kern_procctl.c revision 313303
1/*-
2 * Copyright (c) 2014 John Baldwin
3 * Copyright (c) 2014 The FreeBSD Foundation
4 *
5 * Portions of this software were developed by Konstantin Belousov
6 * under sponsorship from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/10/sys/kern/kern_procctl.c 313303 2017-02-05 21:31:40Z jilles $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/capability.h>
36#include <sys/lock.h>
37#include <sys/mutex.h>
38#include <sys/priv.h>
39#include <sys/proc.h>
40#include <sys/procctl.h>
41#include <sys/sx.h>
42#include <sys/syscallsubr.h>
43#include <sys/sysproto.h>
44#include <sys/wait.h>
45
46static int
47protect_setchild(struct thread *td, struct proc *p, int flags)
48{
49
50	PROC_LOCK_ASSERT(p, MA_OWNED);
51	if (p->p_flag & P_SYSTEM || p_cansched(td, p) != 0)
52		return (0);
53	if (flags & PPROT_SET) {
54		p->p_flag |= P_PROTECTED;
55		if (flags & PPROT_INHERIT)
56			p->p_flag2 |= P2_INHERIT_PROTECTED;
57	} else {
58		p->p_flag &= ~P_PROTECTED;
59		p->p_flag2 &= ~P2_INHERIT_PROTECTED;
60	}
61	return (1);
62}
63
64static int
65protect_setchildren(struct thread *td, struct proc *top, int flags)
66{
67	struct proc *p;
68	int ret;
69
70	p = top;
71	ret = 0;
72	sx_assert(&proctree_lock, SX_LOCKED);
73	for (;;) {
74		ret |= protect_setchild(td, p, flags);
75		PROC_UNLOCK(p);
76		/*
77		 * If this process has children, descend to them next,
78		 * otherwise do any siblings, and if done with this level,
79		 * follow back up the tree (but not past top).
80		 */
81		if (!LIST_EMPTY(&p->p_children))
82			p = LIST_FIRST(&p->p_children);
83		else for (;;) {
84			if (p == top) {
85				PROC_LOCK(p);
86				return (ret);
87			}
88			if (LIST_NEXT(p, p_sibling)) {
89				p = LIST_NEXT(p, p_sibling);
90				break;
91			}
92			p = p->p_pptr;
93		}
94		PROC_LOCK(p);
95	}
96}
97
98static int
99protect_set(struct thread *td, struct proc *p, int flags)
100{
101	int error, ret;
102
103	switch (PPROT_OP(flags)) {
104	case PPROT_SET:
105	case PPROT_CLEAR:
106		break;
107	default:
108		return (EINVAL);
109	}
110
111	if ((PPROT_FLAGS(flags) & ~(PPROT_DESCEND | PPROT_INHERIT)) != 0)
112		return (EINVAL);
113
114	error = priv_check(td, PRIV_VM_MADV_PROTECT);
115	if (error)
116		return (error);
117
118	if (flags & PPROT_DESCEND)
119		ret = protect_setchildren(td, p, flags);
120	else
121		ret = protect_setchild(td, p, flags);
122	if (ret == 0)
123		return (EPERM);
124	return (0);
125}
126
127static int
128reap_acquire(struct thread *td, struct proc *p)
129{
130
131	sx_assert(&proctree_lock, SX_XLOCKED);
132	if (p != curproc)
133		return (EPERM);
134	if ((p->p_treeflag & P_TREE_REAPER) != 0)
135		return (EBUSY);
136	p->p_treeflag |= P_TREE_REAPER;
137	/*
138	 * We do not reattach existing children and the whole tree
139	 * under them to us, since p->p_reaper already seen them.
140	 */
141	return (0);
142}
143
144static int
145reap_release(struct thread *td, struct proc *p)
146{
147
148	sx_assert(&proctree_lock, SX_XLOCKED);
149	if (p != curproc)
150		return (EPERM);
151	if (p == initproc)
152		return (EINVAL);
153	if ((p->p_treeflag & P_TREE_REAPER) == 0)
154		return (EINVAL);
155	reaper_abandon_children(p, false);
156	return (0);
157}
158
159static int
160reap_status(struct thread *td, struct proc *p,
161    struct procctl_reaper_status *rs)
162{
163	struct proc *reap, *p2, *first_p;
164
165	sx_assert(&proctree_lock, SX_LOCKED);
166	bzero(rs, sizeof(*rs));
167	if ((p->p_treeflag & P_TREE_REAPER) == 0) {
168		reap = p->p_reaper;
169	} else {
170		reap = p;
171		rs->rs_flags |= REAPER_STATUS_OWNED;
172	}
173	if (reap == initproc)
174		rs->rs_flags |= REAPER_STATUS_REALINIT;
175	rs->rs_reaper = reap->p_pid;
176	rs->rs_descendants = 0;
177	rs->rs_children = 0;
178	if (!LIST_EMPTY(&reap->p_reaplist)) {
179		first_p = LIST_FIRST(&reap->p_children);
180		if (first_p == NULL)
181			first_p = LIST_FIRST(&reap->p_reaplist);
182		rs->rs_pid = first_p->p_pid;
183		LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
184			if (proc_realparent(p2) == reap)
185				rs->rs_children++;
186			rs->rs_descendants++;
187		}
188	} else {
189		rs->rs_pid = -1;
190	}
191	return (0);
192}
193
194static int
195reap_getpids(struct thread *td, struct proc *p, struct procctl_reaper_pids *rp)
196{
197	struct proc *reap, *p2;
198	struct procctl_reaper_pidinfo *pi, *pip;
199	u_int i, n;
200	int error;
201
202	sx_assert(&proctree_lock, SX_LOCKED);
203	PROC_UNLOCK(p);
204	reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
205	n = i = 0;
206	error = 0;
207	LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling)
208		n++;
209	sx_unlock(&proctree_lock);
210	if (rp->rp_count < n)
211		n = rp->rp_count;
212	pi = malloc(n * sizeof(*pi), M_TEMP, M_WAITOK);
213	sx_slock(&proctree_lock);
214	LIST_FOREACH(p2, &reap->p_reaplist, p_reapsibling) {
215		if (i == n)
216			break;
217		pip = &pi[i];
218		bzero(pip, sizeof(*pip));
219		pip->pi_pid = p2->p_pid;
220		pip->pi_subtree = p2->p_reapsubtree;
221		pip->pi_flags = REAPER_PIDINFO_VALID;
222		if (proc_realparent(p2) == reap)
223			pip->pi_flags |= REAPER_PIDINFO_CHILD;
224		i++;
225	}
226	sx_sunlock(&proctree_lock);
227	error = copyout(pi, rp->rp_pids, i * sizeof(*pi));
228	free(pi, M_TEMP);
229	sx_slock(&proctree_lock);
230	PROC_LOCK(p);
231	return (error);
232}
233
234static int
235reap_kill(struct thread *td, struct proc *p, struct procctl_reaper_kill *rk)
236{
237	struct proc *reap, *p2;
238	ksiginfo_t ksi;
239	int error, error1;
240
241	sx_assert(&proctree_lock, SX_LOCKED);
242	if (IN_CAPABILITY_MODE(td))
243		return (ECAPMODE);
244	if (rk->rk_sig <= 0 || rk->rk_sig > _SIG_MAXSIG)
245		return (EINVAL);
246	if ((rk->rk_flags & ~(REAPER_KILL_CHILDREN | REAPER_KILL_SUBTREE)) != 0)
247		return (EINVAL);
248	PROC_UNLOCK(p);
249	reap = (p->p_treeflag & P_TREE_REAPER) == 0 ? p->p_reaper : p;
250	ksiginfo_init(&ksi);
251	ksi.ksi_signo = rk->rk_sig;
252	ksi.ksi_code = SI_USER;
253	ksi.ksi_pid = td->td_proc->p_pid;
254	ksi.ksi_uid = td->td_ucred->cr_ruid;
255	error = ESRCH;
256	rk->rk_killed = 0;
257	rk->rk_fpid = -1;
258	for (p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ?
259	    LIST_FIRST(&reap->p_children) : LIST_FIRST(&reap->p_reaplist);
260	    p2 != NULL;
261	    p2 = (rk->rk_flags & REAPER_KILL_CHILDREN) != 0 ?
262	    LIST_NEXT(p2, p_sibling) : LIST_NEXT(p2, p_reapsibling)) {
263		if ((rk->rk_flags & REAPER_KILL_SUBTREE) != 0 &&
264		    p2->p_reapsubtree != rk->rk_subtree)
265			continue;
266		PROC_LOCK(p2);
267		error1 = p_cansignal(td, p2, rk->rk_sig);
268		if (error1 == 0) {
269			pksignal(p2, rk->rk_sig, &ksi);
270			rk->rk_killed++;
271			error = error1;
272		} else if (error == ESRCH) {
273			error = error1;
274			rk->rk_fpid = p2->p_pid;
275		}
276		PROC_UNLOCK(p2);
277		/* Do not end the loop on error, signal everything we can. */
278	}
279	PROC_LOCK(p);
280	return (error);
281}
282
283static int
284trace_ctl(struct thread *td, struct proc *p, int state)
285{
286
287	PROC_LOCK_ASSERT(p, MA_OWNED);
288
289	/*
290	 * Ktrace changes p_traceflag from or to zero under the
291	 * process lock, so the test does not need to acquire ktrace
292	 * mutex.
293	 */
294	if ((p->p_flag & P_TRACED) != 0 || p->p_traceflag != 0)
295		return (EBUSY);
296
297	switch (state) {
298	case PROC_TRACE_CTL_ENABLE:
299		if (td->td_proc != p)
300			return (EPERM);
301		p->p_flag2 &= ~(P2_NOTRACE | P2_NOTRACE_EXEC);
302		break;
303	case PROC_TRACE_CTL_DISABLE_EXEC:
304		p->p_flag2 |= P2_NOTRACE_EXEC | P2_NOTRACE;
305		break;
306	case PROC_TRACE_CTL_DISABLE:
307		if ((p->p_flag2 & P2_NOTRACE_EXEC) != 0) {
308			KASSERT((p->p_flag2 & P2_NOTRACE) != 0,
309			    ("dandling P2_NOTRACE_EXEC"));
310			if (td->td_proc != p)
311				return (EPERM);
312			p->p_flag2 &= ~P2_NOTRACE_EXEC;
313		} else {
314			p->p_flag2 |= P2_NOTRACE;
315		}
316		break;
317	default:
318		return (EINVAL);
319	}
320	return (0);
321}
322
323static int
324trace_status(struct thread *td, struct proc *p, int *data)
325{
326
327	if ((p->p_flag2 & P2_NOTRACE) != 0) {
328		KASSERT((p->p_flag & P_TRACED) == 0,
329		    ("%d traced but tracing disabled", p->p_pid));
330		*data = -1;
331	} else if ((p->p_flag & P_TRACED) != 0) {
332		*data = p->p_pptr->p_pid;
333	} else {
334		*data = 0;
335	}
336	return (0);
337}
338
339#ifndef _SYS_SYSPROTO_H_
340struct procctl_args {
341	idtype_t idtype;
342	id_t	id;
343	int	com;
344	void	*data;
345};
346#endif
347/* ARGSUSED */
348int
349sys_procctl(struct thread *td, struct procctl_args *uap)
350{
351	void *data;
352	union {
353		struct procctl_reaper_status rs;
354		struct procctl_reaper_pids rp;
355		struct procctl_reaper_kill rk;
356	} x;
357	int error, error1, flags;
358
359	switch (uap->com) {
360	case PROC_SPROTECT:
361	case PROC_TRACE_CTL:
362		error = copyin(uap->data, &flags, sizeof(flags));
363		if (error != 0)
364			return (error);
365		data = &flags;
366		break;
367	case PROC_REAP_ACQUIRE:
368	case PROC_REAP_RELEASE:
369		if (uap->data != NULL)
370			return (EINVAL);
371		data = NULL;
372		break;
373	case PROC_REAP_STATUS:
374		data = &x.rs;
375		break;
376	case PROC_REAP_GETPIDS:
377		error = copyin(uap->data, &x.rp, sizeof(x.rp));
378		if (error != 0)
379			return (error);
380		data = &x.rp;
381		break;
382	case PROC_REAP_KILL:
383		error = copyin(uap->data, &x.rk, sizeof(x.rk));
384		if (error != 0)
385			return (error);
386		data = &x.rk;
387		break;
388	case PROC_TRACE_STATUS:
389		data = &flags;
390		break;
391	default:
392		return (EINVAL);
393	}
394	error = kern_procctl(td, uap->idtype, uap->id, uap->com, data);
395	switch (uap->com) {
396	case PROC_REAP_STATUS:
397		if (error == 0)
398			error = copyout(&x.rs, uap->data, sizeof(x.rs));
399		break;
400	case PROC_REAP_KILL:
401		error1 = copyout(&x.rk, uap->data, sizeof(x.rk));
402		if (error == 0)
403			error = error1;
404		break;
405	case PROC_TRACE_STATUS:
406		if (error == 0)
407			error = copyout(&flags, uap->data, sizeof(flags));
408		break;
409	}
410	return (error);
411}
412
413static int
414kern_procctl_single(struct thread *td, struct proc *p, int com, void *data)
415{
416
417	PROC_LOCK_ASSERT(p, MA_OWNED);
418	switch (com) {
419	case PROC_SPROTECT:
420		return (protect_set(td, p, *(int *)data));
421	case PROC_REAP_ACQUIRE:
422		return (reap_acquire(td, p));
423	case PROC_REAP_RELEASE:
424		return (reap_release(td, p));
425	case PROC_REAP_STATUS:
426		return (reap_status(td, p, data));
427	case PROC_REAP_GETPIDS:
428		return (reap_getpids(td, p, data));
429	case PROC_REAP_KILL:
430		return (reap_kill(td, p, data));
431	case PROC_TRACE_CTL:
432		return (trace_ctl(td, p, *(int *)data));
433	case PROC_TRACE_STATUS:
434		return (trace_status(td, p, data));
435	default:
436		return (EINVAL);
437	}
438}
439
440int
441kern_procctl(struct thread *td, idtype_t idtype, id_t id, int com, void *data)
442{
443	struct pgrp *pg;
444	struct proc *p;
445	int error, first_error, ok;
446	bool tree_locked;
447
448	switch (com) {
449	case PROC_REAP_ACQUIRE:
450	case PROC_REAP_RELEASE:
451	case PROC_REAP_STATUS:
452	case PROC_REAP_GETPIDS:
453	case PROC_REAP_KILL:
454	case PROC_TRACE_STATUS:
455		if (idtype != P_PID)
456			return (EINVAL);
457	}
458
459	switch (com) {
460	case PROC_SPROTECT:
461	case PROC_REAP_STATUS:
462	case PROC_REAP_GETPIDS:
463	case PROC_REAP_KILL:
464	case PROC_TRACE_CTL:
465		sx_slock(&proctree_lock);
466		tree_locked = true;
467		break;
468	case PROC_REAP_ACQUIRE:
469	case PROC_REAP_RELEASE:
470		sx_xlock(&proctree_lock);
471		tree_locked = true;
472		break;
473	case PROC_TRACE_STATUS:
474		tree_locked = false;
475		break;
476	default:
477		return (EINVAL);
478	}
479
480	switch (idtype) {
481	case P_PID:
482		p = pfind(id);
483		if (p == NULL) {
484			error = ESRCH;
485			break;
486		}
487		error = p_cansee(td, p);
488		if (error == 0)
489			error = kern_procctl_single(td, p, com, data);
490		PROC_UNLOCK(p);
491		break;
492	case P_PGID:
493		/*
494		 * Attempt to apply the operation to all members of the
495		 * group.  Ignore processes in the group that can't be
496		 * seen.  Ignore errors so long as at least one process is
497		 * able to complete the request successfully.
498		 */
499		pg = pgfind(id);
500		if (pg == NULL) {
501			error = ESRCH;
502			break;
503		}
504		PGRP_UNLOCK(pg);
505		ok = 0;
506		first_error = 0;
507		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
508			PROC_LOCK(p);
509			if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) {
510				PROC_UNLOCK(p);
511				continue;
512			}
513			error = kern_procctl_single(td, p, com, data);
514			PROC_UNLOCK(p);
515			if (error == 0)
516				ok = 1;
517			else if (first_error == 0)
518				first_error = error;
519		}
520		if (ok)
521			error = 0;
522		else if (first_error != 0)
523			error = first_error;
524		else
525			/*
526			 * Was not able to see any processes in the
527			 * process group.
528			 */
529			error = ESRCH;
530		break;
531	default:
532		error = EINVAL;
533		break;
534	}
535	if (tree_locked)
536		sx_unlock(&proctree_lock);
537	return (error);
538}
539