kern_thread.c revision 275794
1/*-
2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3 *  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice(s), this list of conditions and the following disclaimer as
10 *    the first lines of this file unmodified other than the possible
11 *    addition of one or more copyright notices.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice(s), this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 * DAMAGE.
27 */
28
29#include "opt_witness.h"
30#include "opt_kdtrace.h"
31#include "opt_hwpmc_hooks.h"
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/kern/kern_thread.c 275794 2014-12-15 10:46:07Z kib $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/lock.h>
40#include <sys/mutex.h>
41#include <sys/proc.h>
42#include <sys/rangelock.h>
43#include <sys/resourcevar.h>
44#include <sys/sdt.h>
45#include <sys/smp.h>
46#include <sys/sched.h>
47#include <sys/sleepqueue.h>
48#include <sys/selinfo.h>
49#include <sys/turnstile.h>
50#include <sys/ktr.h>
51#include <sys/rwlock.h>
52#include <sys/umtx.h>
53#include <sys/cpuset.h>
54#ifdef	HWPMC_HOOKS
55#include <sys/pmckern.h>
56#endif
57
58#include <security/audit/audit.h>
59
60#include <vm/vm.h>
61#include <vm/vm_extern.h>
62#include <vm/uma.h>
63#include <sys/eventhandler.h>
64
65SDT_PROVIDER_DECLARE(proc);
66SDT_PROBE_DEFINE(proc, , , lwp__exit);
67
68
69/*
70 * thread related storage.
71 */
72static uma_zone_t thread_zone;
73
74TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
75static struct mtx zombie_lock;
76MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
77
78static void thread_zombie(struct thread *);
79
80#define TID_BUFFER_SIZE	1024
81
82struct mtx tid_lock;
83static struct unrhdr *tid_unrhdr;
84static lwpid_t tid_buffer[TID_BUFFER_SIZE];
85static int tid_head, tid_tail;
86static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
87
88struct	tidhashhead *tidhashtbl;
89u_long	tidhash;
90struct	rwlock tidhash_lock;
91
92static lwpid_t
93tid_alloc(void)
94{
95	lwpid_t	tid;
96
97	tid = alloc_unr(tid_unrhdr);
98	if (tid != -1)
99		return (tid);
100	mtx_lock(&tid_lock);
101	if (tid_head == tid_tail) {
102		mtx_unlock(&tid_lock);
103		return (-1);
104	}
105	tid = tid_buffer[tid_head];
106	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
107	mtx_unlock(&tid_lock);
108	return (tid);
109}
110
111static void
112tid_free(lwpid_t tid)
113{
114	lwpid_t tmp_tid = -1;
115
116	mtx_lock(&tid_lock);
117	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
118		tmp_tid = tid_buffer[tid_head];
119		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
120	}
121	tid_buffer[tid_tail] = tid;
122	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
123	mtx_unlock(&tid_lock);
124	if (tmp_tid != -1)
125		free_unr(tid_unrhdr, tmp_tid);
126}
127
128/*
129 * Prepare a thread for use.
130 */
131static int
132thread_ctor(void *mem, int size, void *arg, int flags)
133{
134	struct thread	*td;
135
136	td = (struct thread *)mem;
137	td->td_state = TDS_INACTIVE;
138	td->td_oncpu = NOCPU;
139
140	td->td_tid = tid_alloc();
141
142	/*
143	 * Note that td_critnest begins life as 1 because the thread is not
144	 * running and is thereby implicitly waiting to be on the receiving
145	 * end of a context switch.
146	 */
147	td->td_critnest = 1;
148	td->td_lend_user_pri = PRI_MAX;
149	EVENTHANDLER_INVOKE(thread_ctor, td);
150#ifdef AUDIT
151	audit_thread_alloc(td);
152#endif
153	umtx_thread_alloc(td);
154	return (0);
155}
156
157/*
158 * Reclaim a thread after use.
159 */
160static void
161thread_dtor(void *mem, int size, void *arg)
162{
163	struct thread *td;
164
165	td = (struct thread *)mem;
166
167#ifdef INVARIANTS
168	/* Verify that this thread is in a safe state to free. */
169	switch (td->td_state) {
170	case TDS_INHIBITED:
171	case TDS_RUNNING:
172	case TDS_CAN_RUN:
173	case TDS_RUNQ:
174		/*
175		 * We must never unlink a thread that is in one of
176		 * these states, because it is currently active.
177		 */
178		panic("bad state for thread unlinking");
179		/* NOTREACHED */
180	case TDS_INACTIVE:
181		break;
182	default:
183		panic("bad thread state");
184		/* NOTREACHED */
185	}
186#endif
187#ifdef AUDIT
188	audit_thread_free(td);
189#endif
190	/* Free all OSD associated to this thread. */
191	osd_thread_exit(td);
192
193	EVENTHANDLER_INVOKE(thread_dtor, td);
194	tid_free(td->td_tid);
195}
196
197/*
198 * Initialize type-stable parts of a thread (when newly created).
199 */
200static int
201thread_init(void *mem, int size, int flags)
202{
203	struct thread *td;
204
205	td = (struct thread *)mem;
206
207	td->td_sleepqueue = sleepq_alloc();
208	td->td_turnstile = turnstile_alloc();
209	td->td_rlqe = NULL;
210	EVENTHANDLER_INVOKE(thread_init, td);
211	td->td_sched = (struct td_sched *)&td[1];
212	umtx_thread_init(td);
213	td->td_kstack = 0;
214	return (0);
215}
216
217/*
218 * Tear down type-stable parts of a thread (just before being discarded).
219 */
220static void
221thread_fini(void *mem, int size)
222{
223	struct thread *td;
224
225	td = (struct thread *)mem;
226	EVENTHANDLER_INVOKE(thread_fini, td);
227	rlqentry_free(td->td_rlqe);
228	turnstile_free(td->td_turnstile);
229	sleepq_free(td->td_sleepqueue);
230	umtx_thread_fini(td);
231	seltdfini(td);
232}
233
234/*
235 * For a newly created process,
236 * link up all the structures and its initial threads etc.
237 * called from:
238 * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
239 * proc_dtor() (should go away)
240 * proc_init()
241 */
242void
243proc_linkup0(struct proc *p, struct thread *td)
244{
245	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
246	proc_linkup(p, td);
247}
248
249void
250proc_linkup(struct proc *p, struct thread *td)
251{
252
253	sigqueue_init(&p->p_sigqueue, p);
254	p->p_ksi = ksiginfo_alloc(1);
255	if (p->p_ksi != NULL) {
256		/* XXX p_ksi may be null if ksiginfo zone is not ready */
257		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
258	}
259	LIST_INIT(&p->p_mqnotifier);
260	p->p_numthreads = 0;
261	thread_link(td, p);
262}
263
264/*
265 * Initialize global thread allocation resources.
266 */
267void
268threadinit(void)
269{
270
271	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
272
273	/*
274	 * pid_max cannot be greater than PID_MAX.
275	 * leave one number for thread0.
276	 */
277	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
278
279	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
280	    thread_ctor, thread_dtor, thread_init, thread_fini,
281	    16 - 1, 0);
282	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
283	rw_init(&tidhash_lock, "tidhash");
284}
285
286/*
287 * Place an unused thread on the zombie list.
288 * Use the slpq as that must be unused by now.
289 */
290void
291thread_zombie(struct thread *td)
292{
293	mtx_lock_spin(&zombie_lock);
294	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
295	mtx_unlock_spin(&zombie_lock);
296}
297
298/*
299 * Release a thread that has exited after cpu_throw().
300 */
301void
302thread_stash(struct thread *td)
303{
304	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
305	thread_zombie(td);
306}
307
308/*
309 * Reap zombie resources.
310 */
311void
312thread_reap(void)
313{
314	struct thread *td_first, *td_next;
315
316	/*
317	 * Don't even bother to lock if none at this instant,
318	 * we really don't care about the next instant..
319	 */
320	if (!TAILQ_EMPTY(&zombie_threads)) {
321		mtx_lock_spin(&zombie_lock);
322		td_first = TAILQ_FIRST(&zombie_threads);
323		if (td_first)
324			TAILQ_INIT(&zombie_threads);
325		mtx_unlock_spin(&zombie_lock);
326		while (td_first) {
327			td_next = TAILQ_NEXT(td_first, td_slpq);
328			if (td_first->td_ucred)
329				crfree(td_first->td_ucred);
330			thread_free(td_first);
331			td_first = td_next;
332		}
333	}
334}
335
336/*
337 * Allocate a thread.
338 */
339struct thread *
340thread_alloc(int pages)
341{
342	struct thread *td;
343
344	thread_reap(); /* check if any zombies to get */
345
346	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
347	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
348	if (!vm_thread_new(td, pages)) {
349		uma_zfree(thread_zone, td);
350		return (NULL);
351	}
352	cpu_thread_alloc(td);
353	return (td);
354}
355
356int
357thread_alloc_stack(struct thread *td, int pages)
358{
359
360	KASSERT(td->td_kstack == 0,
361	    ("thread_alloc_stack called on a thread with kstack"));
362	if (!vm_thread_new(td, pages))
363		return (0);
364	cpu_thread_alloc(td);
365	return (1);
366}
367
368/*
369 * Deallocate a thread.
370 */
371void
372thread_free(struct thread *td)
373{
374
375	lock_profile_thread_exit(td);
376	if (td->td_cpuset)
377		cpuset_rel(td->td_cpuset);
378	td->td_cpuset = NULL;
379	cpu_thread_free(td);
380	if (td->td_kstack != 0)
381		vm_thread_dispose(td);
382	uma_zfree(thread_zone, td);
383}
384
385/*
386 * Discard the current thread and exit from its context.
387 * Always called with scheduler locked.
388 *
389 * Because we can't free a thread while we're operating under its context,
390 * push the current thread into our CPU's deadthread holder. This means
391 * we needn't worry about someone else grabbing our context before we
392 * do a cpu_throw().
393 */
394void
395thread_exit(void)
396{
397	uint64_t runtime, new_switchtime;
398	struct thread *td;
399	struct thread *td2;
400	struct proc *p;
401	int wakeup_swapper;
402
403	td = curthread;
404	p = td->td_proc;
405
406	PROC_SLOCK_ASSERT(p, MA_OWNED);
407	mtx_assert(&Giant, MA_NOTOWNED);
408
409	PROC_LOCK_ASSERT(p, MA_OWNED);
410	KASSERT(p != NULL, ("thread exiting without a process"));
411	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
412	    (long)p->p_pid, td->td_name);
413	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
414
415#ifdef AUDIT
416	AUDIT_SYSCALL_EXIT(0, td);
417#endif
418	umtx_thread_exit(td);
419	/*
420	 * drop FPU & debug register state storage, or any other
421	 * architecture specific resources that
422	 * would not be on a new untouched process.
423	 */
424	cpu_thread_exit(td);	/* XXXSMP */
425
426	/*
427	 * The last thread is left attached to the process
428	 * So that the whole bundle gets recycled. Skip
429	 * all this stuff if we never had threads.
430	 * EXIT clears all sign of other threads when
431	 * it goes to single threading, so the last thread always
432	 * takes the short path.
433	 */
434	if (p->p_flag & P_HADTHREADS) {
435		if (p->p_numthreads > 1) {
436			atomic_add_int(&td->td_proc->p_exitthreads, 1);
437			thread_unlink(td);
438			td2 = FIRST_THREAD_IN_PROC(p);
439			sched_exit_thread(td2, td);
440
441			/*
442			 * The test below is NOT true if we are the
443			 * sole exiting thread. P_STOPPED_SINGLE is unset
444			 * in exit1() after it is the only survivor.
445			 */
446			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
447				if (p->p_numthreads == p->p_suspcount) {
448					thread_lock(p->p_singlethread);
449					wakeup_swapper = thread_unsuspend_one(
450						p->p_singlethread);
451					thread_unlock(p->p_singlethread);
452					if (wakeup_swapper)
453						kick_proc0();
454				}
455			}
456
457			PCPU_SET(deadthread, td);
458		} else {
459			/*
460			 * The last thread is exiting.. but not through exit()
461			 */
462			panic ("thread_exit: Last thread exiting on its own");
463		}
464	}
465#ifdef	HWPMC_HOOKS
466	/*
467	 * If this thread is part of a process that is being tracked by hwpmc(4),
468	 * inform the module of the thread's impending exit.
469	 */
470	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
471		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
472#endif
473	PROC_UNLOCK(p);
474
475	/* Do the same timestamp bookkeeping that mi_switch() would do. */
476	new_switchtime = cpu_ticks();
477	runtime = new_switchtime - PCPU_GET(switchtime);
478	td->td_runtime += runtime;
479	td->td_incruntime += runtime;
480	PCPU_SET(switchtime, new_switchtime);
481	PCPU_SET(switchticks, ticks);
482	PCPU_INC(cnt.v_swtch);
483
484	/* Save our resource usage in our process. */
485	td->td_ru.ru_nvcsw++;
486	ruxagg(p, td);
487	rucollect(&p->p_ru, &td->td_ru);
488
489	thread_lock(td);
490	PROC_SUNLOCK(p);
491	td->td_state = TDS_INACTIVE;
492#ifdef WITNESS
493	witness_thread_exit(td);
494#endif
495	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
496	sched_throw(td);
497	panic("I'm a teapot!");
498	/* NOTREACHED */
499}
500
501/*
502 * Do any thread specific cleanups that may be needed in wait()
503 * called with Giant, proc and schedlock not held.
504 */
505void
506thread_wait(struct proc *p)
507{
508	struct thread *td;
509
510	mtx_assert(&Giant, MA_NOTOWNED);
511	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
512	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
513	td = FIRST_THREAD_IN_PROC(p);
514	/* Lock the last thread so we spin until it exits cpu_throw(). */
515	thread_lock(td);
516	thread_unlock(td);
517	lock_profile_thread_exit(td);
518	cpuset_rel(td->td_cpuset);
519	td->td_cpuset = NULL;
520	cpu_thread_clean(td);
521	crfree(td->td_ucred);
522	thread_reap();	/* check for zombie threads etc. */
523}
524
525/*
526 * Link a thread to a process.
527 * set up anything that needs to be initialized for it to
528 * be used by the process.
529 */
530void
531thread_link(struct thread *td, struct proc *p)
532{
533
534	/*
535	 * XXX This can't be enabled because it's called for proc0 before
536	 * its lock has been created.
537	 * PROC_LOCK_ASSERT(p, MA_OWNED);
538	 */
539	td->td_state    = TDS_INACTIVE;
540	td->td_proc     = p;
541	td->td_flags    = TDF_INMEM;
542
543	LIST_INIT(&td->td_contested);
544	LIST_INIT(&td->td_lprof[0]);
545	LIST_INIT(&td->td_lprof[1]);
546	sigqueue_init(&td->td_sigqueue, p);
547	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
548	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
549	p->p_numthreads++;
550}
551
552/*
553 * Called from:
554 *  thread_exit()
555 */
556void
557thread_unlink(struct thread *td)
558{
559	struct proc *p = td->td_proc;
560
561	PROC_LOCK_ASSERT(p, MA_OWNED);
562	TAILQ_REMOVE(&p->p_threads, td, td_plist);
563	p->p_numthreads--;
564	/* could clear a few other things here */
565	/* Must  NOT clear links to proc! */
566}
567
568static int
569calc_remaining(struct proc *p, int mode)
570{
571	int remaining;
572
573	PROC_LOCK_ASSERT(p, MA_OWNED);
574	PROC_SLOCK_ASSERT(p, MA_OWNED);
575	if (mode == SINGLE_EXIT)
576		remaining = p->p_numthreads;
577	else if (mode == SINGLE_BOUNDARY)
578		remaining = p->p_numthreads - p->p_boundary_count;
579	else if (mode == SINGLE_NO_EXIT)
580		remaining = p->p_numthreads - p->p_suspcount;
581	else
582		panic("calc_remaining: wrong mode %d", mode);
583	return (remaining);
584}
585
586/*
587 * Enforce single-threading.
588 *
589 * Returns 1 if the caller must abort (another thread is waiting to
590 * exit the process or similar). Process is locked!
591 * Returns 0 when you are successfully the only thread running.
592 * A process has successfully single threaded in the suspend mode when
593 * There are no threads in user mode. Threads in the kernel must be
594 * allowed to continue until they get to the user boundary. They may even
595 * copy out their return values and data before suspending. They may however be
596 * accelerated in reaching the user boundary as we will wake up
597 * any sleeping threads that are interruptable. (PCATCH).
598 */
599int
600thread_single(int mode)
601{
602	struct thread *td;
603	struct thread *td2;
604	struct proc *p;
605	int remaining, wakeup_swapper;
606
607	td = curthread;
608	p = td->td_proc;
609	mtx_assert(&Giant, MA_NOTOWNED);
610	PROC_LOCK_ASSERT(p, MA_OWNED);
611
612	if ((p->p_flag & P_HADTHREADS) == 0)
613		return (0);
614
615	/* Is someone already single threading? */
616	if (p->p_singlethread != NULL && p->p_singlethread != td)
617		return (1);
618
619	if (mode == SINGLE_EXIT) {
620		p->p_flag |= P_SINGLE_EXIT;
621		p->p_flag &= ~P_SINGLE_BOUNDARY;
622	} else {
623		p->p_flag &= ~P_SINGLE_EXIT;
624		if (mode == SINGLE_BOUNDARY)
625			p->p_flag |= P_SINGLE_BOUNDARY;
626		else
627			p->p_flag &= ~P_SINGLE_BOUNDARY;
628	}
629	p->p_flag |= P_STOPPED_SINGLE;
630	PROC_SLOCK(p);
631	p->p_singlethread = td;
632	remaining = calc_remaining(p, mode);
633	while (remaining != 1) {
634		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
635			goto stopme;
636		wakeup_swapper = 0;
637		FOREACH_THREAD_IN_PROC(p, td2) {
638			if (td2 == td)
639				continue;
640			thread_lock(td2);
641			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
642			if (TD_IS_INHIBITED(td2)) {
643				switch (mode) {
644				case SINGLE_EXIT:
645					if (TD_IS_SUSPENDED(td2))
646						wakeup_swapper |=
647						    thread_unsuspend_one(td2);
648					if (TD_ON_SLEEPQ(td2) &&
649					    (td2->td_flags & TDF_SINTR))
650						wakeup_swapper |=
651						    sleepq_abort(td2, EINTR);
652					break;
653				case SINGLE_BOUNDARY:
654					if (TD_IS_SUSPENDED(td2) &&
655					    !(td2->td_flags & TDF_BOUNDARY))
656						wakeup_swapper |=
657						    thread_unsuspend_one(td2);
658					if (TD_ON_SLEEPQ(td2) &&
659					    (td2->td_flags & TDF_SINTR))
660						wakeup_swapper |=
661						    sleepq_abort(td2, ERESTART);
662					break;
663				case SINGLE_NO_EXIT:
664					if (TD_IS_SUSPENDED(td2) &&
665					    !(td2->td_flags & TDF_BOUNDARY))
666						wakeup_swapper |=
667						    thread_unsuspend_one(td2);
668					if (TD_ON_SLEEPQ(td2) &&
669					    (td2->td_flags & TDF_SINTR))
670						wakeup_swapper |=
671						    sleepq_abort(td2, ERESTART);
672					break;
673				default:
674					break;
675				}
676			}
677#ifdef SMP
678			else if (TD_IS_RUNNING(td2) && td != td2) {
679				forward_signal(td2);
680			}
681#endif
682			thread_unlock(td2);
683		}
684		if (wakeup_swapper)
685			kick_proc0();
686		remaining = calc_remaining(p, mode);
687
688		/*
689		 * Maybe we suspended some threads.. was it enough?
690		 */
691		if (remaining == 1)
692			break;
693
694stopme:
695		/*
696		 * Wake us up when everyone else has suspended.
697		 * In the mean time we suspend as well.
698		 */
699		thread_suspend_switch(td);
700		remaining = calc_remaining(p, mode);
701	}
702	if (mode == SINGLE_EXIT) {
703		/*
704		 * Convert the process to an unthreaded process.  The
705		 * SINGLE_EXIT is called by exit1() or execve(), in
706		 * both cases other threads must be retired.
707		 */
708		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
709		p->p_singlethread = NULL;
710		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
711
712		/*
713		 * Wait for any remaining threads to exit cpu_throw().
714		 */
715		while (p->p_exitthreads != 0) {
716			PROC_SUNLOCK(p);
717			PROC_UNLOCK(p);
718			sched_relinquish(td);
719			PROC_LOCK(p);
720			PROC_SLOCK(p);
721		}
722	}
723	PROC_SUNLOCK(p);
724	return (0);
725}
726
727bool
728thread_suspend_check_needed(void)
729{
730	struct proc *p;
731	struct thread *td;
732
733	td = curthread;
734	p = td->td_proc;
735	PROC_LOCK_ASSERT(p, MA_OWNED);
736	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
737	    (td->td_dbgflags & TDB_SUSPEND) != 0));
738}
739
740/*
741 * Called in from locations that can safely check to see
742 * whether we have to suspend or at least throttle for a
743 * single-thread event (e.g. fork).
744 *
745 * Such locations include userret().
746 * If the "return_instead" argument is non zero, the thread must be able to
747 * accept 0 (caller may continue), or 1 (caller must abort) as a result.
748 *
749 * The 'return_instead' argument tells the function if it may do a
750 * thread_exit() or suspend, or whether the caller must abort and back
751 * out instead.
752 *
753 * If the thread that set the single_threading request has set the
754 * P_SINGLE_EXIT bit in the process flags then this call will never return
755 * if 'return_instead' is false, but will exit.
756 *
757 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
758 *---------------+--------------------+---------------------
759 *       0       | returns 0          |   returns 0 or 1
760 *               | when ST ends       |   immediately
761 *---------------+--------------------+---------------------
762 *       1       | thread exits       |   returns 1
763 *               |                    |  immediately
764 * 0 = thread_exit() or suspension ok,
765 * other = return error instead of stopping the thread.
766 *
767 * While a full suspension is under effect, even a single threading
768 * thread would be suspended if it made this call (but it shouldn't).
769 * This call should only be made from places where
770 * thread_exit() would be safe as that may be the outcome unless
771 * return_instead is set.
772 */
773int
774thread_suspend_check(int return_instead)
775{
776	struct thread *td;
777	struct proc *p;
778	int wakeup_swapper;
779
780	td = curthread;
781	p = td->td_proc;
782	mtx_assert(&Giant, MA_NOTOWNED);
783	PROC_LOCK_ASSERT(p, MA_OWNED);
784	while (thread_suspend_check_needed()) {
785		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
786			KASSERT(p->p_singlethread != NULL,
787			    ("singlethread not set"));
788			/*
789			 * The only suspension in action is a
790			 * single-threading. Single threader need not stop.
791			 * XXX Should be safe to access unlocked
792			 * as it can only be set to be true by us.
793			 */
794			if (p->p_singlethread == td)
795				return (0);	/* Exempt from stopping. */
796		}
797		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
798			return (EINTR);
799
800		/* Should we goto user boundary if we didn't come from there? */
801		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
802		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
803			return (ERESTART);
804
805		/*
806		 * Ignore suspend requests for stop signals if they
807		 * are deferred.
808		 */
809		if (P_SHOULDSTOP(p) == P_STOPPED_SIG &&
810		    td->td_flags & TDF_SBDRY) {
811			KASSERT(return_instead,
812			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
813			return (0);
814		}
815
816		/*
817		 * If the process is waiting for us to exit,
818		 * this thread should just suicide.
819		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
820		 */
821		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
822			PROC_UNLOCK(p);
823			tidhash_remove(td);
824			PROC_LOCK(p);
825			tdsigcleanup(td);
826			PROC_SLOCK(p);
827			thread_stopped(p);
828			thread_exit();
829		}
830
831		PROC_SLOCK(p);
832		thread_stopped(p);
833		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
834			if (p->p_numthreads == p->p_suspcount + 1) {
835				thread_lock(p->p_singlethread);
836				wakeup_swapper =
837				    thread_unsuspend_one(p->p_singlethread);
838				thread_unlock(p->p_singlethread);
839				if (wakeup_swapper)
840					kick_proc0();
841			}
842		}
843		PROC_UNLOCK(p);
844		thread_lock(td);
845		/*
846		 * When a thread suspends, it just
847		 * gets taken off all queues.
848		 */
849		thread_suspend_one(td);
850		if (return_instead == 0) {
851			p->p_boundary_count++;
852			td->td_flags |= TDF_BOUNDARY;
853		}
854		PROC_SUNLOCK(p);
855		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
856		if (return_instead == 0)
857			td->td_flags &= ~TDF_BOUNDARY;
858		thread_unlock(td);
859		PROC_LOCK(p);
860		if (return_instead == 0) {
861			PROC_SLOCK(p);
862			p->p_boundary_count--;
863			PROC_SUNLOCK(p);
864		}
865	}
866	return (0);
867}
868
869void
870thread_suspend_switch(struct thread *td)
871{
872	struct proc *p;
873
874	p = td->td_proc;
875	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
876	PROC_LOCK_ASSERT(p, MA_OWNED);
877	PROC_SLOCK_ASSERT(p, MA_OWNED);
878	/*
879	 * We implement thread_suspend_one in stages here to avoid
880	 * dropping the proc lock while the thread lock is owned.
881	 */
882	thread_stopped(p);
883	p->p_suspcount++;
884	PROC_UNLOCK(p);
885	thread_lock(td);
886	td->td_flags &= ~TDF_NEEDSUSPCHK;
887	TD_SET_SUSPENDED(td);
888	sched_sleep(td, 0);
889	PROC_SUNLOCK(p);
890	DROP_GIANT();
891	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
892	thread_unlock(td);
893	PICKUP_GIANT();
894	PROC_LOCK(p);
895	PROC_SLOCK(p);
896}
897
898void
899thread_suspend_one(struct thread *td)
900{
901	struct proc *p = td->td_proc;
902
903	PROC_SLOCK_ASSERT(p, MA_OWNED);
904	THREAD_LOCK_ASSERT(td, MA_OWNED);
905	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
906	p->p_suspcount++;
907	td->td_flags &= ~TDF_NEEDSUSPCHK;
908	TD_SET_SUSPENDED(td);
909	sched_sleep(td, 0);
910}
911
912int
913thread_unsuspend_one(struct thread *td)
914{
915	struct proc *p = td->td_proc;
916
917	PROC_SLOCK_ASSERT(p, MA_OWNED);
918	THREAD_LOCK_ASSERT(td, MA_OWNED);
919	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
920	TD_CLR_SUSPENDED(td);
921	p->p_suspcount--;
922	return (setrunnable(td));
923}
924
925/*
926 * Allow all threads blocked by single threading to continue running.
927 */
928void
929thread_unsuspend(struct proc *p)
930{
931	struct thread *td;
932	int wakeup_swapper;
933
934	PROC_LOCK_ASSERT(p, MA_OWNED);
935	PROC_SLOCK_ASSERT(p, MA_OWNED);
936	wakeup_swapper = 0;
937	if (!P_SHOULDSTOP(p)) {
938                FOREACH_THREAD_IN_PROC(p, td) {
939			thread_lock(td);
940			if (TD_IS_SUSPENDED(td)) {
941				wakeup_swapper |= thread_unsuspend_one(td);
942			}
943			thread_unlock(td);
944		}
945	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
946	    (p->p_numthreads == p->p_suspcount)) {
947		/*
948		 * Stopping everything also did the job for the single
949		 * threading request. Now we've downgraded to single-threaded,
950		 * let it continue.
951		 */
952		thread_lock(p->p_singlethread);
953		wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
954		thread_unlock(p->p_singlethread);
955	}
956	if (wakeup_swapper)
957		kick_proc0();
958}
959
960/*
961 * End the single threading mode..
962 */
963void
964thread_single_end(void)
965{
966	struct thread *td;
967	struct proc *p;
968	int wakeup_swapper;
969
970	td = curthread;
971	p = td->td_proc;
972	PROC_LOCK_ASSERT(p, MA_OWNED);
973	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
974	PROC_SLOCK(p);
975	p->p_singlethread = NULL;
976	wakeup_swapper = 0;
977	/*
978	 * If there are other threads they may now run,
979	 * unless of course there is a blanket 'stop order'
980	 * on the process. The single threader must be allowed
981	 * to continue however as this is a bad place to stop.
982	 */
983	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
984                FOREACH_THREAD_IN_PROC(p, td) {
985			thread_lock(td);
986			if (TD_IS_SUSPENDED(td)) {
987				wakeup_swapper |= thread_unsuspend_one(td);
988			}
989			thread_unlock(td);
990		}
991	}
992	PROC_SUNLOCK(p);
993	if (wakeup_swapper)
994		kick_proc0();
995}
996
997struct thread *
998thread_find(struct proc *p, lwpid_t tid)
999{
1000	struct thread *td;
1001
1002	PROC_LOCK_ASSERT(p, MA_OWNED);
1003	FOREACH_THREAD_IN_PROC(p, td) {
1004		if (td->td_tid == tid)
1005			break;
1006	}
1007	return (td);
1008}
1009
1010/* Locate a thread by number; return with proc lock held. */
1011struct thread *
1012tdfind(lwpid_t tid, pid_t pid)
1013{
1014#define RUN_THRESH	16
1015	struct thread *td;
1016	int run = 0;
1017
1018	rw_rlock(&tidhash_lock);
1019	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1020		if (td->td_tid == tid) {
1021			if (pid != -1 && td->td_proc->p_pid != pid) {
1022				td = NULL;
1023				break;
1024			}
1025			PROC_LOCK(td->td_proc);
1026			if (td->td_proc->p_state == PRS_NEW) {
1027				PROC_UNLOCK(td->td_proc);
1028				td = NULL;
1029				break;
1030			}
1031			if (run > RUN_THRESH) {
1032				if (rw_try_upgrade(&tidhash_lock)) {
1033					LIST_REMOVE(td, td_hash);
1034					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1035						td, td_hash);
1036					rw_wunlock(&tidhash_lock);
1037					return (td);
1038				}
1039			}
1040			break;
1041		}
1042		run++;
1043	}
1044	rw_runlock(&tidhash_lock);
1045	return (td);
1046}
1047
1048void
1049tidhash_add(struct thread *td)
1050{
1051	rw_wlock(&tidhash_lock);
1052	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1053	rw_wunlock(&tidhash_lock);
1054}
1055
1056void
1057tidhash_remove(struct thread *td)
1058{
1059	rw_wlock(&tidhash_lock);
1060	LIST_REMOVE(td, td_hash);
1061	rw_wunlock(&tidhash_lock);
1062}
1063