(void *);
101
102int		register_posix_clock(int, struct kclock *);
103void		itimer_fire(struct itimer *it);
104int		itimespecfix(struct timespec *ts);
105
106#define CLOCK_CALL(clock, call, arglist)		\
107	((*posix_clocks[clock].call) arglist)
108
109SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
110
111
112static int
113settime(struct thread *td, struct timeval *tv)
114{
115	struct timeval delta, tv1, tv2;
116	static struct timeval maxtime, laststep;
117	struct timespec ts;
118	int s;
119
120	s = splclock();
121	microtime(&tv1);
122	delta = *tv;
123	timevalsub(&delta, &tv1);
124
125	/*
126	 * If the system is secure, we do not allow the time to be
127	 * set to a value earlier than 1 second less than the highest
128	 * time we have yet seen. The worst a miscreant can do in
129	 * this circumstance is "freeze" time. He couldn't go
130	 * back to the past.
131	 *
132	 * We similarly do not allow the clock to be stepped more
133	 * than one second, nor more than once per second. This allows
134	 * a miscreant to make the clock march double-time, but no worse.
135	 */
136	if (securelevel_gt(td->td_ucred, 1) != 0) {
137		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
138			/*
139			 * Update maxtime to latest time we've seen.
140			 */
141			if (tv1.tv_sec > maxtime.tv_sec)
142				maxtime = tv1;
143			tv2 = *tv;
144			timevalsub(&tv2, &maxtime);
145			if (tv2.tv_sec < -1) {
146				tv->tv_sec = maxtime.tv_sec - 1;
147				printf("Time adjustment clamped to -1 second\n");
148			}
149		} else {
150			if (tv1.tv_sec == laststep.tv_sec) {
151				splx(s);
152				return (EPERM);
153			}
154			if (delta.tv_sec > 1) {
155				tv->tv_sec = tv1.tv_sec + 1;
156				printf("Time adjustment clamped to +1 second\n");
157			}
158			laststep = *tv;
159		}
160	}
161
162	ts.tv_sec = tv->tv_sec;
163	ts.tv_nsec = tv->tv_usec * 1000;
164	mtx_lock(&Giant);
165	tc_setclock(&ts);
166	resettodr();
167	mtx_unlock(&Giant);
168	return (0);
169}
170
171#ifndef _SYS_SYSPROTO_H_
172struct clock_getcpuclockid2_args {
173	id_t id;
174	int which,
175	clockid_t *clock_id;
176};
177#endif
178/* ARGSUSED */
179int
180sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
181{
182	clockid_t clk_id;
183	int error;
184
185	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
186	if (error == 0)
187		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
188	return (error);
189}
190
191int
192kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
193    clockid_t *clk_id)
194{
195	struct proc *p;
196	pid_t pid;
197	lwpid_t tid;
198	int error;
199
200	switch (which) {
201	case CPUCLOCK_WHICH_PID:
202		if (id != 0) {
203			error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
204			if (error != 0)
205				return (error);
206			PROC_UNLOCK(p);
207			pid = id;
208		} else {
209			pid = td->td_proc->p_pid;
210		}
211		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
212		return (0);
213	case CPUCLOCK_WHICH_TID:
214		tid = id == 0 ? td->td_tid : id;
215		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
216		return (0);
217	default:
218		return (EINVAL);
219	}
220}
221
222#ifndef _SYS_SYSPROTO_H_
223struct clock_gettime_args {
224	clockid_t clock_id;
225	struct	timespec *tp;
226};
227#endif
228/* ARGSUSED */
229int
230sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
231{
232	struct timespec ats;
233	int error;
234
235	error = kern_clock_gettime(td, uap->clock_id, &ats);
236	if (error == 0)
237		error = copyout(&ats, uap->tp, sizeof(ats));
238
239	return (error);
240}
241
242static inline void
243cputick2timespec(uint64_t runtime, struct timespec *ats)
244{
245	runtime = cputick2usec(runtime);
246	ats->tv_sec = runtime / 1000000;
247	ats->tv_nsec = runtime % 1000000 * 1000;
248}
249
250static void
251get_thread_cputime(struct thread *targettd, struct timespec *ats)
252{
253	uint64_t runtime, curtime, switchtime;
254
255	if (targettd == NULL) { /* current thread */
256		critical_enter();
257		switchtime = PCPU_GET(switchtime);
258		curtime = cpu_ticks();
259		runtime = curthread->td_runtime;
260		critical_exit();
261		runtime += curtime - switchtime;
262	} else {
263		thread_lock(targettd);
264		runtime = targettd->td_runtime;
265		thread_unlock(targettd);
266	}
267	cputick2timespec(runtime, ats);
268}
269
270static void
271get_process_cputime(struct proc *targetp, struct timespec *ats)
272{
273	uint64_t runtime;
274	struct rusage ru;
275
276	PROC_STATLOCK(targetp);
277	rufetch(targetp, &ru);
278	runtime = targetp->p_rux.rux_runtime;
279	PROC_STATUNLOCK(targetp);
280	cputick2timespec(runtime, ats);
281}
282
283static int
284get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
285{
286	struct proc *p, *p2;
287	struct thread *td2;
288	lwpid_t tid;
289	pid_t pid;
290	int error;
291
292	p = td->td_proc;
293	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
294		tid = clock_id & CPUCLOCK_ID_MASK;
295		td2 = tdfind(tid, p->p_pid);
296		if (td2 == NULL)
297			return (EINVAL);
298		get_thread_cputime(td2, ats);
299		PROC_UNLOCK(td2->td_proc);
300	} else {
301		pid = clock_id & CPUCLOCK_ID_MASK;
302		error = pget(pid, PGET_CANSEE, &p2);
303		if (error != 0)
304			return (EINVAL);
305		get_process_cputime(p2, ats);
306		PROC_UNLOCK(p2);
307	}
308	return (0);
309}
310
311int
312kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
313{
314	struct timeval sys, user;
315	struct proc *p;
316
317	p = td->td_proc;
318	switch (clock_id) {
319	case CLOCK_REALTIME:		/* Default to precise. */
320	case CLOCK_REALTIME_PRECISE:
321		nanotime(ats);
322		break;
323	case CLOCK_REALTIME_FAST:
324		getnanotime(ats);
325		break;
326	case CLOCK_VIRTUAL:
327		PROC_LOCK(p);
328		PROC_STATLOCK(p);
329		calcru(p, &user, &sys);
330		PROC_STATUNLOCK(p);
331		PROC_UNLOCK(p);
332		TIMEVAL_TO_TIMESPEC(&user, ats);
333		break;
334	case CLOCK_PROF:
335		PROC_LOCK(p);
336		PROC_STATLOCK(p);
337		calcru(p, &user, &sys);
338		PROC_STATUNLOCK(p);
339		PROC_UNLOCK(p);
340		timevaladd(&user, &sys);
341		TIMEVAL_TO_TIMESPEC(&user, ats);
342		break;
343	case CLOCK_MONOTONIC:		/* Default to precise. */
344	case CLOCK_MONOTONIC_PRECISE:
345	case CLOCK_UPTIME:
346	case CLOCK_UPTIME_PRECISE:
347		nanouptime(ats);
348		break;
349	case CLOCK_UPTIME_FAST:
350	case CLOCK_MONOTONIC_FAST:
351		getnanouptime(ats);
352		break;
353	case CLOCK_SECOND:
354		ats->tv_sec = time_second;
355		ats->tv_nsec = 0;
356		break;
357	case CLOCK_THREAD_CPUTIME_ID:
358		get_thread_cputime(NULL, ats);
359		break;
360	case CLOCK_PROCESS_CPUTIME_ID:
361		PROC_LOCK(p);
362		get_process_cputime(p, ats);
363		PROC_UNLOCK(p);
364		break;
365	default:
366		if ((int)clock_id >= 0)
367			return (EINVAL);
368		return (get_cputime(td, clock_id, ats));
369	}
370	return (0);
371}
372
373#ifndef _SYS_SYSPROTO_H_
374struct clock_settime_args {
375	clockid_t clock_id;
376	const struct	timespec *tp;
377};
378#endif
379/* ARGSUSED */
380int
381sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
382{
383	struct timespec ats;
384	int error;
385
386	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
387		return (error);
388	return (kern_clock_settime(td, uap->clock_id, &ats));
389}
390
391int
392kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
393{
394	struct timeval atv;
395	int error;
396
397	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
398		return (error);
399	if (clock_id != CLOCK_REALTIME)
400		return (EINVAL);
401	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000)
402		return (EINVAL);
403	/* XXX Don't convert nsec->usec and back */
404	TIMESPEC_TO_TIMEVAL(&atv, ats);
405	error = settime(td, &atv);
406	return (error);
407}
408
409#ifndef _SYS_SYSPROTO_H_
410struct clock_getres_args {
411	clockid_t clock_id;
412	struct	timespec *tp;
413};
414#endif
415int
416sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
417{
418	struct timespec ts;
419	int error;
420
421	if (uap->tp == NULL)
422		return (0);
423
424	error = kern_clock_getres(td, uap->clock_id, &ts);
425	if (error == 0)
426		error = copyout(&ts, uap->tp, sizeof(ts));
427	return (error);
428}
429
430int
431kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
432{
433
434	ts->tv_sec = 0;
435	switch (clock_id) {
436	case CLOCK_REALTIME:
437	case CLOCK_REALTIME_FAST:
438	case CLOCK_REALTIME_PRECISE:
439	case CLOCK_MONOTONIC:
440	case CLOCK_MONOTONIC_FAST:
441	case CLOCK_MONOTONIC_PRECISE:
442	case CLOCK_UPTIME:
443	case CLOCK_UPTIME_FAST:
444	case CLOCK_UPTIME_PRECISE:
445		/*
446		 * Round up the result of the division cheaply by adding 1.
447		 * Rounding up is especially important if rounding down
448		 * would give 0.  Perfect rounding is unimportant.
449		 */
450		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
451		break;
452	case CLOCK_VIRTUAL:
453	case CLOCK_PROF:
454		/* Accurately round up here because we can do so cheaply. */
455		ts->tv_nsec = (1000000000 + hz - 1) / hz;
456		break;
457	case CLOCK_SECOND:
458		ts->tv_sec = 1;
459		ts->tv_nsec = 0;
460		break;
461	case CLOCK_THREAD_CPUTIME_ID:
462	case CLOCK_PROCESS_CPUTIME_ID:
463	cputime:
464		/* sync with cputick2usec */
465		ts->tv_nsec = 1000000 / cpu_tickrate();
466		if (ts->tv_nsec == 0)
467			ts->tv_nsec = 1000;
468		break;
469	default:
470		if ((int)clock_id < 0)
471			goto cputime;
472		return (EINVAL);
473	}
474	return (0);
475}
476
477static uint8_t nanowait[MAXCPU];
478
479int
480kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
481{
482	struct timespec ts;
483	sbintime_t sbt, sbtt, prec, tmp;
484	time_t over;
485	int error;
486
487	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
488		return (EINVAL);
489	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
490		return (0);
491	ts = *rqt;
492	if (ts.tv_sec > INT32_MAX / 2) {
493		over = ts.tv_sec - INT32_MAX / 2;
494		ts.tv_sec -= over;
495	} else
496		over = 0;
497	tmp = tstosbt(ts);
498	prec = tmp;
499	prec >>= tc_precexp;
500	if (TIMESEL(&sbt, tmp))
501		sbt += tc_tick_sbt;
502	sbt += tmp;
503	error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
504	    sbt, prec, C_ABSOLUTE);
505	if (error != EWOULDBLOCK) {
506		if (error == ERESTART)
507			error = EINTR;
508		TIMESEL(&sbtt, tmp);
509		if (rmt != NULL) {
510			ts = sbttots(sbt - sbtt);
511			ts.tv_sec += over;
512			if (ts.tv_sec < 0)
513				timespecclear(&ts);
514			*rmt = ts;
515		}
516		if (sbtt >= sbt)
517			return (0);
518		return (error);
519	}
520	return (0);
521}
522
523#ifndef _SYS_SYSPROTO_H_
524struct nanosleep_args {
525	struct	timespec *rqtp;
526	struct	timespec *rmtp;
527};
528#endif
529/* ARGSUSED */
530int
531sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
532{
533	struct timespec rmt, rqt;
534	int error;
535
536	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
537	if (error)
538		return (error);
539
540	if (uap->rmtp &&
541	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
542			return (EFAULT);
543	error = kern_nanosleep(td, &rqt, &rmt);
544	if (error && uap->rmtp) {
545		int error2;
546
547		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
548		if (error2)
549			error = error2;
550	}
551	return (error);
552}
553
554#ifndef _SYS_SYSPROTO_H_
555struct gettimeofday_args {
556	struct	timeval *tp;
557	struct	timezone *tzp;
558};
559#endif
560/* ARGSUSED */
561int
562sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
563{
564	struct timeval atv;
565	struct timezone rtz;
566	int error = 0;
567
568	if (uap->tp) {
569		microtime(&atv);
570		error = copyout(&atv, uap->tp, sizeof (atv));
571	}
572	if (error == 0 && uap->tzp != NULL) {
573		rtz.tz_minuteswest = tz_minuteswest;
574		rtz.tz_dsttime = tz_dsttime;
575		error = copyout(&rtz, uap->tzp, sizeof (rtz));
576	}
577	return (error);
578}
579
580#ifndef _SYS_SYSPROTO_H_
581struct settimeofday_args {
582	struct	timeval *tv;
583	struct	timezone *tzp;
584};
585#endif
586/* ARGSUSED */
587int
588sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
589{
590	struct timeval atv, *tvp;
591	struct timezone atz, *tzp;
592	int error;
593
594	if (uap->tv) {
595		error = copyin(uap->tv, &atv, sizeof(atv));
596		if (error)
597			return (error);
598		tvp = &atv;
599	} else
600		tvp = NULL;
601	if (uap->tzp) {
602		error = copyin(uap->tzp, &atz, sizeof(atz));
603		if (error)
604			return (error);
605		tzp = &atz;
606	} else
607		tzp = NULL;
608	return (kern_settimeofday(td, tvp, tzp));
609}
610
611int
612kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
613{
614	int error;
615
616	error = priv_check(td, PRIV_SETTIMEOFDAY);
617	if (error)
618		return (error);
619	/* Verify all parameters before changing time. */
620	if (tv) {
621		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
622			return (EINVAL);
623		error = settime(td, tv);
624	}
625	if (tzp && error == 0) {
626		tz_minuteswest = tzp->tz_minuteswest;
627		tz_dsttime = tzp->tz_dsttime;
628	}
629	return (error);
630}
631
632/*
633 * Get value of an interval timer.  The process virtual and profiling virtual
634 * time timers are kept in the p_stats area, since they can be swapped out.
635 * These are kept internally in the way they are specified externally: in
636 * time until they expire.
637 *
638 * The real time interval timer is kept in the process table slot for the
639 * process, and its value (it_value) is kept as an absolute time rather than
640 * as a delta, so that it is easy to keep periodic real-time signals from
641 * drifting.
642 *
643 * Virtual time timers are processed in the hardclock() routine of
644 * kern_clock.c.  The real time timer is processed by a timeout routine,
645 * called from the softclock() routine.  Since a callout may be delayed in
646 * real time due to interrupt processing in the system, it is possible for
647 * the real time timeout routine (realitexpire, given below), to be delayed
648 * in real time past when it is supposed to occur.  It does not suffice,
649 * therefore, to reload the real timer .it_value from the real time timers
650 * .it_interval.  Rather, we compute the next time in absolute time the timer
651 * should go off.
652 */
653#ifndef _SYS_SYSPROTO_H_
654struct getitimer_args {
655	u_int	which;
656	struct	itimerval *itv;
657};
658#endif
659int
660sys_getitimer(struct thread *td, struct getitimer_args *uap)
661{
662	struct itimerval aitv;
663	int error;
664
665	error = kern_getitimer(td, uap->which, &aitv);
666	if (error != 0)
667		return (error);
668	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
669}
670
671int
672kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
673{
674	struct proc *p = td->td_proc;
675	struct timeval ctv;
676
677	if (which > ITIMER_PROF)
678		return (EINVAL);
679
680	if (which == ITIMER_REAL) {
681		/*
682		 * Convert from absolute to relative time in .it_value
683		 * part of real time timer.  If time for real time timer
684		 * has passed return 0, else return difference between
685		 * current time and time for the timer to go off.
686		 */
687		PROC_LOCK(p);
688		*aitv = p->p_realtimer;
689		PROC_UNLOCK(p);
690		if (timevalisset(&aitv->it_value)) {
691			microuptime(&ctv);
692			if (timevalcmp(&aitv->it_value, &ctv, <))
693				timevalclear(&aitv->it_value);
694			else
695				timevalsub(&aitv->it_value, &ctv);
696		}
697	} else {
698		PROC_ITIMLOCK(p);
699		*aitv = p->p_stats->p_timer[which];
700		PROC_ITIMUNLOCK(p);
701	}
702	return (0);
703}
704
705#ifndef _SYS_SYSPROTO_H_
706struct setitimer_args {
707	u_int	which;
708	struct	itimerval *itv, *oitv;
709};
710#endif
711int
712sys_setitimer(struct thread *td, struct setitimer_args *uap)
713{
714	struct itimerval aitv, oitv;
715	int error;
716
717	if (uap->itv == NULL) {
718		uap->itv = uap->oitv;
719		return (sys_getitimer(td, (struct getitimer_args *)uap));
720	}
721
722	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
723		return (error);
724	error = kern_setitimer(td, uap->which, &aitv, &oitv);
725	if (error != 0 || uap->oitv == NULL)
726		return (error);
727	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
728}
729
730int
731kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
732    struct itimerval *oitv)
733{
734	struct proc *p = td->td_proc;
735	struct timeval ctv;
736	sbintime_t sbt, pr;
737
738	if (aitv == NULL)
739		return (kern_getitimer(td, which, oitv));
740
741	if (which > ITIMER_PROF)
742		return (EINVAL);
743	if (itimerfix(&aitv->it_value) ||
744	    aitv->it_value.tv_sec > INT32_MAX / 2)
745		return (EINVAL);
746	if (!timevalisset(&aitv->it_value))
747		timevalclear(&aitv->it_interval);
748	else if (itimerfix(&aitv->it_interval) ||
749	    aitv->it_interval.tv_sec > INT32_MAX / 2)
750		return (EINVAL);
751
752	if (which == ITIMER_REAL) {
753		PROC_LOCK(p);
754		if (timevalisset(&p->p_realtimer.it_value))
755			callout_stop(&p->p_itcallout);
756		microuptime(&ctv);
757		if (timevalisset(&aitv->it_value)) {
758			pr = tvtosbt(aitv->it_value) >> tc_precexp;
759			timevaladd(&aitv->it_value, &ctv);
760			sbt = tvtosbt(aitv->it_value);
761			callout_reset_sbt(&p->p_itcallout, sbt, pr,
762			    realitexpire, p, C_ABSOLUTE);
763		}
764		*oitv = p->p_realtimer;
765		p->p_realtimer = *aitv;
766		PROC_UNLOCK(p);
767		if (timevalisset(&oitv->it_value)) {
768			if (timevalcmp(&oitv->it_value, &ctv, <))
769				timevalclear(&oitv->it_value);
770			else
771				timevalsub(&oitv->it_value, &ctv);
772		}
773	} else {
774		if (aitv->it_interval.tv_sec == 0 &&
775		    aitv->it_interval.tv_usec != 0 &&
776		    aitv->it_interval.tv_usec < tick)
777			aitv->it_interval.tv_usec = tick;
778		if (aitv->it_value.tv_sec == 0 &&
779		    aitv->it_value.tv_usec != 0 &&
780		    aitv->it_value.tv_usec < tick)
781			aitv->it_value.tv_usec = tick;
782		PROC_ITIMLOCK(p);
783		*oitv = p->p_stats->p_timer[which];
784		p->p_stats->p_timer[which] = *aitv;
785		PROC_ITIMUNLOCK(p);
786	}
787	return (0);
788}
789
790/*
791 * Real interval timer expired:
792 * send process whose timer expired an alarm signal.
793 * If time is not set up to reload, then just return.
794 * Else compute next time timer should go off which is > current time.
795 * This is where delay in processing this timeout causes multiple
796 * SIGALRM calls to be compressed into one.
797 * tvtohz() always adds 1 to allow for the time until the next clock
798 * interrupt being strictly less than 1 clock tick, but we don't want
799 * that here since we want to appear to be in sync with the clock
800 * interrupt even when we're delayed.
801 */
802void
803realitexpire(void *arg)
804{
805	struct proc *p;
806	struct timeval ctv;
807	sbintime_t isbt;
808
809	p = (struct proc *)arg;
810	kern_psignal(p, SIGALRM);
811	if (!timevalisset(&p->p_realtimer.it_interval)) {
812		timevalclear(&p->p_realtimer.it_value);
813		if (p->p_flag & P_WEXIT)
814			wakeup(&p->p_itcallout);
815		return;
816	}
817	isbt = tvtosbt(p->p_realtimer.it_interval);
818	if (isbt >= sbt_timethreshold)
819		getmicrouptime(&ctv);
820	else
821		microuptime(&ctv);
822	do {
823		timevaladd(&p->p_realtimer.it_value,
824		    &p->p_realtimer.it_interval);
825	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
826	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
827	    isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
828}
829
830/*
831 * Check that a proposed value to load into the .it_value or
832 * .it_interval part of an interval timer is acceptable, and
833 * fix it to have at least minimal value (i.e. if it is less
834 * than the resolution of the clock, round it up.)
835 */
836int
837itimerfix(struct timeval *tv)
838{
839
840	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
841		return (EINVAL);
842	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
843	    tv->tv_usec < (u_int)tick / 16)
844		tv->tv_usec = (u_int)tick / 16;
845	return (0);
846}
847
848/*
849 * Decrement an interval timer by a specified number
850 * of microseconds, which must be less than a second,
851 * i.e. < 1000000.  If the timer expires, then reload
852 * it.  In this case, carry over (usec - old value) to
853 * reduce the value reloaded into the timer so that
854 * the timer does not drift.  This routine assumes
855 * that it is called in a context where the timers
856 * on which it is operating cannot change in value.
857 */
858int
859itimerdecr(struct itimerval *itp, int usec)
860{
861
862	if (itp->it_value.tv_usec < usec) {
863		if (itp->it_value.tv_sec == 0) {
864			/* expired, and already in next interval */
865			usec -= itp->it_value.tv_usec;
866			goto expire;
867		}
868		itp->it_value.tv_usec += 1000000;
869		itp->it_value.tv_sec--;
870	}
871	itp->it_value.tv_usec -= usec;
872	usec = 0;
873	if (timevalisset(&itp->it_value))
874		return (1);
875	/* expired, exactly at end of interval */
876expire:
877	if (timevalisset(&itp->it_interval)) {
878		itp->it_value = itp->it_interval;
879		itp->it_value.tv_usec -= usec;
880		if (itp->it_value.tv_usec < 0) {
881			itp->it_value.tv_usec += 1000000;
882			itp->it_value.tv_sec--;
883		}
884	} else
885		itp->it_value.tv_usec = 0;		/* sec is already 0 */
886	return (0);
887}
888
889/*
890 * Add and subtract routines for timevals.
891 * N.B.: subtract routine doesn't deal with
892 * results which are before the beginning,
893 * it just gets very confused in this case.
894 * Caveat emptor.
895 */
896void
897timevaladd(struct timeval *t1, const struct timeval *t2)
898{
899
900	t1->tv_sec += t2->tv_sec;
901	t1->tv_usec += t2->tv_usec;
902	timevalfix(t1);
903}
904
905void
906timevalsub(struct timeval *t1, const struct timeval *t2)
907{
908
909	t1->tv_sec -= t2->tv_sec;
910	t1->tv_usec -= t2->tv_usec;
911	timevalfix(t1);
912}
913
914static void
915timevalfix(struct timeval *t1)
916{
917
918	if (t1->tv_usec < 0) {
919		t1->tv_sec--;
920		t1->tv_usec += 1000000;
921	}
922	if (t1->tv_usec >= 1000000) {
923		t1->tv_sec++;
924		t1->tv_usec -= 1000000;
925	}
926}
927
928/*
929 * ratecheck(): simple time-based rate-limit checking.
930 */
931int
932ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
933{
934	struct timeval tv, delta;
935	int rv = 0;
936
937	getmicrouptime(&tv);		/* NB: 10ms precision */
938	delta = tv;
939	timevalsub(&delta, lasttime);
940
941	/*
942	 * check for 0,0 is so that the message will be seen at least once,
943	 * even if interval is huge.
944	 */
945	if (timevalcmp(&delta, mininterval, >=) ||
946	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
947		*lasttime = tv;
948		rv = 1;
949	}
950
951	return (rv);
952}
953
954/*
955 * ppsratecheck(): packets (or events) per second limitation.
956 *
957 * Return 0 if the limit is to be enforced (e.g. the caller
958 * should drop a packet because of the rate limitation).
959 *
960 * maxpps of 0 always causes zero to be returned.  maxpps of -1
961 * always causes 1 to be returned; this effectively defeats rate
962 * limiting.
963 *
964 * Note that we maintain the struct timeval for compatibility
965 * with other bsd systems.  We reuse the storage and just monitor
966 * clock ticks for minimal overhead.
967 */
968int
969ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
970{
971	int now;
972
973	/*
974	 * Reset the last time and counter if this is the first call
975	 * or more than a second has passed since the last update of
976	 * lasttime.
977	 */
978	now = ticks;
979	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
980		lasttime->tv_sec = now;
981		*curpps = 1;
982		return (maxpps != 0);
983	} else {
984		(*curpps)++;		/* NB: ignore potential overflow */
985		return (maxpps < 0 || *curpps <= maxpps);
986	}
987}
988
989static void
990itimer_start(void)
991{
992	struct kclock rt_clock = {
993		.timer_create  = realtimer_create,
994		.timer_delete  = realtimer_delete,
995		.timer_settime = realtimer_settime,
996		.timer_gettime = realtimer_gettime,
997		.event_hook    = NULL
998	};
999
1000	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1001		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1002	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1003	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1004	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1005	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1006	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1007	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
1008		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
1009	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
1010		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
1011}
1012
1013int
1014register_posix_clock(int clockid, struct kclock *clk)
1015{
1016	if ((unsigned)clockid >= MAX_CLOCKS) {
1017		printf("%s: invalid clockid\n", __func__);
1018		return (0);
1019	}
1020	posix_clocks[clockid] = *clk;
1021	return (1);
1022}
1023
1024static int
1025itimer_init(void *mem, int size, int flags)
1026{
1027	struct itimer *it;
1028
1029	it = (struct itimer *)mem;
1030	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1031	return (0);
1032}
1033
1034static void
1035itimer_fini(void *mem, int size)
1036{
1037	struct itimer *it;
1038
1039	it = (struct itimer *)mem;
1040	mtx_destroy(&it->it_mtx);
1041}
1042
1043static void
1044itimer_enter(struct itimer *it)
1045{
1046
1047	mtx_assert(&it->it_mtx, MA_OWNED);
1048	it->it_usecount++;
1049}
1050
1051static void
1052itimer_leave(struct itimer *it)
1053{
1054
1055	mtx_assert(&it->it_mtx, MA_OWNED);
1056	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1057
1058	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1059		wakeup(it);
1060}
1061
1062#ifndef _SYS_SYSPROTO_H_
1063struct ktimer_create_args {
1064	clockid_t clock_id;
1065	struct sigevent * evp;
1066	int * timerid;
1067};
1068#endif
1069int
1070sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1071{
1072	struct sigevent *evp, ev;
1073	int id;
1074	int error;
1075
1076	if (uap->evp == NULL) {
1077		evp = NULL;
1078	} else {
1079		error = copyin(uap->evp, &ev, sizeof(ev));
1080		if (error != 0)
1081			return (error);
1082		evp = &ev;
1083	}
1084	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1085	if (error == 0) {
1086		error = copyout(&id, uap->timerid, sizeof(int));
1087		if (error != 0)
1088			kern_ktimer_delete(td, id);
1089	}
1090	return (error);
1091}
1092
1093int
1094kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1095    int *timerid, int preset_id)
1096{
1097	struct proc *p = td->td_proc;
1098	struct itimer *it;
1099	int id;
1100	int error;
1101
1102	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1103		return (EINVAL);
1104
1105	if (posix_clocks[clock_id].timer_create == NULL)
1106		return (EINVAL);
1107
1108	if (evp != NULL) {
1109		if (evp->sigev_notify != SIGEV_NONE &&
1110		    evp->sigev_notify != SIGEV_SIGNAL &&
1111		    evp->sigev_notify != SIGEV_THREAD_ID)
1112			return (EINVAL);
1113		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1114		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1115			!_SIG_VALID(evp->sigev_signo))
1116			return (EINVAL);
1117	}
1118
1119	if (p->p_itimers == NULL)
1120		itimers_alloc(p);
1121
1122	it = uma_zalloc(itimer_zone, M_WAITOK);
1123	it->it_flags = 0;
1124	it->it_usecount = 0;
1125	it->it_active = 0;
1126	timespecclear(&it->it_time.it_value);
1127	timespecclear(&it->it_time.it_interval);
1128	it->it_overrun = 0;
1129	it->it_overrun_last = 0;
1130	it->it_clockid = clock_id;
1131	it->it_timerid = -1;
1132	it->it_proc = p;
1133	ksiginfo_init(&it->it_ksi);
1134	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1135	error = CLOCK_CALL(clock_id, timer_create, (it));
1136	if (error != 0)
1137		goto out;
1138
1139	PROC_LOCK(p);
1140	if (preset_id != -1) {
1141		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1142		id = preset_id;
1143		if (p->p_itimers->its_timers[id] != NULL) {
1144			PROC_UNLOCK(p);
1145			error = 0;
1146			goto out;
1147		}
1148	} else {
1149		/*
1150		 * Find a free timer slot, skipping those reserved
1151		 * for setitimer().
1152		 */
1153		for (id = 3; id < TIMER_MAX; id++)
1154			if (p->p_itimers->its_timers[id] == NULL)
1155				break;
1156		if (id == TIMER_MAX) {
1157			PROC_UNLOCK(p);
1158			error = EAGAIN;
1159			goto out;
1160		}
1161	}
1162	it->it_timerid = id;
1163	p->p_itimers->its_timers[id] = it;
1164	if (evp != NULL)
1165		it->it_sigev = *evp;
1166	else {
1167		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1168		switch (clock_id) {
1169		default:
1170		case CLOCK_REALTIME:
1171			it->it_sigev.sigev_signo = SIGALRM;
1172			break;
1173		case CLOCK_VIRTUAL:
1174 			it->it_sigev.sigev_signo = SIGVTALRM;
1175			break;
1176		case CLOCK_PROF:
1177			it->it_sigev.sigev_signo = SIGPROF;
1178			break;
1179		}
1180		it->it_sigev.sigev_value.sival_int = id;
1181	}
1182
1183	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1184	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1185		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1186		it->it_ksi.ksi_code = SI_TIMER;
1187		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1188		it->it_ksi.ksi_timerid = id;
1189	}
1190	PROC_UNLOCK(p);
1191	*timerid = id;
1192	return (0);
1193
1194out:
1195	ITIMER_LOCK(it);
1196	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1197	ITIMER_UNLOCK(it);
1198	uma_zfree(itimer_zone, it);
1199	return (error);
1200}
1201
1202#ifndef _SYS_SYSPROTO_H_
1203struct ktimer_delete_args {
1204	int timerid;
1205};
1206#endif
1207int
1208sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1209{
1210
1211	return (kern_ktimer_delete(td, uap->timerid));
1212}
1213
1214static struct itimer *
1215itimer_find(struct proc *p, int timerid)
1216{
1217	struct itimer *it;
1218
1219	PROC_LOCK_ASSERT(p, MA_OWNED);
1220	if ((p->p_itimers == NULL) ||
1221	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1222	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1223		return (NULL);
1224	}
1225	ITIMER_LOCK(it);
1226	if ((it->it_flags & ITF_DELETING) != 0) {
1227		ITIMER_UNLOCK(it);
1228		it = NULL;
1229	}
1230	return (it);
1231}
1232
1233int
1234kern_ktimer_delete(struct thread *td, int timerid)
1235{
1236	struct proc *p = td->td_proc;
1237	struct itimer *it;
1238
1239	PROC_LOCK(p);
1240	it = itimer_find(p, timerid);
1241	if (it == NULL) {
1242		PROC_UNLOCK(p);
1243		return (EINVAL);
1244	}
1245	PROC_UNLOCK(p);
1246
1247	it->it_flags |= ITF_DELETING;
1248	while (it->it_usecount > 0) {
1249		it->it_flags |= ITF_WANTED;
1250		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1251	}
1252	it->it_flags &= ~ITF_WANTED;
1253	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1254	ITIMER_UNLOCK(it);
1255
1256	PROC_LOCK(p);
1257	if (KSI_ONQ(&it->it_ksi))
1258		sigqueue_take(&it->it_ksi);
1259	p->p_itimers->its_timers[timerid] = NULL;
1260	PROC_UNLOCK(p);
1261	uma_zfree(itimer_zone, it);
1262	return (0);
1263}
1264
1265#ifndef _SYS_SYSPROTO_H_
1266struct ktimer_settime_args {
1267	int timerid;
1268	int flags;
1269	const struct itimerspec * value;
1270	struct itimerspec * ovalue;
1271};
1272#endif
1273int
1274sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1275{
1276	struct itimerspec val, oval, *ovalp;
1277	int error;
1278
1279	error = copyin(uap->value, &val, sizeof(val));
1280	if (error != 0)
1281		return (error);
1282	ovalp = uap->ovalue != NULL ? &oval : NULL;
1283	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1284	if (error == 0 && uap->ovalue != NULL)
1285		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1286	return (error);
1287}
1288
1289int
1290kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1291    struct itimerspec *val, struct itimerspec *oval)
1292{
1293	struct proc *p;
1294	struct itimer *it;
1295	int error;
1296
1297	p = td->td_proc;
1298	PROC_LOCK(p);
1299	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1300		PROC_UNLOCK(p);
1301		error = EINVAL;
1302	} else {
1303		PROC_UNLOCK(p);
1304		itimer_enter(it);
1305		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1306		    flags, val, oval));
1307		itimer_leave(it);
1308		ITIMER_UNLOCK(it);
1309	}
1310	return (error);
1311}
1312
1313#ifndef _SYS_SYSPROTO_H_
1314struct ktimer_gettime_args {
1315	int timerid;
1316	struct itimerspec * value;
1317};
1318#endif
1319int
1320sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1321{
1322	struct itimerspec val;
1323	int error;
1324
1325	error = kern_ktimer_gettime(td, uap->timerid, &val);
1326	if (error == 0)
1327		error = copyout(&val, uap->value, sizeof(val));
1328	return (error);
1329}
1330
1331int
1332kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1333{
1334	struct proc *p;
1335	struct itimer *it;
1336	int error;
1337
1338	p = td->td_proc;
1339	PROC_LOCK(p);
1340	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1341		PROC_UNLOCK(p);
1342		error = EINVAL;
1343	} else {
1344		PROC_UNLOCK(p);
1345		itimer_enter(it);
1346		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1347		itimer_leave(it);
1348		ITIMER_UNLOCK(it);
1349	}
1350	return (error);
1351}
1352
1353#ifndef _SYS_SYSPROTO_H_
1354struct timer_getoverrun_args {
1355	int timerid;
1356};
1357#endif
1358int
1359sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1360{
1361
1362	return (kern_ktimer_getoverrun(td, uap->timerid));
1363}
1364
1365int
1366kern_ktimer_getoverrun(struct thread *td, int timer_id)
1367{
1368	struct proc *p = td->td_proc;
1369	struct itimer *it;
1370	int error ;
1371
1372	PROC_LOCK(p);
1373	if (timer_id < 3 ||
1374	    (it = itimer_find(p, timer_id)) == NULL) {
1375		PROC_UNLOCK(p);
1376		error = EINVAL;
1377	} else {
1378		td->td_retval[0] = it->it_overrun_last;
1379		ITIMER_UNLOCK(it);
1380		PROC_UNLOCK(p);
1381		error = 0;
1382	}
1383	return (error);
1384}
1385
1386static int
1387realtimer_create(struct itimer *it)
1388{
1389	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1390	return (0);
1391}
1392
1393static int
1394realtimer_delete(struct itimer *it)
1395{
1396	mtx_assert(&it->it_mtx, MA_OWNED);
1397
1398	/*
1399	 * clear timer's value and interval to tell realtimer_expire
1400	 * to not rearm the timer.
1401	 */
1402	timespecclear(&it->it_time.it_value);
1403	timespecclear(&it->it_time.it_interval);
1404	ITIMER_UNLOCK(it);
1405	callout_drain(&it->it_callout);
1406	ITIMER_LOCK(it);
1407	return (0);
1408}
1409
1410static int
1411realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1412{
1413	struct timespec cts;
1414
1415	mtx_assert(&it->it_mtx, MA_OWNED);
1416
1417	realtimer_clocktime(it->it_clockid, &cts);
1418	*ovalue = it->it_time;
1419	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1420		timespecsub(&ovalue->it_value, &cts);
1421		if (ovalue->it_value.tv_sec < 0 ||
1422		    (ovalue->it_value.tv_sec == 0 &&
1423		     ovalue->it_value.tv_nsec == 0)) {
1424			ovalue->it_value.tv_sec  = 0;
1425			ovalue->it_value.tv_nsec = 1;
1426		}
1427	}
1428	return (0);
1429}
1430
1431static int
1432realtimer_settime(struct itimer *it, int flags,
1433	struct itimerspec *value, struct itimerspec *ovalue)
1434{
1435	struct timespec cts, ts;
1436	struct timeval tv;
1437	struct itimerspec val;
1438
1439	mtx_assert(&it->it_mtx, MA_OWNED);
1440
1441	val = *value;
1442	if (itimespecfix(&val.it_value))
1443		return (EINVAL);
1444
1445	if (timespecisset(&val.it_value)) {
1446		if (itimespecfix(&val.it_interval))
1447			return (EINVAL);
1448	} else {
1449		timespecclear(&val.it_interval);
1450	}
1451
1452	if (ovalue != NULL)
1453		realtimer_gettime(it, ovalue);
1454
1455	it->it_time = val;
1456	if (timespecisset(&val.it_value)) {
1457		realtimer_clocktime(it->it_clockid, &cts);
1458		ts = val.it_value;
1459		if ((flags & TIMER_ABSTIME) == 0) {
1460			/* Convert to absolute time. */
1461			timespecadd(&it->it_time.it_value, &cts);
1462		} else {
1463			timespecsub(&ts, &cts);
1464			/*
1465			 * We don't care if ts is negative, tztohz will
1466			 * fix it.
1467			 */
1468		}
1469		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1470		callout_reset(&it->it_callout, tvtohz(&tv),
1471			realtimer_expire, it);
1472	} else {
1473		callout_stop(&it->it_callout);
1474	}
1475
1476	return (0);
1477}
1478
1479static void
1480realtimer_clocktime(clockid_t id, struct timespec *ts)
1481{
1482	if (id == CLOCK_REALTIME)
1483		getnanotime(ts);
1484	else	/* CLOCK_MONOTONIC */
1485		getnanouptime(ts);
1486}
1487
1488int
1489itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1490{
1491	struct itimer *it;
1492
1493	PROC_LOCK_ASSERT(p, MA_OWNED);
1494	it = itimer_find(p, timerid);
1495	if (it != NULL) {
1496		ksi->ksi_overrun = it->it_overrun;
1497		it->it_overrun_last = it->it_overrun;
1498		it->it_overrun = 0;
1499		ITIMER_UNLOCK(it);
1500		return (0);
1501	}
1502	return (EINVAL);
1503}
1504
1505int
1506itimespecfix(struct timespec *ts)
1507{
1508
1509	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1510		return (EINVAL);
1511	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1512		ts->tv_nsec = tick * 1000;
1513	return (0);
1514}
1515
1516/* Timeout callback for realtime timer */
1517static void
1518realtimer_expire(void *arg)
1519{
1520	struct timespec cts, ts;
1521	struct timeval tv;
1522	struct itimer *it;
1523
1524	it = (struct itimer *)arg;
1525
1526	realtimer_clocktime(it->it_clockid, &cts);
1527	/* Only fire if time is reached. */
1528	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1529		if (timespecisset(&it->it_time.it_interval)) {
1530			timespecadd(&it->it_time.it_value,
1531				    &it->it_time.it_interval);
1532			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1533				if (it->it_overrun < INT_MAX)
1534					it->it_overrun++;
1535				else
1536					it->it_ksi.ksi_errno = ERANGE;
1537				timespecadd(&it->it_time.it_value,
1538					    &it->it_time.it_interval);
1539			}
1540		} else {
1541			/* single shot timer ? */
1542			timespecclear(&it->it_time.it_value);
1543		}
1544		if (timespecisset(&it->it_time.it_value)) {
1545			ts = it->it_time.it_value;
1546			timespecsub(&ts, &cts);
1547			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1548			callout_reset(&it->it_callout, tvtohz(&tv),
1549				 realtimer_expire, it);
1550		}
1551		itimer_enter(it);
1552		ITIMER_UNLOCK(it);
1553		itimer_fire(it);
1554		ITIMER_LOCK(it);
1555		itimer_leave(it);
1556	} else if (timespecisset(&it->it_time.it_value)) {
1557		ts = it->it_time.it_value;
1558		timespecsub(&ts, &cts);
1559		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1560		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1561 			it);
1562	}
1563}
1564
1565void
1566itimer_fire(struct itimer *it)
1567{
1568	struct proc *p = it->it_proc;
1569	struct thread *td;
1570
1571	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1572	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1573		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1574			ITIMER_LOCK(it);
1575			timespecclear(&it->it_time.it_value);
1576			timespecclear(&it->it_time.it_interval);
1577			callout_stop(&it->it_callout);
1578			ITIMER_UNLOCK(it);
1579			return;
1580		}
1581		if (!KSI_ONQ(&it->it_ksi)) {
1582			it->it_ksi.ksi_errno = 0;
1583			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1584			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1585		} else {
1586			if (it->it_overrun < INT_MAX)
1587				it->it_overrun++;
1588			else
1589				it->it_ksi.ksi_errno = ERANGE;
1590		}
1591		PROC_UNLOCK(p);
1592	}
1593}
1594
1595static void
1596itimers_alloc(struct proc *p)
1597{
1598	struct itimers *its;
1599	int i;
1600
1601	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1602	LIST_INIT(&its->its_virtual);
1603	LIST_INIT(&its->its_prof);
1604	TAILQ_INIT(&its->its_worklist);
1605	for (i = 0; i < TIMER_MAX; i++)
1606		its->its_timers[i] = NULL;
1607	PROC_LOCK(p);
1608	if (p->p_itimers == NULL) {
1609		p->p_itimers = its;
1610		PROC_UNLOCK(p);
1611	}
1612	else {
1613		PROC_UNLOCK(p);
1614		free(its, M_SUBPROC);
1615	}
1616}
1617
1618static void
1619itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1620{
1621	itimers_event_hook_exit(arg, p);
1622}
1623
1624/* Clean up timers when some process events are being triggered. */
1625static void
1626itimers_event_hook_exit(void *arg, struct proc *p)
1627{
1628	struct itimers *its;
1629	struct itimer *it;
1630	int event = (int)(intptr_t)arg;
1631	int i;
1632
1633	if (p->p_itimers != NULL) {
1634		its = p->p_itimers;
1635		for (i = 0; i < MAX_CLOCKS; ++i) {
1636			if (posix_clocks[i].event_hook != NULL)
1637				CLOCK_CALL(i, event_hook, (p, i, event));
1638		}
1639		/*
1640		 * According to susv3, XSI interval timers should be inherited
1641		 * by new image.
1642		 */
1643		if (event == ITIMER_EV_EXEC)
1644			i = 3;
1645		else if (event == ITIMER_EV_EXIT)
1646			i = 0;
1647		else
1648			panic("unhandled event");
1649		for (; i < TIMER_MAX; ++i) {
1650			if ((it = its->its_timers[i]) != NULL)
1651				kern_ktimer_delete(curthread, i);
1652		}
1653		if (its->its_timers[0] == NULL &&
1654		    its->its_timers[1] == NULL &&
1655		    its->its_timers[2] == NULL) {
1656			free(its, M_SUBPROC);
1657			p->p_itimers = NULL;
1658		}
1659	}
1660}
1661