kern_thread.c revision 276272
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include "opt_witness.h"
30#include "opt_kdtrace.h"
31#include "opt_hwpmc_hooks.h"
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/kern/kern_thread.c 276272 2014-12-27 00:55:14Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/rangelock.h>
43#include <sys/resourcevar.h>
44#include <sys/sdt.h>
45#include <sys/smp.h>
46#include <sys/sched.h>
47#include <sys/sleepqueue.h>
48#include <sys/selinfo.h>
49#include <sys/turnstile.h>
50#include <sys/ktr.h>
51#include <sys/rwlock.h>
52#include <sys/umtx.h>
53#include <sys/cpuset.h>
54#ifdef	HWPMC_HOOKS
55#include <sys/pmckern.h>
56#endif
57
58#include <security/audit/audit.h>
59
60#include <vm/vm.h>
61#include <vm/vm_extern.h>
62#include <vm/uma.h>
63#include <sys/eventhandler.h>
64
65SDT_PROVIDER_DECLARE(proc);
66SDT_PROBE_DEFINE(proc, , , lwp__exit);
67
68/*
69 * thread related storage.
70 */
71static uma_zone_t thread_zone;
72
73TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74static struct mtx zombie_lock;
75MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76
77static void thread_zombie(struct thread *);
78
79#define TID_BUFFER_SIZE	1024
80
81struct mtx tid_lock;
82static struct unrhdr *tid_unrhdr;
83static lwpid_t tid_buffer[TID_BUFFER_SIZE];
84static int tid_head, tid_tail;
85static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
86
87struct	tidhashhead *tidhashtbl;
88u_long	tidhash;
89struct	rwlock tidhash_lock;
90
91static lwpid_t
92tid_alloc(void)
93{
94	lwpid_t	tid;
95
96	tid = alloc_unr(tid_unrhdr);
97	if (tid != -1)
98		return (tid);
99	mtx_lock(&tid_lock);
100	if (tid_head == tid_tail) {
101		mtx_unlock(&tid_lock);
102		return (-1);
103	}
104	tid = tid_buffer[tid_head];
105	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
106	mtx_unlock(&tid_lock);
107	return (tid);
108}
109
110static void
111tid_free(lwpid_t tid)
112{
113	lwpid_t tmp_tid = -1;
114
115	mtx_lock(&tid_lock);
116	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
117		tmp_tid = tid_buffer[tid_head];
118		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
119	}
120	tid_buffer[tid_tail] = tid;
121	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
122	mtx_unlock(&tid_lock);
123	if (tmp_tid != -1)
124		free_unr(tid_unrhdr, tmp_tid);
125}
126
127/*
128 * Prepare a thread for use.
129 */
130static int
131thread_ctor(void *mem, int size, void *arg, int flags)
132{
133	struct thread	*td;
134
135	td = (struct thread *)mem;
136	td->td_state = TDS_INACTIVE;
137	td->td_oncpu = NOCPU;
138
139	td->td_tid = tid_alloc();
140
141	/*
142	 * Note that td_critnest begins life as 1 because the thread is not
143	 * running and is thereby implicitly waiting to be on the receiving
144	 * end of a context switch.
145	 */
146	td->td_critnest = 1;
147	td->td_lend_user_pri = PRI_MAX;
148	EVENTHANDLER_INVOKE(thread_ctor, td);
149#ifdef AUDIT
150	audit_thread_alloc(td);
151#endif
152	umtx_thread_alloc(td);
153	return (0);
154}
155
156/*
157 * Reclaim a thread after use.
158 */
159static void
160thread_dtor(void *mem, int size, void *arg)
161{
162	struct thread *td;
163
164	td = (struct thread *)mem;
165
166#ifdef INVARIANTS
167	/* Verify that this thread is in a safe state to free. */
168	switch (td->td_state) {
169	case TDS_INHIBITED:
170	case TDS_RUNNING:
171	case TDS_CAN_RUN:
172	case TDS_RUNQ:
173		/*
174		 * We must never unlink a thread that is in one of
175		 * these states, because it is currently active.
176		 */
177		panic("bad state for thread unlinking");
178		/* NOTREACHED */
179	case TDS_INACTIVE:
180		break;
181	default:
182		panic("bad thread state");
183		/* NOTREACHED */
184	}
185#endif
186#ifdef AUDIT
187	audit_thread_free(td);
188#endif
189	/* Free all OSD associated to this thread. */
190	osd_thread_exit(td);
191
192	EVENTHANDLER_INVOKE(thread_dtor, td);
193	tid_free(td->td_tid);
194}
195
196/*
197 * Initialize type-stable parts of a thread (when newly created).
198 */
199static int
200thread_init(void *mem, int size, int flags)
201{
202	struct thread *td;
203
204	td = (struct thread *)mem;
205
206	td->td_sleepqueue = sleepq_alloc();
207	td->td_turnstile = turnstile_alloc();
208	td->td_rlqe = NULL;
209	EVENTHANDLER_INVOKE(thread_init, td);
210	td->td_sched = (struct td_sched *)&td[1];
211	umtx_thread_init(td);
212	td->td_kstack = 0;
213	return (0);
214}
215
216/*
217 * Tear down type-stable parts of a thread (just before being discarded).
218 */
219static void
220thread_fini(void *mem, int size)
221{
222	struct thread *td;
223
224	td = (struct thread *)mem;
225	EVENTHANDLER_INVOKE(thread_fini, td);
226	rlqentry_free(td->td_rlqe);
227	turnstile_free(td->td_turnstile);
228	sleepq_free(td->td_sleepqueue);
229	umtx_thread_fini(td);
230	seltdfini(td);
231}
232
233/*
234 * For a newly created process,
235 * link up all the structures and its initial threads etc.
236 * called from:
237 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
238 * proc_dtor() (should go away)
239 * proc_init()
240 */
241void
242proc_linkup0(struct proc *p, struct thread *td)
243{
244	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
245	proc_linkup(p, td);
246}
247
248void
249proc_linkup(struct proc *p, struct thread *td)
250{
251
252	sigqueue_init(&p->p_sigqueue, p);
253	p->p_ksi = ksiginfo_alloc(1);
254	if (p->p_ksi != NULL) {
255		/* XXX p_ksi may be null if ksiginfo zone is not ready */
256		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
257	}
258	LIST_INIT(&p->p_mqnotifier);
259	p->p_numthreads = 0;
260	thread_link(td, p);
261}
262
263/*
264 * Initialize global thread allocation resources.
265 */
266void
267threadinit(void)
268{
269
270	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
271
272	/*
273	 * pid_max cannot be greater than PID_MAX.
274	 * leave one number for thread0.
275	 */
276	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
277
278	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
279	    thread_ctor, thread_dtor, thread_init, thread_fini,
280	    16 - 1, 0);
281	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
282	rw_init(&tidhash_lock, "tidhash");
283}
284
285/*
286 * Place an unused thread on the zombie list.
287 * Use the slpq as that must be unused by now.
288 */
289void
290thread_zombie(struct thread *td)
291{
292	mtx_lock_spin(&zombie_lock);
293	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
294	mtx_unlock_spin(&zombie_lock);
295}
296
297/*
298 * Release a thread that has exited after cpu_throw().
299 */
300void
301thread_stash(struct thread *td)
302{
303	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
304	thread_zombie(td);
305}
306
307/*
308 * Reap zombie resources.
309 */
310void
311thread_reap(void)
312{
313	struct thread *td_first, *td_next;
314
315	/*
316	 * Don't even bother to lock if none at this instant,
317	 * we really don't care about the next instant..
318	 */
319	if (!TAILQ_EMPTY(&zombie_threads)) {
320		mtx_lock_spin(&zombie_lock);
321		td_first = TAILQ_FIRST(&zombie_threads);
322		if (td_first)
323			TAILQ_INIT(&zombie_threads);
324		mtx_unlock_spin(&zombie_lock);
325		while (td_first) {
326			td_next = TAILQ_NEXT(td_first, td_slpq);
327			if (td_first->td_ucred)
328				crfree(td_first->td_ucred);
329			thread_free(td_first);
330			td_first = td_next;
331		}
332	}
333}
334
335/*
336 * Allocate a thread.
337 */
338struct thread *
339thread_alloc(int pages)
340{
341	struct thread *td;
342
343	thread_reap(); /* check if any zombies to get */
344
345	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
346	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
347	if (!vm_thread_new(td, pages)) {
348		uma_zfree(thread_zone, td);
349		return (NULL);
350	}
351	cpu_thread_alloc(td);
352	return (td);
353}
354
355int
356thread_alloc_stack(struct thread *td, int pages)
357{
358
359	KASSERT(td->td_kstack == 0,
360	    ("thread_alloc_stack called on a thread with kstack"));
361	if (!vm_thread_new(td, pages))
362		return (0);
363	cpu_thread_alloc(td);
364	return (1);
365}
366
367/*
368 * Deallocate a thread.
369 */
370void
371thread_free(struct thread *td)
372{
373
374	lock_profile_thread_exit(td);
375	if (td->td_cpuset)
376		cpuset_rel(td->td_cpuset);
377	td->td_cpuset = NULL;
378	cpu_thread_free(td);
379	if (td->td_kstack != 0)
380		vm_thread_dispose(td);
381	uma_zfree(thread_zone, td);
382}
383
384/*
385 * Discard the current thread and exit from its context.
386 * Always called with scheduler locked.
387 *
388 * Because we can't free a thread while we're operating under its context,
389 * push the current thread into our CPU's deadthread holder. This means
390 * we needn't worry about someone else grabbing our context before we
391 * do a cpu_throw().
392 */
393void
394thread_exit(void)
395{
396	uint64_t runtime, new_switchtime;
397	struct thread *td;
398	struct thread *td2;
399	struct proc *p;
400	int wakeup_swapper;
401
402	td = curthread;
403	p = td->td_proc;
404
405	PROC_SLOCK_ASSERT(p, MA_OWNED);
406	mtx_assert(&Giant, MA_NOTOWNED);
407
408	PROC_LOCK_ASSERT(p, MA_OWNED);
409	KASSERT(p != NULL, ("thread exiting without a process"));
410	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
411	    (long)p->p_pid, td->td_name);
412	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
413
414#ifdef AUDIT
415	AUDIT_SYSCALL_EXIT(0, td);
416#endif
417	umtx_thread_exit(td);
418	/*
419	 * drop FPU & debug register state storage, or any other
420	 * architecture specific resources that
421	 * would not be on a new untouched process.
422	 */
423	cpu_thread_exit(td);	/* XXXSMP */
424
425	/*
426	 * The last thread is left attached to the process
427	 * So that the whole bundle gets recycled. Skip
428	 * all this stuff if we never had threads.
429	 * EXIT clears all sign of other threads when
430	 * it goes to single threading, so the last thread always
431	 * takes the short path.
432	 */
433	if (p->p_flag & P_HADTHREADS) {
434		if (p->p_numthreads > 1) {
435			atomic_add_int(&td->td_proc->p_exitthreads, 1);
436			thread_unlink(td);
437			td2 = FIRST_THREAD_IN_PROC(p);
438			sched_exit_thread(td2, td);
439
440			/*
441			 * The test below is NOT true if we are the
442			 * sole exiting thread. P_STOPPED_SINGLE is unset
443			 * in exit1() after it is the only survivor.
444			 */
445			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
446				if (p->p_numthreads == p->p_suspcount) {
447					thread_lock(p->p_singlethread);
448					wakeup_swapper = thread_unsuspend_one(
449						p->p_singlethread, p);
450					thread_unlock(p->p_singlethread);
451					if (wakeup_swapper)
452						kick_proc0();
453				}
454			}
455
456			PCPU_SET(deadthread, td);
457		} else {
458			/*
459			 * The last thread is exiting.. but not through exit()
460			 */
461			panic ("thread_exit: Last thread exiting on its own");
462		}
463	}
464#ifdef	HWPMC_HOOKS
465	/*
466	 * If this thread is part of a process that is being tracked by hwpmc(4),
467	 * inform the module of the thread's impending exit.
468	 */
469	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
470		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
471#endif
472	PROC_UNLOCK(p);
473
474	/* Do the same timestamp bookkeeping that mi_switch() would do. */
475	new_switchtime = cpu_ticks();
476	runtime = new_switchtime - PCPU_GET(switchtime);
477	td->td_runtime += runtime;
478	td->td_incruntime += runtime;
479	PCPU_SET(switchtime, new_switchtime);
480	PCPU_SET(switchticks, ticks);
481	PCPU_INC(cnt.v_swtch);
482
483	/* Save our resource usage in our process. */
484	td->td_ru.ru_nvcsw++;
485	ruxagg(p, td);
486	rucollect(&p->p_ru, &td->td_ru);
487
488	thread_lock(td);
489	PROC_SUNLOCK(p);
490	td->td_state = TDS_INACTIVE;
491#ifdef WITNESS
492	witness_thread_exit(td);
493#endif
494	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
495	sched_throw(td);
496	panic("I'm a teapot!");
497	/* NOTREACHED */
498}
499
500/*
501 * Do any thread specific cleanups that may be needed in wait()
502 * called with Giant, proc and schedlock not held.
503 */
504void
505thread_wait(struct proc *p)
506{
507	struct thread *td;
508
509	mtx_assert(&Giant, MA_NOTOWNED);
510	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
511	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
512	td = FIRST_THREAD_IN_PROC(p);
513	/* Lock the last thread so we spin until it exits cpu_throw(). */
514	thread_lock(td);
515	thread_unlock(td);
516	lock_profile_thread_exit(td);
517	cpuset_rel(td->td_cpuset);
518	td->td_cpuset = NULL;
519	cpu_thread_clean(td);
520	crfree(td->td_ucred);
521	thread_reap();	/* check for zombie threads etc. */
522}
523
524/*
525 * Link a thread to a process.
526 * set up anything that needs to be initialized for it to
527 * be used by the process.
528 */
529void
530thread_link(struct thread *td, struct proc *p)
531{
532
533	/*
534	 * XXX This can't be enabled because it's called for proc0 before
535	 * its lock has been created.
536	 * PROC_LOCK_ASSERT(p, MA_OWNED);
537	 */
538	td->td_state    = TDS_INACTIVE;
539	td->td_proc     = p;
540	td->td_flags    = TDF_INMEM;
541
542	LIST_INIT(&td->td_contested);
543	LIST_INIT(&td->td_lprof[0]);
544	LIST_INIT(&td->td_lprof[1]);
545	sigqueue_init(&td->td_sigqueue, p);
546	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
547	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
548	p->p_numthreads++;
549}
550
551/*
552 * Called from:
553 *  thread_exit()
554 */
555void
556thread_unlink(struct thread *td)
557{
558	struct proc *p = td->td_proc;
559
560	PROC_LOCK_ASSERT(p, MA_OWNED);
561	TAILQ_REMOVE(&p->p_threads, td, td_plist);
562	p->p_numthreads--;
563	/* could clear a few other things here */
564	/* Must  NOT clear links to proc! */
565}
566
567static int
568calc_remaining(struct proc *p, int mode)
569{
570	int remaining;
571
572	PROC_LOCK_ASSERT(p, MA_OWNED);
573	PROC_SLOCK_ASSERT(p, MA_OWNED);
574	if (mode == SINGLE_EXIT)
575		remaining = p->p_numthreads;
576	else if (mode == SINGLE_BOUNDARY)
577		remaining = p->p_numthreads - p->p_boundary_count;
578	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
579		remaining = p->p_numthreads - p->p_suspcount;
580	else
581		panic("calc_remaining: wrong mode %d", mode);
582	return (remaining);
583}
584
585static int
586remain_for_mode(int mode)
587{
588
589	return (mode == SINGLE_ALLPROC ? 0 : 1);
590}
591
592static int
593weed_inhib(int mode, struct thread *td2, struct proc *p)
594{
595	int wakeup_swapper;
596
597	PROC_LOCK_ASSERT(p, MA_OWNED);
598	PROC_SLOCK_ASSERT(p, MA_OWNED);
599	THREAD_LOCK_ASSERT(td2, MA_OWNED);
600
601	wakeup_swapper = 0;
602	switch (mode) {
603	case SINGLE_EXIT:
604		if (TD_IS_SUSPENDED(td2))
605			wakeup_swapper |= thread_unsuspend_one(td2, p);
606		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
607			wakeup_swapper |= sleepq_abort(td2, EINTR);
608		break;
609	case SINGLE_BOUNDARY:
610		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
611			wakeup_swapper |= thread_unsuspend_one(td2, p);
612		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
613			wakeup_swapper |= sleepq_abort(td2, ERESTART);
614		break;
615	case SINGLE_NO_EXIT:
616		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
617			wakeup_swapper |= thread_unsuspend_one(td2, p);
618		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
619			wakeup_swapper |= sleepq_abort(td2, ERESTART);
620		break;
621	case SINGLE_ALLPROC:
622		/*
623		 * ALLPROC suspend tries to avoid spurious EINTR for
624		 * threads sleeping interruptable, by suspending the
625		 * thread directly, similarly to sig_suspend_threads().
626		 * Since such sleep is not performed at the user
627		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
628		 * is used to avoid immediate un-suspend.
629		 */
630		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
631		    TDF_ALLPROCSUSP)) == 0)
632			wakeup_swapper |= thread_unsuspend_one(td2, p);
633		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
634			if ((td2->td_flags & TDF_SBDRY) == 0) {
635				thread_suspend_one(td2);
636				td2->td_flags |= TDF_ALLPROCSUSP;
637			} else {
638				wakeup_swapper |= sleepq_abort(td2, ERESTART);
639			}
640		}
641		break;
642	}
643	return (wakeup_swapper);
644}
645
646/*
647 * Enforce single-threading.
648 *
649 * Returns 1 if the caller must abort (another thread is waiting to
650 * exit the process or similar). Process is locked!
651 * Returns 0 when you are successfully the only thread running.
652 * A process has successfully single threaded in the suspend mode when
653 * There are no threads in user mode. Threads in the kernel must be
654 * allowed to continue until they get to the user boundary. They may even
655 * copy out their return values and data before suspending. They may however be
656 * accelerated in reaching the user boundary as we will wake up
657 * any sleeping threads that are interruptable. (PCATCH).
658 */
659int
660thread_single(struct proc *p, int mode)
661{
662	struct thread *td;
663	struct thread *td2;
664	int remaining, wakeup_swapper;
665
666	td = curthread;
667	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
668	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
669	    ("invalid mode %d", mode));
670	/*
671	 * If allowing non-ALLPROC singlethreading for non-curproc
672	 * callers, calc_remaining() and remain_for_mode() should be
673	 * adjusted to also account for td->td_proc != p.  For now
674	 * this is not implemented because it is not used.
675	 */
676	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
677	    (mode != SINGLE_ALLPROC && td->td_proc == p),
678	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
679	mtx_assert(&Giant, MA_NOTOWNED);
680	PROC_LOCK_ASSERT(p, MA_OWNED);
681
682	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
683		return (0);
684
685	/* Is someone already single threading? */
686	if (p->p_singlethread != NULL && p->p_singlethread != td)
687		return (1);
688
689	if (mode == SINGLE_EXIT) {
690		p->p_flag |= P_SINGLE_EXIT;
691		p->p_flag &= ~P_SINGLE_BOUNDARY;
692	} else {
693		p->p_flag &= ~P_SINGLE_EXIT;
694		if (mode == SINGLE_BOUNDARY)
695			p->p_flag |= P_SINGLE_BOUNDARY;
696		else
697			p->p_flag &= ~P_SINGLE_BOUNDARY;
698	}
699	if (mode == SINGLE_ALLPROC)
700		p->p_flag |= P_TOTAL_STOP;
701	p->p_flag |= P_STOPPED_SINGLE;
702	PROC_SLOCK(p);
703	p->p_singlethread = td;
704	remaining = calc_remaining(p, mode);
705	while (remaining != remain_for_mode(mode)) {
706		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
707			goto stopme;
708		wakeup_swapper = 0;
709		FOREACH_THREAD_IN_PROC(p, td2) {
710			if (td2 == td)
711				continue;
712			thread_lock(td2);
713			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
714			if (TD_IS_INHIBITED(td2)) {
715				wakeup_swapper |= weed_inhib(mode, td2, p);
716#ifdef SMP
717			} else if (TD_IS_RUNNING(td2) && td != td2) {
718				forward_signal(td2);
719#endif
720			}
721			thread_unlock(td2);
722		}
723		if (wakeup_swapper)
724			kick_proc0();
725		remaining = calc_remaining(p, mode);
726
727		/*
728		 * Maybe we suspended some threads.. was it enough?
729		 */
730		if (remaining == remain_for_mode(mode))
731			break;
732
733stopme:
734		/*
735		 * Wake us up when everyone else has suspended.
736		 * In the mean time we suspend as well.
737		 */
738		thread_suspend_switch(td, p);
739		remaining = calc_remaining(p, mode);
740	}
741	if (mode == SINGLE_EXIT) {
742		/*
743		 * Convert the process to an unthreaded process.  The
744		 * SINGLE_EXIT is called by exit1() or execve(), in
745		 * both cases other threads must be retired.
746		 */
747		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
748		p->p_singlethread = NULL;
749		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
750
751		/*
752		 * Wait for any remaining threads to exit cpu_throw().
753		 */
754		while (p->p_exitthreads != 0) {
755			PROC_SUNLOCK(p);
756			PROC_UNLOCK(p);
757			sched_relinquish(td);
758			PROC_LOCK(p);
759			PROC_SLOCK(p);
760		}
761	}
762	PROC_SUNLOCK(p);
763	return (0);
764}
765
766bool
767thread_suspend_check_needed(void)
768{
769	struct proc *p;
770	struct thread *td;
771
772	td = curthread;
773	p = td->td_proc;
774	PROC_LOCK_ASSERT(p, MA_OWNED);
775	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
776	    (td->td_dbgflags & TDB_SUSPEND) != 0));
777}
778
779/*
780 * Called in from locations that can safely check to see
781 * whether we have to suspend or at least throttle for a
782 * single-thread event (e.g. fork).
783 *
784 * Such locations include userret().
785 * If the "return_instead" argument is non zero, the thread must be able to
786 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
787 *
788 * The 'return_instead' argument tells the function if it may do a
789 * thread_exit() or suspend, or whether the caller must abort and back
790 * out instead.
791 *
792 * If the thread that set the single_threading request has set the
793 * P_SINGLE_EXIT bit in the process flags then this call will never return
794 * if 'return_instead' is false, but will exit.
795 *
796 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
797 *---------------+--------------------+---------------------
798 *       0       | returns 0          |   returns 0 or 1
799 *               | when ST ends       |   immediately
800 *---------------+--------------------+---------------------
801 *       1       | thread exits       |   returns 1
802 *               |                    |  immediately
803 * 0 = thread_exit() or suspension ok,
804 * other = return error instead of stopping the thread.
805 *
806 * While a full suspension is under effect, even a single threading
807 * thread would be suspended if it made this call (but it shouldn't).
808 * This call should only be made from places where
809 * thread_exit() would be safe as that may be the outcome unless
810 * return_instead is set.
811 */
812int
813thread_suspend_check(int return_instead)
814{
815	struct thread *td;
816	struct proc *p;
817	int wakeup_swapper;
818
819	td = curthread;
820	p = td->td_proc;
821	mtx_assert(&Giant, MA_NOTOWNED);
822	PROC_LOCK_ASSERT(p, MA_OWNED);
823	while (thread_suspend_check_needed()) {
824		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
825			KASSERT(p->p_singlethread != NULL,
826			    ("singlethread not set"));
827			/*
828			 * The only suspension in action is a
829			 * single-threading. Single threader need not stop.
830			 * XXX Should be safe to access unlocked
831			 * as it can only be set to be true by us.
832			 */
833			if (p->p_singlethread == td)
834				return (0);	/* Exempt from stopping. */
835		}
836		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
837			return (EINTR);
838
839		/* Should we goto user boundary if we didn't come from there? */
840		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
841		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
842			return (ERESTART);
843
844		/*
845		 * Ignore suspend requests for stop signals if they
846		 * are deferred.
847		 */
848		if ((P_SHOULDSTOP(p) == P_STOPPED_SIG ||
849		    (p->p_flag & P_TOTAL_STOP) != 0) &&
850		    (td->td_flags & TDF_SBDRY) != 0) {
851			KASSERT(return_instead,
852			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
853			return (0);
854		}
855
856		/*
857		 * If the process is waiting for us to exit,
858		 * this thread should just suicide.
859		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
860		 */
861		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
862			PROC_UNLOCK(p);
863			tidhash_remove(td);
864			PROC_LOCK(p);
865			tdsigcleanup(td);
866			PROC_SLOCK(p);
867			thread_stopped(p);
868			thread_exit();
869		}
870
871		PROC_SLOCK(p);
872		thread_stopped(p);
873		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
874			if (p->p_numthreads == p->p_suspcount + 1) {
875				thread_lock(p->p_singlethread);
876				wakeup_swapper =
877				    thread_unsuspend_one(p->p_singlethread, p);
878				thread_unlock(p->p_singlethread);
879				if (wakeup_swapper)
880					kick_proc0();
881			}
882		}
883		PROC_UNLOCK(p);
884		thread_lock(td);
885		/*
886		 * When a thread suspends, it just
887		 * gets taken off all queues.
888		 */
889		thread_suspend_one(td);
890		if (return_instead == 0) {
891			p->p_boundary_count++;
892			td->td_flags |= TDF_BOUNDARY;
893		}
894		PROC_SUNLOCK(p);
895		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
896		if (return_instead == 0)
897			td->td_flags &= ~TDF_BOUNDARY;
898		thread_unlock(td);
899		PROC_LOCK(p);
900		if (return_instead == 0) {
901			PROC_SLOCK(p);
902			p->p_boundary_count--;
903			PROC_SUNLOCK(p);
904		}
905	}
906	return (0);
907}
908
909void
910thread_suspend_switch(struct thread *td, struct proc *p)
911{
912
913	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
914	PROC_LOCK_ASSERT(p, MA_OWNED);
915	PROC_SLOCK_ASSERT(p, MA_OWNED);
916	/*
917	 * We implement thread_suspend_one in stages here to avoid
918	 * dropping the proc lock while the thread lock is owned.
919	 */
920	if (p == td->td_proc) {
921		thread_stopped(p);
922		p->p_suspcount++;
923	}
924	PROC_UNLOCK(p);
925	thread_lock(td);
926	td->td_flags &= ~TDF_NEEDSUSPCHK;
927	TD_SET_SUSPENDED(td);
928	sched_sleep(td, 0);
929	PROC_SUNLOCK(p);
930	DROP_GIANT();
931	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
932	thread_unlock(td);
933	PICKUP_GIANT();
934	PROC_LOCK(p);
935	PROC_SLOCK(p);
936}
937
938void
939thread_suspend_one(struct thread *td)
940{
941	struct proc *p;
942
943	p = td->td_proc;
944	PROC_SLOCK_ASSERT(p, MA_OWNED);
945	THREAD_LOCK_ASSERT(td, MA_OWNED);
946	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
947	p->p_suspcount++;
948	td->td_flags &= ~TDF_NEEDSUSPCHK;
949	TD_SET_SUSPENDED(td);
950	sched_sleep(td, 0);
951}
952
953int
954thread_unsuspend_one(struct thread *td, struct proc *p)
955{
956
957	THREAD_LOCK_ASSERT(td, MA_OWNED);
958	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
959	TD_CLR_SUSPENDED(td);
960	td->td_flags &= ~TDF_ALLPROCSUSP;
961	if (td->td_proc == p) {
962		PROC_SLOCK_ASSERT(p, MA_OWNED);
963		p->p_suspcount--;
964	}
965	return (setrunnable(td));
966}
967
968/*
969 * Allow all threads blocked by single threading to continue running.
970 */
971void
972thread_unsuspend(struct proc *p)
973{
974	struct thread *td;
975	int wakeup_swapper;
976
977	PROC_LOCK_ASSERT(p, MA_OWNED);
978	PROC_SLOCK_ASSERT(p, MA_OWNED);
979	wakeup_swapper = 0;
980	if (!P_SHOULDSTOP(p)) {
981                FOREACH_THREAD_IN_PROC(p, td) {
982			thread_lock(td);
983			if (TD_IS_SUSPENDED(td)) {
984				wakeup_swapper |= thread_unsuspend_one(td, p);
985			}
986			thread_unlock(td);
987		}
988	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
989	    (p->p_numthreads == p->p_suspcount)) {
990		/*
991		 * Stopping everything also did the job for the single
992		 * threading request. Now we've downgraded to single-threaded,
993		 * let it continue.
994		 */
995		if (p->p_singlethread->td_proc == p) {
996			thread_lock(p->p_singlethread);
997			wakeup_swapper = thread_unsuspend_one(
998			    p->p_singlethread, p);
999			thread_unlock(p->p_singlethread);
1000		}
1001	}
1002	if (wakeup_swapper)
1003		kick_proc0();
1004}
1005
1006/*
1007 * End the single threading mode..
1008 */
1009void
1010thread_single_end(struct proc *p, int mode)
1011{
1012	struct thread *td;
1013	int wakeup_swapper;
1014
1015	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1016	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1017	    ("invalid mode %d", mode));
1018	PROC_LOCK_ASSERT(p, MA_OWNED);
1019	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1020	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1021	    ("mode %d does not match P_TOTAL_STOP", mode));
1022	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1023	    P_TOTAL_STOP);
1024	PROC_SLOCK(p);
1025	p->p_singlethread = NULL;
1026	wakeup_swapper = 0;
1027	/*
1028	 * If there are other threads they may now run,
1029	 * unless of course there is a blanket 'stop order'
1030	 * on the process. The single threader must be allowed
1031	 * to continue however as this is a bad place to stop.
1032	 */
1033	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1034                FOREACH_THREAD_IN_PROC(p, td) {
1035			thread_lock(td);
1036			if (TD_IS_SUSPENDED(td)) {
1037				wakeup_swapper |= thread_unsuspend_one(td, p);
1038			}
1039			thread_unlock(td);
1040		}
1041	}
1042	PROC_SUNLOCK(p);
1043	if (wakeup_swapper)
1044		kick_proc0();
1045}
1046
1047struct thread *
1048thread_find(struct proc *p, lwpid_t tid)
1049{
1050	struct thread *td;
1051
1052	PROC_LOCK_ASSERT(p, MA_OWNED);
1053	FOREACH_THREAD_IN_PROC(p, td) {
1054		if (td->td_tid == tid)
1055			break;
1056	}
1057	return (td);
1058}
1059
1060/* Locate a thread by number; return with proc lock held. */
1061struct thread *
1062tdfind(lwpid_t tid, pid_t pid)
1063{
1064#define RUN_THRESH	16
1065	struct thread *td;
1066	int run = 0;
1067
1068	rw_rlock(&tidhash_lock);
1069	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1070		if (td->td_tid == tid) {
1071			if (pid != -1 && td->td_proc->p_pid != pid) {
1072				td = NULL;
1073				break;
1074			}
1075			PROC_LOCK(td->td_proc);
1076			if (td->td_proc->p_state == PRS_NEW) {
1077				PROC_UNLOCK(td->td_proc);
1078				td = NULL;
1079				break;
1080			}
1081			if (run > RUN_THRESH) {
1082				if (rw_try_upgrade(&tidhash_lock)) {
1083					LIST_REMOVE(td, td_hash);
1084					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1085						td, td_hash);
1086					rw_wunlock(&tidhash_lock);
1087					return (td);
1088				}
1089			}
1090			break;
1091		}
1092		run++;
1093	}
1094	rw_runlock(&tidhash_lock);
1095	return (td);
1096}
1097
1098void
1099tidhash_add(struct thread *td)
1100{
1101	rw_wlock(&tidhash_lock);
1102	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1103	rw_wunlock(&tidhash_lock);
1104}
1105
1106void
1107tidhash_remove(struct thread *td)
1108{
1109	rw_wlock(&tidhash_lock);
1110	LIST_REMOVE(td, td_hash);
1111	rw_wunlock(&tidhash_lock);
1112}
1113