kern_synch.c revision 273736
1210284Sjmallett/*-
2215990Sjmallett * Copyright (c) 1982, 1986, 1990, 1991, 1993
3215990Sjmallett *	The Regents of the University of California.  All rights reserved.
4210284Sjmallett * (c) UNIX System Laboratories, Inc.
5210284Sjmallett * All or some portions of this file are derived from material licensed
6215990Sjmallett * to the University of California by American Telephone and Telegraph
7215990Sjmallett * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8215990Sjmallett * the permission of UNIX System Laboratories, Inc.
9210284Sjmallett *
10215990Sjmallett * Redistribution and use in source and binary forms, with or without
11215990Sjmallett * modification, are permitted provided that the following conditions
12210284Sjmallett * are met:
13215990Sjmallett * 1. Redistributions of source code must retain the above copyright
14215990Sjmallett *    notice, this list of conditions and the following disclaimer.
15215990Sjmallett * 2. Redistributions in binary form must reproduce the above copyright
16215990Sjmallett *    notice, this list of conditions and the following disclaimer in the
17215990Sjmallett *    documentation and/or other materials provided with the distribution.
18215990Sjmallett * 4. Neither the name of the University nor the names of its contributors
19215990Sjmallett *    may be used to endorse or promote products derived from this software
20215990Sjmallett *    without specific prior written permission.
21215990Sjmallett *
22215990Sjmallett * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23215990Sjmallett * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24215990Sjmallett * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25215990Sjmallett * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26215990Sjmallett * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27215990Sjmallett * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28215990Sjmallett * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29215990Sjmallett * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30215990Sjmallett * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31215990Sjmallett * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32215990Sjmallett * SUCH DAMAGE.
33215990Sjmallett *
34215990Sjmallett *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35215990Sjmallett */
36215990Sjmallett
37215990Sjmallett#include <sys/cdefs.h>
38210284Sjmallett__FBSDID("$FreeBSD: stable/10/sys/kern/kern_synch.c 273736 2014-10-27 14:38:00Z hselasky $");
39210284Sjmallett
40210284Sjmallett#include "opt_kdtrace.h"
41210284Sjmallett#include "opt_ktrace.h"
42210284Sjmallett#include "opt_sched.h"
43210284Sjmallett
44210284Sjmallett#include <sys/param.h>
45215990Sjmallett#include <sys/systm.h>
46210284Sjmallett#include <sys/condvar.h>
47210284Sjmallett#include <sys/kdb.h>
48210284Sjmallett#include <sys/kernel.h>
49215990Sjmallett#include <sys/ktr.h>
50210284Sjmallett#include <sys/lock.h>
51215990Sjmallett#include <sys/mutex.h>
52210284Sjmallett#include <sys/proc.h>
53210284Sjmallett#include <sys/resourcevar.h>
54210284Sjmallett#include <sys/sched.h>
55210284Sjmallett#include <sys/sdt.h>
56210284Sjmallett#include <sys/signalvar.h>
57210284Sjmallett#include <sys/sleepqueue.h>
58210284Sjmallett#include <sys/smp.h>
59210284Sjmallett#include <sys/sx.h>
60210284Sjmallett#include <sys/sysctl.h>
61210284Sjmallett#include <sys/sysproto.h>
62210284Sjmallett#include <sys/vmmeter.h>
63210284Sjmallett#ifdef KTRACE
64210284Sjmallett#include <sys/uio.h>
65210284Sjmallett#include <sys/ktrace.h>
66210284Sjmallett#endif
67210284Sjmallett
68210284Sjmallett#include <machine/cpu.h>
69210284Sjmallett
70210284Sjmallett#ifdef XEN
71210284Sjmallett#include <vm/vm.h>
72210284Sjmallett#include <vm/vm_param.h>
73210284Sjmallett#include <vm/pmap.h>
74210284Sjmallett#endif
75210284Sjmallett
76210284Sjmallett#define	KTDSTATE(td)							\
77210284Sjmallett	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
78210284Sjmallett	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
79210284Sjmallett	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
80210284Sjmallett	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
81210284Sjmallett	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
82210284Sjmallett
83210284Sjmallettstatic void synch_setup(void *dummy);
84210284SjmallettSYSINIT(synch_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, synch_setup,
85210284Sjmallett    NULL);
86210284Sjmallett
87210284Sjmallettint	hogticks;
88210284Sjmallettstatic uint8_t pause_wchan[MAXCPU];
89210284Sjmallett
90210284Sjmallettstatic struct callout loadav_callout;
91210284Sjmallett
92210284Sjmallettstruct loadavg averunnable =
93210284Sjmallett	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
94210284Sjmallett/*
95210284Sjmallett * Constants for averages over 1, 5, and 15 minutes
96210284Sjmallett * when sampling at 5 second intervals.
97210284Sjmallett */
98210284Sjmallettstatic fixpt_t cexp[3] = {
99210284Sjmallett	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
100210284Sjmallett	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
101210284Sjmallett	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
102210284Sjmallett};
103210284Sjmallett
104210284Sjmallett/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
105210284SjmallettSYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, SYSCTL_NULL_INT_PTR, FSCALE, "");
106210284Sjmallett
107210284Sjmallettstatic void	loadav(void *arg);
108210284Sjmallett
109210284SjmallettSDT_PROVIDER_DECLARE(sched);
110210284SjmallettSDT_PROBE_DEFINE(sched, , , preempt);
111210284Sjmallett
112210284Sjmallett/*
113210284Sjmallett * These probes reference Solaris features that are not implemented in FreeBSD.
114210284Sjmallett * Create the probes anyway for compatibility with existing D scripts; they'll
115210284Sjmallett * just never fire.
116210284Sjmallett */
117210284SjmallettSDT_PROBE_DEFINE(sched, , , cpucaps__sleep);
118210284SjmallettSDT_PROBE_DEFINE(sched, , , cpucaps__wakeup);
119210284SjmallettSDT_PROBE_DEFINE(sched, , , schedctl__nopreempt);
120210284SjmallettSDT_PROBE_DEFINE(sched, , , schedctl__preempt);
121210284SjmallettSDT_PROBE_DEFINE(sched, , , schedctl__yield);
122210284Sjmallett
123static void
124sleepinit(void *unused)
125{
126
127	hogticks = (hz / 10) * 2;	/* Default only. */
128	init_sleepqueues();
129}
130
131/*
132 * vmem tries to lock the sleepq mutexes when free'ing kva, so make sure
133 * it is available.
134 */
135SYSINIT(sleepinit, SI_SUB_KMEM, SI_ORDER_ANY, sleepinit, 0);
136
137/*
138 * General sleep call.  Suspends the current thread until a wakeup is
139 * performed on the specified identifier.  The thread will then be made
140 * runnable with the specified priority.  Sleeps at most sbt units of time
141 * (0 means no timeout).  If pri includes the PCATCH flag, let signals
142 * interrupt the sleep, otherwise ignore them while sleeping.  Returns 0 if
143 * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
144 * signal becomes pending, ERESTART is returned if the current system
145 * call should be restarted if possible, and EINTR is returned if the system
146 * call should be interrupted by the signal (return EINTR).
147 *
148 * The lock argument is unlocked before the caller is suspended, and
149 * re-locked before _sleep() returns.  If priority includes the PDROP
150 * flag the lock is not re-locked before returning.
151 */
152int
153_sleep(void *ident, struct lock_object *lock, int priority,
154    const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
155{
156	struct thread *td;
157	struct proc *p;
158	struct lock_class *class;
159	uintptr_t lock_state;
160	int catch, pri, rval, sleepq_flags;
161	WITNESS_SAVE_DECL(lock_witness);
162
163	td = curthread;
164	p = td->td_proc;
165#ifdef KTRACE
166	if (KTRPOINT(td, KTR_CSW))
167		ktrcsw(1, 0, wmesg);
168#endif
169	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, lock,
170	    "Sleeping on \"%s\"", wmesg);
171	KASSERT(sbt != 0 || mtx_owned(&Giant) || lock != NULL,
172	    ("sleeping without a lock"));
173	KASSERT(p != NULL, ("msleep1"));
174	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
175	if (priority & PDROP)
176		KASSERT(lock != NULL && lock != &Giant.lock_object,
177		    ("PDROP requires a non-Giant lock"));
178	if (lock != NULL)
179		class = LOCK_CLASS(lock);
180	else
181		class = NULL;
182
183	if (cold || SCHEDULER_STOPPED()) {
184		/*
185		 * During autoconfiguration, just return;
186		 * don't run any other threads or panic below,
187		 * in case this is the idle thread and already asleep.
188		 * XXX: this used to do "s = splhigh(); splx(safepri);
189		 * splx(s);" to give interrupts a chance, but there is
190		 * no way to give interrupts a chance now.
191		 */
192		if (lock != NULL && priority & PDROP)
193			class->lc_unlock(lock);
194		return (0);
195	}
196	catch = priority & PCATCH;
197	pri = priority & PRIMASK;
198
199	/*
200	 * If we are already on a sleep queue, then remove us from that
201	 * sleep queue first.  We have to do this to handle recursive
202	 * sleeps.
203	 */
204	if (TD_ON_SLEEPQ(td))
205		sleepq_remove(td, td->td_wchan);
206
207	if ((uint8_t *)ident >= &pause_wchan[0] &&
208	    (uint8_t *)ident <= &pause_wchan[MAXCPU - 1])
209		sleepq_flags = SLEEPQ_PAUSE;
210	else
211		sleepq_flags = SLEEPQ_SLEEP;
212	if (catch)
213		sleepq_flags |= SLEEPQ_INTERRUPTIBLE;
214
215	sleepq_lock(ident);
216	CTR5(KTR_PROC, "sleep: thread %ld (pid %ld, %s) on %s (%p)",
217	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
218
219	if (lock == &Giant.lock_object)
220		mtx_assert(&Giant, MA_OWNED);
221	DROP_GIANT();
222	if (lock != NULL && lock != &Giant.lock_object &&
223	    !(class->lc_flags & LC_SLEEPABLE)) {
224		WITNESS_SAVE(lock, lock_witness);
225		lock_state = class->lc_unlock(lock);
226	} else
227		/* GCC needs to follow the Yellow Brick Road */
228		lock_state = -1;
229
230	/*
231	 * We put ourselves on the sleep queue and start our timeout
232	 * before calling thread_suspend_check, as we could stop there,
233	 * and a wakeup or a SIGCONT (or both) could occur while we were
234	 * stopped without resuming us.  Thus, we must be ready for sleep
235	 * when cursig() is called.  If the wakeup happens while we're
236	 * stopped, then td will no longer be on a sleep queue upon
237	 * return from cursig().
238	 */
239	sleepq_add(ident, lock, wmesg, sleepq_flags, 0);
240	if (sbt != 0)
241		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
242	if (lock != NULL && class->lc_flags & LC_SLEEPABLE) {
243		sleepq_release(ident);
244		WITNESS_SAVE(lock, lock_witness);
245		lock_state = class->lc_unlock(lock);
246		sleepq_lock(ident);
247	}
248	if (sbt != 0 && catch)
249		rval = sleepq_timedwait_sig(ident, pri);
250	else if (sbt != 0)
251		rval = sleepq_timedwait(ident, pri);
252	else if (catch)
253		rval = sleepq_wait_sig(ident, pri);
254	else {
255		sleepq_wait(ident, pri);
256		rval = 0;
257	}
258#ifdef KTRACE
259	if (KTRPOINT(td, KTR_CSW))
260		ktrcsw(0, 0, wmesg);
261#endif
262	PICKUP_GIANT();
263	if (lock != NULL && lock != &Giant.lock_object && !(priority & PDROP)) {
264		class->lc_lock(lock, lock_state);
265		WITNESS_RESTORE(lock, lock_witness);
266	}
267	return (rval);
268}
269
270int
271msleep_spin_sbt(void *ident, struct mtx *mtx, const char *wmesg,
272    sbintime_t sbt, sbintime_t pr, int flags)
273{
274	struct thread *td;
275	struct proc *p;
276	int rval;
277	WITNESS_SAVE_DECL(mtx);
278
279	td = curthread;
280	p = td->td_proc;
281	KASSERT(mtx != NULL, ("sleeping without a mutex"));
282	KASSERT(p != NULL, ("msleep1"));
283	KASSERT(ident != NULL && TD_IS_RUNNING(td), ("msleep"));
284
285	if (cold || SCHEDULER_STOPPED()) {
286		/*
287		 * During autoconfiguration, just return;
288		 * don't run any other threads or panic below,
289		 * in case this is the idle thread and already asleep.
290		 * XXX: this used to do "s = splhigh(); splx(safepri);
291		 * splx(s);" to give interrupts a chance, but there is
292		 * no way to give interrupts a chance now.
293		 */
294		return (0);
295	}
296
297	sleepq_lock(ident);
298	CTR5(KTR_PROC, "msleep_spin: thread %ld (pid %ld, %s) on %s (%p)",
299	    td->td_tid, p->p_pid, td->td_name, wmesg, ident);
300
301	DROP_GIANT();
302	mtx_assert(mtx, MA_OWNED | MA_NOTRECURSED);
303	WITNESS_SAVE(&mtx->lock_object, mtx);
304	mtx_unlock_spin(mtx);
305
306	/*
307	 * We put ourselves on the sleep queue and start our timeout.
308	 */
309	sleepq_add(ident, &mtx->lock_object, wmesg, SLEEPQ_SLEEP, 0);
310	if (sbt != 0)
311		sleepq_set_timeout_sbt(ident, sbt, pr, flags);
312
313	/*
314	 * Can't call ktrace with any spin locks held so it can lock the
315	 * ktrace_mtx lock, and WITNESS_WARN considers it an error to hold
316	 * any spin lock.  Thus, we have to drop the sleepq spin lock while
317	 * we handle those requests.  This is safe since we have placed our
318	 * thread on the sleep queue already.
319	 */
320#ifdef KTRACE
321	if (KTRPOINT(td, KTR_CSW)) {
322		sleepq_release(ident);
323		ktrcsw(1, 0, wmesg);
324		sleepq_lock(ident);
325	}
326#endif
327#ifdef WITNESS
328	sleepq_release(ident);
329	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Sleeping on \"%s\"",
330	    wmesg);
331	sleepq_lock(ident);
332#endif
333	if (sbt != 0)
334		rval = sleepq_timedwait(ident, 0);
335	else {
336		sleepq_wait(ident, 0);
337		rval = 0;
338	}
339#ifdef KTRACE
340	if (KTRPOINT(td, KTR_CSW))
341		ktrcsw(0, 0, wmesg);
342#endif
343	PICKUP_GIANT();
344	mtx_lock_spin(mtx);
345	WITNESS_RESTORE(&mtx->lock_object, mtx);
346	return (rval);
347}
348
349/*
350 * pause() delays the calling thread by the given number of system ticks.
351 * During cold bootup, pause() uses the DELAY() function instead of
352 * the tsleep() function to do the waiting. The "timo" argument must be
353 * greater than or equal to zero. A "timo" value of zero is equivalent
354 * to a "timo" value of one.
355 */
356int
357pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags)
358{
359	KASSERT(sbt >= 0, ("pause: timeout must be >= 0"));
360
361	/* silently convert invalid timeouts */
362	if (sbt == 0)
363		sbt = tick_sbt;
364
365	if (cold || kdb_active) {
366		/*
367		 * We delay one second at a time to avoid overflowing the
368		 * system specific DELAY() function(s):
369		 */
370		while (sbt >= SBT_1S) {
371			DELAY(1000000);
372			sbt -= SBT_1S;
373		}
374		/* Do the delay remainder, if any */
375		sbt = (sbt + SBT_1US - 1) / SBT_1US;
376		if (sbt > 0)
377			DELAY(sbt);
378		return (0);
379	}
380	return (_sleep(&pause_wchan[curcpu], NULL, 0, wmesg, sbt, pr, flags));
381}
382
383/*
384 * Make all threads sleeping on the specified identifier runnable.
385 */
386void
387wakeup(void *ident)
388{
389	int wakeup_swapper;
390
391	sleepq_lock(ident);
392	wakeup_swapper = sleepq_broadcast(ident, SLEEPQ_SLEEP, 0, 0);
393	sleepq_release(ident);
394	if (wakeup_swapper) {
395		KASSERT(ident != &proc0,
396		    ("wakeup and wakeup_swapper and proc0"));
397		kick_proc0();
398	}
399}
400
401/*
402 * Make a thread sleeping on the specified identifier runnable.
403 * May wake more than one thread if a target thread is currently
404 * swapped out.
405 */
406void
407wakeup_one(void *ident)
408{
409	int wakeup_swapper;
410
411	sleepq_lock(ident);
412	wakeup_swapper = sleepq_signal(ident, SLEEPQ_SLEEP, 0, 0);
413	sleepq_release(ident);
414	if (wakeup_swapper)
415		kick_proc0();
416}
417
418static void
419kdb_switch(void)
420{
421	thread_unlock(curthread);
422	kdb_backtrace();
423	kdb_reenter();
424	panic("%s: did not reenter debugger", __func__);
425}
426
427/*
428 * The machine independent parts of context switching.
429 */
430void
431mi_switch(int flags, struct thread *newtd)
432{
433	uint64_t runtime, new_switchtime;
434	struct thread *td;
435	struct proc *p;
436
437	td = curthread;			/* XXX */
438	THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED);
439	p = td->td_proc;		/* XXX */
440	KASSERT(!TD_ON_RUNQ(td), ("mi_switch: called by old code"));
441#ifdef INVARIANTS
442	if (!TD_ON_LOCK(td) && !TD_IS_RUNNING(td))
443		mtx_assert(&Giant, MA_NOTOWNED);
444#endif
445	KASSERT(td->td_critnest == 1 || panicstr,
446	    ("mi_switch: switch in a critical section"));
447	KASSERT((flags & (SW_INVOL | SW_VOL)) != 0,
448	    ("mi_switch: switch must be voluntary or involuntary"));
449	KASSERT(newtd != curthread, ("mi_switch: preempting back to ourself"));
450
451	/*
452	 * Don't perform context switches from the debugger.
453	 */
454	if (kdb_active)
455		kdb_switch();
456	if (SCHEDULER_STOPPED())
457		return;
458	if (flags & SW_VOL) {
459		td->td_ru.ru_nvcsw++;
460		td->td_swvoltick = ticks;
461	} else
462		td->td_ru.ru_nivcsw++;
463#ifdef SCHED_STATS
464	SCHED_STAT_INC(sched_switch_stats[flags & SW_TYPE_MASK]);
465#endif
466	/*
467	 * Compute the amount of time during which the current
468	 * thread was running, and add that to its total so far.
469	 */
470	new_switchtime = cpu_ticks();
471	runtime = new_switchtime - PCPU_GET(switchtime);
472	td->td_runtime += runtime;
473	td->td_incruntime += runtime;
474	PCPU_SET(switchtime, new_switchtime);
475	td->td_generation++;	/* bump preempt-detect counter */
476	PCPU_INC(cnt.v_swtch);
477	PCPU_SET(switchticks, ticks);
478	CTR4(KTR_PROC, "mi_switch: old thread %ld (td_sched %p, pid %ld, %s)",
479	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
480#if (KTR_COMPILE & KTR_SCHED) != 0
481	if (TD_IS_IDLETHREAD(td))
482		KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
483		    "prio:%d", td->td_priority);
484	else
485		KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
486		    "prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
487		    "lockname:\"%s\"", td->td_lockname);
488#endif
489	SDT_PROBE0(sched, , , preempt);
490#ifdef XEN
491	PT_UPDATES_FLUSH();
492#endif
493	sched_switch(td, newtd, flags);
494	KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
495	    "prio:%d", td->td_priority);
496
497	CTR4(KTR_PROC, "mi_switch: new thread %ld (td_sched %p, pid %ld, %s)",
498	    td->td_tid, td->td_sched, p->p_pid, td->td_name);
499
500	/*
501	 * If the last thread was exiting, finish cleaning it up.
502	 */
503	if ((td = PCPU_GET(deadthread))) {
504		PCPU_SET(deadthread, NULL);
505		thread_stash(td);
506	}
507}
508
509/*
510 * Change thread state to be runnable, placing it on the run queue if
511 * it is in memory.  If it is swapped out, return true so our caller
512 * will know to awaken the swapper.
513 */
514int
515setrunnable(struct thread *td)
516{
517
518	THREAD_LOCK_ASSERT(td, MA_OWNED);
519	KASSERT(td->td_proc->p_state != PRS_ZOMBIE,
520	    ("setrunnable: pid %d is a zombie", td->td_proc->p_pid));
521	switch (td->td_state) {
522	case TDS_RUNNING:
523	case TDS_RUNQ:
524		return (0);
525	case TDS_INHIBITED:
526		/*
527		 * If we are only inhibited because we are swapped out
528		 * then arange to swap in this process. Otherwise just return.
529		 */
530		if (td->td_inhibitors != TDI_SWAPPED)
531			return (0);
532		/* FALLTHROUGH */
533	case TDS_CAN_RUN:
534		break;
535	default:
536		printf("state is 0x%x", td->td_state);
537		panic("setrunnable(2)");
538	}
539	if ((td->td_flags & TDF_INMEM) == 0) {
540		if ((td->td_flags & TDF_SWAPINREQ) == 0) {
541			td->td_flags |= TDF_SWAPINREQ;
542			return (1);
543		}
544	} else
545		sched_wakeup(td);
546	return (0);
547}
548
549/*
550 * Compute a tenex style load average of a quantity on
551 * 1, 5 and 15 minute intervals.
552 */
553static void
554loadav(void *arg)
555{
556	int i, nrun;
557	struct loadavg *avg;
558
559	nrun = sched_load();
560	avg = &averunnable;
561
562	for (i = 0; i < 3; i++)
563		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
564		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
565
566	/*
567	 * Schedule the next update to occur after 5 seconds, but add a
568	 * random variation to avoid synchronisation with processes that
569	 * run at regular intervals.
570	 */
571	callout_reset_sbt(&loadav_callout,
572	    SBT_1US * (4000000 + (int)(random() % 2000001)), SBT_1US,
573	    loadav, NULL, C_DIRECT_EXEC | C_PREL(32));
574}
575
576/* ARGSUSED */
577static void
578synch_setup(void *dummy)
579{
580	callout_init(&loadav_callout, CALLOUT_MPSAFE);
581
582	/* Kick off timeout driven events by calling first time. */
583	loadav(NULL);
584}
585
586int
587should_yield(void)
588{
589
590	return ((u_int)ticks - (u_int)curthread->td_swvoltick >= hogticks);
591}
592
593void
594maybe_yield(void)
595{
596
597	if (should_yield())
598		kern_yield(PRI_USER);
599}
600
601void
602kern_yield(int prio)
603{
604	struct thread *td;
605
606	td = curthread;
607	DROP_GIANT();
608	thread_lock(td);
609	if (prio == PRI_USER)
610		prio = td->td_user_pri;
611	if (prio >= 0)
612		sched_prio(td, prio);
613	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
614	thread_unlock(td);
615	PICKUP_GIANT();
616}
617
618/*
619 * General purpose yield system call.
620 */
621int
622sys_yield(struct thread *td, struct yield_args *uap)
623{
624
625	thread_lock(td);
626	if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
627		sched_prio(td, PRI_MAX_TIMESHARE);
628	mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
629	thread_unlock(td);
630	td->td_retval[0] = 0;
631	return (0);
632}
633