kern_thread.c revision 314667
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include "opt_witness.h"
30#include "opt_kdtrace.h"
31#include "opt_hwpmc_hooks.h"
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/kern/kern_thread.c 314667 2017-03-04 13:03:31Z avg $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/rangelock.h>
43#include <sys/resourcevar.h>
44#include <sys/sdt.h>
45#include <sys/smp.h>
46#include <sys/sched.h>
47#include <sys/sleepqueue.h>
48#include <sys/selinfo.h>
49#include <sys/syscallsubr.h>
50#include <sys/sysent.h>
51#include <sys/turnstile.h>
52#include <sys/ktr.h>
53#include <sys/rwlock.h>
54#include <sys/umtx.h>
55#include <sys/cpuset.h>
56#ifdef	HWPMC_HOOKS
57#include <sys/pmckern.h>
58#endif
59
60#include <security/audit/audit.h>
61
62#include <vm/vm.h>
63#include <vm/vm_extern.h>
64#include <vm/uma.h>
65#include <sys/eventhandler.h>
66
67SDT_PROVIDER_DECLARE(proc);
68SDT_PROBE_DEFINE(proc, , , lwp__exit);
69
70/*
71 * thread related storage.
72 */
73static uma_zone_t thread_zone;
74
75TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
76static struct mtx zombie_lock;
77MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
78
79static void thread_zombie(struct thread *);
80static int thread_unsuspend_one(struct thread *td, struct proc *p,
81    bool boundary);
82
83#define TID_BUFFER_SIZE	1024
84
85struct mtx tid_lock;
86static struct unrhdr *tid_unrhdr;
87static lwpid_t tid_buffer[TID_BUFFER_SIZE];
88static int tid_head, tid_tail;
89static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
90
91struct	tidhashhead *tidhashtbl;
92u_long	tidhash;
93struct	rwlock tidhash_lock;
94
95static lwpid_t
96tid_alloc(void)
97{
98	lwpid_t	tid;
99
100	tid = alloc_unr(tid_unrhdr);
101	if (tid != -1)
102		return (tid);
103	mtx_lock(&tid_lock);
104	if (tid_head == tid_tail) {
105		mtx_unlock(&tid_lock);
106		return (-1);
107	}
108	tid = tid_buffer[tid_head];
109	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
110	mtx_unlock(&tid_lock);
111	return (tid);
112}
113
114static void
115tid_free(lwpid_t tid)
116{
117	lwpid_t tmp_tid = -1;
118
119	mtx_lock(&tid_lock);
120	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
121		tmp_tid = tid_buffer[tid_head];
122		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
123	}
124	tid_buffer[tid_tail] = tid;
125	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
126	mtx_unlock(&tid_lock);
127	if (tmp_tid != -1)
128		free_unr(tid_unrhdr, tmp_tid);
129}
130
131/*
132 * Prepare a thread for use.
133 */
134static int
135thread_ctor(void *mem, int size, void *arg, int flags)
136{
137	struct thread	*td;
138
139	td = (struct thread *)mem;
140	td->td_state = TDS_INACTIVE;
141	td->td_oncpu = NOCPU;
142
143	td->td_tid = tid_alloc();
144
145	/*
146	 * Note that td_critnest begins life as 1 because the thread is not
147	 * running and is thereby implicitly waiting to be on the receiving
148	 * end of a context switch.
149	 */
150	td->td_critnest = 1;
151	td->td_lend_user_pri = PRI_MAX;
152	EVENTHANDLER_INVOKE(thread_ctor, td);
153#ifdef AUDIT
154	audit_thread_alloc(td);
155#endif
156	umtx_thread_alloc(td);
157	return (0);
158}
159
160/*
161 * Reclaim a thread after use.
162 */
163static void
164thread_dtor(void *mem, int size, void *arg)
165{
166	struct thread *td;
167
168	td = (struct thread *)mem;
169
170#ifdef INVARIANTS
171	/* Verify that this thread is in a safe state to free. */
172	switch (td->td_state) {
173	case TDS_INHIBITED:
174	case TDS_RUNNING:
175	case TDS_CAN_RUN:
176	case TDS_RUNQ:
177		/*
178		 * We must never unlink a thread that is in one of
179		 * these states, because it is currently active.
180		 */
181		panic("bad state for thread unlinking");
182		/* NOTREACHED */
183	case TDS_INACTIVE:
184		break;
185	default:
186		panic("bad thread state");
187		/* NOTREACHED */
188	}
189#endif
190#ifdef AUDIT
191	audit_thread_free(td);
192#endif
193	/* Free all OSD associated to this thread. */
194	osd_thread_exit(td);
195
196	EVENTHANDLER_INVOKE(thread_dtor, td);
197	tid_free(td->td_tid);
198}
199
200/*
201 * Initialize type-stable parts of a thread (when newly created).
202 */
203static int
204thread_init(void *mem, int size, int flags)
205{
206	struct thread *td;
207
208	td = (struct thread *)mem;
209
210	td->td_sleepqueue = sleepq_alloc();
211	td->td_turnstile = turnstile_alloc();
212	td->td_rlqe = NULL;
213	EVENTHANDLER_INVOKE(thread_init, td);
214	td->td_sched = (struct td_sched *)&td[1];
215	umtx_thread_init(td);
216	td->td_kstack = 0;
217	td->td_sel = NULL;
218	return (0);
219}
220
221/*
222 * Tear down type-stable parts of a thread (just before being discarded).
223 */
224static void
225thread_fini(void *mem, int size)
226{
227	struct thread *td;
228
229	td = (struct thread *)mem;
230	EVENTHANDLER_INVOKE(thread_fini, td);
231	rlqentry_free(td->td_rlqe);
232	turnstile_free(td->td_turnstile);
233	sleepq_free(td->td_sleepqueue);
234	umtx_thread_fini(td);
235	seltdfini(td);
236}
237
238/*
239 * For a newly created process,
240 * link up all the structures and its initial threads etc.
241 * called from:
242 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
243 * proc_dtor() (should go away)
244 * proc_init()
245 */
246void
247proc_linkup0(struct proc *p, struct thread *td)
248{
249	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
250	proc_linkup(p, td);
251}
252
253void
254proc_linkup(struct proc *p, struct thread *td)
255{
256
257	sigqueue_init(&p->p_sigqueue, p);
258	p->p_ksi = ksiginfo_alloc(1);
259	if (p->p_ksi != NULL) {
260		/* XXX p_ksi may be null if ksiginfo zone is not ready */
261		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
262	}
263	LIST_INIT(&p->p_mqnotifier);
264	p->p_numthreads = 0;
265	thread_link(td, p);
266}
267
268/*
269 * Initialize global thread allocation resources.
270 */
271void
272threadinit(void)
273{
274
275	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
276
277	/*
278	 * pid_max cannot be greater than PID_MAX.
279	 * leave one number for thread0.
280	 */
281	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
282
283	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
284	    thread_ctor, thread_dtor, thread_init, thread_fini,
285	    16 - 1, UMA_ZONE_NOFREE);
286	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
287	rw_init(&tidhash_lock, "tidhash");
288}
289
290/*
291 * Place an unused thread on the zombie list.
292 * Use the slpq as that must be unused by now.
293 */
294void
295thread_zombie(struct thread *td)
296{
297	mtx_lock_spin(&zombie_lock);
298	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
299	mtx_unlock_spin(&zombie_lock);
300}
301
302/*
303 * Release a thread that has exited after cpu_throw().
304 */
305void
306thread_stash(struct thread *td)
307{
308	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
309	thread_zombie(td);
310}
311
312/*
313 * Reap zombie resources.
314 */
315void
316thread_reap(void)
317{
318	struct thread *td_first, *td_next;
319
320	/*
321	 * Don't even bother to lock if none at this instant,
322	 * we really don't care about the next instant.
323	 */
324	if (!TAILQ_EMPTY(&zombie_threads)) {
325		mtx_lock_spin(&zombie_lock);
326		td_first = TAILQ_FIRST(&zombie_threads);
327		if (td_first)
328			TAILQ_INIT(&zombie_threads);
329		mtx_unlock_spin(&zombie_lock);
330		while (td_first) {
331			td_next = TAILQ_NEXT(td_first, td_slpq);
332			if (td_first->td_ucred)
333				crfree(td_first->td_ucred);
334			thread_free(td_first);
335			td_first = td_next;
336		}
337	}
338}
339
340/*
341 * Allocate a thread.
342 */
343struct thread *
344thread_alloc(int pages)
345{
346	struct thread *td;
347
348	thread_reap(); /* check if any zombies to get */
349
350	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
351	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
352	if (!vm_thread_new(td, pages)) {
353		uma_zfree(thread_zone, td);
354		return (NULL);
355	}
356	cpu_thread_alloc(td);
357	return (td);
358}
359
360int
361thread_alloc_stack(struct thread *td, int pages)
362{
363
364	KASSERT(td->td_kstack == 0,
365	    ("thread_alloc_stack called on a thread with kstack"));
366	if (!vm_thread_new(td, pages))
367		return (0);
368	cpu_thread_alloc(td);
369	return (1);
370}
371
372/*
373 * Deallocate a thread.
374 */
375void
376thread_free(struct thread *td)
377{
378
379	lock_profile_thread_exit(td);
380	if (td->td_cpuset)
381		cpuset_rel(td->td_cpuset);
382	td->td_cpuset = NULL;
383	cpu_thread_free(td);
384	if (td->td_kstack != 0)
385		vm_thread_dispose(td);
386	callout_drain(&td->td_slpcallout);
387	uma_zfree(thread_zone, td);
388}
389
390/*
391 * Discard the current thread and exit from its context.
392 * Always called with scheduler locked.
393 *
394 * Because we can't free a thread while we're operating under its context,
395 * push the current thread into our CPU's deadthread holder. This means
396 * we needn't worry about someone else grabbing our context before we
397 * do a cpu_throw().
398 */
399void
400thread_exit(void)
401{
402	uint64_t runtime, new_switchtime;
403	struct thread *td;
404	struct thread *td2;
405	struct proc *p;
406	int wakeup_swapper;
407
408	td = curthread;
409	p = td->td_proc;
410
411	PROC_SLOCK_ASSERT(p, MA_OWNED);
412	mtx_assert(&Giant, MA_NOTOWNED);
413
414	PROC_LOCK_ASSERT(p, MA_OWNED);
415	KASSERT(p != NULL, ("thread exiting without a process"));
416	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
417	    (long)p->p_pid, td->td_name);
418	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
419
420#ifdef AUDIT
421	AUDIT_SYSCALL_EXIT(0, td);
422#endif
423	/*
424	 * drop FPU & debug register state storage, or any other
425	 * architecture specific resources that
426	 * would not be on a new untouched process.
427	 */
428	cpu_thread_exit(td);
429
430	/*
431	 * The last thread is left attached to the process
432	 * So that the whole bundle gets recycled. Skip
433	 * all this stuff if we never had threads.
434	 * EXIT clears all sign of other threads when
435	 * it goes to single threading, so the last thread always
436	 * takes the short path.
437	 */
438	if (p->p_flag & P_HADTHREADS) {
439		if (p->p_numthreads > 1) {
440			atomic_add_int(&td->td_proc->p_exitthreads, 1);
441			thread_unlink(td);
442			td2 = FIRST_THREAD_IN_PROC(p);
443			sched_exit_thread(td2, td);
444
445			/*
446			 * The test below is NOT true if we are the
447			 * sole exiting thread. P_STOPPED_SINGLE is unset
448			 * in exit1() after it is the only survivor.
449			 */
450			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
451				if (p->p_numthreads == p->p_suspcount) {
452					thread_lock(p->p_singlethread);
453					wakeup_swapper = thread_unsuspend_one(
454						p->p_singlethread, p, false);
455					thread_unlock(p->p_singlethread);
456					if (wakeup_swapper)
457						kick_proc0();
458				}
459			}
460
461			PCPU_SET(deadthread, td);
462		} else {
463			/*
464			 * The last thread is exiting.. but not through exit()
465			 */
466			panic ("thread_exit: Last thread exiting on its own");
467		}
468	}
469#ifdef	HWPMC_HOOKS
470	/*
471	 * If this thread is part of a process that is being tracked by hwpmc(4),
472	 * inform the module of the thread's impending exit.
473	 */
474	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
475		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
476#endif
477	PROC_UNLOCK(p);
478	PROC_STATLOCK(p);
479	thread_lock(td);
480	PROC_SUNLOCK(p);
481
482	/* Do the same timestamp bookkeeping that mi_switch() would do. */
483	new_switchtime = cpu_ticks();
484	runtime = new_switchtime - PCPU_GET(switchtime);
485	td->td_runtime += runtime;
486	td->td_incruntime += runtime;
487	PCPU_SET(switchtime, new_switchtime);
488	PCPU_SET(switchticks, ticks);
489	PCPU_INC(cnt.v_swtch);
490
491	/* Save our resource usage in our process. */
492	td->td_ru.ru_nvcsw++;
493	ruxagg(p, td);
494	rucollect(&p->p_ru, &td->td_ru);
495	PROC_STATUNLOCK(p);
496
497	td->td_state = TDS_INACTIVE;
498#ifdef WITNESS
499	witness_thread_exit(td);
500#endif
501	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
502	sched_throw(td);
503	panic("I'm a teapot!");
504	/* NOTREACHED */
505}
506
507/*
508 * Do any thread specific cleanups that may be needed in wait()
509 * called with Giant, proc and schedlock not held.
510 */
511void
512thread_wait(struct proc *p)
513{
514	struct thread *td;
515
516	mtx_assert(&Giant, MA_NOTOWNED);
517	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
518	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
519	td = FIRST_THREAD_IN_PROC(p);
520	/* Lock the last thread so we spin until it exits cpu_throw(). */
521	thread_lock(td);
522	thread_unlock(td);
523	lock_profile_thread_exit(td);
524	cpuset_rel(td->td_cpuset);
525	td->td_cpuset = NULL;
526	cpu_thread_clean(td);
527	crfree(td->td_ucred);
528	callout_drain(&td->td_slpcallout);
529	thread_reap();	/* check for zombie threads etc. */
530}
531
532/*
533 * Link a thread to a process.
534 * set up anything that needs to be initialized for it to
535 * be used by the process.
536 */
537void
538thread_link(struct thread *td, struct proc *p)
539{
540
541	/*
542	 * XXX This can't be enabled because it's called for proc0 before
543	 * its lock has been created.
544	 * PROC_LOCK_ASSERT(p, MA_OWNED);
545	 */
546	td->td_state    = TDS_INACTIVE;
547	td->td_proc     = p;
548	td->td_flags    = TDF_INMEM;
549
550	LIST_INIT(&td->td_contested);
551	LIST_INIT(&td->td_lprof[0]);
552	LIST_INIT(&td->td_lprof[1]);
553	sigqueue_init(&td->td_sigqueue, p);
554	callout_init(&td->td_slpcallout, 1);
555	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
556	p->p_numthreads++;
557}
558
559/*
560 * Called from:
561 *  thread_exit()
562 */
563void
564thread_unlink(struct thread *td)
565{
566	struct proc *p = td->td_proc;
567
568	PROC_LOCK_ASSERT(p, MA_OWNED);
569	TAILQ_REMOVE(&p->p_threads, td, td_plist);
570	p->p_numthreads--;
571	/* could clear a few other things here */
572	/* Must  NOT clear links to proc! */
573}
574
575static int
576calc_remaining(struct proc *p, int mode)
577{
578	int remaining;
579
580	PROC_LOCK_ASSERT(p, MA_OWNED);
581	PROC_SLOCK_ASSERT(p, MA_OWNED);
582	if (mode == SINGLE_EXIT)
583		remaining = p->p_numthreads;
584	else if (mode == SINGLE_BOUNDARY)
585		remaining = p->p_numthreads - p->p_boundary_count;
586	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
587		remaining = p->p_numthreads - p->p_suspcount;
588	else
589		panic("calc_remaining: wrong mode %d", mode);
590	return (remaining);
591}
592
593static int
594remain_for_mode(int mode)
595{
596
597	return (mode == SINGLE_ALLPROC ? 0 : 1);
598}
599
600static int
601weed_inhib(int mode, struct thread *td2, struct proc *p)
602{
603	int wakeup_swapper;
604
605	PROC_LOCK_ASSERT(p, MA_OWNED);
606	PROC_SLOCK_ASSERT(p, MA_OWNED);
607	THREAD_LOCK_ASSERT(td2, MA_OWNED);
608
609	wakeup_swapper = 0;
610	switch (mode) {
611	case SINGLE_EXIT:
612		if (TD_IS_SUSPENDED(td2))
613			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
614		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
615			wakeup_swapper |= sleepq_abort(td2, EINTR);
616		break;
617	case SINGLE_BOUNDARY:
618	case SINGLE_NO_EXIT:
619		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
620			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
621		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
622			wakeup_swapper |= sleepq_abort(td2, ERESTART);
623		break;
624	case SINGLE_ALLPROC:
625		/*
626		 * ALLPROC suspend tries to avoid spurious EINTR for
627		 * threads sleeping interruptable, by suspending the
628		 * thread directly, similarly to sig_suspend_threads().
629		 * Since such sleep is not performed at the user
630		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
631		 * is used to avoid immediate un-suspend.
632		 */
633		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
634		    TDF_ALLPROCSUSP)) == 0)
635			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
636		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
637			if ((td2->td_flags & TDF_SBDRY) == 0) {
638				thread_suspend_one(td2);
639				td2->td_flags |= TDF_ALLPROCSUSP;
640			} else {
641				wakeup_swapper |= sleepq_abort(td2, ERESTART);
642			}
643		}
644		break;
645	}
646	return (wakeup_swapper);
647}
648
649/*
650 * Enforce single-threading.
651 *
652 * Returns 1 if the caller must abort (another thread is waiting to
653 * exit the process or similar). Process is locked!
654 * Returns 0 when you are successfully the only thread running.
655 * A process has successfully single threaded in the suspend mode when
656 * There are no threads in user mode. Threads in the kernel must be
657 * allowed to continue until they get to the user boundary. They may even
658 * copy out their return values and data before suspending. They may however be
659 * accelerated in reaching the user boundary as we will wake up
660 * any sleeping threads that are interruptable. (PCATCH).
661 */
662int
663thread_single(struct proc *p, int mode)
664{
665	struct thread *td;
666	struct thread *td2;
667	int remaining, wakeup_swapper;
668
669	td = curthread;
670	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
671	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
672	    ("invalid mode %d", mode));
673	/*
674	 * If allowing non-ALLPROC singlethreading for non-curproc
675	 * callers, calc_remaining() and remain_for_mode() should be
676	 * adjusted to also account for td->td_proc != p.  For now
677	 * this is not implemented because it is not used.
678	 */
679	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
680	    (mode != SINGLE_ALLPROC && td->td_proc == p),
681	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
682	mtx_assert(&Giant, MA_NOTOWNED);
683	PROC_LOCK_ASSERT(p, MA_OWNED);
684
685	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
686		return (0);
687
688	/* Is someone already single threading? */
689	if (p->p_singlethread != NULL && p->p_singlethread != td)
690		return (1);
691
692	if (mode == SINGLE_EXIT) {
693		p->p_flag |= P_SINGLE_EXIT;
694		p->p_flag &= ~P_SINGLE_BOUNDARY;
695	} else {
696		p->p_flag &= ~P_SINGLE_EXIT;
697		if (mode == SINGLE_BOUNDARY)
698			p->p_flag |= P_SINGLE_BOUNDARY;
699		else
700			p->p_flag &= ~P_SINGLE_BOUNDARY;
701	}
702	if (mode == SINGLE_ALLPROC)
703		p->p_flag |= P_TOTAL_STOP;
704	p->p_flag |= P_STOPPED_SINGLE;
705	PROC_SLOCK(p);
706	p->p_singlethread = td;
707	remaining = calc_remaining(p, mode);
708	while (remaining != remain_for_mode(mode)) {
709		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
710			goto stopme;
711		wakeup_swapper = 0;
712		FOREACH_THREAD_IN_PROC(p, td2) {
713			if (td2 == td)
714				continue;
715			thread_lock(td2);
716			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
717			if (TD_IS_INHIBITED(td2)) {
718				wakeup_swapper |= weed_inhib(mode, td2, p);
719#ifdef SMP
720			} else if (TD_IS_RUNNING(td2) && td != td2) {
721				forward_signal(td2);
722#endif
723			}
724			thread_unlock(td2);
725		}
726		if (wakeup_swapper)
727			kick_proc0();
728		remaining = calc_remaining(p, mode);
729
730		/*
731		 * Maybe we suspended some threads.. was it enough?
732		 */
733		if (remaining == remain_for_mode(mode))
734			break;
735
736stopme:
737		/*
738		 * Wake us up when everyone else has suspended.
739		 * In the mean time we suspend as well.
740		 */
741		thread_suspend_switch(td, p);
742		remaining = calc_remaining(p, mode);
743	}
744	if (mode == SINGLE_EXIT) {
745		/*
746		 * Convert the process to an unthreaded process.  The
747		 * SINGLE_EXIT is called by exit1() or execve(), in
748		 * both cases other threads must be retired.
749		 */
750		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
751		p->p_singlethread = NULL;
752		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
753
754		/*
755		 * Wait for any remaining threads to exit cpu_throw().
756		 */
757		while (p->p_exitthreads != 0) {
758			PROC_SUNLOCK(p);
759			PROC_UNLOCK(p);
760			sched_relinquish(td);
761			PROC_LOCK(p);
762			PROC_SLOCK(p);
763		}
764	} else if (mode == SINGLE_BOUNDARY) {
765		/*
766		 * Wait until all suspended threads are removed from
767		 * the processors.  The thread_suspend_check()
768		 * increments p_boundary_count while it is still
769		 * running, which makes it possible for the execve()
770		 * to destroy vmspace while our other threads are
771		 * still using the address space.
772		 *
773		 * We lock the thread, which is only allowed to
774		 * succeed after context switch code finished using
775		 * the address space.
776		 */
777		FOREACH_THREAD_IN_PROC(p, td2) {
778			if (td2 == td)
779				continue;
780			thread_lock(td2);
781			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
782			    ("td %p not on boundary", td2));
783			KASSERT(TD_IS_SUSPENDED(td2),
784			    ("td %p is not suspended", td2));
785			thread_unlock(td2);
786		}
787	}
788	PROC_SUNLOCK(p);
789	return (0);
790}
791
792bool
793thread_suspend_check_needed(void)
794{
795	struct proc *p;
796	struct thread *td;
797
798	td = curthread;
799	p = td->td_proc;
800	PROC_LOCK_ASSERT(p, MA_OWNED);
801	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
802	    (td->td_dbgflags & TDB_SUSPEND) != 0));
803}
804
805/*
806 * Called in from locations that can safely check to see
807 * whether we have to suspend or at least throttle for a
808 * single-thread event (e.g. fork).
809 *
810 * Such locations include userret().
811 * If the "return_instead" argument is non zero, the thread must be able to
812 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
813 *
814 * The 'return_instead' argument tells the function if it may do a
815 * thread_exit() or suspend, or whether the caller must abort and back
816 * out instead.
817 *
818 * If the thread that set the single_threading request has set the
819 * P_SINGLE_EXIT bit in the process flags then this call will never return
820 * if 'return_instead' is false, but will exit.
821 *
822 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
823 *---------------+--------------------+---------------------
824 *       0       | returns 0          |   returns 0 or 1
825 *               | when ST ends       |   immediately
826 *---------------+--------------------+---------------------
827 *       1       | thread exits       |   returns 1
828 *               |                    |  immediately
829 * 0 = thread_exit() or suspension ok,
830 * other = return error instead of stopping the thread.
831 *
832 * While a full suspension is under effect, even a single threading
833 * thread would be suspended if it made this call (but it shouldn't).
834 * This call should only be made from places where
835 * thread_exit() would be safe as that may be the outcome unless
836 * return_instead is set.
837 */
838int
839thread_suspend_check(int return_instead)
840{
841	struct thread *td;
842	struct proc *p;
843	int wakeup_swapper;
844
845	td = curthread;
846	p = td->td_proc;
847	mtx_assert(&Giant, MA_NOTOWNED);
848	PROC_LOCK_ASSERT(p, MA_OWNED);
849	while (thread_suspend_check_needed()) {
850		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
851			KASSERT(p->p_singlethread != NULL,
852			    ("singlethread not set"));
853			/*
854			 * The only suspension in action is a
855			 * single-threading. Single threader need not stop.
856			 * It is safe to access p->p_singlethread unlocked
857			 * because it can only be set to our address by us.
858			 */
859			if (p->p_singlethread == td)
860				return (0);	/* Exempt from stopping. */
861		}
862		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
863			return (EINTR);
864
865		/* Should we goto user boundary if we didn't come from there? */
866		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
867		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
868			return (ERESTART);
869
870		/*
871		 * Ignore suspend requests if they are deferred.
872		 */
873		if ((td->td_flags & TDF_SBDRY) != 0) {
874			KASSERT(return_instead,
875			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
876			return (0);
877		}
878
879		/*
880		 * If the process is waiting for us to exit,
881		 * this thread should just suicide.
882		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
883		 */
884		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
885			PROC_UNLOCK(p);
886
887			/*
888			 * Allow Linux emulation layer to do some work
889			 * before thread suicide.
890			 */
891			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
892				(p->p_sysent->sv_thread_detach)(td);
893			kern_thr_exit(td);
894			panic("stopped thread did not exit");
895		}
896
897		PROC_SLOCK(p);
898		thread_stopped(p);
899		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
900			if (p->p_numthreads == p->p_suspcount + 1) {
901				thread_lock(p->p_singlethread);
902				wakeup_swapper = thread_unsuspend_one(
903				    p->p_singlethread, p, false);
904				thread_unlock(p->p_singlethread);
905				if (wakeup_swapper)
906					kick_proc0();
907			}
908		}
909		PROC_UNLOCK(p);
910		thread_lock(td);
911		/*
912		 * When a thread suspends, it just
913		 * gets taken off all queues.
914		 */
915		thread_suspend_one(td);
916		if (return_instead == 0) {
917			p->p_boundary_count++;
918			td->td_flags |= TDF_BOUNDARY;
919		}
920		PROC_SUNLOCK(p);
921		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
922		thread_unlock(td);
923		PROC_LOCK(p);
924	}
925	return (0);
926}
927
928void
929thread_suspend_switch(struct thread *td, struct proc *p)
930{
931
932	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
933	PROC_LOCK_ASSERT(p, MA_OWNED);
934	PROC_SLOCK_ASSERT(p, MA_OWNED);
935	/*
936	 * We implement thread_suspend_one in stages here to avoid
937	 * dropping the proc lock while the thread lock is owned.
938	 */
939	if (p == td->td_proc) {
940		thread_stopped(p);
941		p->p_suspcount++;
942	}
943	PROC_UNLOCK(p);
944	thread_lock(td);
945	td->td_flags &= ~TDF_NEEDSUSPCHK;
946	TD_SET_SUSPENDED(td);
947	sched_sleep(td, 0);
948	PROC_SUNLOCK(p);
949	DROP_GIANT();
950	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
951	thread_unlock(td);
952	PICKUP_GIANT();
953	PROC_LOCK(p);
954	PROC_SLOCK(p);
955}
956
957void
958thread_suspend_one(struct thread *td)
959{
960	struct proc *p;
961
962	p = td->td_proc;
963	PROC_SLOCK_ASSERT(p, MA_OWNED);
964	THREAD_LOCK_ASSERT(td, MA_OWNED);
965	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
966	p->p_suspcount++;
967	td->td_flags &= ~TDF_NEEDSUSPCHK;
968	TD_SET_SUSPENDED(td);
969	sched_sleep(td, 0);
970}
971
972static int
973thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
974{
975
976	THREAD_LOCK_ASSERT(td, MA_OWNED);
977	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
978	TD_CLR_SUSPENDED(td);
979	td->td_flags &= ~TDF_ALLPROCSUSP;
980	if (td->td_proc == p) {
981		PROC_SLOCK_ASSERT(p, MA_OWNED);
982		p->p_suspcount--;
983		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
984			td->td_flags &= ~TDF_BOUNDARY;
985			p->p_boundary_count--;
986		}
987	}
988	return (setrunnable(td));
989}
990
991/*
992 * Allow all threads blocked by single threading to continue running.
993 */
994void
995thread_unsuspend(struct proc *p)
996{
997	struct thread *td;
998	int wakeup_swapper;
999
1000	PROC_LOCK_ASSERT(p, MA_OWNED);
1001	PROC_SLOCK_ASSERT(p, MA_OWNED);
1002	wakeup_swapper = 0;
1003	if (!P_SHOULDSTOP(p)) {
1004                FOREACH_THREAD_IN_PROC(p, td) {
1005			thread_lock(td);
1006			if (TD_IS_SUSPENDED(td)) {
1007				wakeup_swapper |= thread_unsuspend_one(td, p,
1008				    true);
1009			}
1010			thread_unlock(td);
1011		}
1012	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1013	    p->p_numthreads == p->p_suspcount) {
1014		/*
1015		 * Stopping everything also did the job for the single
1016		 * threading request. Now we've downgraded to single-threaded,
1017		 * let it continue.
1018		 */
1019		if (p->p_singlethread->td_proc == p) {
1020			thread_lock(p->p_singlethread);
1021			wakeup_swapper = thread_unsuspend_one(
1022			    p->p_singlethread, p, false);
1023			thread_unlock(p->p_singlethread);
1024		}
1025	}
1026	if (wakeup_swapper)
1027		kick_proc0();
1028}
1029
1030/*
1031 * End the single threading mode..
1032 */
1033void
1034thread_single_end(struct proc *p, int mode)
1035{
1036	struct thread *td;
1037	int wakeup_swapper;
1038
1039	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1040	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1041	    ("invalid mode %d", mode));
1042	PROC_LOCK_ASSERT(p, MA_OWNED);
1043	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1044	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1045	    ("mode %d does not match P_TOTAL_STOP", mode));
1046	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1047	    ("thread_single_end from other thread %p %p",
1048	    curthread, p->p_singlethread));
1049	KASSERT(mode != SINGLE_BOUNDARY ||
1050	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1051	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1052	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1053	    P_TOTAL_STOP);
1054	PROC_SLOCK(p);
1055	p->p_singlethread = NULL;
1056	wakeup_swapper = 0;
1057	/*
1058	 * If there are other threads they may now run,
1059	 * unless of course there is a blanket 'stop order'
1060	 * on the process. The single threader must be allowed
1061	 * to continue however as this is a bad place to stop.
1062	 */
1063	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1064                FOREACH_THREAD_IN_PROC(p, td) {
1065			thread_lock(td);
1066			if (TD_IS_SUSPENDED(td)) {
1067				wakeup_swapper |= thread_unsuspend_one(td, p,
1068				    mode == SINGLE_BOUNDARY);
1069			}
1070			thread_unlock(td);
1071		}
1072	}
1073	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1074	    ("inconsistent boundary count %d", p->p_boundary_count));
1075	PROC_SUNLOCK(p);
1076	if (wakeup_swapper)
1077		kick_proc0();
1078}
1079
1080struct thread *
1081thread_find(struct proc *p, lwpid_t tid)
1082{
1083	struct thread *td;
1084
1085	PROC_LOCK_ASSERT(p, MA_OWNED);
1086	FOREACH_THREAD_IN_PROC(p, td) {
1087		if (td->td_tid == tid)
1088			break;
1089	}
1090	return (td);
1091}
1092
1093/* Locate a thread by number; return with proc lock held. */
1094struct thread *
1095tdfind(lwpid_t tid, pid_t pid)
1096{
1097#define RUN_THRESH	16
1098	struct thread *td;
1099	int run = 0;
1100
1101	rw_rlock(&tidhash_lock);
1102	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1103		if (td->td_tid == tid) {
1104			if (pid != -1 && td->td_proc->p_pid != pid) {
1105				td = NULL;
1106				break;
1107			}
1108			PROC_LOCK(td->td_proc);
1109			if (td->td_proc->p_state == PRS_NEW) {
1110				PROC_UNLOCK(td->td_proc);
1111				td = NULL;
1112				break;
1113			}
1114			if (run > RUN_THRESH) {
1115				if (rw_try_upgrade(&tidhash_lock)) {
1116					LIST_REMOVE(td, td_hash);
1117					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1118						td, td_hash);
1119					rw_wunlock(&tidhash_lock);
1120					return (td);
1121				}
1122			}
1123			break;
1124		}
1125		run++;
1126	}
1127	rw_runlock(&tidhash_lock);
1128	return (td);
1129}
1130
1131void
1132tidhash_add(struct thread *td)
1133{
1134	rw_wlock(&tidhash_lock);
1135	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1136	rw_wunlock(&tidhash_lock);
1137}
1138
1139void
1140tidhash_remove(struct thread *td)
1141{
1142	rw_wlock(&tidhash_lock);
1143	LIST_REMOVE(td, td_hash);
1144	rw_wunlock(&tidhash_lock);
1145}
1146