kern_sig.c revision 276272
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_sig.c 276272 2014-12-27 00:55:14Z kib $");
39
40#include "opt_compat.h"
41#include "opt_kdtrace.h"
42#include "opt_ktrace.h"
43#include "opt_core.h"
44#include "opt_procdesc.h"
45
46#include <sys/param.h>
47#include <sys/systm.h>
48#include <sys/signalvar.h>
49#include <sys/vnode.h>
50#include <sys/acct.h>
51#include <sys/capability.h>
52#include <sys/condvar.h>
53#include <sys/event.h>
54#include <sys/fcntl.h>
55#include <sys/imgact.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/ktrace.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/mutex.h>
62#include <sys/refcount.h>
63#include <sys/namei.h>
64#include <sys/proc.h>
65#include <sys/procdesc.h>
66#include <sys/posix4.h>
67#include <sys/pioctl.h>
68#include <sys/racct.h>
69#include <sys/resourcevar.h>
70#include <sys/sdt.h>
71#include <sys/sbuf.h>
72#include <sys/sleepqueue.h>
73#include <sys/smp.h>
74#include <sys/stat.h>
75#include <sys/sx.h>
76#include <sys/syscallsubr.h>
77#include <sys/sysctl.h>
78#include <sys/sysent.h>
79#include <sys/syslog.h>
80#include <sys/sysproto.h>
81#include <sys/timers.h>
82#include <sys/unistd.h>
83#include <sys/wait.h>
84#include <vm/vm.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88#include <sys/jail.h>
89
90#include <machine/cpu.h>
91
92#include <security/audit/audit.h>
93
94#define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
95
96SDT_PROVIDER_DECLARE(proc);
97SDT_PROBE_DEFINE3(proc, kernel, , signal__send, "struct thread *",
98    "struct proc *", "int");
99SDT_PROBE_DEFINE2(proc, kernel, , signal__clear, "int",
100    "ksiginfo_t *");
101SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
102    "struct thread *", "struct proc *", "int");
103
104static int	coredump(struct thread *);
105static int	killpg1(struct thread *td, int sig, int pgid, int all,
106		    ksiginfo_t *ksi);
107static int	issignal(struct thread *td);
108static int	sigprop(int sig);
109static void	tdsigwakeup(struct thread *, int, sig_t, int);
110static void	sig_suspend_threads(struct thread *, struct proc *, int);
111static int	filt_sigattach(struct knote *kn);
112static void	filt_sigdetach(struct knote *kn);
113static int	filt_signal(struct knote *kn, long hint);
114static struct thread *sigtd(struct proc *p, int sig, int prop);
115static void	sigqueue_start(void);
116
117static uma_zone_t	ksiginfo_zone = NULL;
118struct filterops sig_filtops = {
119	.f_isfd = 0,
120	.f_attach = filt_sigattach,
121	.f_detach = filt_sigdetach,
122	.f_event = filt_signal,
123};
124
125static int	kern_logsigexit = 1;
126SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
127    &kern_logsigexit, 0,
128    "Log processes quitting on abnormal signals to syslog(3)");
129
130static int	kern_forcesigexit = 1;
131SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
132    &kern_forcesigexit, 0, "Force trap signal to be handled");
133
134static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
135    "POSIX real time signal");
136
137static int	max_pending_per_proc = 128;
138SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
139    &max_pending_per_proc, 0, "Max pending signals per proc");
140
141static int	preallocate_siginfo = 1024;
142TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
143SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
144    &preallocate_siginfo, 0, "Preallocated signal memory size");
145
146static int	signal_overflow = 0;
147SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148    &signal_overflow, 0, "Number of signals overflew");
149
150static int	signal_alloc_fail = 0;
151SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152    &signal_alloc_fail, 0, "signals failed to be allocated");
153
154SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
155
156/*
157 * Policy -- Can ucred cr1 send SIGIO to process cr2?
158 * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
159 * in the right situations.
160 */
161#define CANSIGIO(cr1, cr2) \
162	((cr1)->cr_uid == 0 || \
163	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
164	    (cr1)->cr_uid == (cr2)->cr_ruid || \
165	    (cr1)->cr_ruid == (cr2)->cr_uid || \
166	    (cr1)->cr_uid == (cr2)->cr_uid)
167
168static int	sugid_coredump;
169TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
170SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
171    &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
172
173static int	capmode_coredump;
174TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
175SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
176    &capmode_coredump, 0, "Allow processes in capability mode to dump core");
177
178static int	do_coredump = 1;
179SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
180	&do_coredump, 0, "Enable/Disable coredumps");
181
182static int	set_core_nodump_flag = 0;
183SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
184	0, "Enable setting the NODUMP flag on coredump files");
185
186/*
187 * Signal properties and actions.
188 * The array below categorizes the signals and their default actions
189 * according to the following properties:
190 */
191#define	SA_KILL		0x01		/* terminates process by default */
192#define	SA_CORE		0x02		/* ditto and coredumps */
193#define	SA_STOP		0x04		/* suspend process */
194#define	SA_TTYSTOP	0x08		/* ditto, from tty */
195#define	SA_IGNORE	0x10		/* ignore by default */
196#define	SA_CONT		0x20		/* continue if suspended */
197#define	SA_CANTMASK	0x40		/* non-maskable, catchable */
198
199static int sigproptbl[NSIG] = {
200	SA_KILL,			/* SIGHUP */
201	SA_KILL,			/* SIGINT */
202	SA_KILL|SA_CORE,		/* SIGQUIT */
203	SA_KILL|SA_CORE,		/* SIGILL */
204	SA_KILL|SA_CORE,		/* SIGTRAP */
205	SA_KILL|SA_CORE,		/* SIGABRT */
206	SA_KILL|SA_CORE,		/* SIGEMT */
207	SA_KILL|SA_CORE,		/* SIGFPE */
208	SA_KILL,			/* SIGKILL */
209	SA_KILL|SA_CORE,		/* SIGBUS */
210	SA_KILL|SA_CORE,		/* SIGSEGV */
211	SA_KILL|SA_CORE,		/* SIGSYS */
212	SA_KILL,			/* SIGPIPE */
213	SA_KILL,			/* SIGALRM */
214	SA_KILL,			/* SIGTERM */
215	SA_IGNORE,			/* SIGURG */
216	SA_STOP,			/* SIGSTOP */
217	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
218	SA_IGNORE|SA_CONT,		/* SIGCONT */
219	SA_IGNORE,			/* SIGCHLD */
220	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
221	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
222	SA_IGNORE,			/* SIGIO */
223	SA_KILL,			/* SIGXCPU */
224	SA_KILL,			/* SIGXFSZ */
225	SA_KILL,			/* SIGVTALRM */
226	SA_KILL,			/* SIGPROF */
227	SA_IGNORE,			/* SIGWINCH  */
228	SA_IGNORE,			/* SIGINFO */
229	SA_KILL,			/* SIGUSR1 */
230	SA_KILL,			/* SIGUSR2 */
231};
232
233static void reschedule_signals(struct proc *p, sigset_t block, int flags);
234
235static void
236sigqueue_start(void)
237{
238	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
239		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
240	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
241	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
242	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
243	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
244}
245
246ksiginfo_t *
247ksiginfo_alloc(int wait)
248{
249	int flags;
250
251	flags = M_ZERO;
252	if (! wait)
253		flags |= M_NOWAIT;
254	if (ksiginfo_zone != NULL)
255		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
256	return (NULL);
257}
258
259void
260ksiginfo_free(ksiginfo_t *ksi)
261{
262	uma_zfree(ksiginfo_zone, ksi);
263}
264
265static __inline int
266ksiginfo_tryfree(ksiginfo_t *ksi)
267{
268	if (!(ksi->ksi_flags & KSI_EXT)) {
269		uma_zfree(ksiginfo_zone, ksi);
270		return (1);
271	}
272	return (0);
273}
274
275void
276sigqueue_init(sigqueue_t *list, struct proc *p)
277{
278	SIGEMPTYSET(list->sq_signals);
279	SIGEMPTYSET(list->sq_kill);
280	TAILQ_INIT(&list->sq_list);
281	list->sq_proc = p;
282	list->sq_flags = SQ_INIT;
283}
284
285/*
286 * Get a signal's ksiginfo.
287 * Return:
288 *	0	-	signal not found
289 *	others	-	signal number
290 */
291static int
292sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
293{
294	struct proc *p = sq->sq_proc;
295	struct ksiginfo *ksi, *next;
296	int count = 0;
297
298	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
299
300	if (!SIGISMEMBER(sq->sq_signals, signo))
301		return (0);
302
303	if (SIGISMEMBER(sq->sq_kill, signo)) {
304		count++;
305		SIGDELSET(sq->sq_kill, signo);
306	}
307
308	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
309		if (ksi->ksi_signo == signo) {
310			if (count == 0) {
311				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
312				ksi->ksi_sigq = NULL;
313				ksiginfo_copy(ksi, si);
314				if (ksiginfo_tryfree(ksi) && p != NULL)
315					p->p_pendingcnt--;
316			}
317			if (++count > 1)
318				break;
319		}
320	}
321
322	if (count <= 1)
323		SIGDELSET(sq->sq_signals, signo);
324	si->ksi_signo = signo;
325	return (signo);
326}
327
328void
329sigqueue_take(ksiginfo_t *ksi)
330{
331	struct ksiginfo *kp;
332	struct proc	*p;
333	sigqueue_t	*sq;
334
335	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
336		return;
337
338	p = sq->sq_proc;
339	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
340	ksi->ksi_sigq = NULL;
341	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
342		p->p_pendingcnt--;
343
344	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
345	     kp = TAILQ_NEXT(kp, ksi_link)) {
346		if (kp->ksi_signo == ksi->ksi_signo)
347			break;
348	}
349	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
350		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
351}
352
353static int
354sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
355{
356	struct proc *p = sq->sq_proc;
357	struct ksiginfo *ksi;
358	int ret = 0;
359
360	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
361
362	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
363		SIGADDSET(sq->sq_kill, signo);
364		goto out_set_bit;
365	}
366
367	/* directly insert the ksi, don't copy it */
368	if (si->ksi_flags & KSI_INS) {
369		if (si->ksi_flags & KSI_HEAD)
370			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
371		else
372			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
373		si->ksi_sigq = sq;
374		goto out_set_bit;
375	}
376
377	if (__predict_false(ksiginfo_zone == NULL)) {
378		SIGADDSET(sq->sq_kill, signo);
379		goto out_set_bit;
380	}
381
382	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
383		signal_overflow++;
384		ret = EAGAIN;
385	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
386		signal_alloc_fail++;
387		ret = EAGAIN;
388	} else {
389		if (p != NULL)
390			p->p_pendingcnt++;
391		ksiginfo_copy(si, ksi);
392		ksi->ksi_signo = signo;
393		if (si->ksi_flags & KSI_HEAD)
394			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
395		else
396			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
397		ksi->ksi_sigq = sq;
398	}
399
400	if ((si->ksi_flags & KSI_TRAP) != 0 ||
401	    (si->ksi_flags & KSI_SIGQ) == 0) {
402		if (ret != 0)
403			SIGADDSET(sq->sq_kill, signo);
404		ret = 0;
405		goto out_set_bit;
406	}
407
408	if (ret != 0)
409		return (ret);
410
411out_set_bit:
412	SIGADDSET(sq->sq_signals, signo);
413	return (ret);
414}
415
416void
417sigqueue_flush(sigqueue_t *sq)
418{
419	struct proc *p = sq->sq_proc;
420	ksiginfo_t *ksi;
421
422	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
423
424	if (p != NULL)
425		PROC_LOCK_ASSERT(p, MA_OWNED);
426
427	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
428		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
429		ksi->ksi_sigq = NULL;
430		if (ksiginfo_tryfree(ksi) && p != NULL)
431			p->p_pendingcnt--;
432	}
433
434	SIGEMPTYSET(sq->sq_signals);
435	SIGEMPTYSET(sq->sq_kill);
436}
437
438static void
439sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
440{
441	sigset_t tmp;
442	struct proc *p1, *p2;
443	ksiginfo_t *ksi, *next;
444
445	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
446	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
447	p1 = src->sq_proc;
448	p2 = dst->sq_proc;
449	/* Move siginfo to target list */
450	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
451		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
452			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
453			if (p1 != NULL)
454				p1->p_pendingcnt--;
455			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
456			ksi->ksi_sigq = dst;
457			if (p2 != NULL)
458				p2->p_pendingcnt++;
459		}
460	}
461
462	/* Move pending bits to target list */
463	tmp = src->sq_kill;
464	SIGSETAND(tmp, *set);
465	SIGSETOR(dst->sq_kill, tmp);
466	SIGSETNAND(src->sq_kill, tmp);
467
468	tmp = src->sq_signals;
469	SIGSETAND(tmp, *set);
470	SIGSETOR(dst->sq_signals, tmp);
471	SIGSETNAND(src->sq_signals, tmp);
472}
473
474#if 0
475static void
476sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
477{
478	sigset_t set;
479
480	SIGEMPTYSET(set);
481	SIGADDSET(set, signo);
482	sigqueue_move_set(src, dst, &set);
483}
484#endif
485
486static void
487sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
488{
489	struct proc *p = sq->sq_proc;
490	ksiginfo_t *ksi, *next;
491
492	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
493
494	/* Remove siginfo queue */
495	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
496		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
497			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
498			ksi->ksi_sigq = NULL;
499			if (ksiginfo_tryfree(ksi) && p != NULL)
500				p->p_pendingcnt--;
501		}
502	}
503	SIGSETNAND(sq->sq_kill, *set);
504	SIGSETNAND(sq->sq_signals, *set);
505}
506
507void
508sigqueue_delete(sigqueue_t *sq, int signo)
509{
510	sigset_t set;
511
512	SIGEMPTYSET(set);
513	SIGADDSET(set, signo);
514	sigqueue_delete_set(sq, &set);
515}
516
517/* Remove a set of signals for a process */
518static void
519sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
520{
521	sigqueue_t worklist;
522	struct thread *td0;
523
524	PROC_LOCK_ASSERT(p, MA_OWNED);
525
526	sigqueue_init(&worklist, NULL);
527	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
528
529	FOREACH_THREAD_IN_PROC(p, td0)
530		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
531
532	sigqueue_flush(&worklist);
533}
534
535void
536sigqueue_delete_proc(struct proc *p, int signo)
537{
538	sigset_t set;
539
540	SIGEMPTYSET(set);
541	SIGADDSET(set, signo);
542	sigqueue_delete_set_proc(p, &set);
543}
544
545static void
546sigqueue_delete_stopmask_proc(struct proc *p)
547{
548	sigset_t set;
549
550	SIGEMPTYSET(set);
551	SIGADDSET(set, SIGSTOP);
552	SIGADDSET(set, SIGTSTP);
553	SIGADDSET(set, SIGTTIN);
554	SIGADDSET(set, SIGTTOU);
555	sigqueue_delete_set_proc(p, &set);
556}
557
558/*
559 * Determine signal that should be delivered to thread td, the current
560 * thread, 0 if none.  If there is a pending stop signal with default
561 * action, the process stops in issignal().
562 */
563int
564cursig(struct thread *td)
565{
566	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
567	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
568	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
569	return (SIGPENDING(td) ? issignal(td) : 0);
570}
571
572/*
573 * Arrange for ast() to handle unmasked pending signals on return to user
574 * mode.  This must be called whenever a signal is added to td_sigqueue or
575 * unmasked in td_sigmask.
576 */
577void
578signotify(struct thread *td)
579{
580	struct proc *p;
581
582	p = td->td_proc;
583
584	PROC_LOCK_ASSERT(p, MA_OWNED);
585
586	if (SIGPENDING(td)) {
587		thread_lock(td);
588		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
589		thread_unlock(td);
590	}
591}
592
593int
594sigonstack(size_t sp)
595{
596	struct thread *td = curthread;
597
598	return ((td->td_pflags & TDP_ALTSTACK) ?
599#if defined(COMPAT_43)
600	    ((td->td_sigstk.ss_size == 0) ?
601		(td->td_sigstk.ss_flags & SS_ONSTACK) :
602		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
603#else
604	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
605#endif
606	    : 0);
607}
608
609static __inline int
610sigprop(int sig)
611{
612
613	if (sig > 0 && sig < NSIG)
614		return (sigproptbl[_SIG_IDX(sig)]);
615	return (0);
616}
617
618int
619sig_ffs(sigset_t *set)
620{
621	int i;
622
623	for (i = 0; i < _SIG_WORDS; i++)
624		if (set->__bits[i])
625			return (ffs(set->__bits[i]) + (i * 32));
626	return (0);
627}
628
629static bool
630sigact_flag_test(struct sigaction *act, int flag)
631{
632
633	/*
634	 * SA_SIGINFO is reset when signal disposition is set to
635	 * ignore or default.  Other flags are kept according to user
636	 * settings.
637	 */
638	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
639	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
640	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
641}
642
643/*
644 * kern_sigaction
645 * sigaction
646 * freebsd4_sigaction
647 * osigaction
648 */
649int
650kern_sigaction(td, sig, act, oact, flags)
651	struct thread *td;
652	register int sig;
653	struct sigaction *act, *oact;
654	int flags;
655{
656	struct sigacts *ps;
657	struct proc *p = td->td_proc;
658
659	if (!_SIG_VALID(sig))
660		return (EINVAL);
661	if (act != NULL && (act->sa_flags & ~(SA_ONSTACK | SA_RESTART |
662	    SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER | SA_NOCLDWAIT |
663	    SA_SIGINFO)) != 0)
664		return (EINVAL);
665
666	PROC_LOCK(p);
667	ps = p->p_sigacts;
668	mtx_lock(&ps->ps_mtx);
669	if (oact) {
670		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
671		oact->sa_flags = 0;
672		if (SIGISMEMBER(ps->ps_sigonstack, sig))
673			oact->sa_flags |= SA_ONSTACK;
674		if (!SIGISMEMBER(ps->ps_sigintr, sig))
675			oact->sa_flags |= SA_RESTART;
676		if (SIGISMEMBER(ps->ps_sigreset, sig))
677			oact->sa_flags |= SA_RESETHAND;
678		if (SIGISMEMBER(ps->ps_signodefer, sig))
679			oact->sa_flags |= SA_NODEFER;
680		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
681			oact->sa_flags |= SA_SIGINFO;
682			oact->sa_sigaction =
683			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
684		} else
685			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
686		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
687			oact->sa_flags |= SA_NOCLDSTOP;
688		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
689			oact->sa_flags |= SA_NOCLDWAIT;
690	}
691	if (act) {
692		if ((sig == SIGKILL || sig == SIGSTOP) &&
693		    act->sa_handler != SIG_DFL) {
694			mtx_unlock(&ps->ps_mtx);
695			PROC_UNLOCK(p);
696			return (EINVAL);
697		}
698
699		/*
700		 * Change setting atomically.
701		 */
702
703		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
704		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
705		if (sigact_flag_test(act, SA_SIGINFO)) {
706			ps->ps_sigact[_SIG_IDX(sig)] =
707			    (__sighandler_t *)act->sa_sigaction;
708			SIGADDSET(ps->ps_siginfo, sig);
709		} else {
710			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
711			SIGDELSET(ps->ps_siginfo, sig);
712		}
713		if (!sigact_flag_test(act, SA_RESTART))
714			SIGADDSET(ps->ps_sigintr, sig);
715		else
716			SIGDELSET(ps->ps_sigintr, sig);
717		if (sigact_flag_test(act, SA_ONSTACK))
718			SIGADDSET(ps->ps_sigonstack, sig);
719		else
720			SIGDELSET(ps->ps_sigonstack, sig);
721		if (sigact_flag_test(act, SA_RESETHAND))
722			SIGADDSET(ps->ps_sigreset, sig);
723		else
724			SIGDELSET(ps->ps_sigreset, sig);
725		if (sigact_flag_test(act, SA_NODEFER))
726			SIGADDSET(ps->ps_signodefer, sig);
727		else
728			SIGDELSET(ps->ps_signodefer, sig);
729		if (sig == SIGCHLD) {
730			if (act->sa_flags & SA_NOCLDSTOP)
731				ps->ps_flag |= PS_NOCLDSTOP;
732			else
733				ps->ps_flag &= ~PS_NOCLDSTOP;
734			if (act->sa_flags & SA_NOCLDWAIT) {
735				/*
736				 * Paranoia: since SA_NOCLDWAIT is implemented
737				 * by reparenting the dying child to PID 1 (and
738				 * trust it to reap the zombie), PID 1 itself
739				 * is forbidden to set SA_NOCLDWAIT.
740				 */
741				if (p->p_pid == 1)
742					ps->ps_flag &= ~PS_NOCLDWAIT;
743				else
744					ps->ps_flag |= PS_NOCLDWAIT;
745			} else
746				ps->ps_flag &= ~PS_NOCLDWAIT;
747			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
748				ps->ps_flag |= PS_CLDSIGIGN;
749			else
750				ps->ps_flag &= ~PS_CLDSIGIGN;
751		}
752		/*
753		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
754		 * and for signals set to SIG_DFL where the default is to
755		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
756		 * have to restart the process.
757		 */
758		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
759		    (sigprop(sig) & SA_IGNORE &&
760		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
761			/* never to be seen again */
762			sigqueue_delete_proc(p, sig);
763			if (sig != SIGCONT)
764				/* easier in psignal */
765				SIGADDSET(ps->ps_sigignore, sig);
766			SIGDELSET(ps->ps_sigcatch, sig);
767		} else {
768			SIGDELSET(ps->ps_sigignore, sig);
769			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
770				SIGDELSET(ps->ps_sigcatch, sig);
771			else
772				SIGADDSET(ps->ps_sigcatch, sig);
773		}
774#ifdef COMPAT_FREEBSD4
775		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
776		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
777		    (flags & KSA_FREEBSD4) == 0)
778			SIGDELSET(ps->ps_freebsd4, sig);
779		else
780			SIGADDSET(ps->ps_freebsd4, sig);
781#endif
782#ifdef COMPAT_43
783		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
784		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
785		    (flags & KSA_OSIGSET) == 0)
786			SIGDELSET(ps->ps_osigset, sig);
787		else
788			SIGADDSET(ps->ps_osigset, sig);
789#endif
790	}
791	mtx_unlock(&ps->ps_mtx);
792	PROC_UNLOCK(p);
793	return (0);
794}
795
796#ifndef _SYS_SYSPROTO_H_
797struct sigaction_args {
798	int	sig;
799	struct	sigaction *act;
800	struct	sigaction *oact;
801};
802#endif
803int
804sys_sigaction(td, uap)
805	struct thread *td;
806	register struct sigaction_args *uap;
807{
808	struct sigaction act, oact;
809	register struct sigaction *actp, *oactp;
810	int error;
811
812	actp = (uap->act != NULL) ? &act : NULL;
813	oactp = (uap->oact != NULL) ? &oact : NULL;
814	if (actp) {
815		error = copyin(uap->act, actp, sizeof(act));
816		if (error)
817			return (error);
818	}
819	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
820	if (oactp && !error)
821		error = copyout(oactp, uap->oact, sizeof(oact));
822	return (error);
823}
824
825#ifdef COMPAT_FREEBSD4
826#ifndef _SYS_SYSPROTO_H_
827struct freebsd4_sigaction_args {
828	int	sig;
829	struct	sigaction *act;
830	struct	sigaction *oact;
831};
832#endif
833int
834freebsd4_sigaction(td, uap)
835	struct thread *td;
836	register struct freebsd4_sigaction_args *uap;
837{
838	struct sigaction act, oact;
839	register struct sigaction *actp, *oactp;
840	int error;
841
842
843	actp = (uap->act != NULL) ? &act : NULL;
844	oactp = (uap->oact != NULL) ? &oact : NULL;
845	if (actp) {
846		error = copyin(uap->act, actp, sizeof(act));
847		if (error)
848			return (error);
849	}
850	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
851	if (oactp && !error)
852		error = copyout(oactp, uap->oact, sizeof(oact));
853	return (error);
854}
855#endif	/* COMAPT_FREEBSD4 */
856
857#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
858#ifndef _SYS_SYSPROTO_H_
859struct osigaction_args {
860	int	signum;
861	struct	osigaction *nsa;
862	struct	osigaction *osa;
863};
864#endif
865int
866osigaction(td, uap)
867	struct thread *td;
868	register struct osigaction_args *uap;
869{
870	struct osigaction sa;
871	struct sigaction nsa, osa;
872	register struct sigaction *nsap, *osap;
873	int error;
874
875	if (uap->signum <= 0 || uap->signum >= ONSIG)
876		return (EINVAL);
877
878	nsap = (uap->nsa != NULL) ? &nsa : NULL;
879	osap = (uap->osa != NULL) ? &osa : NULL;
880
881	if (nsap) {
882		error = copyin(uap->nsa, &sa, sizeof(sa));
883		if (error)
884			return (error);
885		nsap->sa_handler = sa.sa_handler;
886		nsap->sa_flags = sa.sa_flags;
887		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
888	}
889	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
890	if (osap && !error) {
891		sa.sa_handler = osap->sa_handler;
892		sa.sa_flags = osap->sa_flags;
893		SIG2OSIG(osap->sa_mask, sa.sa_mask);
894		error = copyout(&sa, uap->osa, sizeof(sa));
895	}
896	return (error);
897}
898
899#if !defined(__i386__)
900/* Avoid replicating the same stub everywhere */
901int
902osigreturn(td, uap)
903	struct thread *td;
904	struct osigreturn_args *uap;
905{
906
907	return (nosys(td, (struct nosys_args *)uap));
908}
909#endif
910#endif /* COMPAT_43 */
911
912/*
913 * Initialize signal state for process 0;
914 * set to ignore signals that are ignored by default.
915 */
916void
917siginit(p)
918	struct proc *p;
919{
920	register int i;
921	struct sigacts *ps;
922
923	PROC_LOCK(p);
924	ps = p->p_sigacts;
925	mtx_lock(&ps->ps_mtx);
926	for (i = 1; i <= NSIG; i++) {
927		if (sigprop(i) & SA_IGNORE && i != SIGCONT) {
928			SIGADDSET(ps->ps_sigignore, i);
929		}
930	}
931	mtx_unlock(&ps->ps_mtx);
932	PROC_UNLOCK(p);
933}
934
935/*
936 * Reset specified signal to the default disposition.
937 */
938static void
939sigdflt(struct sigacts *ps, int sig)
940{
941
942	mtx_assert(&ps->ps_mtx, MA_OWNED);
943	SIGDELSET(ps->ps_sigcatch, sig);
944	if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT)
945		SIGADDSET(ps->ps_sigignore, sig);
946	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
947	SIGDELSET(ps->ps_siginfo, sig);
948}
949
950/*
951 * Reset signals for an exec of the specified process.
952 */
953void
954execsigs(struct proc *p)
955{
956	struct sigacts *ps;
957	int sig;
958	struct thread *td;
959
960	/*
961	 * Reset caught signals.  Held signals remain held
962	 * through td_sigmask (unless they were caught,
963	 * and are now ignored by default).
964	 */
965	PROC_LOCK_ASSERT(p, MA_OWNED);
966	td = FIRST_THREAD_IN_PROC(p);
967	ps = p->p_sigacts;
968	mtx_lock(&ps->ps_mtx);
969	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
970		sig = sig_ffs(&ps->ps_sigcatch);
971		sigdflt(ps, sig);
972		if ((sigprop(sig) & SA_IGNORE) != 0)
973			sigqueue_delete_proc(p, sig);
974	}
975	/*
976	 * Reset stack state to the user stack.
977	 * Clear set of signals caught on the signal stack.
978	 */
979	td->td_sigstk.ss_flags = SS_DISABLE;
980	td->td_sigstk.ss_size = 0;
981	td->td_sigstk.ss_sp = 0;
982	td->td_pflags &= ~TDP_ALTSTACK;
983	/*
984	 * Reset no zombies if child dies flag as Solaris does.
985	 */
986	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
987	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
988		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
989	mtx_unlock(&ps->ps_mtx);
990}
991
992/*
993 * kern_sigprocmask()
994 *
995 *	Manipulate signal mask.
996 */
997int
998kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
999    int flags)
1000{
1001	sigset_t new_block, oset1;
1002	struct proc *p;
1003	int error;
1004
1005	p = td->td_proc;
1006	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1007		PROC_LOCK_ASSERT(p, MA_OWNED);
1008	else
1009		PROC_LOCK(p);
1010	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1011	    ? MA_OWNED : MA_NOTOWNED);
1012	if (oset != NULL)
1013		*oset = td->td_sigmask;
1014
1015	error = 0;
1016	if (set != NULL) {
1017		switch (how) {
1018		case SIG_BLOCK:
1019			SIG_CANTMASK(*set);
1020			oset1 = td->td_sigmask;
1021			SIGSETOR(td->td_sigmask, *set);
1022			new_block = td->td_sigmask;
1023			SIGSETNAND(new_block, oset1);
1024			break;
1025		case SIG_UNBLOCK:
1026			SIGSETNAND(td->td_sigmask, *set);
1027			signotify(td);
1028			goto out;
1029		case SIG_SETMASK:
1030			SIG_CANTMASK(*set);
1031			oset1 = td->td_sigmask;
1032			if (flags & SIGPROCMASK_OLD)
1033				SIGSETLO(td->td_sigmask, *set);
1034			else
1035				td->td_sigmask = *set;
1036			new_block = td->td_sigmask;
1037			SIGSETNAND(new_block, oset1);
1038			signotify(td);
1039			break;
1040		default:
1041			error = EINVAL;
1042			goto out;
1043		}
1044
1045		/*
1046		 * The new_block set contains signals that were not previously
1047		 * blocked, but are blocked now.
1048		 *
1049		 * In case we block any signal that was not previously blocked
1050		 * for td, and process has the signal pending, try to schedule
1051		 * signal delivery to some thread that does not block the
1052		 * signal, possibly waking it up.
1053		 */
1054		if (p->p_numthreads != 1)
1055			reschedule_signals(p, new_block, flags);
1056	}
1057
1058out:
1059	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1060		PROC_UNLOCK(p);
1061	return (error);
1062}
1063
1064#ifndef _SYS_SYSPROTO_H_
1065struct sigprocmask_args {
1066	int	how;
1067	const sigset_t *set;
1068	sigset_t *oset;
1069};
1070#endif
1071int
1072sys_sigprocmask(td, uap)
1073	register struct thread *td;
1074	struct sigprocmask_args *uap;
1075{
1076	sigset_t set, oset;
1077	sigset_t *setp, *osetp;
1078	int error;
1079
1080	setp = (uap->set != NULL) ? &set : NULL;
1081	osetp = (uap->oset != NULL) ? &oset : NULL;
1082	if (setp) {
1083		error = copyin(uap->set, setp, sizeof(set));
1084		if (error)
1085			return (error);
1086	}
1087	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1088	if (osetp && !error) {
1089		error = copyout(osetp, uap->oset, sizeof(oset));
1090	}
1091	return (error);
1092}
1093
1094#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1095#ifndef _SYS_SYSPROTO_H_
1096struct osigprocmask_args {
1097	int	how;
1098	osigset_t mask;
1099};
1100#endif
1101int
1102osigprocmask(td, uap)
1103	register struct thread *td;
1104	struct osigprocmask_args *uap;
1105{
1106	sigset_t set, oset;
1107	int error;
1108
1109	OSIG2SIG(uap->mask, set);
1110	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1111	SIG2OSIG(oset, td->td_retval[0]);
1112	return (error);
1113}
1114#endif /* COMPAT_43 */
1115
1116int
1117sys_sigwait(struct thread *td, struct sigwait_args *uap)
1118{
1119	ksiginfo_t ksi;
1120	sigset_t set;
1121	int error;
1122
1123	error = copyin(uap->set, &set, sizeof(set));
1124	if (error) {
1125		td->td_retval[0] = error;
1126		return (0);
1127	}
1128
1129	error = kern_sigtimedwait(td, set, &ksi, NULL);
1130	if (error) {
1131		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1132			error = ERESTART;
1133		if (error == ERESTART)
1134			return (error);
1135		td->td_retval[0] = error;
1136		return (0);
1137	}
1138
1139	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1140	td->td_retval[0] = error;
1141	return (0);
1142}
1143
1144int
1145sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1146{
1147	struct timespec ts;
1148	struct timespec *timeout;
1149	sigset_t set;
1150	ksiginfo_t ksi;
1151	int error;
1152
1153	if (uap->timeout) {
1154		error = copyin(uap->timeout, &ts, sizeof(ts));
1155		if (error)
1156			return (error);
1157
1158		timeout = &ts;
1159	} else
1160		timeout = NULL;
1161
1162	error = copyin(uap->set, &set, sizeof(set));
1163	if (error)
1164		return (error);
1165
1166	error = kern_sigtimedwait(td, set, &ksi, timeout);
1167	if (error)
1168		return (error);
1169
1170	if (uap->info)
1171		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1172
1173	if (error == 0)
1174		td->td_retval[0] = ksi.ksi_signo;
1175	return (error);
1176}
1177
1178int
1179sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1180{
1181	ksiginfo_t ksi;
1182	sigset_t set;
1183	int error;
1184
1185	error = copyin(uap->set, &set, sizeof(set));
1186	if (error)
1187		return (error);
1188
1189	error = kern_sigtimedwait(td, set, &ksi, NULL);
1190	if (error)
1191		return (error);
1192
1193	if (uap->info)
1194		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1195
1196	if (error == 0)
1197		td->td_retval[0] = ksi.ksi_signo;
1198	return (error);
1199}
1200
1201int
1202kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1203	struct timespec *timeout)
1204{
1205	struct sigacts *ps;
1206	sigset_t saved_mask, new_block;
1207	struct proc *p;
1208	int error, sig, timo, timevalid = 0;
1209	struct timespec rts, ets, ts;
1210	struct timeval tv;
1211
1212	p = td->td_proc;
1213	error = 0;
1214	ets.tv_sec = 0;
1215	ets.tv_nsec = 0;
1216
1217	if (timeout != NULL) {
1218		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1219			timevalid = 1;
1220			getnanouptime(&rts);
1221			ets = rts;
1222			timespecadd(&ets, timeout);
1223		}
1224	}
1225	ksiginfo_init(ksi);
1226	/* Some signals can not be waited for. */
1227	SIG_CANTMASK(waitset);
1228	ps = p->p_sigacts;
1229	PROC_LOCK(p);
1230	saved_mask = td->td_sigmask;
1231	SIGSETNAND(td->td_sigmask, waitset);
1232	for (;;) {
1233		mtx_lock(&ps->ps_mtx);
1234		sig = cursig(td);
1235		mtx_unlock(&ps->ps_mtx);
1236		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1237			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1238			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1239				error = 0;
1240				break;
1241			}
1242		}
1243
1244		if (error != 0)
1245			break;
1246
1247		/*
1248		 * POSIX says this must be checked after looking for pending
1249		 * signals.
1250		 */
1251		if (timeout != NULL) {
1252			if (!timevalid) {
1253				error = EINVAL;
1254				break;
1255			}
1256			getnanouptime(&rts);
1257			if (timespeccmp(&rts, &ets, >=)) {
1258				error = EAGAIN;
1259				break;
1260			}
1261			ts = ets;
1262			timespecsub(&ts, &rts);
1263			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1264			timo = tvtohz(&tv);
1265		} else {
1266			timo = 0;
1267		}
1268
1269		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1270
1271		if (timeout != NULL) {
1272			if (error == ERESTART) {
1273				/* Timeout can not be restarted. */
1274				error = EINTR;
1275			} else if (error == EAGAIN) {
1276				/* We will calculate timeout by ourself. */
1277				error = 0;
1278			}
1279		}
1280	}
1281
1282	new_block = saved_mask;
1283	SIGSETNAND(new_block, td->td_sigmask);
1284	td->td_sigmask = saved_mask;
1285	/*
1286	 * Fewer signals can be delivered to us, reschedule signal
1287	 * notification.
1288	 */
1289	if (p->p_numthreads != 1)
1290		reschedule_signals(p, new_block, 0);
1291
1292	if (error == 0) {
1293		SDT_PROBE(proc, kernel, , signal__clear, sig, ksi, 0, 0, 0);
1294
1295		if (ksi->ksi_code == SI_TIMER)
1296			itimer_accept(p, ksi->ksi_timerid, ksi);
1297
1298#ifdef KTRACE
1299		if (KTRPOINT(td, KTR_PSIG)) {
1300			sig_t action;
1301
1302			mtx_lock(&ps->ps_mtx);
1303			action = ps->ps_sigact[_SIG_IDX(sig)];
1304			mtx_unlock(&ps->ps_mtx);
1305			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1306		}
1307#endif
1308		if (sig == SIGKILL)
1309			sigexit(td, sig);
1310	}
1311	PROC_UNLOCK(p);
1312	return (error);
1313}
1314
1315#ifndef _SYS_SYSPROTO_H_
1316struct sigpending_args {
1317	sigset_t	*set;
1318};
1319#endif
1320int
1321sys_sigpending(td, uap)
1322	struct thread *td;
1323	struct sigpending_args *uap;
1324{
1325	struct proc *p = td->td_proc;
1326	sigset_t pending;
1327
1328	PROC_LOCK(p);
1329	pending = p->p_sigqueue.sq_signals;
1330	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1331	PROC_UNLOCK(p);
1332	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1333}
1334
1335#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1336#ifndef _SYS_SYSPROTO_H_
1337struct osigpending_args {
1338	int	dummy;
1339};
1340#endif
1341int
1342osigpending(td, uap)
1343	struct thread *td;
1344	struct osigpending_args *uap;
1345{
1346	struct proc *p = td->td_proc;
1347	sigset_t pending;
1348
1349	PROC_LOCK(p);
1350	pending = p->p_sigqueue.sq_signals;
1351	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1352	PROC_UNLOCK(p);
1353	SIG2OSIG(pending, td->td_retval[0]);
1354	return (0);
1355}
1356#endif /* COMPAT_43 */
1357
1358#if defined(COMPAT_43)
1359/*
1360 * Generalized interface signal handler, 4.3-compatible.
1361 */
1362#ifndef _SYS_SYSPROTO_H_
1363struct osigvec_args {
1364	int	signum;
1365	struct	sigvec *nsv;
1366	struct	sigvec *osv;
1367};
1368#endif
1369/* ARGSUSED */
1370int
1371osigvec(td, uap)
1372	struct thread *td;
1373	register struct osigvec_args *uap;
1374{
1375	struct sigvec vec;
1376	struct sigaction nsa, osa;
1377	register struct sigaction *nsap, *osap;
1378	int error;
1379
1380	if (uap->signum <= 0 || uap->signum >= ONSIG)
1381		return (EINVAL);
1382	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1383	osap = (uap->osv != NULL) ? &osa : NULL;
1384	if (nsap) {
1385		error = copyin(uap->nsv, &vec, sizeof(vec));
1386		if (error)
1387			return (error);
1388		nsap->sa_handler = vec.sv_handler;
1389		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1390		nsap->sa_flags = vec.sv_flags;
1391		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1392	}
1393	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1394	if (osap && !error) {
1395		vec.sv_handler = osap->sa_handler;
1396		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1397		vec.sv_flags = osap->sa_flags;
1398		vec.sv_flags &= ~SA_NOCLDWAIT;
1399		vec.sv_flags ^= SA_RESTART;
1400		error = copyout(&vec, uap->osv, sizeof(vec));
1401	}
1402	return (error);
1403}
1404
1405#ifndef _SYS_SYSPROTO_H_
1406struct osigblock_args {
1407	int	mask;
1408};
1409#endif
1410int
1411osigblock(td, uap)
1412	register struct thread *td;
1413	struct osigblock_args *uap;
1414{
1415	sigset_t set, oset;
1416
1417	OSIG2SIG(uap->mask, set);
1418	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1419	SIG2OSIG(oset, td->td_retval[0]);
1420	return (0);
1421}
1422
1423#ifndef _SYS_SYSPROTO_H_
1424struct osigsetmask_args {
1425	int	mask;
1426};
1427#endif
1428int
1429osigsetmask(td, uap)
1430	struct thread *td;
1431	struct osigsetmask_args *uap;
1432{
1433	sigset_t set, oset;
1434
1435	OSIG2SIG(uap->mask, set);
1436	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1437	SIG2OSIG(oset, td->td_retval[0]);
1438	return (0);
1439}
1440#endif /* COMPAT_43 */
1441
1442/*
1443 * Suspend calling thread until signal, providing mask to be set in the
1444 * meantime.
1445 */
1446#ifndef _SYS_SYSPROTO_H_
1447struct sigsuspend_args {
1448	const sigset_t *sigmask;
1449};
1450#endif
1451/* ARGSUSED */
1452int
1453sys_sigsuspend(td, uap)
1454	struct thread *td;
1455	struct sigsuspend_args *uap;
1456{
1457	sigset_t mask;
1458	int error;
1459
1460	error = copyin(uap->sigmask, &mask, sizeof(mask));
1461	if (error)
1462		return (error);
1463	return (kern_sigsuspend(td, mask));
1464}
1465
1466int
1467kern_sigsuspend(struct thread *td, sigset_t mask)
1468{
1469	struct proc *p = td->td_proc;
1470	int has_sig, sig;
1471
1472	/*
1473	 * When returning from sigsuspend, we want
1474	 * the old mask to be restored after the
1475	 * signal handler has finished.  Thus, we
1476	 * save it here and mark the sigacts structure
1477	 * to indicate this.
1478	 */
1479	PROC_LOCK(p);
1480	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1481	    SIGPROCMASK_PROC_LOCKED);
1482	td->td_pflags |= TDP_OLDMASK;
1483
1484	/*
1485	 * Process signals now. Otherwise, we can get spurious wakeup
1486	 * due to signal entered process queue, but delivered to other
1487	 * thread. But sigsuspend should return only on signal
1488	 * delivery.
1489	 */
1490	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1491	for (has_sig = 0; !has_sig;) {
1492		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1493			0) == 0)
1494			/* void */;
1495		thread_suspend_check(0);
1496		mtx_lock(&p->p_sigacts->ps_mtx);
1497		while ((sig = cursig(td)) != 0)
1498			has_sig += postsig(sig);
1499		mtx_unlock(&p->p_sigacts->ps_mtx);
1500	}
1501	PROC_UNLOCK(p);
1502	td->td_errno = EINTR;
1503	td->td_pflags |= TDP_NERRNO;
1504	return (EJUSTRETURN);
1505}
1506
1507#ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1508/*
1509 * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1510 * convention: libc stub passes mask, not pointer, to save a copyin.
1511 */
1512#ifndef _SYS_SYSPROTO_H_
1513struct osigsuspend_args {
1514	osigset_t mask;
1515};
1516#endif
1517/* ARGSUSED */
1518int
1519osigsuspend(td, uap)
1520	struct thread *td;
1521	struct osigsuspend_args *uap;
1522{
1523	sigset_t mask;
1524
1525	OSIG2SIG(uap->mask, mask);
1526	return (kern_sigsuspend(td, mask));
1527}
1528#endif /* COMPAT_43 */
1529
1530#if defined(COMPAT_43)
1531#ifndef _SYS_SYSPROTO_H_
1532struct osigstack_args {
1533	struct	sigstack *nss;
1534	struct	sigstack *oss;
1535};
1536#endif
1537/* ARGSUSED */
1538int
1539osigstack(td, uap)
1540	struct thread *td;
1541	register struct osigstack_args *uap;
1542{
1543	struct sigstack nss, oss;
1544	int error = 0;
1545
1546	if (uap->nss != NULL) {
1547		error = copyin(uap->nss, &nss, sizeof(nss));
1548		if (error)
1549			return (error);
1550	}
1551	oss.ss_sp = td->td_sigstk.ss_sp;
1552	oss.ss_onstack = sigonstack(cpu_getstack(td));
1553	if (uap->nss != NULL) {
1554		td->td_sigstk.ss_sp = nss.ss_sp;
1555		td->td_sigstk.ss_size = 0;
1556		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1557		td->td_pflags |= TDP_ALTSTACK;
1558	}
1559	if (uap->oss != NULL)
1560		error = copyout(&oss, uap->oss, sizeof(oss));
1561
1562	return (error);
1563}
1564#endif /* COMPAT_43 */
1565
1566#ifndef _SYS_SYSPROTO_H_
1567struct sigaltstack_args {
1568	stack_t	*ss;
1569	stack_t	*oss;
1570};
1571#endif
1572/* ARGSUSED */
1573int
1574sys_sigaltstack(td, uap)
1575	struct thread *td;
1576	register struct sigaltstack_args *uap;
1577{
1578	stack_t ss, oss;
1579	int error;
1580
1581	if (uap->ss != NULL) {
1582		error = copyin(uap->ss, &ss, sizeof(ss));
1583		if (error)
1584			return (error);
1585	}
1586	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1587	    (uap->oss != NULL) ? &oss : NULL);
1588	if (error)
1589		return (error);
1590	if (uap->oss != NULL)
1591		error = copyout(&oss, uap->oss, sizeof(stack_t));
1592	return (error);
1593}
1594
1595int
1596kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1597{
1598	struct proc *p = td->td_proc;
1599	int oonstack;
1600
1601	oonstack = sigonstack(cpu_getstack(td));
1602
1603	if (oss != NULL) {
1604		*oss = td->td_sigstk;
1605		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1606		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1607	}
1608
1609	if (ss != NULL) {
1610		if (oonstack)
1611			return (EPERM);
1612		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1613			return (EINVAL);
1614		if (!(ss->ss_flags & SS_DISABLE)) {
1615			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1616				return (ENOMEM);
1617
1618			td->td_sigstk = *ss;
1619			td->td_pflags |= TDP_ALTSTACK;
1620		} else {
1621			td->td_pflags &= ~TDP_ALTSTACK;
1622		}
1623	}
1624	return (0);
1625}
1626
1627/*
1628 * Common code for kill process group/broadcast kill.
1629 * cp is calling process.
1630 */
1631static int
1632killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1633{
1634	struct proc *p;
1635	struct pgrp *pgrp;
1636	int err;
1637	int ret;
1638
1639	ret = ESRCH;
1640	if (all) {
1641		/*
1642		 * broadcast
1643		 */
1644		sx_slock(&allproc_lock);
1645		FOREACH_PROC_IN_SYSTEM(p) {
1646			PROC_LOCK(p);
1647			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1648			    p == td->td_proc || p->p_state == PRS_NEW) {
1649				PROC_UNLOCK(p);
1650				continue;
1651			}
1652			err = p_cansignal(td, p, sig);
1653			if (err == 0) {
1654				if (sig)
1655					pksignal(p, sig, ksi);
1656				ret = err;
1657			}
1658			else if (ret == ESRCH)
1659				ret = err;
1660			PROC_UNLOCK(p);
1661		}
1662		sx_sunlock(&allproc_lock);
1663	} else {
1664		sx_slock(&proctree_lock);
1665		if (pgid == 0) {
1666			/*
1667			 * zero pgid means send to my process group.
1668			 */
1669			pgrp = td->td_proc->p_pgrp;
1670			PGRP_LOCK(pgrp);
1671		} else {
1672			pgrp = pgfind(pgid);
1673			if (pgrp == NULL) {
1674				sx_sunlock(&proctree_lock);
1675				return (ESRCH);
1676			}
1677		}
1678		sx_sunlock(&proctree_lock);
1679		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1680			PROC_LOCK(p);
1681			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1682			    p->p_state == PRS_NEW) {
1683				PROC_UNLOCK(p);
1684				continue;
1685			}
1686			err = p_cansignal(td, p, sig);
1687			if (err == 0) {
1688				if (sig)
1689					pksignal(p, sig, ksi);
1690				ret = err;
1691			}
1692			else if (ret == ESRCH)
1693				ret = err;
1694			PROC_UNLOCK(p);
1695		}
1696		PGRP_UNLOCK(pgrp);
1697	}
1698	return (ret);
1699}
1700
1701#ifndef _SYS_SYSPROTO_H_
1702struct kill_args {
1703	int	pid;
1704	int	signum;
1705};
1706#endif
1707/* ARGSUSED */
1708int
1709sys_kill(struct thread *td, struct kill_args *uap)
1710{
1711	ksiginfo_t ksi;
1712	struct proc *p;
1713	int error;
1714
1715	/*
1716	 * A process in capability mode can send signals only to himself.
1717	 * The main rationale behind this is that abort(3) is implemented as
1718	 * kill(getpid(), SIGABRT).
1719	 */
1720	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1721		return (ECAPMODE);
1722
1723	AUDIT_ARG_SIGNUM(uap->signum);
1724	AUDIT_ARG_PID(uap->pid);
1725	if ((u_int)uap->signum > _SIG_MAXSIG)
1726		return (EINVAL);
1727
1728	ksiginfo_init(&ksi);
1729	ksi.ksi_signo = uap->signum;
1730	ksi.ksi_code = SI_USER;
1731	ksi.ksi_pid = td->td_proc->p_pid;
1732	ksi.ksi_uid = td->td_ucred->cr_ruid;
1733
1734	if (uap->pid > 0) {
1735		/* kill single process */
1736		if ((p = pfind(uap->pid)) == NULL) {
1737			if ((p = zpfind(uap->pid)) == NULL)
1738				return (ESRCH);
1739		}
1740		AUDIT_ARG_PROCESS(p);
1741		error = p_cansignal(td, p, uap->signum);
1742		if (error == 0 && uap->signum)
1743			pksignal(p, uap->signum, &ksi);
1744		PROC_UNLOCK(p);
1745		return (error);
1746	}
1747	switch (uap->pid) {
1748	case -1:		/* broadcast signal */
1749		return (killpg1(td, uap->signum, 0, 1, &ksi));
1750	case 0:			/* signal own process group */
1751		return (killpg1(td, uap->signum, 0, 0, &ksi));
1752	default:		/* negative explicit process group */
1753		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1754	}
1755	/* NOTREACHED */
1756}
1757
1758int
1759sys_pdkill(td, uap)
1760	struct thread *td;
1761	struct pdkill_args *uap;
1762{
1763#ifdef PROCDESC
1764	struct proc *p;
1765	cap_rights_t rights;
1766	int error;
1767
1768	AUDIT_ARG_SIGNUM(uap->signum);
1769	AUDIT_ARG_FD(uap->fd);
1770	if ((u_int)uap->signum > _SIG_MAXSIG)
1771		return (EINVAL);
1772
1773	error = procdesc_find(td, uap->fd,
1774	    cap_rights_init(&rights, CAP_PDKILL), &p);
1775	if (error)
1776		return (error);
1777	AUDIT_ARG_PROCESS(p);
1778	error = p_cansignal(td, p, uap->signum);
1779	if (error == 0 && uap->signum)
1780		kern_psignal(p, uap->signum);
1781	PROC_UNLOCK(p);
1782	return (error);
1783#else
1784	return (ENOSYS);
1785#endif
1786}
1787
1788#if defined(COMPAT_43)
1789#ifndef _SYS_SYSPROTO_H_
1790struct okillpg_args {
1791	int	pgid;
1792	int	signum;
1793};
1794#endif
1795/* ARGSUSED */
1796int
1797okillpg(struct thread *td, struct okillpg_args *uap)
1798{
1799	ksiginfo_t ksi;
1800
1801	AUDIT_ARG_SIGNUM(uap->signum);
1802	AUDIT_ARG_PID(uap->pgid);
1803	if ((u_int)uap->signum > _SIG_MAXSIG)
1804		return (EINVAL);
1805
1806	ksiginfo_init(&ksi);
1807	ksi.ksi_signo = uap->signum;
1808	ksi.ksi_code = SI_USER;
1809	ksi.ksi_pid = td->td_proc->p_pid;
1810	ksi.ksi_uid = td->td_ucred->cr_ruid;
1811	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1812}
1813#endif /* COMPAT_43 */
1814
1815#ifndef _SYS_SYSPROTO_H_
1816struct sigqueue_args {
1817	pid_t pid;
1818	int signum;
1819	/* union sigval */ void *value;
1820};
1821#endif
1822int
1823sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1824{
1825	ksiginfo_t ksi;
1826	struct proc *p;
1827	int error;
1828
1829	if ((u_int)uap->signum > _SIG_MAXSIG)
1830		return (EINVAL);
1831
1832	/*
1833	 * Specification says sigqueue can only send signal to
1834	 * single process.
1835	 */
1836	if (uap->pid <= 0)
1837		return (EINVAL);
1838
1839	if ((p = pfind(uap->pid)) == NULL) {
1840		if ((p = zpfind(uap->pid)) == NULL)
1841			return (ESRCH);
1842	}
1843	error = p_cansignal(td, p, uap->signum);
1844	if (error == 0 && uap->signum != 0) {
1845		ksiginfo_init(&ksi);
1846		ksi.ksi_flags = KSI_SIGQ;
1847		ksi.ksi_signo = uap->signum;
1848		ksi.ksi_code = SI_QUEUE;
1849		ksi.ksi_pid = td->td_proc->p_pid;
1850		ksi.ksi_uid = td->td_ucred->cr_ruid;
1851		ksi.ksi_value.sival_ptr = uap->value;
1852		error = pksignal(p, ksi.ksi_signo, &ksi);
1853	}
1854	PROC_UNLOCK(p);
1855	return (error);
1856}
1857
1858/*
1859 * Send a signal to a process group.
1860 */
1861void
1862gsignal(int pgid, int sig, ksiginfo_t *ksi)
1863{
1864	struct pgrp *pgrp;
1865
1866	if (pgid != 0) {
1867		sx_slock(&proctree_lock);
1868		pgrp = pgfind(pgid);
1869		sx_sunlock(&proctree_lock);
1870		if (pgrp != NULL) {
1871			pgsignal(pgrp, sig, 0, ksi);
1872			PGRP_UNLOCK(pgrp);
1873		}
1874	}
1875}
1876
1877/*
1878 * Send a signal to a process group.  If checktty is 1,
1879 * limit to members which have a controlling terminal.
1880 */
1881void
1882pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1883{
1884	struct proc *p;
1885
1886	if (pgrp) {
1887		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1888		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1889			PROC_LOCK(p);
1890			if (p->p_state == PRS_NORMAL &&
1891			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1892				pksignal(p, sig, ksi);
1893			PROC_UNLOCK(p);
1894		}
1895	}
1896}
1897
1898
1899/*
1900 * Recalculate the signal mask and reset the signal disposition after
1901 * usermode frame for delivery is formed.  Should be called after
1902 * mach-specific routine, because sysent->sv_sendsig() needs correct
1903 * ps_siginfo and signal mask.
1904 */
1905static void
1906postsig_done(int sig, struct thread *td, struct sigacts *ps)
1907{
1908	sigset_t mask;
1909
1910	mtx_assert(&ps->ps_mtx, MA_OWNED);
1911	td->td_ru.ru_nsignals++;
1912	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1913	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1914		SIGADDSET(mask, sig);
1915	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1916	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1917	if (SIGISMEMBER(ps->ps_sigreset, sig))
1918		sigdflt(ps, sig);
1919}
1920
1921
1922/*
1923 * Send a signal caused by a trap to the current thread.  If it will be
1924 * caught immediately, deliver it with correct code.  Otherwise, post it
1925 * normally.
1926 */
1927void
1928trapsignal(struct thread *td, ksiginfo_t *ksi)
1929{
1930	struct sigacts *ps;
1931	struct proc *p;
1932	int sig;
1933	int code;
1934
1935	p = td->td_proc;
1936	sig = ksi->ksi_signo;
1937	code = ksi->ksi_code;
1938	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1939
1940	PROC_LOCK(p);
1941	ps = p->p_sigacts;
1942	mtx_lock(&ps->ps_mtx);
1943	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1944	    !SIGISMEMBER(td->td_sigmask, sig)) {
1945#ifdef KTRACE
1946		if (KTRPOINT(curthread, KTR_PSIG))
1947			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1948			    &td->td_sigmask, code);
1949#endif
1950		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1951				ksi, &td->td_sigmask);
1952		postsig_done(sig, td, ps);
1953		mtx_unlock(&ps->ps_mtx);
1954	} else {
1955		/*
1956		 * Avoid a possible infinite loop if the thread
1957		 * masking the signal or process is ignoring the
1958		 * signal.
1959		 */
1960		if (kern_forcesigexit &&
1961		    (SIGISMEMBER(td->td_sigmask, sig) ||
1962		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1963			SIGDELSET(td->td_sigmask, sig);
1964			SIGDELSET(ps->ps_sigcatch, sig);
1965			SIGDELSET(ps->ps_sigignore, sig);
1966			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1967		}
1968		mtx_unlock(&ps->ps_mtx);
1969		p->p_code = code;	/* XXX for core dump/debugger */
1970		p->p_sig = sig;		/* XXX to verify code */
1971		tdsendsignal(p, td, sig, ksi);
1972	}
1973	PROC_UNLOCK(p);
1974}
1975
1976static struct thread *
1977sigtd(struct proc *p, int sig, int prop)
1978{
1979	struct thread *td, *signal_td;
1980
1981	PROC_LOCK_ASSERT(p, MA_OWNED);
1982
1983	/*
1984	 * Check if current thread can handle the signal without
1985	 * switching context to another thread.
1986	 */
1987	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1988		return (curthread);
1989	signal_td = NULL;
1990	FOREACH_THREAD_IN_PROC(p, td) {
1991		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1992			signal_td = td;
1993			break;
1994		}
1995	}
1996	if (signal_td == NULL)
1997		signal_td = FIRST_THREAD_IN_PROC(p);
1998	return (signal_td);
1999}
2000
2001/*
2002 * Send the signal to the process.  If the signal has an action, the action
2003 * is usually performed by the target process rather than the caller; we add
2004 * the signal to the set of pending signals for the process.
2005 *
2006 * Exceptions:
2007 *   o When a stop signal is sent to a sleeping process that takes the
2008 *     default action, the process is stopped without awakening it.
2009 *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2010 *     regardless of the signal action (eg, blocked or ignored).
2011 *
2012 * Other ignored signals are discarded immediately.
2013 *
2014 * NB: This function may be entered from the debugger via the "kill" DDB
2015 * command.  There is little that can be done to mitigate the possibly messy
2016 * side effects of this unwise possibility.
2017 */
2018void
2019kern_psignal(struct proc *p, int sig)
2020{
2021	ksiginfo_t ksi;
2022
2023	ksiginfo_init(&ksi);
2024	ksi.ksi_signo = sig;
2025	ksi.ksi_code = SI_KERNEL;
2026	(void) tdsendsignal(p, NULL, sig, &ksi);
2027}
2028
2029int
2030pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2031{
2032
2033	return (tdsendsignal(p, NULL, sig, ksi));
2034}
2035
2036/* Utility function for finding a thread to send signal event to. */
2037int
2038sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2039{
2040	struct thread *td;
2041
2042	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2043		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2044		if (td == NULL)
2045			return (ESRCH);
2046		*ttd = td;
2047	} else {
2048		*ttd = NULL;
2049		PROC_LOCK(p);
2050	}
2051	return (0);
2052}
2053
2054void
2055tdsignal(struct thread *td, int sig)
2056{
2057	ksiginfo_t ksi;
2058
2059	ksiginfo_init(&ksi);
2060	ksi.ksi_signo = sig;
2061	ksi.ksi_code = SI_KERNEL;
2062	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2063}
2064
2065void
2066tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2067{
2068
2069	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2070}
2071
2072int
2073tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2074{
2075	sig_t action;
2076	sigqueue_t *sigqueue;
2077	int prop;
2078	struct sigacts *ps;
2079	int intrval;
2080	int ret = 0;
2081	int wakeup_swapper;
2082
2083	MPASS(td == NULL || p == td->td_proc);
2084	PROC_LOCK_ASSERT(p, MA_OWNED);
2085
2086	if (!_SIG_VALID(sig))
2087		panic("%s(): invalid signal %d", __func__, sig);
2088
2089	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2090
2091	/*
2092	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2093	 */
2094	if (p->p_state == PRS_ZOMBIE) {
2095		if (ksi && (ksi->ksi_flags & KSI_INS))
2096			ksiginfo_tryfree(ksi);
2097		return (ret);
2098	}
2099
2100	ps = p->p_sigacts;
2101	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2102	prop = sigprop(sig);
2103
2104	if (td == NULL) {
2105		td = sigtd(p, sig, prop);
2106		sigqueue = &p->p_sigqueue;
2107	} else
2108		sigqueue = &td->td_sigqueue;
2109
2110	SDT_PROBE(proc, kernel, , signal__send, td, p, sig, 0, 0 );
2111
2112	/*
2113	 * If the signal is being ignored,
2114	 * then we forget about it immediately.
2115	 * (Note: we don't set SIGCONT in ps_sigignore,
2116	 * and if it is set to SIG_IGN,
2117	 * action will be SIG_DFL here.)
2118	 */
2119	mtx_lock(&ps->ps_mtx);
2120	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2121		SDT_PROBE(proc, kernel, , signal__discard, td, p, sig, 0, 0 );
2122
2123		mtx_unlock(&ps->ps_mtx);
2124		if (ksi && (ksi->ksi_flags & KSI_INS))
2125			ksiginfo_tryfree(ksi);
2126		return (ret);
2127	}
2128	if (SIGISMEMBER(td->td_sigmask, sig))
2129		action = SIG_HOLD;
2130	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2131		action = SIG_CATCH;
2132	else
2133		action = SIG_DFL;
2134	if (SIGISMEMBER(ps->ps_sigintr, sig))
2135		intrval = EINTR;
2136	else
2137		intrval = ERESTART;
2138	mtx_unlock(&ps->ps_mtx);
2139
2140	if (prop & SA_CONT)
2141		sigqueue_delete_stopmask_proc(p);
2142	else if (prop & SA_STOP) {
2143		/*
2144		 * If sending a tty stop signal to a member of an orphaned
2145		 * process group, discard the signal here if the action
2146		 * is default; don't stop the process below if sleeping,
2147		 * and don't clear any pending SIGCONT.
2148		 */
2149		if ((prop & SA_TTYSTOP) &&
2150		    (p->p_pgrp->pg_jobc == 0) &&
2151		    (action == SIG_DFL)) {
2152			if (ksi && (ksi->ksi_flags & KSI_INS))
2153				ksiginfo_tryfree(ksi);
2154			return (ret);
2155		}
2156		sigqueue_delete_proc(p, SIGCONT);
2157		if (p->p_flag & P_CONTINUED) {
2158			p->p_flag &= ~P_CONTINUED;
2159			PROC_LOCK(p->p_pptr);
2160			sigqueue_take(p->p_ksi);
2161			PROC_UNLOCK(p->p_pptr);
2162		}
2163	}
2164
2165	ret = sigqueue_add(sigqueue, sig, ksi);
2166	if (ret != 0)
2167		return (ret);
2168	signotify(td);
2169	/*
2170	 * Defer further processing for signals which are held,
2171	 * except that stopped processes must be continued by SIGCONT.
2172	 */
2173	if (action == SIG_HOLD &&
2174	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2175		return (ret);
2176	/*
2177	 * SIGKILL: Remove procfs STOPEVENTs.
2178	 */
2179	if (sig == SIGKILL) {
2180		/* from procfs_ioctl.c: PIOCBIC */
2181		p->p_stops = 0;
2182		/* from procfs_ioctl.c: PIOCCONT */
2183		p->p_step = 0;
2184		wakeup(&p->p_step);
2185	}
2186	/*
2187	 * Some signals have a process-wide effect and a per-thread
2188	 * component.  Most processing occurs when the process next
2189	 * tries to cross the user boundary, however there are some
2190	 * times when processing needs to be done immediately, such as
2191	 * waking up threads so that they can cross the user boundary.
2192	 * We try to do the per-process part here.
2193	 */
2194	if (P_SHOULDSTOP(p)) {
2195		KASSERT(!(p->p_flag & P_WEXIT),
2196		    ("signal to stopped but exiting process"));
2197		if (sig == SIGKILL) {
2198			/*
2199			 * If traced process is already stopped,
2200			 * then no further action is necessary.
2201			 */
2202			if (p->p_flag & P_TRACED)
2203				goto out;
2204			/*
2205			 * SIGKILL sets process running.
2206			 * It will die elsewhere.
2207			 * All threads must be restarted.
2208			 */
2209			p->p_flag &= ~P_STOPPED_SIG;
2210			goto runfast;
2211		}
2212
2213		if (prop & SA_CONT) {
2214			/*
2215			 * If traced process is already stopped,
2216			 * then no further action is necessary.
2217			 */
2218			if (p->p_flag & P_TRACED)
2219				goto out;
2220			/*
2221			 * If SIGCONT is default (or ignored), we continue the
2222			 * process but don't leave the signal in sigqueue as
2223			 * it has no further action.  If SIGCONT is held, we
2224			 * continue the process and leave the signal in
2225			 * sigqueue.  If the process catches SIGCONT, let it
2226			 * handle the signal itself.  If it isn't waiting on
2227			 * an event, it goes back to run state.
2228			 * Otherwise, process goes back to sleep state.
2229			 */
2230			p->p_flag &= ~P_STOPPED_SIG;
2231			PROC_SLOCK(p);
2232			if (p->p_numthreads == p->p_suspcount) {
2233				PROC_SUNLOCK(p);
2234				p->p_flag |= P_CONTINUED;
2235				p->p_xstat = SIGCONT;
2236				PROC_LOCK(p->p_pptr);
2237				childproc_continued(p);
2238				PROC_UNLOCK(p->p_pptr);
2239				PROC_SLOCK(p);
2240			}
2241			if (action == SIG_DFL) {
2242				thread_unsuspend(p);
2243				PROC_SUNLOCK(p);
2244				sigqueue_delete(sigqueue, sig);
2245				goto out;
2246			}
2247			if (action == SIG_CATCH) {
2248				/*
2249				 * The process wants to catch it so it needs
2250				 * to run at least one thread, but which one?
2251				 */
2252				PROC_SUNLOCK(p);
2253				goto runfast;
2254			}
2255			/*
2256			 * The signal is not ignored or caught.
2257			 */
2258			thread_unsuspend(p);
2259			PROC_SUNLOCK(p);
2260			goto out;
2261		}
2262
2263		if (prop & SA_STOP) {
2264			/*
2265			 * If traced process is already stopped,
2266			 * then no further action is necessary.
2267			 */
2268			if (p->p_flag & P_TRACED)
2269				goto out;
2270			/*
2271			 * Already stopped, don't need to stop again
2272			 * (If we did the shell could get confused).
2273			 * Just make sure the signal STOP bit set.
2274			 */
2275			p->p_flag |= P_STOPPED_SIG;
2276			sigqueue_delete(sigqueue, sig);
2277			goto out;
2278		}
2279
2280		/*
2281		 * All other kinds of signals:
2282		 * If a thread is sleeping interruptibly, simulate a
2283		 * wakeup so that when it is continued it will be made
2284		 * runnable and can look at the signal.  However, don't make
2285		 * the PROCESS runnable, leave it stopped.
2286		 * It may run a bit until it hits a thread_suspend_check().
2287		 */
2288		wakeup_swapper = 0;
2289		PROC_SLOCK(p);
2290		thread_lock(td);
2291		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2292			wakeup_swapper = sleepq_abort(td, intrval);
2293		thread_unlock(td);
2294		PROC_SUNLOCK(p);
2295		if (wakeup_swapper)
2296			kick_proc0();
2297		goto out;
2298		/*
2299		 * Mutexes are short lived. Threads waiting on them will
2300		 * hit thread_suspend_check() soon.
2301		 */
2302	} else if (p->p_state == PRS_NORMAL) {
2303		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2304			tdsigwakeup(td, sig, action, intrval);
2305			goto out;
2306		}
2307
2308		MPASS(action == SIG_DFL);
2309
2310		if (prop & SA_STOP) {
2311			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2312				goto out;
2313			p->p_flag |= P_STOPPED_SIG;
2314			p->p_xstat = sig;
2315			PROC_SLOCK(p);
2316			sig_suspend_threads(td, p, 1);
2317			if (p->p_numthreads == p->p_suspcount) {
2318				/*
2319				 * only thread sending signal to another
2320				 * process can reach here, if thread is sending
2321				 * signal to its process, because thread does
2322				 * not suspend itself here, p_numthreads
2323				 * should never be equal to p_suspcount.
2324				 */
2325				thread_stopped(p);
2326				PROC_SUNLOCK(p);
2327				sigqueue_delete_proc(p, p->p_xstat);
2328			} else
2329				PROC_SUNLOCK(p);
2330			goto out;
2331		}
2332	} else {
2333		/* Not in "NORMAL" state. discard the signal. */
2334		sigqueue_delete(sigqueue, sig);
2335		goto out;
2336	}
2337
2338	/*
2339	 * The process is not stopped so we need to apply the signal to all the
2340	 * running threads.
2341	 */
2342runfast:
2343	tdsigwakeup(td, sig, action, intrval);
2344	PROC_SLOCK(p);
2345	thread_unsuspend(p);
2346	PROC_SUNLOCK(p);
2347out:
2348	/* If we jump here, proc slock should not be owned. */
2349	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2350	return (ret);
2351}
2352
2353/*
2354 * The force of a signal has been directed against a single
2355 * thread.  We need to see what we can do about knocking it
2356 * out of any sleep it may be in etc.
2357 */
2358static void
2359tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2360{
2361	struct proc *p = td->td_proc;
2362	register int prop;
2363	int wakeup_swapper;
2364
2365	wakeup_swapper = 0;
2366	PROC_LOCK_ASSERT(p, MA_OWNED);
2367	prop = sigprop(sig);
2368
2369	PROC_SLOCK(p);
2370	thread_lock(td);
2371	/*
2372	 * Bring the priority of a thread up if we want it to get
2373	 * killed in this lifetime.
2374	 */
2375	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2376		sched_prio(td, PUSER);
2377	if (TD_ON_SLEEPQ(td)) {
2378		/*
2379		 * If thread is sleeping uninterruptibly
2380		 * we can't interrupt the sleep... the signal will
2381		 * be noticed when the process returns through
2382		 * trap() or syscall().
2383		 */
2384		if ((td->td_flags & TDF_SINTR) == 0)
2385			goto out;
2386		/*
2387		 * If SIGCONT is default (or ignored) and process is
2388		 * asleep, we are finished; the process should not
2389		 * be awakened.
2390		 */
2391		if ((prop & SA_CONT) && action == SIG_DFL) {
2392			thread_unlock(td);
2393			PROC_SUNLOCK(p);
2394			sigqueue_delete(&p->p_sigqueue, sig);
2395			/*
2396			 * It may be on either list in this state.
2397			 * Remove from both for now.
2398			 */
2399			sigqueue_delete(&td->td_sigqueue, sig);
2400			return;
2401		}
2402
2403		/*
2404		 * Don't awaken a sleeping thread for SIGSTOP if the
2405		 * STOP signal is deferred.
2406		 */
2407		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2408			goto out;
2409
2410		/*
2411		 * Give low priority threads a better chance to run.
2412		 */
2413		if (td->td_priority > PUSER)
2414			sched_prio(td, PUSER);
2415
2416		wakeup_swapper = sleepq_abort(td, intrval);
2417	} else {
2418		/*
2419		 * Other states do nothing with the signal immediately,
2420		 * other than kicking ourselves if we are running.
2421		 * It will either never be noticed, or noticed very soon.
2422		 */
2423#ifdef SMP
2424		if (TD_IS_RUNNING(td) && td != curthread)
2425			forward_signal(td);
2426#endif
2427	}
2428out:
2429	PROC_SUNLOCK(p);
2430	thread_unlock(td);
2431	if (wakeup_swapper)
2432		kick_proc0();
2433}
2434
2435static void
2436sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2437{
2438	struct thread *td2;
2439
2440	PROC_LOCK_ASSERT(p, MA_OWNED);
2441	PROC_SLOCK_ASSERT(p, MA_OWNED);
2442
2443	FOREACH_THREAD_IN_PROC(p, td2) {
2444		thread_lock(td2);
2445		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2446		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2447		    (td2->td_flags & TDF_SINTR)) {
2448			if (td2->td_flags & TDF_SBDRY) {
2449				/*
2450				 * Once a thread is asleep with
2451				 * TDF_SBDRY set, it should never
2452				 * become suspended due to this check.
2453				 */
2454				KASSERT(!TD_IS_SUSPENDED(td2),
2455				    ("thread with deferred stops suspended"));
2456			} else if (!TD_IS_SUSPENDED(td2)) {
2457				thread_suspend_one(td2);
2458			}
2459		} else if (!TD_IS_SUSPENDED(td2)) {
2460			if (sending || td != td2)
2461				td2->td_flags |= TDF_ASTPENDING;
2462#ifdef SMP
2463			if (TD_IS_RUNNING(td2) && td2 != td)
2464				forward_signal(td2);
2465#endif
2466		}
2467		thread_unlock(td2);
2468	}
2469}
2470
2471int
2472ptracestop(struct thread *td, int sig)
2473{
2474	struct proc *p = td->td_proc;
2475
2476	PROC_LOCK_ASSERT(p, MA_OWNED);
2477	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2478	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2479	    &p->p_mtx.lock_object, "Stopping for traced signal");
2480
2481	td->td_dbgflags |= TDB_XSIG;
2482	td->td_xsig = sig;
2483	PROC_SLOCK(p);
2484	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2485		if (p->p_flag & P_SINGLE_EXIT) {
2486			td->td_dbgflags &= ~TDB_XSIG;
2487			PROC_SUNLOCK(p);
2488			return (sig);
2489		}
2490		/*
2491		 * Just make wait() to work, the last stopped thread
2492		 * will win.
2493		 */
2494		p->p_xstat = sig;
2495		p->p_xthread = td;
2496		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2497		sig_suspend_threads(td, p, 0);
2498		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2499			td->td_dbgflags &= ~TDB_STOPATFORK;
2500			cv_broadcast(&p->p_dbgwait);
2501		}
2502stopme:
2503		thread_suspend_switch(td, p);
2504		if (p->p_xthread == td)
2505			p->p_xthread = NULL;
2506		if (!(p->p_flag & P_TRACED))
2507			break;
2508		if (td->td_dbgflags & TDB_SUSPEND) {
2509			if (p->p_flag & P_SINGLE_EXIT)
2510				break;
2511			goto stopme;
2512		}
2513	}
2514	PROC_SUNLOCK(p);
2515	return (td->td_xsig);
2516}
2517
2518static void
2519reschedule_signals(struct proc *p, sigset_t block, int flags)
2520{
2521	struct sigacts *ps;
2522	struct thread *td;
2523	int sig;
2524
2525	PROC_LOCK_ASSERT(p, MA_OWNED);
2526	ps = p->p_sigacts;
2527	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2528	    MA_OWNED : MA_NOTOWNED);
2529	if (SIGISEMPTY(p->p_siglist))
2530		return;
2531	SIGSETAND(block, p->p_siglist);
2532	while ((sig = sig_ffs(&block)) != 0) {
2533		SIGDELSET(block, sig);
2534		td = sigtd(p, sig, 0);
2535		signotify(td);
2536		if (!(flags & SIGPROCMASK_PS_LOCKED))
2537			mtx_lock(&ps->ps_mtx);
2538		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2539			tdsigwakeup(td, sig, SIG_CATCH,
2540			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2541			     ERESTART));
2542		if (!(flags & SIGPROCMASK_PS_LOCKED))
2543			mtx_unlock(&ps->ps_mtx);
2544	}
2545}
2546
2547void
2548tdsigcleanup(struct thread *td)
2549{
2550	struct proc *p;
2551	sigset_t unblocked;
2552
2553	p = td->td_proc;
2554	PROC_LOCK_ASSERT(p, MA_OWNED);
2555
2556	sigqueue_flush(&td->td_sigqueue);
2557	if (p->p_numthreads == 1)
2558		return;
2559
2560	/*
2561	 * Since we cannot handle signals, notify signal post code
2562	 * about this by filling the sigmask.
2563	 *
2564	 * Also, if needed, wake up thread(s) that do not block the
2565	 * same signals as the exiting thread, since the thread might
2566	 * have been selected for delivery and woken up.
2567	 */
2568	SIGFILLSET(unblocked);
2569	SIGSETNAND(unblocked, td->td_sigmask);
2570	SIGFILLSET(td->td_sigmask);
2571	reschedule_signals(p, unblocked, 0);
2572
2573}
2574
2575/*
2576 * Defer the delivery of SIGSTOP for the current thread.  Returns true
2577 * if stops were deferred and false if they were already deferred.
2578 */
2579int
2580sigdeferstop(void)
2581{
2582	struct thread *td;
2583
2584	td = curthread;
2585	if (td->td_flags & TDF_SBDRY)
2586		return (0);
2587	thread_lock(td);
2588	td->td_flags |= TDF_SBDRY;
2589	thread_unlock(td);
2590	return (1);
2591}
2592
2593/*
2594 * Permit the delivery of SIGSTOP for the current thread.  This does
2595 * not immediately suspend if a stop was posted.  Instead, the thread
2596 * will suspend either via ast() or a subsequent interruptible sleep.
2597 */
2598void
2599sigallowstop()
2600{
2601	struct thread *td;
2602
2603	td = curthread;
2604	thread_lock(td);
2605	td->td_flags &= ~TDF_SBDRY;
2606	thread_unlock(td);
2607}
2608
2609/*
2610 * If the current process has received a signal (should be caught or cause
2611 * termination, should interrupt current syscall), return the signal number.
2612 * Stop signals with default action are processed immediately, then cleared;
2613 * they aren't returned.  This is checked after each entry to the system for
2614 * a syscall or trap (though this can usually be done without calling issignal
2615 * by checking the pending signal masks in cursig.) The normal call
2616 * sequence is
2617 *
2618 *	while (sig = cursig(curthread))
2619 *		postsig(sig);
2620 */
2621static int
2622issignal(struct thread *td)
2623{
2624	struct proc *p;
2625	struct sigacts *ps;
2626	struct sigqueue *queue;
2627	sigset_t sigpending;
2628	int sig, prop, newsig;
2629
2630	p = td->td_proc;
2631	ps = p->p_sigacts;
2632	mtx_assert(&ps->ps_mtx, MA_OWNED);
2633	PROC_LOCK_ASSERT(p, MA_OWNED);
2634	for (;;) {
2635		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2636
2637		sigpending = td->td_sigqueue.sq_signals;
2638		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2639		SIGSETNAND(sigpending, td->td_sigmask);
2640
2641		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2642			SIG_STOPSIGMASK(sigpending);
2643		if (SIGISEMPTY(sigpending))	/* no signal to send */
2644			return (0);
2645		sig = sig_ffs(&sigpending);
2646
2647		if (p->p_stops & S_SIG) {
2648			mtx_unlock(&ps->ps_mtx);
2649			stopevent(p, S_SIG, sig);
2650			mtx_lock(&ps->ps_mtx);
2651		}
2652
2653		/*
2654		 * We should see pending but ignored signals
2655		 * only if P_TRACED was on when they were posted.
2656		 */
2657		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2658			sigqueue_delete(&td->td_sigqueue, sig);
2659			sigqueue_delete(&p->p_sigqueue, sig);
2660			continue;
2661		}
2662		if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
2663			/*
2664			 * If traced, always stop.
2665			 * Remove old signal from queue before the stop.
2666			 * XXX shrug off debugger, it causes siginfo to
2667			 * be thrown away.
2668			 */
2669			queue = &td->td_sigqueue;
2670			td->td_dbgksi.ksi_signo = 0;
2671			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2672				queue = &p->p_sigqueue;
2673				sigqueue_get(queue, sig, &td->td_dbgksi);
2674			}
2675
2676			mtx_unlock(&ps->ps_mtx);
2677			newsig = ptracestop(td, sig);
2678			mtx_lock(&ps->ps_mtx);
2679
2680			if (sig != newsig) {
2681
2682				/*
2683				 * If parent wants us to take the signal,
2684				 * then it will leave it in p->p_xstat;
2685				 * otherwise we just look for signals again.
2686				*/
2687				if (newsig == 0)
2688					continue;
2689				sig = newsig;
2690
2691				/*
2692				 * Put the new signal into td_sigqueue. If the
2693				 * signal is being masked, look for other
2694				 * signals.
2695				 */
2696				sigqueue_add(queue, sig, NULL);
2697				if (SIGISMEMBER(td->td_sigmask, sig))
2698					continue;
2699				signotify(td);
2700			} else {
2701				if (td->td_dbgksi.ksi_signo != 0) {
2702					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2703					if (sigqueue_add(&td->td_sigqueue, sig,
2704					    &td->td_dbgksi) != 0)
2705						td->td_dbgksi.ksi_signo = 0;
2706				}
2707				if (td->td_dbgksi.ksi_signo == 0)
2708					sigqueue_add(&td->td_sigqueue, sig,
2709					    NULL);
2710			}
2711
2712			/*
2713			 * If the traced bit got turned off, go back up
2714			 * to the top to rescan signals.  This ensures
2715			 * that p_sig* and p_sigact are consistent.
2716			 */
2717			if ((p->p_flag & P_TRACED) == 0)
2718				continue;
2719		}
2720
2721		prop = sigprop(sig);
2722
2723		/*
2724		 * Decide whether the signal should be returned.
2725		 * Return the signal's number, or fall through
2726		 * to clear it from the pending mask.
2727		 */
2728		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2729
2730		case (intptr_t)SIG_DFL:
2731			/*
2732			 * Don't take default actions on system processes.
2733			 */
2734			if (p->p_pid <= 1) {
2735#ifdef DIAGNOSTIC
2736				/*
2737				 * Are you sure you want to ignore SIGSEGV
2738				 * in init? XXX
2739				 */
2740				printf("Process (pid %lu) got signal %d\n",
2741					(u_long)p->p_pid, sig);
2742#endif
2743				break;		/* == ignore */
2744			}
2745			/*
2746			 * If there is a pending stop signal to process
2747			 * with default action, stop here,
2748			 * then clear the signal.  However,
2749			 * if process is member of an orphaned
2750			 * process group, ignore tty stop signals.
2751			 */
2752			if (prop & SA_STOP) {
2753				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2754				    (p->p_pgrp->pg_jobc == 0 &&
2755				     prop & SA_TTYSTOP))
2756					break;	/* == ignore */
2757				mtx_unlock(&ps->ps_mtx);
2758				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2759				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2760				p->p_flag |= P_STOPPED_SIG;
2761				p->p_xstat = sig;
2762				PROC_SLOCK(p);
2763				sig_suspend_threads(td, p, 0);
2764				thread_suspend_switch(td, p);
2765				PROC_SUNLOCK(p);
2766				mtx_lock(&ps->ps_mtx);
2767				break;
2768			} else if (prop & SA_IGNORE) {
2769				/*
2770				 * Except for SIGCONT, shouldn't get here.
2771				 * Default action is to ignore; drop it.
2772				 */
2773				break;		/* == ignore */
2774			} else
2775				return (sig);
2776			/*NOTREACHED*/
2777
2778		case (intptr_t)SIG_IGN:
2779			/*
2780			 * Masking above should prevent us ever trying
2781			 * to take action on an ignored signal other
2782			 * than SIGCONT, unless process is traced.
2783			 */
2784			if ((prop & SA_CONT) == 0 &&
2785			    (p->p_flag & P_TRACED) == 0)
2786				printf("issignal\n");
2787			break;		/* == ignore */
2788
2789		default:
2790			/*
2791			 * This signal has an action, let
2792			 * postsig() process it.
2793			 */
2794			return (sig);
2795		}
2796		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2797		sigqueue_delete(&p->p_sigqueue, sig);
2798	}
2799	/* NOTREACHED */
2800}
2801
2802void
2803thread_stopped(struct proc *p)
2804{
2805	int n;
2806
2807	PROC_LOCK_ASSERT(p, MA_OWNED);
2808	PROC_SLOCK_ASSERT(p, MA_OWNED);
2809	n = p->p_suspcount;
2810	if (p == curproc)
2811		n++;
2812	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2813		PROC_SUNLOCK(p);
2814		p->p_flag &= ~P_WAITED;
2815		PROC_LOCK(p->p_pptr);
2816		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2817			CLD_TRAPPED : CLD_STOPPED);
2818		PROC_UNLOCK(p->p_pptr);
2819		PROC_SLOCK(p);
2820	}
2821}
2822
2823/*
2824 * Take the action for the specified signal
2825 * from the current set of pending signals.
2826 */
2827int
2828postsig(sig)
2829	register int sig;
2830{
2831	struct thread *td = curthread;
2832	register struct proc *p = td->td_proc;
2833	struct sigacts *ps;
2834	sig_t action;
2835	ksiginfo_t ksi;
2836	sigset_t returnmask;
2837
2838	KASSERT(sig != 0, ("postsig"));
2839
2840	PROC_LOCK_ASSERT(p, MA_OWNED);
2841	ps = p->p_sigacts;
2842	mtx_assert(&ps->ps_mtx, MA_OWNED);
2843	ksiginfo_init(&ksi);
2844	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2845	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2846		return (0);
2847	ksi.ksi_signo = sig;
2848	if (ksi.ksi_code == SI_TIMER)
2849		itimer_accept(p, ksi.ksi_timerid, &ksi);
2850	action = ps->ps_sigact[_SIG_IDX(sig)];
2851#ifdef KTRACE
2852	if (KTRPOINT(td, KTR_PSIG))
2853		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2854		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2855#endif
2856	if (p->p_stops & S_SIG) {
2857		mtx_unlock(&ps->ps_mtx);
2858		stopevent(p, S_SIG, sig);
2859		mtx_lock(&ps->ps_mtx);
2860	}
2861
2862	if (action == SIG_DFL) {
2863		/*
2864		 * Default action, where the default is to kill
2865		 * the process.  (Other cases were ignored above.)
2866		 */
2867		mtx_unlock(&ps->ps_mtx);
2868		sigexit(td, sig);
2869		/* NOTREACHED */
2870	} else {
2871		/*
2872		 * If we get here, the signal must be caught.
2873		 */
2874		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2875		    ("postsig action"));
2876		/*
2877		 * Set the new mask value and also defer further
2878		 * occurrences of this signal.
2879		 *
2880		 * Special case: user has done a sigsuspend.  Here the
2881		 * current mask is not of interest, but rather the
2882		 * mask from before the sigsuspend is what we want
2883		 * restored after the signal processing is completed.
2884		 */
2885		if (td->td_pflags & TDP_OLDMASK) {
2886			returnmask = td->td_oldsigmask;
2887			td->td_pflags &= ~TDP_OLDMASK;
2888		} else
2889			returnmask = td->td_sigmask;
2890
2891		if (p->p_sig == sig) {
2892			p->p_code = 0;
2893			p->p_sig = 0;
2894		}
2895		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2896		postsig_done(sig, td, ps);
2897	}
2898	return (1);
2899}
2900
2901/*
2902 * Kill the current process for stated reason.
2903 */
2904void
2905killproc(p, why)
2906	struct proc *p;
2907	char *why;
2908{
2909
2910	PROC_LOCK_ASSERT(p, MA_OWNED);
2911	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2912	    p->p_comm);
2913	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2914	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2915	p->p_flag |= P_WKILLED;
2916	kern_psignal(p, SIGKILL);
2917}
2918
2919/*
2920 * Force the current process to exit with the specified signal, dumping core
2921 * if appropriate.  We bypass the normal tests for masked and caught signals,
2922 * allowing unrecoverable failures to terminate the process without changing
2923 * signal state.  Mark the accounting record with the signal termination.
2924 * If dumping core, save the signal number for the debugger.  Calls exit and
2925 * does not return.
2926 */
2927void
2928sigexit(td, sig)
2929	struct thread *td;
2930	int sig;
2931{
2932	struct proc *p = td->td_proc;
2933
2934	PROC_LOCK_ASSERT(p, MA_OWNED);
2935	p->p_acflag |= AXSIG;
2936	/*
2937	 * We must be single-threading to generate a core dump.  This
2938	 * ensures that the registers in the core file are up-to-date.
2939	 * Also, the ELF dump handler assumes that the thread list doesn't
2940	 * change out from under it.
2941	 *
2942	 * XXX If another thread attempts to single-thread before us
2943	 *     (e.g. via fork()), we won't get a dump at all.
2944	 */
2945	if ((sigprop(sig) & SA_CORE) && thread_single(p, SINGLE_NO_EXIT) == 0) {
2946		p->p_sig = sig;
2947		/*
2948		 * Log signals which would cause core dumps
2949		 * (Log as LOG_INFO to appease those who don't want
2950		 * these messages.)
2951		 * XXX : Todo, as well as euid, write out ruid too
2952		 * Note that coredump() drops proc lock.
2953		 */
2954		if (coredump(td) == 0)
2955			sig |= WCOREFLAG;
2956		if (kern_logsigexit)
2957			log(LOG_INFO,
2958			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2959			    p->p_pid, p->p_comm,
2960			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2961			    sig &~ WCOREFLAG,
2962			    sig & WCOREFLAG ? " (core dumped)" : "");
2963	} else
2964		PROC_UNLOCK(p);
2965	exit1(td, W_EXITCODE(0, sig));
2966	/* NOTREACHED */
2967}
2968
2969/*
2970 * Send queued SIGCHLD to parent when child process's state
2971 * is changed.
2972 */
2973static void
2974sigparent(struct proc *p, int reason, int status)
2975{
2976	PROC_LOCK_ASSERT(p, MA_OWNED);
2977	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2978
2979	if (p->p_ksi != NULL) {
2980		p->p_ksi->ksi_signo  = SIGCHLD;
2981		p->p_ksi->ksi_code   = reason;
2982		p->p_ksi->ksi_status = status;
2983		p->p_ksi->ksi_pid    = p->p_pid;
2984		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2985		if (KSI_ONQ(p->p_ksi))
2986			return;
2987	}
2988	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2989}
2990
2991static void
2992childproc_jobstate(struct proc *p, int reason, int sig)
2993{
2994	struct sigacts *ps;
2995
2996	PROC_LOCK_ASSERT(p, MA_OWNED);
2997	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2998
2999	/*
3000	 * Wake up parent sleeping in kern_wait(), also send
3001	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3002	 * that parent will awake, because parent may masked
3003	 * the signal.
3004	 */
3005	p->p_pptr->p_flag |= P_STATCHILD;
3006	wakeup(p->p_pptr);
3007
3008	ps = p->p_pptr->p_sigacts;
3009	mtx_lock(&ps->ps_mtx);
3010	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3011		mtx_unlock(&ps->ps_mtx);
3012		sigparent(p, reason, sig);
3013	} else
3014		mtx_unlock(&ps->ps_mtx);
3015}
3016
3017void
3018childproc_stopped(struct proc *p, int reason)
3019{
3020	/* p_xstat is a plain signal number, not a full wait() status here. */
3021	childproc_jobstate(p, reason, p->p_xstat);
3022}
3023
3024void
3025childproc_continued(struct proc *p)
3026{
3027	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3028}
3029
3030void
3031childproc_exited(struct proc *p)
3032{
3033	int reason;
3034	int xstat = p->p_xstat; /* convert to int */
3035	int status;
3036
3037	if (WCOREDUMP(xstat))
3038		reason = CLD_DUMPED, status = WTERMSIG(xstat);
3039	else if (WIFSIGNALED(xstat))
3040		reason = CLD_KILLED, status = WTERMSIG(xstat);
3041	else
3042		reason = CLD_EXITED, status = WEXITSTATUS(xstat);
3043	/*
3044	 * XXX avoid calling wakeup(p->p_pptr), the work is
3045	 * done in exit1().
3046	 */
3047	sigparent(p, reason, status);
3048}
3049
3050/*
3051 * We only have 1 character for the core count in the format
3052 * string, so the range will be 0-9
3053 */
3054#define MAX_NUM_CORES 10
3055static int num_cores = 5;
3056
3057static int
3058sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3059{
3060	int error;
3061	int new_val;
3062
3063	new_val = num_cores;
3064	error = sysctl_handle_int(oidp, &new_val, 0, req);
3065	if (error != 0 || req->newptr == NULL)
3066		return (error);
3067	if (new_val > MAX_NUM_CORES)
3068		new_val = MAX_NUM_CORES;
3069	if (new_val < 0)
3070		new_val = 0;
3071	num_cores = new_val;
3072	return (0);
3073}
3074SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3075	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3076
3077#if defined(COMPRESS_USER_CORES)
3078int compress_user_cores = 1;
3079SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3080    &compress_user_cores, 0, "Compression of user corefiles");
3081
3082int compress_user_cores_gzlevel = -1; /* default level */
3083SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3084    &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3085
3086#define GZ_SUFFIX	".gz"
3087#define GZ_SUFFIX_LEN	3
3088#endif
3089
3090static char corefilename[MAXPATHLEN] = {"%N.core"};
3091TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3092SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3093    sizeof(corefilename), "Process corefile name format string");
3094
3095/*
3096 * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3097 * Expand the name described in corefilename, using name, uid, and pid
3098 * and open/create core file.
3099 * corefilename is a printf-like string, with three format specifiers:
3100 *	%N	name of process ("name")
3101 *	%P	process id (pid)
3102 *	%U	user id (uid)
3103 * For example, "%N.core" is the default; they can be disabled completely
3104 * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3105 * This is controlled by the sysctl variable kern.corefile (see above).
3106 */
3107static int
3108corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3109    int compress, struct vnode **vpp, char **namep)
3110{
3111	struct nameidata nd;
3112	struct sbuf sb;
3113	const char *format;
3114	char *hostname, *name;
3115	int indexpos, i, error, cmode, flags, oflags;
3116
3117	hostname = NULL;
3118	format = corefilename;
3119	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3120	indexpos = -1;
3121	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3122	for (i = 0; format[i] != '\0'; i++) {
3123		switch (format[i]) {
3124		case '%':	/* Format character */
3125			i++;
3126			switch (format[i]) {
3127			case '%':
3128				sbuf_putc(&sb, '%');
3129				break;
3130			case 'H':	/* hostname */
3131				if (hostname == NULL) {
3132					hostname = malloc(MAXHOSTNAMELEN,
3133					    M_TEMP, M_WAITOK);
3134				}
3135				getcredhostname(td->td_ucred, hostname,
3136				    MAXHOSTNAMELEN);
3137				sbuf_printf(&sb, "%s", hostname);
3138				break;
3139			case 'I':	/* autoincrementing index */
3140				sbuf_printf(&sb, "0");
3141				indexpos = sbuf_len(&sb) - 1;
3142				break;
3143			case 'N':	/* process name */
3144				sbuf_printf(&sb, "%s", comm);
3145				break;
3146			case 'P':	/* process id */
3147				sbuf_printf(&sb, "%u", pid);
3148				break;
3149			case 'U':	/* user id */
3150				sbuf_printf(&sb, "%u", uid);
3151				break;
3152			default:
3153				log(LOG_ERR,
3154				    "Unknown format character %c in "
3155				    "corename `%s'\n", format[i], format);
3156				break;
3157			}
3158			break;
3159		default:
3160			sbuf_putc(&sb, format[i]);
3161			break;
3162		}
3163	}
3164	free(hostname, M_TEMP);
3165#ifdef COMPRESS_USER_CORES
3166	if (compress)
3167		sbuf_printf(&sb, GZ_SUFFIX);
3168#endif
3169	if (sbuf_error(&sb) != 0) {
3170		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3171		    "long\n", (long)pid, comm, (u_long)uid);
3172		sbuf_delete(&sb);
3173		free(name, M_TEMP);
3174		return (ENOMEM);
3175	}
3176	sbuf_finish(&sb);
3177	sbuf_delete(&sb);
3178
3179	cmode = S_IRUSR | S_IWUSR;
3180	oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3181
3182	/*
3183	 * If the core format has a %I in it, then we need to check
3184	 * for existing corefiles before returning a name.
3185	 * To do this we iterate over 0..num_cores to find a
3186	 * non-existing core file name to use.
3187	 */
3188	if (indexpos != -1) {
3189		for (i = 0; i < num_cores; i++) {
3190			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3191			name[indexpos] = '0' + i;
3192			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3193			error = vn_open_cred(&nd, &flags, cmode, oflags,
3194			    td->td_ucred, NULL);
3195			if (error) {
3196				if (error == EEXIST)
3197					continue;
3198				log(LOG_ERR,
3199				    "pid %d (%s), uid (%u):  Path `%s' failed "
3200				    "on initial open test, error = %d\n",
3201				    pid, comm, uid, name, error);
3202			}
3203			goto out;
3204		}
3205	}
3206
3207	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3208	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3209	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3210out:
3211	if (error) {
3212#ifdef AUDIT
3213		audit_proc_coredump(td, name, error);
3214#endif
3215		free(name, M_TEMP);
3216		return (error);
3217	}
3218	NDFREE(&nd, NDF_ONLY_PNBUF);
3219	*vpp = nd.ni_vp;
3220	*namep = name;
3221	return (0);
3222}
3223
3224/*
3225 * Dump a process' core.  The main routine does some
3226 * policy checking, and creates the name of the coredump;
3227 * then it passes on a vnode and a size limit to the process-specific
3228 * coredump routine if there is one; if there _is not_ one, it returns
3229 * ENOSYS; otherwise it returns the error from the process-specific routine.
3230 */
3231
3232static int
3233coredump(struct thread *td)
3234{
3235	struct proc *p = td->td_proc;
3236	struct ucred *cred = td->td_ucred;
3237	struct vnode *vp;
3238	struct flock lf;
3239	struct vattr vattr;
3240	int error, error1, locked;
3241	struct mount *mp;
3242	char *name;			/* name of corefile */
3243	off_t limit;
3244	int compress;
3245
3246#ifdef COMPRESS_USER_CORES
3247	compress = compress_user_cores;
3248#else
3249	compress = 0;
3250#endif
3251	PROC_LOCK_ASSERT(p, MA_OWNED);
3252	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3253	_STOPEVENT(p, S_CORE, 0);
3254
3255	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
3256		PROC_UNLOCK(p);
3257		return (EFAULT);
3258	}
3259
3260	/*
3261	 * Note that the bulk of limit checking is done after
3262	 * the corefile is created.  The exception is if the limit
3263	 * for corefiles is 0, in which case we don't bother
3264	 * creating the corefile at all.  This layout means that
3265	 * a corefile is truncated instead of not being created,
3266	 * if it is larger than the limit.
3267	 */
3268	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3269	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3270		PROC_UNLOCK(p);
3271		return (EFBIG);
3272	}
3273	PROC_UNLOCK(p);
3274
3275restart:
3276	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3277	    &vp, &name);
3278	if (error != 0)
3279		return (error);
3280
3281	/* Don't dump to non-regular files or files with links. */
3282	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3283	    vattr.va_nlink != 1) {
3284		VOP_UNLOCK(vp, 0);
3285		error = EFAULT;
3286		goto close;
3287	}
3288
3289	VOP_UNLOCK(vp, 0);
3290	lf.l_whence = SEEK_SET;
3291	lf.l_start = 0;
3292	lf.l_len = 0;
3293	lf.l_type = F_WRLCK;
3294	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3295
3296	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3297		lf.l_type = F_UNLCK;
3298		if (locked)
3299			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3300		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3301			goto out;
3302		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3303			goto out;
3304		free(name, M_TEMP);
3305		goto restart;
3306	}
3307
3308	VATTR_NULL(&vattr);
3309	vattr.va_size = 0;
3310	if (set_core_nodump_flag)
3311		vattr.va_flags = UF_NODUMP;
3312	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3313	VOP_SETATTR(vp, &vattr, cred);
3314	VOP_UNLOCK(vp, 0);
3315	vn_finished_write(mp);
3316	PROC_LOCK(p);
3317	p->p_acflag |= ACORE;
3318	PROC_UNLOCK(p);
3319
3320	if (p->p_sysent->sv_coredump != NULL) {
3321		error = p->p_sysent->sv_coredump(td, vp, limit,
3322		    compress ? IMGACT_CORE_COMPRESS : 0);
3323	} else {
3324		error = ENOSYS;
3325	}
3326
3327	if (locked) {
3328		lf.l_type = F_UNLCK;
3329		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3330	}
3331close:
3332	error1 = vn_close(vp, FWRITE, cred, td);
3333	if (error == 0)
3334		error = error1;
3335out:
3336#ifdef AUDIT
3337	audit_proc_coredump(td, name, error);
3338#endif
3339	free(name, M_TEMP);
3340	return (error);
3341}
3342
3343/*
3344 * Nonexistent system call-- signal process (may want to handle it).  Flag
3345 * error in case process won't see signal immediately (blocked or ignored).
3346 */
3347#ifndef _SYS_SYSPROTO_H_
3348struct nosys_args {
3349	int	dummy;
3350};
3351#endif
3352/* ARGSUSED */
3353int
3354nosys(td, args)
3355	struct thread *td;
3356	struct nosys_args *args;
3357{
3358	struct proc *p = td->td_proc;
3359
3360	PROC_LOCK(p);
3361	tdsignal(td, SIGSYS);
3362	PROC_UNLOCK(p);
3363	return (ENOSYS);
3364}
3365
3366/*
3367 * Send a SIGIO or SIGURG signal to a process or process group using stored
3368 * credentials rather than those of the current process.
3369 */
3370void
3371pgsigio(sigiop, sig, checkctty)
3372	struct sigio **sigiop;
3373	int sig, checkctty;
3374{
3375	ksiginfo_t ksi;
3376	struct sigio *sigio;
3377
3378	ksiginfo_init(&ksi);
3379	ksi.ksi_signo = sig;
3380	ksi.ksi_code = SI_KERNEL;
3381
3382	SIGIO_LOCK();
3383	sigio = *sigiop;
3384	if (sigio == NULL) {
3385		SIGIO_UNLOCK();
3386		return;
3387	}
3388	if (sigio->sio_pgid > 0) {
3389		PROC_LOCK(sigio->sio_proc);
3390		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3391			kern_psignal(sigio->sio_proc, sig);
3392		PROC_UNLOCK(sigio->sio_proc);
3393	} else if (sigio->sio_pgid < 0) {
3394		struct proc *p;
3395
3396		PGRP_LOCK(sigio->sio_pgrp);
3397		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3398			PROC_LOCK(p);
3399			if (p->p_state == PRS_NORMAL &&
3400			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3401			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3402				kern_psignal(p, sig);
3403			PROC_UNLOCK(p);
3404		}
3405		PGRP_UNLOCK(sigio->sio_pgrp);
3406	}
3407	SIGIO_UNLOCK();
3408}
3409
3410static int
3411filt_sigattach(struct knote *kn)
3412{
3413	struct proc *p = curproc;
3414
3415	kn->kn_ptr.p_proc = p;
3416	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3417
3418	knlist_add(&p->p_klist, kn, 0);
3419
3420	return (0);
3421}
3422
3423static void
3424filt_sigdetach(struct knote *kn)
3425{
3426	struct proc *p = kn->kn_ptr.p_proc;
3427
3428	knlist_remove(&p->p_klist, kn, 0);
3429}
3430
3431/*
3432 * signal knotes are shared with proc knotes, so we apply a mask to
3433 * the hint in order to differentiate them from process hints.  This
3434 * could be avoided by using a signal-specific knote list, but probably
3435 * isn't worth the trouble.
3436 */
3437static int
3438filt_signal(struct knote *kn, long hint)
3439{
3440
3441	if (hint & NOTE_SIGNAL) {
3442		hint &= ~NOTE_SIGNAL;
3443
3444		if (kn->kn_id == hint)
3445			kn->kn_data++;
3446	}
3447	return (kn->kn_data != 0);
3448}
3449
3450struct sigacts *
3451sigacts_alloc(void)
3452{
3453	struct sigacts *ps;
3454
3455	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3456	ps->ps_refcnt = 1;
3457	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3458	return (ps);
3459}
3460
3461void
3462sigacts_free(struct sigacts *ps)
3463{
3464
3465	if (refcount_release(&ps->ps_refcnt) == 0)
3466		return;
3467	mtx_destroy(&ps->ps_mtx);
3468	free(ps, M_SUBPROC);
3469}
3470
3471struct sigacts *
3472sigacts_hold(struct sigacts *ps)
3473{
3474
3475	refcount_acquire(&ps->ps_refcnt);
3476	return (ps);
3477}
3478
3479void
3480sigacts_copy(struct sigacts *dest, struct sigacts *src)
3481{
3482
3483	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3484	mtx_lock(&src->ps_mtx);
3485	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3486	mtx_unlock(&src->ps_mtx);
3487}
3488
3489int
3490sigacts_shared(struct sigacts *ps)
3491{
3492
3493	return (ps->ps_refcnt > 1);
3494}
3495