kern_sig.c revision 304190
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_sig.c 304190 2016-08-15 21:44:06Z kib $");
39
40#include "opt_compat.h"
41#include "opt_kdtrace.h"
42#include "opt_ktrace.h"
43#include "opt_core.h"
44#include "opt_procdesc.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/signalvar.h>
49#include <sys/vnode.h>
50#include <sys/acct.h>
51#include <sys/capsicum.h>
52#include <sys/condvar.h>
53#include <sys/event.h>
54#include <sys/fcntl.h>
55#include <sys/imgact.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/ktrace.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/mutex.h>
62#include <sys/refcount.h>
63#include <sys/namei.h>
64#include <sys/proc.h>
65#include <sys/procdesc.h>
66#include <sys/posix4.h>
67#include <sys/pioctl.h>
68#include <sys/racct.h>
69#include <sys/resourcevar.h>
70#include <sys/sdt.h>
71#include <sys/sbuf.h>
72#include <sys/sleepqueue.h>
73#include <sys/smp.h>
74#include <sys/stat.h>
75#include <sys/sx.h>
76#include <sys/syscallsubr.h>
77#include <sys/sysctl.h>
78#include <sys/sysent.h>
79#include <sys/syslog.h>
80#include <sys/sysproto.h>
81#include <sys/timers.h>
82#include <sys/unistd.h>
83#include <sys/wait.h>
84#include <vm/vm.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88#include <sys/jail.h>
89
90#include <machine/cpu.h>
91
92#include <security/audit/audit.h>
93
94#define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
95
96SDT_PROVIDER_DECLARE(proc);
97SDT_PROBE_DEFINE3(proc, , , signal__send,
98    "struct thread *", "struct proc *", "int");
99SDT_PROBE_DEFINE2(proc, , , signal__clear,
100    "int", "ksiginfo_t *");
101SDT_PROBE_DEFINE3(proc, , , signal__discard,
102    "struct thread *", "struct proc *", "int");
103
104static int	coredump(struct thread *);
105static int	killpg1(struct thread *td, int sig, int pgid, int all,
106		    ksiginfo_t *ksi);
107static int	issignal(struct thread *td);
108static int	sigprop(int sig);
109static void	tdsigwakeup(struct thread *, int, sig_t, int);
110static void	sig_suspend_threads(struct thread *, struct proc *, int);
111static int	filt_sigattach(struct knote *kn);
112static void	filt_sigdetach(struct knote *kn);
113static int	filt_signal(struct knote *kn, long hint);
114static struct thread *sigtd(struct proc *p, int sig, int prop);
115static void	sigqueue_start(void);
116
117static uma_zone_t	ksiginfo_zone = NULL;
118struct filterops sig_filtops = {
119	.f_isfd = 0,
120	.f_attach = filt_sigattach,
121	.f_detach = filt_sigdetach,
122	.f_event = filt_signal,
123};
124
125static int	kern_logsigexit = 1;
126SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
127    &kern_logsigexit, 0,
128    "Log processes quitting on abnormal signals to syslog(3)");
129
130static int	kern_forcesigexit = 1;
131SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
132    &kern_forcesigexit, 0, "Force trap signal to be handled");
133
134static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
135    "POSIX real time signal");
136
137static int	max_pending_per_proc = 128;
138SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
139    &max_pending_per_proc, 0, "Max pending signals per proc");
140
141static int	preallocate_siginfo = 1024;
142TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
143SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
144    &preallocate_siginfo, 0, "Preallocated signal memory size");
145
146static int	signal_overflow = 0;
147SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148    &signal_overflow, 0, "Number of signals overflew");
149
150static int	signal_alloc_fail = 0;
151SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152    &signal_alloc_fail, 0, "signals failed to be allocated");
153
154SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
155
156/*
157 * Policy -- Can ucred cr1 send SIGIO to process cr2?
158 * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
159 * in the right situations.
160 */
161#define CANSIGIO(cr1, cr2) \
162	((cr1)->cr_uid == 0 || \
163	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
164	    (cr1)->cr_uid == (cr2)->cr_ruid || \
165	    (cr1)->cr_ruid == (cr2)->cr_uid || \
166	    (cr1)->cr_uid == (cr2)->cr_uid)
167
168static int	sugid_coredump;
169TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
170SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
171    &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
172
173static int	capmode_coredump;
174TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
175SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
176    &capmode_coredump, 0, "Allow processes in capability mode to dump core");
177
178static int	do_coredump = 1;
179SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
180	&do_coredump, 0, "Enable/Disable coredumps");
181
182static int	set_core_nodump_flag = 0;
183SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
184	0, "Enable setting the NODUMP flag on coredump files");
185
186/*
187 * Signal properties and actions.
188 * The array below categorizes the signals and their default actions
189 * according to the following properties:
190 */
191#define	SA_KILL		0x01		/* terminates process by default */
192#define	SA_CORE		0x02		/* ditto and coredumps */
193#define	SA_STOP		0x04		/* suspend process */
194#define	SA_TTYSTOP	0x08		/* ditto, from tty */
195#define	SA_IGNORE	0x10		/* ignore by default */
196#define	SA_CONT		0x20		/* continue if suspended */
197#define	SA_CANTMASK	0x40		/* non-maskable, catchable */
198
199static int sigproptbl[NSIG] = {
200	SA_KILL,			/* SIGHUP */
201	SA_KILL,			/* SIGINT */
202	SA_KILL|SA_CORE,		/* SIGQUIT */
203	SA_KILL|SA_CORE,		/* SIGILL */
204	SA_KILL|SA_CORE,		/* SIGTRAP */
205	SA_KILL|SA_CORE,		/* SIGABRT */
206	SA_KILL|SA_CORE,		/* SIGEMT */
207	SA_KILL|SA_CORE,		/* SIGFPE */
208	SA_KILL,			/* SIGKILL */
209	SA_KILL|SA_CORE,		/* SIGBUS */
210	SA_KILL|SA_CORE,		/* SIGSEGV */
211	SA_KILL|SA_CORE,		/* SIGSYS */
212	SA_KILL,			/* SIGPIPE */
213	SA_KILL,			/* SIGALRM */
214	SA_KILL,			/* SIGTERM */
215	SA_IGNORE,			/* SIGURG */
216	SA_STOP,			/* SIGSTOP */
217	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
218	SA_IGNORE|SA_CONT,		/* SIGCONT */
219	SA_IGNORE,			/* SIGCHLD */
220	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
221	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
222	SA_IGNORE,			/* SIGIO */
223	SA_KILL,			/* SIGXCPU */
224	SA_KILL,			/* SIGXFSZ */
225	SA_KILL,			/* SIGVTALRM */
226	SA_KILL,			/* SIGPROF */
227	SA_IGNORE,			/* SIGWINCH  */
228	SA_IGNORE,			/* SIGINFO */
229	SA_KILL,			/* SIGUSR1 */
230	SA_KILL,			/* SIGUSR2 */
231};
232
233static void reschedule_signals(struct proc *p, sigset_t block, int flags);
234
235static void
236sigqueue_start(void)
237{
238	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
239		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
240	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
241	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
242	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
243	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
244}
245
246ksiginfo_t *
247ksiginfo_alloc(int wait)
248{
249	int flags;
250
251	flags = M_ZERO;
252	if (! wait)
253		flags |= M_NOWAIT;
254	if (ksiginfo_zone != NULL)
255		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
256	return (NULL);
257}
258
259void
260ksiginfo_free(ksiginfo_t *ksi)
261{
262	uma_zfree(ksiginfo_zone, ksi);
263}
264
265static __inline int
266ksiginfo_tryfree(ksiginfo_t *ksi)
267{
268	if (!(ksi->ksi_flags & KSI_EXT)) {
269		uma_zfree(ksiginfo_zone, ksi);
270		return (1);
271	}
272	return (0);
273}
274
275void
276sigqueue_init(sigqueue_t *list, struct proc *p)
277{
278	SIGEMPTYSET(list->sq_signals);
279	SIGEMPTYSET(list->sq_kill);
280	TAILQ_INIT(&list->sq_list);
281	list->sq_proc = p;
282	list->sq_flags = SQ_INIT;
283}
284
285/*
286 * Get a signal's ksiginfo.
287 * Return:
288 *	0	-	signal not found
289 *	others	-	signal number
290 */
291static int
292sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
293{
294	struct proc *p = sq->sq_proc;
295	struct ksiginfo *ksi, *next;
296	int count = 0;
297
298	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
299
300	if (!SIGISMEMBER(sq->sq_signals, signo))
301		return (0);
302
303	if (SIGISMEMBER(sq->sq_kill, signo)) {
304		count++;
305		SIGDELSET(sq->sq_kill, signo);
306	}
307
308	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
309		if (ksi->ksi_signo == signo) {
310			if (count == 0) {
311				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
312				ksi->ksi_sigq = NULL;
313				ksiginfo_copy(ksi, si);
314				if (ksiginfo_tryfree(ksi) && p != NULL)
315					p->p_pendingcnt--;
316			}
317			if (++count > 1)
318				break;
319		}
320	}
321
322	if (count <= 1)
323		SIGDELSET(sq->sq_signals, signo);
324	si->ksi_signo = signo;
325	return (signo);
326}
327
328void
329sigqueue_take(ksiginfo_t *ksi)
330{
331	struct ksiginfo *kp;
332	struct proc	*p;
333	sigqueue_t	*sq;
334
335	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
336		return;
337
338	p = sq->sq_proc;
339	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
340	ksi->ksi_sigq = NULL;
341	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
342		p->p_pendingcnt--;
343
344	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
345	     kp = TAILQ_NEXT(kp, ksi_link)) {
346		if (kp->ksi_signo == ksi->ksi_signo)
347			break;
348	}
349	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
350		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
351}
352
353static int
354sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
355{
356	struct proc *p = sq->sq_proc;
357	struct ksiginfo *ksi;
358	int ret = 0;
359
360	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
361
362	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
363		SIGADDSET(sq->sq_kill, signo);
364		goto out_set_bit;
365	}
366
367	/* directly insert the ksi, don't copy it */
368	if (si->ksi_flags & KSI_INS) {
369		if (si->ksi_flags & KSI_HEAD)
370			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
371		else
372			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
373		si->ksi_sigq = sq;
374		goto out_set_bit;
375	}
376
377	if (__predict_false(ksiginfo_zone == NULL)) {
378		SIGADDSET(sq->sq_kill, signo);
379		goto out_set_bit;
380	}
381
382	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
383		signal_overflow++;
384		ret = EAGAIN;
385	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
386		signal_alloc_fail++;
387		ret = EAGAIN;
388	} else {
389		if (p != NULL)
390			p->p_pendingcnt++;
391		ksiginfo_copy(si, ksi);
392		ksi->ksi_signo = signo;
393		if (si->ksi_flags & KSI_HEAD)
394			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
395		else
396			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
397		ksi->ksi_sigq = sq;
398	}
399
400	if ((si->ksi_flags & KSI_TRAP) != 0 ||
401	    (si->ksi_flags & KSI_SIGQ) == 0) {
402		if (ret != 0)
403			SIGADDSET(sq->sq_kill, signo);
404		ret = 0;
405		goto out_set_bit;
406	}
407
408	if (ret != 0)
409		return (ret);
410
411out_set_bit:
412	SIGADDSET(sq->sq_signals, signo);
413	return (ret);
414}
415
416void
417sigqueue_flush(sigqueue_t *sq)
418{
419	struct proc *p = sq->sq_proc;
420	ksiginfo_t *ksi;
421
422	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
423
424	if (p != NULL)
425		PROC_LOCK_ASSERT(p, MA_OWNED);
426
427	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
428		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
429		ksi->ksi_sigq = NULL;
430		if (ksiginfo_tryfree(ksi) && p != NULL)
431			p->p_pendingcnt--;
432	}
433
434	SIGEMPTYSET(sq->sq_signals);
435	SIGEMPTYSET(sq->sq_kill);
436}
437
438static void
439sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
440{
441	sigset_t tmp;
442	struct proc *p1, *p2;
443	ksiginfo_t *ksi, *next;
444
445	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
446	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
447	p1 = src->sq_proc;
448	p2 = dst->sq_proc;
449	/* Move siginfo to target list */
450	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
451		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
452			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
453			if (p1 != NULL)
454				p1->p_pendingcnt--;
455			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
456			ksi->ksi_sigq = dst;
457			if (p2 != NULL)
458				p2->p_pendingcnt++;
459		}
460	}
461
462	/* Move pending bits to target list */
463	tmp = src->sq_kill;
464	SIGSETAND(tmp, *set);
465	SIGSETOR(dst->sq_kill, tmp);
466	SIGSETNAND(src->sq_kill, tmp);
467
468	tmp = src->sq_signals;
469	SIGSETAND(tmp, *set);
470	SIGSETOR(dst->sq_signals, tmp);
471	SIGSETNAND(src->sq_signals, tmp);
472}
473
474#if 0
475static void
476sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
477{
478	sigset_t set;
479
480	SIGEMPTYSET(set);
481	SIGADDSET(set, signo);
482	sigqueue_move_set(src, dst, &set);
483}
484#endif
485
486static void
487sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
488{
489	struct proc *p = sq->sq_proc;
490	ksiginfo_t *ksi, *next;
491
492	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
493
494	/* Remove siginfo queue */
495	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
496		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
497			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
498			ksi->ksi_sigq = NULL;
499			if (ksiginfo_tryfree(ksi) && p != NULL)
500				p->p_pendingcnt--;
501		}
502	}
503	SIGSETNAND(sq->sq_kill, *set);
504	SIGSETNAND(sq->sq_signals, *set);
505}
506
507void
508sigqueue_delete(sigqueue_t *sq, int signo)
509{
510	sigset_t set;
511
512	SIGEMPTYSET(set);
513	SIGADDSET(set, signo);
514	sigqueue_delete_set(sq, &set);
515}
516
517/* Remove a set of signals for a process */
518static void
519sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
520{
521	sigqueue_t worklist;
522	struct thread *td0;
523
524	PROC_LOCK_ASSERT(p, MA_OWNED);
525
526	sigqueue_init(&worklist, NULL);
527	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
528
529	FOREACH_THREAD_IN_PROC(p, td0)
530		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
531
532	sigqueue_flush(&worklist);
533}
534
535void
536sigqueue_delete_proc(struct proc *p, int signo)
537{
538	sigset_t set;
539
540	SIGEMPTYSET(set);
541	SIGADDSET(set, signo);
542	sigqueue_delete_set_proc(p, &set);
543}
544
545static void
546sigqueue_delete_stopmask_proc(struct proc *p)
547{
548	sigset_t set;
549
550	SIGEMPTYSET(set);
551	SIGADDSET(set, SIGSTOP);
552	SIGADDSET(set, SIGTSTP);
553	SIGADDSET(set, SIGTTIN);
554	SIGADDSET(set, SIGTTOU);
555	sigqueue_delete_set_proc(p, &set);
556}
557
558/*
559 * Determine signal that should be delivered to thread td, the current
560 * thread, 0 if none.  If there is a pending stop signal with default
561 * action, the process stops in issignal().
562 */
563int
564cursig(struct thread *td)
565{
566	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
567	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
568	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
569	return (SIGPENDING(td) ? issignal(td) : 0);
570}
571
572/*
573 * Arrange for ast() to handle unmasked pending signals on return to user
574 * mode.  This must be called whenever a signal is added to td_sigqueue or
575 * unmasked in td_sigmask.
576 */
577void
578signotify(struct thread *td)
579{
580	struct proc *p;
581
582	p = td->td_proc;
583
584	PROC_LOCK_ASSERT(p, MA_OWNED);
585
586	if (SIGPENDING(td)) {
587		thread_lock(td);
588		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
589		thread_unlock(td);
590	}
591}
592
593int
594sigonstack(size_t sp)
595{
596	struct thread *td = curthread;
597
598	return ((td->td_pflags & TDP_ALTSTACK) ?
599#if defined(COMPAT_43)
600	    ((td->td_sigstk.ss_size == 0) ?
601		(td->td_sigstk.ss_flags & SS_ONSTACK) :
602		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
603#else
604	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
605#endif
606	    : 0);
607}
608
609static __inline int
610sigprop(int sig)
611{
612
613	if (sig > 0 && sig < NSIG)
614		return (sigproptbl[_SIG_IDX(sig)]);
615	return (0);
616}
617
618int
619sig_ffs(sigset_t *set)
620{
621	int i;
622
623	for (i = 0; i < _SIG_WORDS; i++)
624		if (set->__bits[i])
625			return (ffs(set->__bits[i]) + (i * 32));
626	return (0);
627}
628
629static bool
630sigact_flag_test(struct sigaction *act, int flag)
631{
632
633	/*
634	 * SA_SIGINFO is reset when signal disposition is set to
635	 * ignore or default.  Other flags are kept according to user
636	 * settings.
637	 */
638	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
639	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
640	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
641}
642
643/*
644 * kern_sigaction
645 * sigaction
646 * freebsd4_sigaction
647 * osigaction
648 */
649int
650kern_sigaction(td, sig, act, oact, flags)
651	struct thread *td;
652	register int sig;
653	struct sigaction *act, *oact;
654	int flags;
655{
656	struct sigacts *ps;
657	struct proc *p = td->td_proc;
658
659	if (!_SIG_VALID(sig))
660		return (EINVAL);
661	if (act != NULL && act->sa_handler != SIG_DFL &&
662	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
663	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
664	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
665		return (EINVAL);
666
667	PROC_LOCK(p);
668	ps = p->p_sigacts;
669	mtx_lock(&ps->ps_mtx);
670	if (oact) {
671		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
672		oact->sa_flags = 0;
673		if (SIGISMEMBER(ps->ps_sigonstack, sig))
674			oact->sa_flags |= SA_ONSTACK;
675		if (!SIGISMEMBER(ps->ps_sigintr, sig))
676			oact->sa_flags |= SA_RESTART;
677		if (SIGISMEMBER(ps->ps_sigreset, sig))
678			oact->sa_flags |= SA_RESETHAND;
679		if (SIGISMEMBER(ps->ps_signodefer, sig))
680			oact->sa_flags |= SA_NODEFER;
681		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
682			oact->sa_flags |= SA_SIGINFO;
683			oact->sa_sigaction =
684			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
685		} else
686			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
687		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
688			oact->sa_flags |= SA_NOCLDSTOP;
689		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
690			oact->sa_flags |= SA_NOCLDWAIT;
691	}
692	if (act) {
693		if ((sig == SIGKILL || sig == SIGSTOP) &&
694		    act->sa_handler != SIG_DFL) {
695			mtx_unlock(&ps->ps_mtx);
696			PROC_UNLOCK(p);
697			return (EINVAL);
698		}
699
700		/*
701		 * Change setting atomically.
702		 */
703
704		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
705		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
706		if (sigact_flag_test(act, SA_SIGINFO)) {
707			ps->ps_sigact[_SIG_IDX(sig)] =
708			    (__sighandler_t *)act->sa_sigaction;
709			SIGADDSET(ps->ps_siginfo, sig);
710		} else {
711			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
712			SIGDELSET(ps->ps_siginfo, sig);
713		}
714		if (!sigact_flag_test(act, SA_RESTART))
715			SIGADDSET(ps->ps_sigintr, sig);
716		else
717			SIGDELSET(ps->ps_sigintr, sig);
718		if (sigact_flag_test(act, SA_ONSTACK))
719			SIGADDSET(ps->ps_sigonstack, sig);
720		else
721			SIGDELSET(ps->ps_sigonstack, sig);
722		if (sigact_flag_test(act, SA_RESETHAND))
723			SIGADDSET(ps->ps_sigreset, sig);
724		else
725			SIGDELSET(ps->ps_sigreset, sig);
726		if (sigact_flag_test(act, SA_NODEFER))
727			SIGADDSET(ps->ps_signodefer, sig);
728		else
729			SIGDELSET(ps->ps_signodefer, sig);
730		if (sig == SIGCHLD) {
731			if (act->sa_flags & SA_NOCLDSTOP)
732				ps->ps_flag |= PS_NOCLDSTOP;
733			else
734				ps->ps_flag &= ~PS_NOCLDSTOP;
735			if (act->sa_flags & SA_NOCLDWAIT) {
736				/*
737				 * Paranoia: since SA_NOCLDWAIT is implemented
738				 * by reparenting the dying child to PID 1 (and
739				 * trust it to reap the zombie), PID 1 itself
740				 * is forbidden to set SA_NOCLDWAIT.
741				 */
742				if (p->p_pid == 1)
743					ps->ps_flag &= ~PS_NOCLDWAIT;
744				else
745					ps->ps_flag |= PS_NOCLDWAIT;
746			} else
747				ps->ps_flag &= ~PS_NOCLDWAIT;
748			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
749				ps->ps_flag |= PS_CLDSIGIGN;
750			else
751				ps->ps_flag &= ~PS_CLDSIGIGN;
752		}
753		/*
754		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
755		 * and for signals set to SIG_DFL where the default is to
756		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
757		 * have to restart the process.
758		 */
759		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
760		    (sigprop(sig) & SA_IGNORE &&
761		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
762			/* never to be seen again */
763			sigqueue_delete_proc(p, sig);
764			if (sig != SIGCONT)
765				/* easier in psignal */
766				SIGADDSET(ps->ps_sigignore, sig);
767			SIGDELSET(ps->ps_sigcatch, sig);
768		} else {
769			SIGDELSET(ps->ps_sigignore, sig);
770			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
771				SIGDELSET(ps->ps_sigcatch, sig);
772			else
773				SIGADDSET(ps->ps_sigcatch, sig);
774		}
775#ifdef COMPAT_FREEBSD4
776		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
777		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
778		    (flags & KSA_FREEBSD4) == 0)
779			SIGDELSET(ps->ps_freebsd4, sig);
780		else
781			SIGADDSET(ps->ps_freebsd4, sig);
782#endif
783#ifdef COMPAT_43
784		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
785		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
786		    (flags & KSA_OSIGSET) == 0)
787			SIGDELSET(ps->ps_osigset, sig);
788		else
789			SIGADDSET(ps->ps_osigset, sig);
790#endif
791	}
792	mtx_unlock(&ps->ps_mtx);
793	PROC_UNLOCK(p);
794	return (0);
795}
796
797#ifndef _SYS_SYSPROTO_H_
798struct sigaction_args {
799	int	sig;
800	struct	sigaction *act;
801	struct	sigaction *oact;
802};
803#endif
804int
805sys_sigaction(td, uap)
806	struct thread *td;
807	register struct sigaction_args *uap;
808{
809	struct sigaction act, oact;
810	register struct sigaction *actp, *oactp;
811	int error;
812
813	actp = (uap->act != NULL) ? &act : NULL;
814	oactp = (uap->oact != NULL) ? &oact : NULL;
815	if (actp) {
816		error = copyin(uap->act, actp, sizeof(act));
817		if (error)
818			return (error);
819	}
820	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
821	if (oactp && !error)
822		error = copyout(oactp, uap->oact, sizeof(oact));
823	return (error);
824}
825
826#ifdef COMPAT_FREEBSD4
827#ifndef _SYS_SYSPROTO_H_
828struct freebsd4_sigaction_args {
829	int	sig;
830	struct	sigaction *act;
831	struct	sigaction *oact;
832};
833#endif
834int
835freebsd4_sigaction(td, uap)
836	struct thread *td;
837	register struct freebsd4_sigaction_args *uap;
838{
839	struct sigaction act, oact;
840	register struct sigaction *actp, *oactp;
841	int error;
842
843
844	actp = (uap->act != NULL) ? &act : NULL;
845	oactp = (uap->oact != NULL) ? &oact : NULL;
846	if (actp) {
847		error = copyin(uap->act, actp, sizeof(act));
848		if (error)
849			return (error);
850	}
851	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
852	if (oactp && !error)
853		error = copyout(oactp, uap->oact, sizeof(oact));
854	return (error);
855}
856#endif	/* COMAPT_FREEBSD4 */
857
858#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
859#ifndef _SYS_SYSPROTO_H_
860struct osigaction_args {
861	int	signum;
862	struct	osigaction *nsa;
863	struct	osigaction *osa;
864};
865#endif
866int
867osigaction(td, uap)
868	struct thread *td;
869	register struct osigaction_args *uap;
870{
871	struct osigaction sa;
872	struct sigaction nsa, osa;
873	register struct sigaction *nsap, *osap;
874	int error;
875
876	if (uap->signum <= 0 || uap->signum >= ONSIG)
877		return (EINVAL);
878
879	nsap = (uap->nsa != NULL) ? &nsa : NULL;
880	osap = (uap->osa != NULL) ? &osa : NULL;
881
882	if (nsap) {
883		error = copyin(uap->nsa, &sa, sizeof(sa));
884		if (error)
885			return (error);
886		nsap->sa_handler = sa.sa_handler;
887		nsap->sa_flags = sa.sa_flags;
888		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
889	}
890	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
891	if (osap && !error) {
892		sa.sa_handler = osap->sa_handler;
893		sa.sa_flags = osap->sa_flags;
894		SIG2OSIG(osap->sa_mask, sa.sa_mask);
895		error = copyout(&sa, uap->osa, sizeof(sa));
896	}
897	return (error);
898}
899
900#if !defined(__i386__)
901/* Avoid replicating the same stub everywhere */
902int
903osigreturn(td, uap)
904	struct thread *td;
905	struct osigreturn_args *uap;
906{
907
908	return (nosys(td, (struct nosys_args *)uap));
909}
910#endif
911#endif /* COMPAT_43 */
912
913/*
914 * Initialize signal state for process 0;
915 * set to ignore signals that are ignored by default.
916 */
917void
918siginit(p)
919	struct proc *p;
920{
921	register int i;
922	struct sigacts *ps;
923
924	PROC_LOCK(p);
925	ps = p->p_sigacts;
926	mtx_lock(&ps->ps_mtx);
927	for (i = 1; i <= NSIG; i++) {
928		if (sigprop(i) & SA_IGNORE && i != SIGCONT) {
929			SIGADDSET(ps->ps_sigignore, i);
930		}
931	}
932	mtx_unlock(&ps->ps_mtx);
933	PROC_UNLOCK(p);
934}
935
936/*
937 * Reset specified signal to the default disposition.
938 */
939static void
940sigdflt(struct sigacts *ps, int sig)
941{
942
943	mtx_assert(&ps->ps_mtx, MA_OWNED);
944	SIGDELSET(ps->ps_sigcatch, sig);
945	if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT)
946		SIGADDSET(ps->ps_sigignore, sig);
947	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
948	SIGDELSET(ps->ps_siginfo, sig);
949}
950
951/*
952 * Reset signals for an exec of the specified process.
953 */
954void
955execsigs(struct proc *p)
956{
957	struct sigacts *ps;
958	int sig;
959	struct thread *td;
960
961	/*
962	 * Reset caught signals.  Held signals remain held
963	 * through td_sigmask (unless they were caught,
964	 * and are now ignored by default).
965	 */
966	PROC_LOCK_ASSERT(p, MA_OWNED);
967	td = FIRST_THREAD_IN_PROC(p);
968	ps = p->p_sigacts;
969	mtx_lock(&ps->ps_mtx);
970	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
971		sig = sig_ffs(&ps->ps_sigcatch);
972		sigdflt(ps, sig);
973		if ((sigprop(sig) & SA_IGNORE) != 0)
974			sigqueue_delete_proc(p, sig);
975	}
976	/*
977	 * Reset stack state to the user stack.
978	 * Clear set of signals caught on the signal stack.
979	 */
980	td->td_sigstk.ss_flags = SS_DISABLE;
981	td->td_sigstk.ss_size = 0;
982	td->td_sigstk.ss_sp = 0;
983	td->td_pflags &= ~TDP_ALTSTACK;
984	/*
985	 * Reset no zombies if child dies flag as Solaris does.
986	 */
987	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
988	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
989		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
990	mtx_unlock(&ps->ps_mtx);
991}
992
993/*
994 * kern_sigprocmask()
995 *
996 *	Manipulate signal mask.
997 */
998int
999kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1000    int flags)
1001{
1002	sigset_t new_block, oset1;
1003	struct proc *p;
1004	int error;
1005
1006	p = td->td_proc;
1007	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1008		PROC_LOCK_ASSERT(p, MA_OWNED);
1009	else
1010		PROC_LOCK(p);
1011	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1012	    ? MA_OWNED : MA_NOTOWNED);
1013	if (oset != NULL)
1014		*oset = td->td_sigmask;
1015
1016	error = 0;
1017	if (set != NULL) {
1018		switch (how) {
1019		case SIG_BLOCK:
1020			SIG_CANTMASK(*set);
1021			oset1 = td->td_sigmask;
1022			SIGSETOR(td->td_sigmask, *set);
1023			new_block = td->td_sigmask;
1024			SIGSETNAND(new_block, oset1);
1025			break;
1026		case SIG_UNBLOCK:
1027			SIGSETNAND(td->td_sigmask, *set);
1028			signotify(td);
1029			goto out;
1030		case SIG_SETMASK:
1031			SIG_CANTMASK(*set);
1032			oset1 = td->td_sigmask;
1033			if (flags & SIGPROCMASK_OLD)
1034				SIGSETLO(td->td_sigmask, *set);
1035			else
1036				td->td_sigmask = *set;
1037			new_block = td->td_sigmask;
1038			SIGSETNAND(new_block, oset1);
1039			signotify(td);
1040			break;
1041		default:
1042			error = EINVAL;
1043			goto out;
1044		}
1045
1046		/*
1047		 * The new_block set contains signals that were not previously
1048		 * blocked, but are blocked now.
1049		 *
1050		 * In case we block any signal that was not previously blocked
1051		 * for td, and process has the signal pending, try to schedule
1052		 * signal delivery to some thread that does not block the
1053		 * signal, possibly waking it up.
1054		 */
1055		if (p->p_numthreads != 1)
1056			reschedule_signals(p, new_block, flags);
1057	}
1058
1059out:
1060	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1061		PROC_UNLOCK(p);
1062	return (error);
1063}
1064
1065#ifndef _SYS_SYSPROTO_H_
1066struct sigprocmask_args {
1067	int	how;
1068	const sigset_t *set;
1069	sigset_t *oset;
1070};
1071#endif
1072int
1073sys_sigprocmask(td, uap)
1074	register struct thread *td;
1075	struct sigprocmask_args *uap;
1076{
1077	sigset_t set, oset;
1078	sigset_t *setp, *osetp;
1079	int error;
1080
1081	setp = (uap->set != NULL) ? &set : NULL;
1082	osetp = (uap->oset != NULL) ? &oset : NULL;
1083	if (setp) {
1084		error = copyin(uap->set, setp, sizeof(set));
1085		if (error)
1086			return (error);
1087	}
1088	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1089	if (osetp && !error) {
1090		error = copyout(osetp, uap->oset, sizeof(oset));
1091	}
1092	return (error);
1093}
1094
1095#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1096#ifndef _SYS_SYSPROTO_H_
1097struct osigprocmask_args {
1098	int	how;
1099	osigset_t mask;
1100};
1101#endif
1102int
1103osigprocmask(td, uap)
1104	register struct thread *td;
1105	struct osigprocmask_args *uap;
1106{
1107	sigset_t set, oset;
1108	int error;
1109
1110	OSIG2SIG(uap->mask, set);
1111	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1112	SIG2OSIG(oset, td->td_retval[0]);
1113	return (error);
1114}
1115#endif /* COMPAT_43 */
1116
1117int
1118sys_sigwait(struct thread *td, struct sigwait_args *uap)
1119{
1120	ksiginfo_t ksi;
1121	sigset_t set;
1122	int error;
1123
1124	error = copyin(uap->set, &set, sizeof(set));
1125	if (error) {
1126		td->td_retval[0] = error;
1127		return (0);
1128	}
1129
1130	error = kern_sigtimedwait(td, set, &ksi, NULL);
1131	if (error) {
1132		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1133			error = ERESTART;
1134		if (error == ERESTART)
1135			return (error);
1136		td->td_retval[0] = error;
1137		return (0);
1138	}
1139
1140	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1141	td->td_retval[0] = error;
1142	return (0);
1143}
1144
1145int
1146sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1147{
1148	struct timespec ts;
1149	struct timespec *timeout;
1150	sigset_t set;
1151	ksiginfo_t ksi;
1152	int error;
1153
1154	if (uap->timeout) {
1155		error = copyin(uap->timeout, &ts, sizeof(ts));
1156		if (error)
1157			return (error);
1158
1159		timeout = &ts;
1160	} else
1161		timeout = NULL;
1162
1163	error = copyin(uap->set, &set, sizeof(set));
1164	if (error)
1165		return (error);
1166
1167	error = kern_sigtimedwait(td, set, &ksi, timeout);
1168	if (error)
1169		return (error);
1170
1171	if (uap->info)
1172		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1173
1174	if (error == 0)
1175		td->td_retval[0] = ksi.ksi_signo;
1176	return (error);
1177}
1178
1179int
1180sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1181{
1182	ksiginfo_t ksi;
1183	sigset_t set;
1184	int error;
1185
1186	error = copyin(uap->set, &set, sizeof(set));
1187	if (error)
1188		return (error);
1189
1190	error = kern_sigtimedwait(td, set, &ksi, NULL);
1191	if (error)
1192		return (error);
1193
1194	if (uap->info)
1195		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1196
1197	if (error == 0)
1198		td->td_retval[0] = ksi.ksi_signo;
1199	return (error);
1200}
1201
1202int
1203kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1204	struct timespec *timeout)
1205{
1206	struct sigacts *ps;
1207	sigset_t saved_mask, new_block;
1208	struct proc *p;
1209	int error, sig, timo, timevalid = 0;
1210	struct timespec rts, ets, ts;
1211	struct timeval tv;
1212
1213	p = td->td_proc;
1214	error = 0;
1215	ets.tv_sec = 0;
1216	ets.tv_nsec = 0;
1217
1218	if (timeout != NULL) {
1219		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1220			timevalid = 1;
1221			getnanouptime(&rts);
1222			ets = rts;
1223			timespecadd(&ets, timeout);
1224		}
1225	}
1226	ksiginfo_init(ksi);
1227	/* Some signals can not be waited for. */
1228	SIG_CANTMASK(waitset);
1229	ps = p->p_sigacts;
1230	PROC_LOCK(p);
1231	saved_mask = td->td_sigmask;
1232	SIGSETNAND(td->td_sigmask, waitset);
1233	for (;;) {
1234		mtx_lock(&ps->ps_mtx);
1235		sig = cursig(td);
1236		mtx_unlock(&ps->ps_mtx);
1237		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1238			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1239			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1240				error = 0;
1241				break;
1242			}
1243		}
1244
1245		if (error != 0)
1246			break;
1247
1248		/*
1249		 * POSIX says this must be checked after looking for pending
1250		 * signals.
1251		 */
1252		if (timeout != NULL) {
1253			if (!timevalid) {
1254				error = EINVAL;
1255				break;
1256			}
1257			getnanouptime(&rts);
1258			if (timespeccmp(&rts, &ets, >=)) {
1259				error = EAGAIN;
1260				break;
1261			}
1262			ts = ets;
1263			timespecsub(&ts, &rts);
1264			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1265			timo = tvtohz(&tv);
1266		} else {
1267			timo = 0;
1268		}
1269
1270		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1271
1272		if (timeout != NULL) {
1273			if (error == ERESTART) {
1274				/* Timeout can not be restarted. */
1275				error = EINTR;
1276			} else if (error == EAGAIN) {
1277				/* We will calculate timeout by ourself. */
1278				error = 0;
1279			}
1280		}
1281	}
1282
1283	new_block = saved_mask;
1284	SIGSETNAND(new_block, td->td_sigmask);
1285	td->td_sigmask = saved_mask;
1286	/*
1287	 * Fewer signals can be delivered to us, reschedule signal
1288	 * notification.
1289	 */
1290	if (p->p_numthreads != 1)
1291		reschedule_signals(p, new_block, 0);
1292
1293	if (error == 0) {
1294		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1295
1296		if (ksi->ksi_code == SI_TIMER)
1297			itimer_accept(p, ksi->ksi_timerid, ksi);
1298
1299#ifdef KTRACE
1300		if (KTRPOINT(td, KTR_PSIG)) {
1301			sig_t action;
1302
1303			mtx_lock(&ps->ps_mtx);
1304			action = ps->ps_sigact[_SIG_IDX(sig)];
1305			mtx_unlock(&ps->ps_mtx);
1306			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1307		}
1308#endif
1309		if (sig == SIGKILL)
1310			sigexit(td, sig);
1311	}
1312	PROC_UNLOCK(p);
1313	return (error);
1314}
1315
1316#ifndef _SYS_SYSPROTO_H_
1317struct sigpending_args {
1318	sigset_t	*set;
1319};
1320#endif
1321int
1322sys_sigpending(td, uap)
1323	struct thread *td;
1324	struct sigpending_args *uap;
1325{
1326	struct proc *p = td->td_proc;
1327	sigset_t pending;
1328
1329	PROC_LOCK(p);
1330	pending = p->p_sigqueue.sq_signals;
1331	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1332	PROC_UNLOCK(p);
1333	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1334}
1335
1336#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1337#ifndef _SYS_SYSPROTO_H_
1338struct osigpending_args {
1339	int	dummy;
1340};
1341#endif
1342int
1343osigpending(td, uap)
1344	struct thread *td;
1345	struct osigpending_args *uap;
1346{
1347	struct proc *p = td->td_proc;
1348	sigset_t pending;
1349
1350	PROC_LOCK(p);
1351	pending = p->p_sigqueue.sq_signals;
1352	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1353	PROC_UNLOCK(p);
1354	SIG2OSIG(pending, td->td_retval[0]);
1355	return (0);
1356}
1357#endif /* COMPAT_43 */
1358
1359#if defined(COMPAT_43)
1360/*
1361 * Generalized interface signal handler, 4.3-compatible.
1362 */
1363#ifndef _SYS_SYSPROTO_H_
1364struct osigvec_args {
1365	int	signum;
1366	struct	sigvec *nsv;
1367	struct	sigvec *osv;
1368};
1369#endif
1370/* ARGSUSED */
1371int
1372osigvec(td, uap)
1373	struct thread *td;
1374	register struct osigvec_args *uap;
1375{
1376	struct sigvec vec;
1377	struct sigaction nsa, osa;
1378	register struct sigaction *nsap, *osap;
1379	int error;
1380
1381	if (uap->signum <= 0 || uap->signum >= ONSIG)
1382		return (EINVAL);
1383	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1384	osap = (uap->osv != NULL) ? &osa : NULL;
1385	if (nsap) {
1386		error = copyin(uap->nsv, &vec, sizeof(vec));
1387		if (error)
1388			return (error);
1389		nsap->sa_handler = vec.sv_handler;
1390		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1391		nsap->sa_flags = vec.sv_flags;
1392		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1393	}
1394	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1395	if (osap && !error) {
1396		vec.sv_handler = osap->sa_handler;
1397		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1398		vec.sv_flags = osap->sa_flags;
1399		vec.sv_flags &= ~SA_NOCLDWAIT;
1400		vec.sv_flags ^= SA_RESTART;
1401		error = copyout(&vec, uap->osv, sizeof(vec));
1402	}
1403	return (error);
1404}
1405
1406#ifndef _SYS_SYSPROTO_H_
1407struct osigblock_args {
1408	int	mask;
1409};
1410#endif
1411int
1412osigblock(td, uap)
1413	register struct thread *td;
1414	struct osigblock_args *uap;
1415{
1416	sigset_t set, oset;
1417
1418	OSIG2SIG(uap->mask, set);
1419	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1420	SIG2OSIG(oset, td->td_retval[0]);
1421	return (0);
1422}
1423
1424#ifndef _SYS_SYSPROTO_H_
1425struct osigsetmask_args {
1426	int	mask;
1427};
1428#endif
1429int
1430osigsetmask(td, uap)
1431	struct thread *td;
1432	struct osigsetmask_args *uap;
1433{
1434	sigset_t set, oset;
1435
1436	OSIG2SIG(uap->mask, set);
1437	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1438	SIG2OSIG(oset, td->td_retval[0]);
1439	return (0);
1440}
1441#endif /* COMPAT_43 */
1442
1443/*
1444 * Suspend calling thread until signal, providing mask to be set in the
1445 * meantime.
1446 */
1447#ifndef _SYS_SYSPROTO_H_
1448struct sigsuspend_args {
1449	const sigset_t *sigmask;
1450};
1451#endif
1452/* ARGSUSED */
1453int
1454sys_sigsuspend(td, uap)
1455	struct thread *td;
1456	struct sigsuspend_args *uap;
1457{
1458	sigset_t mask;
1459	int error;
1460
1461	error = copyin(uap->sigmask, &mask, sizeof(mask));
1462	if (error)
1463		return (error);
1464	return (kern_sigsuspend(td, mask));
1465}
1466
1467int
1468kern_sigsuspend(struct thread *td, sigset_t mask)
1469{
1470	struct proc *p = td->td_proc;
1471	int has_sig, sig;
1472
1473	/*
1474	 * When returning from sigsuspend, we want
1475	 * the old mask to be restored after the
1476	 * signal handler has finished.  Thus, we
1477	 * save it here and mark the sigacts structure
1478	 * to indicate this.
1479	 */
1480	PROC_LOCK(p);
1481	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1482	    SIGPROCMASK_PROC_LOCKED);
1483	td->td_pflags |= TDP_OLDMASK;
1484
1485	/*
1486	 * Process signals now. Otherwise, we can get spurious wakeup
1487	 * due to signal entered process queue, but delivered to other
1488	 * thread. But sigsuspend should return only on signal
1489	 * delivery.
1490	 */
1491	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1492	for (has_sig = 0; !has_sig;) {
1493		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1494			0) == 0)
1495			/* void */;
1496		thread_suspend_check(0);
1497		mtx_lock(&p->p_sigacts->ps_mtx);
1498		while ((sig = cursig(td)) != 0)
1499			has_sig += postsig(sig);
1500		mtx_unlock(&p->p_sigacts->ps_mtx);
1501	}
1502	PROC_UNLOCK(p);
1503	td->td_errno = EINTR;
1504	td->td_pflags |= TDP_NERRNO;
1505	return (EJUSTRETURN);
1506}
1507
1508#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1509/*
1510 * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1511 * convention: libc stub passes mask, not pointer, to save a copyin.
1512 */
1513#ifndef _SYS_SYSPROTO_H_
1514struct osigsuspend_args {
1515	osigset_t mask;
1516};
1517#endif
1518/* ARGSUSED */
1519int
1520osigsuspend(td, uap)
1521	struct thread *td;
1522	struct osigsuspend_args *uap;
1523{
1524	sigset_t mask;
1525
1526	OSIG2SIG(uap->mask, mask);
1527	return (kern_sigsuspend(td, mask));
1528}
1529#endif /* COMPAT_43 */
1530
1531#if defined(COMPAT_43)
1532#ifndef _SYS_SYSPROTO_H_
1533struct osigstack_args {
1534	struct	sigstack *nss;
1535	struct	sigstack *oss;
1536};
1537#endif
1538/* ARGSUSED */
1539int
1540osigstack(td, uap)
1541	struct thread *td;
1542	register struct osigstack_args *uap;
1543{
1544	struct sigstack nss, oss;
1545	int error = 0;
1546
1547	if (uap->nss != NULL) {
1548		error = copyin(uap->nss, &nss, sizeof(nss));
1549		if (error)
1550			return (error);
1551	}
1552	oss.ss_sp = td->td_sigstk.ss_sp;
1553	oss.ss_onstack = sigonstack(cpu_getstack(td));
1554	if (uap->nss != NULL) {
1555		td->td_sigstk.ss_sp = nss.ss_sp;
1556		td->td_sigstk.ss_size = 0;
1557		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1558		td->td_pflags |= TDP_ALTSTACK;
1559	}
1560	if (uap->oss != NULL)
1561		error = copyout(&oss, uap->oss, sizeof(oss));
1562
1563	return (error);
1564}
1565#endif /* COMPAT_43 */
1566
1567#ifndef _SYS_SYSPROTO_H_
1568struct sigaltstack_args {
1569	stack_t	*ss;
1570	stack_t	*oss;
1571};
1572#endif
1573/* ARGSUSED */
1574int
1575sys_sigaltstack(td, uap)
1576	struct thread *td;
1577	register struct sigaltstack_args *uap;
1578{
1579	stack_t ss, oss;
1580	int error;
1581
1582	if (uap->ss != NULL) {
1583		error = copyin(uap->ss, &ss, sizeof(ss));
1584		if (error)
1585			return (error);
1586	}
1587	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1588	    (uap->oss != NULL) ? &oss : NULL);
1589	if (error)
1590		return (error);
1591	if (uap->oss != NULL)
1592		error = copyout(&oss, uap->oss, sizeof(stack_t));
1593	return (error);
1594}
1595
1596int
1597kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1598{
1599	struct proc *p = td->td_proc;
1600	int oonstack;
1601
1602	oonstack = sigonstack(cpu_getstack(td));
1603
1604	if (oss != NULL) {
1605		*oss = td->td_sigstk;
1606		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1607		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1608	}
1609
1610	if (ss != NULL) {
1611		if (oonstack)
1612			return (EPERM);
1613		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1614			return (EINVAL);
1615		if (!(ss->ss_flags & SS_DISABLE)) {
1616			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1617				return (ENOMEM);
1618
1619			td->td_sigstk = *ss;
1620			td->td_pflags |= TDP_ALTSTACK;
1621		} else {
1622			td->td_pflags &= ~TDP_ALTSTACK;
1623		}
1624	}
1625	return (0);
1626}
1627
1628/*
1629 * Common code for kill process group/broadcast kill.
1630 * cp is calling process.
1631 */
1632static int
1633killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1634{
1635	struct proc *p;
1636	struct pgrp *pgrp;
1637	int err;
1638	int ret;
1639
1640	ret = ESRCH;
1641	if (all) {
1642		/*
1643		 * broadcast
1644		 */
1645		sx_slock(&allproc_lock);
1646		FOREACH_PROC_IN_SYSTEM(p) {
1647			PROC_LOCK(p);
1648			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1649			    p == td->td_proc || p->p_state == PRS_NEW) {
1650				PROC_UNLOCK(p);
1651				continue;
1652			}
1653			err = p_cansignal(td, p, sig);
1654			if (err == 0) {
1655				if (sig)
1656					pksignal(p, sig, ksi);
1657				ret = err;
1658			}
1659			else if (ret == ESRCH)
1660				ret = err;
1661			PROC_UNLOCK(p);
1662		}
1663		sx_sunlock(&allproc_lock);
1664	} else {
1665		sx_slock(&proctree_lock);
1666		if (pgid == 0) {
1667			/*
1668			 * zero pgid means send to my process group.
1669			 */
1670			pgrp = td->td_proc->p_pgrp;
1671			PGRP_LOCK(pgrp);
1672		} else {
1673			pgrp = pgfind(pgid);
1674			if (pgrp == NULL) {
1675				sx_sunlock(&proctree_lock);
1676				return (ESRCH);
1677			}
1678		}
1679		sx_sunlock(&proctree_lock);
1680		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1681			PROC_LOCK(p);
1682			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1683			    p->p_state == PRS_NEW) {
1684				PROC_UNLOCK(p);
1685				continue;
1686			}
1687			err = p_cansignal(td, p, sig);
1688			if (err == 0) {
1689				if (sig)
1690					pksignal(p, sig, ksi);
1691				ret = err;
1692			}
1693			else if (ret == ESRCH)
1694				ret = err;
1695			PROC_UNLOCK(p);
1696		}
1697		PGRP_UNLOCK(pgrp);
1698	}
1699	return (ret);
1700}
1701
1702#ifndef _SYS_SYSPROTO_H_
1703struct kill_args {
1704	int	pid;
1705	int	signum;
1706};
1707#endif
1708/* ARGSUSED */
1709int
1710sys_kill(struct thread *td, struct kill_args *uap)
1711{
1712	ksiginfo_t ksi;
1713	struct proc *p;
1714	int error;
1715
1716	/*
1717	 * A process in capability mode can send signals only to himself.
1718	 * The main rationale behind this is that abort(3) is implemented as
1719	 * kill(getpid(), SIGABRT).
1720	 */
1721	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1722		return (ECAPMODE);
1723
1724	AUDIT_ARG_SIGNUM(uap->signum);
1725	AUDIT_ARG_PID(uap->pid);
1726	if ((u_int)uap->signum > _SIG_MAXSIG)
1727		return (EINVAL);
1728
1729	ksiginfo_init(&ksi);
1730	ksi.ksi_signo = uap->signum;
1731	ksi.ksi_code = SI_USER;
1732	ksi.ksi_pid = td->td_proc->p_pid;
1733	ksi.ksi_uid = td->td_ucred->cr_ruid;
1734
1735	if (uap->pid > 0) {
1736		/* kill single process */
1737		if ((p = pfind(uap->pid)) == NULL) {
1738			if ((p = zpfind(uap->pid)) == NULL)
1739				return (ESRCH);
1740		}
1741		AUDIT_ARG_PROCESS(p);
1742		error = p_cansignal(td, p, uap->signum);
1743		if (error == 0 && uap->signum)
1744			pksignal(p, uap->signum, &ksi);
1745		PROC_UNLOCK(p);
1746		return (error);
1747	}
1748	switch (uap->pid) {
1749	case -1:		/* broadcast signal */
1750		return (killpg1(td, uap->signum, 0, 1, &ksi));
1751	case 0:			/* signal own process group */
1752		return (killpg1(td, uap->signum, 0, 0, &ksi));
1753	default:		/* negative explicit process group */
1754		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1755	}
1756	/* NOTREACHED */
1757}
1758
1759int
1760sys_pdkill(td, uap)
1761	struct thread *td;
1762	struct pdkill_args *uap;
1763{
1764#ifdef PROCDESC
1765	struct proc *p;
1766	cap_rights_t rights;
1767	int error;
1768
1769	AUDIT_ARG_SIGNUM(uap->signum);
1770	AUDIT_ARG_FD(uap->fd);
1771	if ((u_int)uap->signum > _SIG_MAXSIG)
1772		return (EINVAL);
1773
1774	error = procdesc_find(td, uap->fd,
1775	    cap_rights_init(&rights, CAP_PDKILL), &p);
1776	if (error)
1777		return (error);
1778	AUDIT_ARG_PROCESS(p);
1779	error = p_cansignal(td, p, uap->signum);
1780	if (error == 0 && uap->signum)
1781		kern_psignal(p, uap->signum);
1782	PROC_UNLOCK(p);
1783	return (error);
1784#else
1785	return (ENOSYS);
1786#endif
1787}
1788
1789#if defined(COMPAT_43)
1790#ifndef _SYS_SYSPROTO_H_
1791struct okillpg_args {
1792	int	pgid;
1793	int	signum;
1794};
1795#endif
1796/* ARGSUSED */
1797int
1798okillpg(struct thread *td, struct okillpg_args *uap)
1799{
1800	ksiginfo_t ksi;
1801
1802	AUDIT_ARG_SIGNUM(uap->signum);
1803	AUDIT_ARG_PID(uap->pgid);
1804	if ((u_int)uap->signum > _SIG_MAXSIG)
1805		return (EINVAL);
1806
1807	ksiginfo_init(&ksi);
1808	ksi.ksi_signo = uap->signum;
1809	ksi.ksi_code = SI_USER;
1810	ksi.ksi_pid = td->td_proc->p_pid;
1811	ksi.ksi_uid = td->td_ucred->cr_ruid;
1812	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1813}
1814#endif /* COMPAT_43 */
1815
1816#ifndef _SYS_SYSPROTO_H_
1817struct sigqueue_args {
1818	pid_t pid;
1819	int signum;
1820	/* union sigval */ void *value;
1821};
1822#endif
1823int
1824sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1825{
1826	ksiginfo_t ksi;
1827	struct proc *p;
1828	int error;
1829
1830	if ((u_int)uap->signum > _SIG_MAXSIG)
1831		return (EINVAL);
1832
1833	/*
1834	 * Specification says sigqueue can only send signal to
1835	 * single process.
1836	 */
1837	if (uap->pid <= 0)
1838		return (EINVAL);
1839
1840	if ((p = pfind(uap->pid)) == NULL) {
1841		if ((p = zpfind(uap->pid)) == NULL)
1842			return (ESRCH);
1843	}
1844	error = p_cansignal(td, p, uap->signum);
1845	if (error == 0 && uap->signum != 0) {
1846		ksiginfo_init(&ksi);
1847		ksi.ksi_flags = KSI_SIGQ;
1848		ksi.ksi_signo = uap->signum;
1849		ksi.ksi_code = SI_QUEUE;
1850		ksi.ksi_pid = td->td_proc->p_pid;
1851		ksi.ksi_uid = td->td_ucred->cr_ruid;
1852		ksi.ksi_value.sival_ptr = uap->value;
1853		error = pksignal(p, ksi.ksi_signo, &ksi);
1854	}
1855	PROC_UNLOCK(p);
1856	return (error);
1857}
1858
1859/*
1860 * Send a signal to a process group.
1861 */
1862void
1863gsignal(int pgid, int sig, ksiginfo_t *ksi)
1864{
1865	struct pgrp *pgrp;
1866
1867	if (pgid != 0) {
1868		sx_slock(&proctree_lock);
1869		pgrp = pgfind(pgid);
1870		sx_sunlock(&proctree_lock);
1871		if (pgrp != NULL) {
1872			pgsignal(pgrp, sig, 0, ksi);
1873			PGRP_UNLOCK(pgrp);
1874		}
1875	}
1876}
1877
1878/*
1879 * Send a signal to a process group.  If checktty is 1,
1880 * limit to members which have a controlling terminal.
1881 */
1882void
1883pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1884{
1885	struct proc *p;
1886
1887	if (pgrp) {
1888		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1889		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1890			PROC_LOCK(p);
1891			if (p->p_state == PRS_NORMAL &&
1892			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1893				pksignal(p, sig, ksi);
1894			PROC_UNLOCK(p);
1895		}
1896	}
1897}
1898
1899
1900/*
1901 * Recalculate the signal mask and reset the signal disposition after
1902 * usermode frame for delivery is formed.  Should be called after
1903 * mach-specific routine, because sysent->sv_sendsig() needs correct
1904 * ps_siginfo and signal mask.
1905 */
1906static void
1907postsig_done(int sig, struct thread *td, struct sigacts *ps)
1908{
1909	sigset_t mask;
1910
1911	mtx_assert(&ps->ps_mtx, MA_OWNED);
1912	td->td_ru.ru_nsignals++;
1913	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1914	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1915		SIGADDSET(mask, sig);
1916	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1917	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1918	if (SIGISMEMBER(ps->ps_sigreset, sig))
1919		sigdflt(ps, sig);
1920}
1921
1922
1923/*
1924 * Send a signal caused by a trap to the current thread.  If it will be
1925 * caught immediately, deliver it with correct code.  Otherwise, post it
1926 * normally.
1927 */
1928void
1929trapsignal(struct thread *td, ksiginfo_t *ksi)
1930{
1931	struct sigacts *ps;
1932	struct proc *p;
1933	int sig;
1934	int code;
1935
1936	p = td->td_proc;
1937	sig = ksi->ksi_signo;
1938	code = ksi->ksi_code;
1939	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1940
1941	PROC_LOCK(p);
1942	ps = p->p_sigacts;
1943	mtx_lock(&ps->ps_mtx);
1944	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1945	    !SIGISMEMBER(td->td_sigmask, sig)) {
1946#ifdef KTRACE
1947		if (KTRPOINT(curthread, KTR_PSIG))
1948			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1949			    &td->td_sigmask, code);
1950#endif
1951		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1952				ksi, &td->td_sigmask);
1953		postsig_done(sig, td, ps);
1954		mtx_unlock(&ps->ps_mtx);
1955	} else {
1956		/*
1957		 * Avoid a possible infinite loop if the thread
1958		 * masking the signal or process is ignoring the
1959		 * signal.
1960		 */
1961		if (kern_forcesigexit &&
1962		    (SIGISMEMBER(td->td_sigmask, sig) ||
1963		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1964			SIGDELSET(td->td_sigmask, sig);
1965			SIGDELSET(ps->ps_sigcatch, sig);
1966			SIGDELSET(ps->ps_sigignore, sig);
1967			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1968		}
1969		mtx_unlock(&ps->ps_mtx);
1970		p->p_code = code;	/* XXX for core dump/debugger */
1971		p->p_sig = sig;		/* XXX to verify code */
1972		tdsendsignal(p, td, sig, ksi);
1973	}
1974	PROC_UNLOCK(p);
1975}
1976
1977static struct thread *
1978sigtd(struct proc *p, int sig, int prop)
1979{
1980	struct thread *td, *signal_td;
1981
1982	PROC_LOCK_ASSERT(p, MA_OWNED);
1983
1984	/*
1985	 * Check if current thread can handle the signal without
1986	 * switching context to another thread.
1987	 */
1988	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1989		return (curthread);
1990	signal_td = NULL;
1991	FOREACH_THREAD_IN_PROC(p, td) {
1992		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1993			signal_td = td;
1994			break;
1995		}
1996	}
1997	if (signal_td == NULL)
1998		signal_td = FIRST_THREAD_IN_PROC(p);
1999	return (signal_td);
2000}
2001
2002/*
2003 * Send the signal to the process.  If the signal has an action, the action
2004 * is usually performed by the target process rather than the caller; we add
2005 * the signal to the set of pending signals for the process.
2006 *
2007 * Exceptions:
2008 *   o When a stop signal is sent to a sleeping process that takes the
2009 *     default action, the process is stopped without awakening it.
2010 *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2011 *     regardless of the signal action (eg, blocked or ignored).
2012 *
2013 * Other ignored signals are discarded immediately.
2014 *
2015 * NB: This function may be entered from the debugger via the "kill" DDB
2016 * command.  There is little that can be done to mitigate the possibly messy
2017 * side effects of this unwise possibility.
2018 */
2019void
2020kern_psignal(struct proc *p, int sig)
2021{
2022	ksiginfo_t ksi;
2023
2024	ksiginfo_init(&ksi);
2025	ksi.ksi_signo = sig;
2026	ksi.ksi_code = SI_KERNEL;
2027	(void) tdsendsignal(p, NULL, sig, &ksi);
2028}
2029
2030int
2031pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2032{
2033
2034	return (tdsendsignal(p, NULL, sig, ksi));
2035}
2036
2037/* Utility function for finding a thread to send signal event to. */
2038int
2039sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2040{
2041	struct thread *td;
2042
2043	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2044		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2045		if (td == NULL)
2046			return (ESRCH);
2047		*ttd = td;
2048	} else {
2049		*ttd = NULL;
2050		PROC_LOCK(p);
2051	}
2052	return (0);
2053}
2054
2055void
2056tdsignal(struct thread *td, int sig)
2057{
2058	ksiginfo_t ksi;
2059
2060	ksiginfo_init(&ksi);
2061	ksi.ksi_signo = sig;
2062	ksi.ksi_code = SI_KERNEL;
2063	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2064}
2065
2066void
2067tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2068{
2069
2070	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2071}
2072
2073int
2074tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2075{
2076	sig_t action;
2077	sigqueue_t *sigqueue;
2078	int prop;
2079	struct sigacts *ps;
2080	int intrval;
2081	int ret = 0;
2082	int wakeup_swapper;
2083
2084	MPASS(td == NULL || p == td->td_proc);
2085	PROC_LOCK_ASSERT(p, MA_OWNED);
2086
2087	if (!_SIG_VALID(sig))
2088		panic("%s(): invalid signal %d", __func__, sig);
2089
2090	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2091
2092	/*
2093	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2094	 */
2095	if (p->p_state == PRS_ZOMBIE) {
2096		if (ksi && (ksi->ksi_flags & KSI_INS))
2097			ksiginfo_tryfree(ksi);
2098		return (ret);
2099	}
2100
2101	ps = p->p_sigacts;
2102	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2103	prop = sigprop(sig);
2104
2105	if (td == NULL) {
2106		td = sigtd(p, sig, prop);
2107		sigqueue = &p->p_sigqueue;
2108	} else
2109		sigqueue = &td->td_sigqueue;
2110
2111	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2112
2113	/*
2114	 * If the signal is being ignored,
2115	 * then we forget about it immediately.
2116	 * (Note: we don't set SIGCONT in ps_sigignore,
2117	 * and if it is set to SIG_IGN,
2118	 * action will be SIG_DFL here.)
2119	 */
2120	mtx_lock(&ps->ps_mtx);
2121	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2122		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2123
2124		mtx_unlock(&ps->ps_mtx);
2125		if (ksi && (ksi->ksi_flags & KSI_INS))
2126			ksiginfo_tryfree(ksi);
2127		return (ret);
2128	}
2129	if (SIGISMEMBER(td->td_sigmask, sig))
2130		action = SIG_HOLD;
2131	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2132		action = SIG_CATCH;
2133	else
2134		action = SIG_DFL;
2135	if (SIGISMEMBER(ps->ps_sigintr, sig))
2136		intrval = EINTR;
2137	else
2138		intrval = ERESTART;
2139	mtx_unlock(&ps->ps_mtx);
2140
2141	if (prop & SA_CONT)
2142		sigqueue_delete_stopmask_proc(p);
2143	else if (prop & SA_STOP) {
2144		/*
2145		 * If sending a tty stop signal to a member of an orphaned
2146		 * process group, discard the signal here if the action
2147		 * is default; don't stop the process below if sleeping,
2148		 * and don't clear any pending SIGCONT.
2149		 */
2150		if ((prop & SA_TTYSTOP) &&
2151		    (p->p_pgrp->pg_jobc == 0) &&
2152		    (action == SIG_DFL)) {
2153			if (ksi && (ksi->ksi_flags & KSI_INS))
2154				ksiginfo_tryfree(ksi);
2155			return (ret);
2156		}
2157		sigqueue_delete_proc(p, SIGCONT);
2158		if (p->p_flag & P_CONTINUED) {
2159			p->p_flag &= ~P_CONTINUED;
2160			PROC_LOCK(p->p_pptr);
2161			sigqueue_take(p->p_ksi);
2162			PROC_UNLOCK(p->p_pptr);
2163		}
2164	}
2165
2166	ret = sigqueue_add(sigqueue, sig, ksi);
2167	if (ret != 0)
2168		return (ret);
2169	signotify(td);
2170	/*
2171	 * Defer further processing for signals which are held,
2172	 * except that stopped processes must be continued by SIGCONT.
2173	 */
2174	if (action == SIG_HOLD &&
2175	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2176		return (ret);
2177	/*
2178	 * SIGKILL: Remove procfs STOPEVENTs and ptrace events.
2179	 */
2180	if (sig == SIGKILL) {
2181		p->p_ptevents = 0;
2182		/* from procfs_ioctl.c: PIOCBIC */
2183		p->p_stops = 0;
2184		/* from procfs_ioctl.c: PIOCCONT */
2185		p->p_step = 0;
2186		wakeup(&p->p_step);
2187	}
2188	/*
2189	 * Some signals have a process-wide effect and a per-thread
2190	 * component.  Most processing occurs when the process next
2191	 * tries to cross the user boundary, however there are some
2192	 * times when processing needs to be done immediately, such as
2193	 * waking up threads so that they can cross the user boundary.
2194	 * We try to do the per-process part here.
2195	 */
2196	if (P_SHOULDSTOP(p)) {
2197		KASSERT(!(p->p_flag & P_WEXIT),
2198		    ("signal to stopped but exiting process"));
2199		if (sig == SIGKILL) {
2200			/*
2201			 * If traced process is already stopped,
2202			 * then no further action is necessary.
2203			 */
2204			if (p->p_flag & P_TRACED)
2205				goto out;
2206			/*
2207			 * SIGKILL sets process running.
2208			 * It will die elsewhere.
2209			 * All threads must be restarted.
2210			 */
2211			p->p_flag &= ~P_STOPPED_SIG;
2212			goto runfast;
2213		}
2214
2215		if (prop & SA_CONT) {
2216			/*
2217			 * If traced process is already stopped,
2218			 * then no further action is necessary.
2219			 */
2220			if (p->p_flag & P_TRACED)
2221				goto out;
2222			/*
2223			 * If SIGCONT is default (or ignored), we continue the
2224			 * process but don't leave the signal in sigqueue as
2225			 * it has no further action.  If SIGCONT is held, we
2226			 * continue the process and leave the signal in
2227			 * sigqueue.  If the process catches SIGCONT, let it
2228			 * handle the signal itself.  If it isn't waiting on
2229			 * an event, it goes back to run state.
2230			 * Otherwise, process goes back to sleep state.
2231			 */
2232			p->p_flag &= ~P_STOPPED_SIG;
2233			PROC_SLOCK(p);
2234			if (p->p_numthreads == p->p_suspcount) {
2235				PROC_SUNLOCK(p);
2236				p->p_flag |= P_CONTINUED;
2237				p->p_xstat = SIGCONT;
2238				PROC_LOCK(p->p_pptr);
2239				childproc_continued(p);
2240				PROC_UNLOCK(p->p_pptr);
2241				PROC_SLOCK(p);
2242			}
2243			if (action == SIG_DFL) {
2244				thread_unsuspend(p);
2245				PROC_SUNLOCK(p);
2246				sigqueue_delete(sigqueue, sig);
2247				goto out;
2248			}
2249			if (action == SIG_CATCH) {
2250				/*
2251				 * The process wants to catch it so it needs
2252				 * to run at least one thread, but which one?
2253				 */
2254				PROC_SUNLOCK(p);
2255				goto runfast;
2256			}
2257			/*
2258			 * The signal is not ignored or caught.
2259			 */
2260			thread_unsuspend(p);
2261			PROC_SUNLOCK(p);
2262			goto out;
2263		}
2264
2265		if (prop & SA_STOP) {
2266			/*
2267			 * If traced process is already stopped,
2268			 * then no further action is necessary.
2269			 */
2270			if (p->p_flag & P_TRACED)
2271				goto out;
2272			/*
2273			 * Already stopped, don't need to stop again
2274			 * (If we did the shell could get confused).
2275			 * Just make sure the signal STOP bit set.
2276			 */
2277			p->p_flag |= P_STOPPED_SIG;
2278			sigqueue_delete(sigqueue, sig);
2279			goto out;
2280		}
2281
2282		/*
2283		 * All other kinds of signals:
2284		 * If a thread is sleeping interruptibly, simulate a
2285		 * wakeup so that when it is continued it will be made
2286		 * runnable and can look at the signal.  However, don't make
2287		 * the PROCESS runnable, leave it stopped.
2288		 * It may run a bit until it hits a thread_suspend_check().
2289		 */
2290		wakeup_swapper = 0;
2291		PROC_SLOCK(p);
2292		thread_lock(td);
2293		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2294			wakeup_swapper = sleepq_abort(td, intrval);
2295		thread_unlock(td);
2296		PROC_SUNLOCK(p);
2297		if (wakeup_swapper)
2298			kick_proc0();
2299		goto out;
2300		/*
2301		 * Mutexes are short lived. Threads waiting on them will
2302		 * hit thread_suspend_check() soon.
2303		 */
2304	} else if (p->p_state == PRS_NORMAL) {
2305		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2306			tdsigwakeup(td, sig, action, intrval);
2307			goto out;
2308		}
2309
2310		MPASS(action == SIG_DFL);
2311
2312		if (prop & SA_STOP) {
2313			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2314				goto out;
2315			p->p_flag |= P_STOPPED_SIG;
2316			p->p_xstat = sig;
2317			PROC_SLOCK(p);
2318			sig_suspend_threads(td, p, 1);
2319			if (p->p_numthreads == p->p_suspcount) {
2320				/*
2321				 * only thread sending signal to another
2322				 * process can reach here, if thread is sending
2323				 * signal to its process, because thread does
2324				 * not suspend itself here, p_numthreads
2325				 * should never be equal to p_suspcount.
2326				 */
2327				thread_stopped(p);
2328				PROC_SUNLOCK(p);
2329				sigqueue_delete_proc(p, p->p_xstat);
2330			} else
2331				PROC_SUNLOCK(p);
2332			goto out;
2333		}
2334	} else {
2335		/* Not in "NORMAL" state. discard the signal. */
2336		sigqueue_delete(sigqueue, sig);
2337		goto out;
2338	}
2339
2340	/*
2341	 * The process is not stopped so we need to apply the signal to all the
2342	 * running threads.
2343	 */
2344runfast:
2345	tdsigwakeup(td, sig, action, intrval);
2346	PROC_SLOCK(p);
2347	thread_unsuspend(p);
2348	PROC_SUNLOCK(p);
2349out:
2350	/* If we jump here, proc slock should not be owned. */
2351	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2352	return (ret);
2353}
2354
2355/*
2356 * The force of a signal has been directed against a single
2357 * thread.  We need to see what we can do about knocking it
2358 * out of any sleep it may be in etc.
2359 */
2360static void
2361tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2362{
2363	struct proc *p = td->td_proc;
2364	register int prop;
2365	int wakeup_swapper;
2366
2367	wakeup_swapper = 0;
2368	PROC_LOCK_ASSERT(p, MA_OWNED);
2369	prop = sigprop(sig);
2370
2371	PROC_SLOCK(p);
2372	thread_lock(td);
2373	/*
2374	 * Bring the priority of a thread up if we want it to get
2375	 * killed in this lifetime.  Be careful to avoid bumping the
2376	 * priority of the idle thread, since we still allow to signal
2377	 * kernel processes.
2378	 */
2379	if (action == SIG_DFL && (prop & SA_KILL) != 0 &&
2380	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2381		sched_prio(td, PUSER);
2382	if (TD_ON_SLEEPQ(td)) {
2383		/*
2384		 * If thread is sleeping uninterruptibly
2385		 * we can't interrupt the sleep... the signal will
2386		 * be noticed when the process returns through
2387		 * trap() or syscall().
2388		 */
2389		if ((td->td_flags & TDF_SINTR) == 0)
2390			goto out;
2391		/*
2392		 * If SIGCONT is default (or ignored) and process is
2393		 * asleep, we are finished; the process should not
2394		 * be awakened.
2395		 */
2396		if ((prop & SA_CONT) && action == SIG_DFL) {
2397			thread_unlock(td);
2398			PROC_SUNLOCK(p);
2399			sigqueue_delete(&p->p_sigqueue, sig);
2400			/*
2401			 * It may be on either list in this state.
2402			 * Remove from both for now.
2403			 */
2404			sigqueue_delete(&td->td_sigqueue, sig);
2405			return;
2406		}
2407
2408		/*
2409		 * Don't awaken a sleeping thread for SIGSTOP if the
2410		 * STOP signal is deferred.
2411		 */
2412		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2413			goto out;
2414
2415		/*
2416		 * Give low priority threads a better chance to run.
2417		 */
2418		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2419			sched_prio(td, PUSER);
2420
2421		wakeup_swapper = sleepq_abort(td, intrval);
2422	} else {
2423		/*
2424		 * Other states do nothing with the signal immediately,
2425		 * other than kicking ourselves if we are running.
2426		 * It will either never be noticed, or noticed very soon.
2427		 */
2428#ifdef SMP
2429		if (TD_IS_RUNNING(td) && td != curthread)
2430			forward_signal(td);
2431#endif
2432	}
2433out:
2434	PROC_SUNLOCK(p);
2435	thread_unlock(td);
2436	if (wakeup_swapper)
2437		kick_proc0();
2438}
2439
2440static void
2441sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2442{
2443	struct thread *td2;
2444
2445	PROC_LOCK_ASSERT(p, MA_OWNED);
2446	PROC_SLOCK_ASSERT(p, MA_OWNED);
2447
2448	FOREACH_THREAD_IN_PROC(p, td2) {
2449		thread_lock(td2);
2450		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2451		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2452		    (td2->td_flags & TDF_SINTR)) {
2453			if (td2->td_flags & TDF_SBDRY) {
2454				/*
2455				 * Once a thread is asleep with
2456				 * TDF_SBDRY set, it should never
2457				 * become suspended due to this check.
2458				 */
2459				KASSERT(!TD_IS_SUSPENDED(td2),
2460				    ("thread with deferred stops suspended"));
2461			} else if (!TD_IS_SUSPENDED(td2)) {
2462				thread_suspend_one(td2);
2463			}
2464		} else if (!TD_IS_SUSPENDED(td2)) {
2465			if (sending || td != td2)
2466				td2->td_flags |= TDF_ASTPENDING;
2467#ifdef SMP
2468			if (TD_IS_RUNNING(td2) && td2 != td)
2469				forward_signal(td2);
2470#endif
2471		}
2472		thread_unlock(td2);
2473	}
2474}
2475
2476int
2477ptracestop(struct thread *td, int sig)
2478{
2479	struct proc *p = td->td_proc;
2480
2481	PROC_LOCK_ASSERT(p, MA_OWNED);
2482	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2483	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2484	    &p->p_mtx.lock_object, "Stopping for traced signal");
2485
2486	td->td_dbgflags |= TDB_XSIG;
2487	td->td_xsig = sig;
2488	CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2489	    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2490	PROC_SLOCK(p);
2491	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2492		if (p->p_flag & P_SINGLE_EXIT &&
2493		    !(td->td_dbgflags & TDB_EXIT)) {
2494			/*
2495			 * Ignore ptrace stops except for thread exit
2496			 * events when the process exits.
2497			 */
2498			td->td_dbgflags &= ~TDB_XSIG;
2499			PROC_SUNLOCK(p);
2500			return (sig);
2501		}
2502
2503		/*
2504		 * Make wait(2) work.  Ensure that right after the
2505		 * attach, the thread which was decided to become the
2506		 * leader of attach gets reported to the waiter.
2507		 * Otherwise, just avoid overwriting another thread's
2508		 * assignment to p_xthread.  If another thread has
2509		 * already set p_xthread, the current thread will get
2510		 * a chance to report itself upon the next iteration.
2511		 */
2512		if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2513		    ((p->p_flag & P2_PTRACE_FSTP) == 0 &&
2514		    p->p_xthread == NULL)) {
2515			p->p_xstat = sig;
2516			p->p_xthread = td;
2517			td->td_dbgflags &= ~TDB_FSTP;
2518			p->p_flag2 &= ~P2_PTRACE_FSTP;
2519			p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2520			sig_suspend_threads(td, p, 0);
2521		}
2522		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2523			td->td_dbgflags &= ~TDB_STOPATFORK;
2524			cv_broadcast(&p->p_dbgwait);
2525		}
2526stopme:
2527		thread_suspend_switch(td, p);
2528		if (p->p_xthread == td)
2529			p->p_xthread = NULL;
2530		if (!(p->p_flag & P_TRACED))
2531			break;
2532		if (td->td_dbgflags & TDB_SUSPEND) {
2533			if (p->p_flag & P_SINGLE_EXIT)
2534				break;
2535			goto stopme;
2536		}
2537	}
2538	PROC_SUNLOCK(p);
2539	return (td->td_xsig);
2540}
2541
2542static void
2543reschedule_signals(struct proc *p, sigset_t block, int flags)
2544{
2545	struct sigacts *ps;
2546	struct thread *td;
2547	int sig;
2548
2549	PROC_LOCK_ASSERT(p, MA_OWNED);
2550	ps = p->p_sigacts;
2551	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2552	    MA_OWNED : MA_NOTOWNED);
2553	if (SIGISEMPTY(p->p_siglist))
2554		return;
2555	SIGSETAND(block, p->p_siglist);
2556	while ((sig = sig_ffs(&block)) != 0) {
2557		SIGDELSET(block, sig);
2558		td = sigtd(p, sig, 0);
2559		signotify(td);
2560		if (!(flags & SIGPROCMASK_PS_LOCKED))
2561			mtx_lock(&ps->ps_mtx);
2562		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2563			tdsigwakeup(td, sig, SIG_CATCH,
2564			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2565			     ERESTART));
2566		if (!(flags & SIGPROCMASK_PS_LOCKED))
2567			mtx_unlock(&ps->ps_mtx);
2568	}
2569}
2570
2571void
2572tdsigcleanup(struct thread *td)
2573{
2574	struct proc *p;
2575	sigset_t unblocked;
2576
2577	p = td->td_proc;
2578	PROC_LOCK_ASSERT(p, MA_OWNED);
2579
2580	sigqueue_flush(&td->td_sigqueue);
2581	if (p->p_numthreads == 1)
2582		return;
2583
2584	/*
2585	 * Since we cannot handle signals, notify signal post code
2586	 * about this by filling the sigmask.
2587	 *
2588	 * Also, if needed, wake up thread(s) that do not block the
2589	 * same signals as the exiting thread, since the thread might
2590	 * have been selected for delivery and woken up.
2591	 */
2592	SIGFILLSET(unblocked);
2593	SIGSETNAND(unblocked, td->td_sigmask);
2594	SIGFILLSET(td->td_sigmask);
2595	reschedule_signals(p, unblocked, 0);
2596
2597}
2598
2599/*
2600 * Defer the delivery of SIGSTOP for the current thread.  Returns true
2601 * if stops were deferred and false if they were already deferred.
2602 */
2603int
2604sigdeferstop(void)
2605{
2606	struct thread *td;
2607
2608	td = curthread;
2609	if (td->td_flags & TDF_SBDRY)
2610		return (0);
2611	thread_lock(td);
2612	td->td_flags |= TDF_SBDRY;
2613	thread_unlock(td);
2614	return (1);
2615}
2616
2617/*
2618 * Permit the delivery of SIGSTOP for the current thread.  This does
2619 * not immediately suspend if a stop was posted.  Instead, the thread
2620 * will suspend either via ast() or a subsequent interruptible sleep.
2621 */
2622int
2623sigallowstop(void)
2624{
2625	struct thread *td;
2626	int prev;
2627
2628	td = curthread;
2629	thread_lock(td);
2630	prev = (td->td_flags & TDF_SBDRY) != 0;
2631	td->td_flags &= ~TDF_SBDRY;
2632	thread_unlock(td);
2633	return (prev);
2634}
2635
2636/*
2637 * If the current process has received a signal (should be caught or cause
2638 * termination, should interrupt current syscall), return the signal number.
2639 * Stop signals with default action are processed immediately, then cleared;
2640 * they aren't returned.  This is checked after each entry to the system for
2641 * a syscall or trap (though this can usually be done without calling issignal
2642 * by checking the pending signal masks in cursig.) The normal call
2643 * sequence is
2644 *
2645 *	while (sig = cursig(curthread))
2646 *		postsig(sig);
2647 */
2648static int
2649issignal(struct thread *td)
2650{
2651	struct proc *p;
2652	struct sigacts *ps;
2653	struct sigqueue *queue;
2654	sigset_t sigpending;
2655	int sig, prop, newsig;
2656
2657	p = td->td_proc;
2658	ps = p->p_sigacts;
2659	mtx_assert(&ps->ps_mtx, MA_OWNED);
2660	PROC_LOCK_ASSERT(p, MA_OWNED);
2661	for (;;) {
2662		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2663
2664		sigpending = td->td_sigqueue.sq_signals;
2665		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2666		SIGSETNAND(sigpending, td->td_sigmask);
2667
2668		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2669			SIG_STOPSIGMASK(sigpending);
2670		if (SIGISEMPTY(sigpending))	/* no signal to send */
2671			return (0);
2672		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2673		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2674		    SIGISMEMBER(sigpending, SIGSTOP)) {
2675			/*
2676			 * If debugger just attached, always consume
2677			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2678			 * execute the debugger attach ritual in
2679			 * order.
2680			 */
2681			sig = SIGSTOP;
2682			td->td_dbgflags |= TDB_FSTP;
2683		} else {
2684			sig = sig_ffs(&sigpending);
2685		}
2686
2687		if (p->p_stops & S_SIG) {
2688			mtx_unlock(&ps->ps_mtx);
2689			stopevent(p, S_SIG, sig);
2690			mtx_lock(&ps->ps_mtx);
2691		}
2692
2693		/*
2694		 * We should see pending but ignored signals
2695		 * only if P_TRACED was on when they were posted.
2696		 */
2697		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2698			sigqueue_delete(&td->td_sigqueue, sig);
2699			sigqueue_delete(&p->p_sigqueue, sig);
2700			continue;
2701		}
2702		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2703			/*
2704			 * If traced, always stop.
2705			 * Remove old signal from queue before the stop.
2706			 * XXX shrug off debugger, it causes siginfo to
2707			 * be thrown away.
2708			 */
2709			queue = &td->td_sigqueue;
2710			td->td_dbgksi.ksi_signo = 0;
2711			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2712				queue = &p->p_sigqueue;
2713				sigqueue_get(queue, sig, &td->td_dbgksi);
2714			}
2715
2716			mtx_unlock(&ps->ps_mtx);
2717			newsig = ptracestop(td, sig);
2718			mtx_lock(&ps->ps_mtx);
2719
2720			if (sig != newsig) {
2721
2722				/*
2723				 * If parent wants us to take the signal,
2724				 * then it will leave it in p->p_xstat;
2725				 * otherwise we just look for signals again.
2726				*/
2727				if (newsig == 0)
2728					continue;
2729				sig = newsig;
2730
2731				/*
2732				 * Put the new signal into td_sigqueue. If the
2733				 * signal is being masked, look for other
2734				 * signals.
2735				 */
2736				sigqueue_add(queue, sig, NULL);
2737				if (SIGISMEMBER(td->td_sigmask, sig))
2738					continue;
2739				signotify(td);
2740			} else {
2741				if (td->td_dbgksi.ksi_signo != 0) {
2742					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2743					if (sigqueue_add(&td->td_sigqueue, sig,
2744					    &td->td_dbgksi) != 0)
2745						td->td_dbgksi.ksi_signo = 0;
2746				}
2747				if (td->td_dbgksi.ksi_signo == 0)
2748					sigqueue_add(&td->td_sigqueue, sig,
2749					    NULL);
2750			}
2751
2752			/*
2753			 * If the traced bit got turned off, go back up
2754			 * to the top to rescan signals.  This ensures
2755			 * that p_sig* and p_sigact are consistent.
2756			 */
2757			if ((p->p_flag & P_TRACED) == 0)
2758				continue;
2759		}
2760
2761		prop = sigprop(sig);
2762
2763		/*
2764		 * Decide whether the signal should be returned.
2765		 * Return the signal's number, or fall through
2766		 * to clear it from the pending mask.
2767		 */
2768		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2769
2770		case (intptr_t)SIG_DFL:
2771			/*
2772			 * Don't take default actions on system processes.
2773			 */
2774			if (p->p_pid <= 1) {
2775#ifdef DIAGNOSTIC
2776				/*
2777				 * Are you sure you want to ignore SIGSEGV
2778				 * in init? XXX
2779				 */
2780				printf("Process (pid %lu) got signal %d\n",
2781					(u_long)p->p_pid, sig);
2782#endif
2783				break;		/* == ignore */
2784			}
2785			/*
2786			 * If there is a pending stop signal to process
2787			 * with default action, stop here,
2788			 * then clear the signal.  However,
2789			 * if process is member of an orphaned
2790			 * process group, ignore tty stop signals.
2791			 */
2792			if (prop & SA_STOP) {
2793				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2794				    (p->p_pgrp->pg_jobc == 0 &&
2795				     prop & SA_TTYSTOP))
2796					break;	/* == ignore */
2797				mtx_unlock(&ps->ps_mtx);
2798				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2799				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2800				sigqueue_delete(&td->td_sigqueue, sig);
2801				sigqueue_delete(&p->p_sigqueue, sig);
2802				p->p_flag |= P_STOPPED_SIG;
2803				p->p_xstat = sig;
2804				PROC_SLOCK(p);
2805				sig_suspend_threads(td, p, 0);
2806				thread_suspend_switch(td, p);
2807				PROC_SUNLOCK(p);
2808				mtx_lock(&ps->ps_mtx);
2809				goto next;
2810			} else if (prop & SA_IGNORE) {
2811				/*
2812				 * Except for SIGCONT, shouldn't get here.
2813				 * Default action is to ignore; drop it.
2814				 */
2815				break;		/* == ignore */
2816			} else
2817				return (sig);
2818			/*NOTREACHED*/
2819
2820		case (intptr_t)SIG_IGN:
2821			/*
2822			 * Masking above should prevent us ever trying
2823			 * to take action on an ignored signal other
2824			 * than SIGCONT, unless process is traced.
2825			 */
2826			if ((prop & SA_CONT) == 0 &&
2827			    (p->p_flag & P_TRACED) == 0)
2828				printf("issignal\n");
2829			break;		/* == ignore */
2830
2831		default:
2832			/*
2833			 * This signal has an action, let
2834			 * postsig() process it.
2835			 */
2836			return (sig);
2837		}
2838		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2839		sigqueue_delete(&p->p_sigqueue, sig);
2840next:;
2841	}
2842	/* NOTREACHED */
2843}
2844
2845void
2846thread_stopped(struct proc *p)
2847{
2848	int n;
2849
2850	PROC_LOCK_ASSERT(p, MA_OWNED);
2851	PROC_SLOCK_ASSERT(p, MA_OWNED);
2852	n = p->p_suspcount;
2853	if (p == curproc)
2854		n++;
2855	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2856		PROC_SUNLOCK(p);
2857		p->p_flag &= ~P_WAITED;
2858		PROC_LOCK(p->p_pptr);
2859		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2860			CLD_TRAPPED : CLD_STOPPED);
2861		PROC_UNLOCK(p->p_pptr);
2862		PROC_SLOCK(p);
2863	}
2864}
2865
2866/*
2867 * Take the action for the specified signal
2868 * from the current set of pending signals.
2869 */
2870int
2871postsig(sig)
2872	register int sig;
2873{
2874	struct thread *td = curthread;
2875	register struct proc *p = td->td_proc;
2876	struct sigacts *ps;
2877	sig_t action;
2878	ksiginfo_t ksi;
2879	sigset_t returnmask;
2880
2881	KASSERT(sig != 0, ("postsig"));
2882
2883	PROC_LOCK_ASSERT(p, MA_OWNED);
2884	ps = p->p_sigacts;
2885	mtx_assert(&ps->ps_mtx, MA_OWNED);
2886	ksiginfo_init(&ksi);
2887	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2888	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2889		return (0);
2890	ksi.ksi_signo = sig;
2891	if (ksi.ksi_code == SI_TIMER)
2892		itimer_accept(p, ksi.ksi_timerid, &ksi);
2893	action = ps->ps_sigact[_SIG_IDX(sig)];
2894#ifdef KTRACE
2895	if (KTRPOINT(td, KTR_PSIG))
2896		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2897		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2898#endif
2899	if (p->p_stops & S_SIG) {
2900		mtx_unlock(&ps->ps_mtx);
2901		stopevent(p, S_SIG, sig);
2902		mtx_lock(&ps->ps_mtx);
2903	}
2904
2905	if (action == SIG_DFL) {
2906		/*
2907		 * Default action, where the default is to kill
2908		 * the process.  (Other cases were ignored above.)
2909		 */
2910		mtx_unlock(&ps->ps_mtx);
2911		sigexit(td, sig);
2912		/* NOTREACHED */
2913	} else {
2914		/*
2915		 * If we get here, the signal must be caught.
2916		 */
2917		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2918		    ("postsig action"));
2919		/*
2920		 * Set the new mask value and also defer further
2921		 * occurrences of this signal.
2922		 *
2923		 * Special case: user has done a sigsuspend.  Here the
2924		 * current mask is not of interest, but rather the
2925		 * mask from before the sigsuspend is what we want
2926		 * restored after the signal processing is completed.
2927		 */
2928		if (td->td_pflags & TDP_OLDMASK) {
2929			returnmask = td->td_oldsigmask;
2930			td->td_pflags &= ~TDP_OLDMASK;
2931		} else
2932			returnmask = td->td_sigmask;
2933
2934		if (p->p_sig == sig) {
2935			p->p_code = 0;
2936			p->p_sig = 0;
2937		}
2938		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2939		postsig_done(sig, td, ps);
2940	}
2941	return (1);
2942}
2943
2944/*
2945 * Kill the current process for stated reason.
2946 */
2947void
2948killproc(p, why)
2949	struct proc *p;
2950	char *why;
2951{
2952
2953	PROC_LOCK_ASSERT(p, MA_OWNED);
2954	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2955	    p->p_comm);
2956	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2957	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2958	p->p_flag |= P_WKILLED;
2959	kern_psignal(p, SIGKILL);
2960}
2961
2962/*
2963 * Force the current process to exit with the specified signal, dumping core
2964 * if appropriate.  We bypass the normal tests for masked and caught signals,
2965 * allowing unrecoverable failures to terminate the process without changing
2966 * signal state.  Mark the accounting record with the signal termination.
2967 * If dumping core, save the signal number for the debugger.  Calls exit and
2968 * does not return.
2969 */
2970void
2971sigexit(td, sig)
2972	struct thread *td;
2973	int sig;
2974{
2975	struct proc *p = td->td_proc;
2976
2977	PROC_LOCK_ASSERT(p, MA_OWNED);
2978	p->p_acflag |= AXSIG;
2979	/*
2980	 * We must be single-threading to generate a core dump.  This
2981	 * ensures that the registers in the core file are up-to-date.
2982	 * Also, the ELF dump handler assumes that the thread list doesn't
2983	 * change out from under it.
2984	 *
2985	 * XXX If another thread attempts to single-thread before us
2986	 *     (e.g. via fork()), we won't get a dump at all.
2987	 */
2988	if ((sigprop(sig) & SA_CORE) && thread_single(p, SINGLE_NO_EXIT) == 0) {
2989		p->p_sig = sig;
2990		/*
2991		 * Log signals which would cause core dumps
2992		 * (Log as LOG_INFO to appease those who don't want
2993		 * these messages.)
2994		 * XXX : Todo, as well as euid, write out ruid too
2995		 * Note that coredump() drops proc lock.
2996		 */
2997		if (coredump(td) == 0)
2998			sig |= WCOREFLAG;
2999		if (kern_logsigexit)
3000			log(LOG_INFO,
3001			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3002			    p->p_pid, p->p_comm,
3003			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3004			    sig &~ WCOREFLAG,
3005			    sig & WCOREFLAG ? " (core dumped)" : "");
3006	} else
3007		PROC_UNLOCK(p);
3008	exit1(td, W_EXITCODE(0, sig));
3009	/* NOTREACHED */
3010}
3011
3012/*
3013 * Send queued SIGCHLD to parent when child process's state
3014 * is changed.
3015 */
3016static void
3017sigparent(struct proc *p, int reason, int status)
3018{
3019	PROC_LOCK_ASSERT(p, MA_OWNED);
3020	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3021
3022	if (p->p_ksi != NULL) {
3023		p->p_ksi->ksi_signo  = SIGCHLD;
3024		p->p_ksi->ksi_code   = reason;
3025		p->p_ksi->ksi_status = status;
3026		p->p_ksi->ksi_pid    = p->p_pid;
3027		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3028		if (KSI_ONQ(p->p_ksi))
3029			return;
3030	}
3031	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3032}
3033
3034static void
3035childproc_jobstate(struct proc *p, int reason, int sig)
3036{
3037	struct sigacts *ps;
3038
3039	PROC_LOCK_ASSERT(p, MA_OWNED);
3040	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3041
3042	/*
3043	 * Wake up parent sleeping in kern_wait(), also send
3044	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3045	 * that parent will awake, because parent may masked
3046	 * the signal.
3047	 */
3048	p->p_pptr->p_flag |= P_STATCHILD;
3049	wakeup(p->p_pptr);
3050
3051	ps = p->p_pptr->p_sigacts;
3052	mtx_lock(&ps->ps_mtx);
3053	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3054		mtx_unlock(&ps->ps_mtx);
3055		sigparent(p, reason, sig);
3056	} else
3057		mtx_unlock(&ps->ps_mtx);
3058}
3059
3060void
3061childproc_stopped(struct proc *p, int reason)
3062{
3063	/* p_xstat is a plain signal number, not a full wait() status here. */
3064	childproc_jobstate(p, reason, p->p_xstat);
3065}
3066
3067void
3068childproc_continued(struct proc *p)
3069{
3070	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3071}
3072
3073void
3074childproc_exited(struct proc *p)
3075{
3076	int reason;
3077	int xstat = p->p_xstat; /* convert to int */
3078	int status;
3079
3080	if (WCOREDUMP(xstat))
3081		reason = CLD_DUMPED, status = WTERMSIG(xstat);
3082	else if (WIFSIGNALED(xstat))
3083		reason = CLD_KILLED, status = WTERMSIG(xstat);
3084	else
3085		reason = CLD_EXITED, status = WEXITSTATUS(xstat);
3086	/*
3087	 * XXX avoid calling wakeup(p->p_pptr), the work is
3088	 * done in exit1().
3089	 */
3090	sigparent(p, reason, status);
3091}
3092
3093/*
3094 * We only have 1 character for the core count in the format
3095 * string, so the range will be 0-9
3096 */
3097#define MAX_NUM_CORES 10
3098static int num_cores = 5;
3099
3100static int
3101sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3102{
3103	int error;
3104	int new_val;
3105
3106	new_val = num_cores;
3107	error = sysctl_handle_int(oidp, &new_val, 0, req);
3108	if (error != 0 || req->newptr == NULL)
3109		return (error);
3110	if (new_val > MAX_NUM_CORES)
3111		new_val = MAX_NUM_CORES;
3112	if (new_val < 0)
3113		new_val = 0;
3114	num_cores = new_val;
3115	return (0);
3116}
3117SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3118	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3119
3120#if defined(COMPRESS_USER_CORES)
3121int compress_user_cores = 1;
3122SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3123    &compress_user_cores, 0, "Compression of user corefiles");
3124
3125int compress_user_cores_gzlevel = -1; /* default level */
3126SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3127    &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3128
3129#define GZ_SUFFIX	".gz"
3130#define GZ_SUFFIX_LEN	3
3131#endif
3132
3133static char corefilename[MAXPATHLEN] = {"%N.core"};
3134TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3135SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3136    sizeof(corefilename), "Process corefile name format string");
3137
3138/*
3139 * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3140 * Expand the name described in corefilename, using name, uid, and pid
3141 * and open/create core file.
3142 * corefilename is a printf-like string, with three format specifiers:
3143 *	%N	name of process ("name")
3144 *	%P	process id (pid)
3145 *	%U	user id (uid)
3146 * For example, "%N.core" is the default; they can be disabled completely
3147 * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3148 * This is controlled by the sysctl variable kern.corefile (see above).
3149 */
3150static int
3151corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3152    int compress, struct vnode **vpp, char **namep)
3153{
3154	struct nameidata nd;
3155	struct sbuf sb;
3156	const char *format;
3157	char *hostname, *name;
3158	int indexpos, i, error, cmode, flags, oflags;
3159
3160	hostname = NULL;
3161	format = corefilename;
3162	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3163	indexpos = -1;
3164	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3165	for (i = 0; format[i] != '\0'; i++) {
3166		switch (format[i]) {
3167		case '%':	/* Format character */
3168			i++;
3169			switch (format[i]) {
3170			case '%':
3171				sbuf_putc(&sb, '%');
3172				break;
3173			case 'H':	/* hostname */
3174				if (hostname == NULL) {
3175					hostname = malloc(MAXHOSTNAMELEN,
3176					    M_TEMP, M_WAITOK);
3177				}
3178				getcredhostname(td->td_ucred, hostname,
3179				    MAXHOSTNAMELEN);
3180				sbuf_printf(&sb, "%s", hostname);
3181				break;
3182			case 'I':	/* autoincrementing index */
3183				sbuf_printf(&sb, "0");
3184				indexpos = sbuf_len(&sb) - 1;
3185				break;
3186			case 'N':	/* process name */
3187				sbuf_printf(&sb, "%s", comm);
3188				break;
3189			case 'P':	/* process id */
3190				sbuf_printf(&sb, "%u", pid);
3191				break;
3192			case 'U':	/* user id */
3193				sbuf_printf(&sb, "%u", uid);
3194				break;
3195			default:
3196				log(LOG_ERR,
3197				    "Unknown format character %c in "
3198				    "corename `%s'\n", format[i], format);
3199				break;
3200			}
3201			break;
3202		default:
3203			sbuf_putc(&sb, format[i]);
3204			break;
3205		}
3206	}
3207	free(hostname, M_TEMP);
3208#ifdef COMPRESS_USER_CORES
3209	if (compress)
3210		sbuf_printf(&sb, GZ_SUFFIX);
3211#endif
3212	if (sbuf_error(&sb) != 0) {
3213		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3214		    "long\n", (long)pid, comm, (u_long)uid);
3215		sbuf_delete(&sb);
3216		free(name, M_TEMP);
3217		return (ENOMEM);
3218	}
3219	sbuf_finish(&sb);
3220	sbuf_delete(&sb);
3221
3222	cmode = S_IRUSR | S_IWUSR;
3223	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3224	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3225
3226	/*
3227	 * If the core format has a %I in it, then we need to check
3228	 * for existing corefiles before returning a name.
3229	 * To do this we iterate over 0..num_cores to find a
3230	 * non-existing core file name to use.
3231	 */
3232	if (indexpos != -1) {
3233		for (i = 0; i < num_cores; i++) {
3234			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3235			name[indexpos] = '0' + i;
3236			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3237			error = vn_open_cred(&nd, &flags, cmode, oflags,
3238			    td->td_ucred, NULL);
3239			if (error) {
3240				if (error == EEXIST)
3241					continue;
3242				log(LOG_ERR,
3243				    "pid %d (%s), uid (%u):  Path `%s' failed "
3244				    "on initial open test, error = %d\n",
3245				    pid, comm, uid, name, error);
3246			}
3247			goto out;
3248		}
3249	}
3250
3251	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3252	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3253	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3254out:
3255	if (error) {
3256#ifdef AUDIT
3257		audit_proc_coredump(td, name, error);
3258#endif
3259		free(name, M_TEMP);
3260		return (error);
3261	}
3262	NDFREE(&nd, NDF_ONLY_PNBUF);
3263	*vpp = nd.ni_vp;
3264	*namep = name;
3265	return (0);
3266}
3267
3268/*
3269 * Dump a process' core.  The main routine does some
3270 * policy checking, and creates the name of the coredump;
3271 * then it passes on a vnode and a size limit to the process-specific
3272 * coredump routine if there is one; if there _is not_ one, it returns
3273 * ENOSYS; otherwise it returns the error from the process-specific routine.
3274 */
3275
3276static int
3277coredump(struct thread *td)
3278{
3279	struct proc *p = td->td_proc;
3280	struct ucred *cred = td->td_ucred;
3281	struct vnode *vp;
3282	struct flock lf;
3283	struct vattr vattr;
3284	int error, error1, locked;
3285	struct mount *mp;
3286	char *name;			/* name of corefile */
3287	off_t limit;
3288	int compress;
3289
3290#ifdef COMPRESS_USER_CORES
3291	compress = compress_user_cores;
3292#else
3293	compress = 0;
3294#endif
3295	PROC_LOCK_ASSERT(p, MA_OWNED);
3296	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3297	_STOPEVENT(p, S_CORE, 0);
3298
3299	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3300	    (p->p_flag2 & P2_NOTRACE) != 0) {
3301		PROC_UNLOCK(p);
3302		return (EFAULT);
3303	}
3304
3305	/*
3306	 * Note that the bulk of limit checking is done after
3307	 * the corefile is created.  The exception is if the limit
3308	 * for corefiles is 0, in which case we don't bother
3309	 * creating the corefile at all.  This layout means that
3310	 * a corefile is truncated instead of not being created,
3311	 * if it is larger than the limit.
3312	 */
3313	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3314	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3315		PROC_UNLOCK(p);
3316		return (EFBIG);
3317	}
3318	PROC_UNLOCK(p);
3319
3320restart:
3321	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3322	    &vp, &name);
3323	if (error != 0)
3324		return (error);
3325
3326	/* Don't dump to non-regular files or files with links. */
3327	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3328	    vattr.va_nlink != 1) {
3329		VOP_UNLOCK(vp, 0);
3330		error = EFAULT;
3331		goto close;
3332	}
3333
3334	VOP_UNLOCK(vp, 0);
3335	lf.l_whence = SEEK_SET;
3336	lf.l_start = 0;
3337	lf.l_len = 0;
3338	lf.l_type = F_WRLCK;
3339	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3340
3341	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3342		lf.l_type = F_UNLCK;
3343		if (locked)
3344			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3345		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3346			goto out;
3347		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3348			goto out;
3349		free(name, M_TEMP);
3350		goto restart;
3351	}
3352
3353	VATTR_NULL(&vattr);
3354	vattr.va_size = 0;
3355	if (set_core_nodump_flag)
3356		vattr.va_flags = UF_NODUMP;
3357	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3358	VOP_SETATTR(vp, &vattr, cred);
3359	VOP_UNLOCK(vp, 0);
3360	vn_finished_write(mp);
3361	PROC_LOCK(p);
3362	p->p_acflag |= ACORE;
3363	PROC_UNLOCK(p);
3364
3365	if (p->p_sysent->sv_coredump != NULL) {
3366		error = p->p_sysent->sv_coredump(td, vp, limit,
3367		    compress ? IMGACT_CORE_COMPRESS : 0);
3368	} else {
3369		error = ENOSYS;
3370	}
3371
3372	if (locked) {
3373		lf.l_type = F_UNLCK;
3374		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3375	}
3376close:
3377	error1 = vn_close(vp, FWRITE, cred, td);
3378	if (error == 0)
3379		error = error1;
3380out:
3381#ifdef AUDIT
3382	audit_proc_coredump(td, name, error);
3383#endif
3384	free(name, M_TEMP);
3385	return (error);
3386}
3387
3388/*
3389 * Nonexistent system call-- signal process (may want to handle it).  Flag
3390 * error in case process won't see signal immediately (blocked or ignored).
3391 */
3392#ifndef _SYS_SYSPROTO_H_
3393struct nosys_args {
3394	int	dummy;
3395};
3396#endif
3397/* ARGSUSED */
3398int
3399nosys(td, args)
3400	struct thread *td;
3401	struct nosys_args *args;
3402{
3403	struct proc *p = td->td_proc;
3404
3405	PROC_LOCK(p);
3406	tdsignal(td, SIGSYS);
3407	PROC_UNLOCK(p);
3408	return (ENOSYS);
3409}
3410
3411/*
3412 * Send a SIGIO or SIGURG signal to a process or process group using stored
3413 * credentials rather than those of the current process.
3414 */
3415void
3416pgsigio(sigiop, sig, checkctty)
3417	struct sigio **sigiop;
3418	int sig, checkctty;
3419{
3420	ksiginfo_t ksi;
3421	struct sigio *sigio;
3422
3423	ksiginfo_init(&ksi);
3424	ksi.ksi_signo = sig;
3425	ksi.ksi_code = SI_KERNEL;
3426
3427	SIGIO_LOCK();
3428	sigio = *sigiop;
3429	if (sigio == NULL) {
3430		SIGIO_UNLOCK();
3431		return;
3432	}
3433	if (sigio->sio_pgid > 0) {
3434		PROC_LOCK(sigio->sio_proc);
3435		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3436			kern_psignal(sigio->sio_proc, sig);
3437		PROC_UNLOCK(sigio->sio_proc);
3438	} else if (sigio->sio_pgid < 0) {
3439		struct proc *p;
3440
3441		PGRP_LOCK(sigio->sio_pgrp);
3442		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3443			PROC_LOCK(p);
3444			if (p->p_state == PRS_NORMAL &&
3445			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3446			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3447				kern_psignal(p, sig);
3448			PROC_UNLOCK(p);
3449		}
3450		PGRP_UNLOCK(sigio->sio_pgrp);
3451	}
3452	SIGIO_UNLOCK();
3453}
3454
3455static int
3456filt_sigattach(struct knote *kn)
3457{
3458	struct proc *p = curproc;
3459
3460	kn->kn_ptr.p_proc = p;
3461	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3462
3463	knlist_add(&p->p_klist, kn, 0);
3464
3465	return (0);
3466}
3467
3468static void
3469filt_sigdetach(struct knote *kn)
3470{
3471	struct proc *p = kn->kn_ptr.p_proc;
3472
3473	knlist_remove(&p->p_klist, kn, 0);
3474}
3475
3476/*
3477 * signal knotes are shared with proc knotes, so we apply a mask to
3478 * the hint in order to differentiate them from process hints.  This
3479 * could be avoided by using a signal-specific knote list, but probably
3480 * isn't worth the trouble.
3481 */
3482static int
3483filt_signal(struct knote *kn, long hint)
3484{
3485
3486	if (hint & NOTE_SIGNAL) {
3487		hint &= ~NOTE_SIGNAL;
3488
3489		if (kn->kn_id == hint)
3490			kn->kn_data++;
3491	}
3492	return (kn->kn_data != 0);
3493}
3494
3495struct sigacts *
3496sigacts_alloc(void)
3497{
3498	struct sigacts *ps;
3499
3500	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3501	ps->ps_refcnt = 1;
3502	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3503	return (ps);
3504}
3505
3506void
3507sigacts_free(struct sigacts *ps)
3508{
3509
3510	if (refcount_release(&ps->ps_refcnt) == 0)
3511		return;
3512	mtx_destroy(&ps->ps_mtx);
3513	free(ps, M_SUBPROC);
3514}
3515
3516struct sigacts *
3517sigacts_hold(struct sigacts *ps)
3518{
3519
3520	refcount_acquire(&ps->ps_refcnt);
3521	return (ps);
3522}
3523
3524void
3525sigacts_copy(struct sigacts *dest, struct sigacts *src)
3526{
3527
3528	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3529	mtx_lock(&src->ps_mtx);
3530	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3531	mtx_unlock(&src->ps_mtx);
3532}
3533
3534int
3535sigacts_shared(struct sigacts *ps)
3536{
3537
3538	return (ps->ps_refcnt > 1);
3539}
3540