kern_fork.c revision 276272
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_fork.c 276272 2014-12-27 00:55:14Z kib $");
39
40#include "opt_kdtrace.h"
41#include "opt_ktrace.h"
42#include "opt_kstack_pages.h"
43#include "opt_procdesc.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/eventhandler.h>
49#include <sys/fcntl.h>
50#include <sys/filedesc.h>
51#include <sys/jail.h>
52#include <sys/kernel.h>
53#include <sys/kthread.h>
54#include <sys/sysctl.h>
55#include <sys/lock.h>
56#include <sys/malloc.h>
57#include <sys/mutex.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/procdesc.h>
61#include <sys/pioctl.h>
62#include <sys/racct.h>
63#include <sys/resourcevar.h>
64#include <sys/sched.h>
65#include <sys/syscall.h>
66#include <sys/vmmeter.h>
67#include <sys/vnode.h>
68#include <sys/acct.h>
69#include <sys/ktr.h>
70#include <sys/ktrace.h>
71#include <sys/unistd.h>
72#include <sys/sdt.h>
73#include <sys/sx.h>
74#include <sys/sysent.h>
75#include <sys/signalvar.h>
76
77#include <security/audit/audit.h>
78#include <security/mac/mac_framework.h>
79
80#include <vm/vm.h>
81#include <vm/pmap.h>
82#include <vm/vm_map.h>
83#include <vm/vm_extern.h>
84#include <vm/uma.h>
85
86#ifdef KDTRACE_HOOKS
87#include <sys/dtrace_bsd.h>
88dtrace_fork_func_t	dtrace_fasttrap_fork;
89#endif
90
91SDT_PROVIDER_DECLARE(proc);
92SDT_PROBE_DEFINE3(proc, kernel, , create, "struct proc *",
93    "struct proc *", "int");
94
95#ifndef _SYS_SYSPROTO_H_
96struct fork_args {
97	int     dummy;
98};
99#endif
100
101/* ARGSUSED */
102int
103sys_fork(struct thread *td, struct fork_args *uap)
104{
105	int error;
106	struct proc *p2;
107
108	error = fork1(td, RFFDG | RFPROC, 0, &p2, NULL, 0);
109	if (error == 0) {
110		td->td_retval[0] = p2->p_pid;
111		td->td_retval[1] = 0;
112	}
113	return (error);
114}
115
116/* ARGUSED */
117int
118sys_pdfork(td, uap)
119	struct thread *td;
120	struct pdfork_args *uap;
121{
122#ifdef PROCDESC
123	int error, fd;
124	struct proc *p2;
125
126	/*
127	 * It is necessary to return fd by reference because 0 is a valid file
128	 * descriptor number, and the child needs to be able to distinguish
129	 * itself from the parent using the return value.
130	 */
131	error = fork1(td, RFFDG | RFPROC | RFPROCDESC, 0, &p2,
132	    &fd, uap->flags);
133	if (error == 0) {
134		td->td_retval[0] = p2->p_pid;
135		td->td_retval[1] = 0;
136		error = copyout(&fd, uap->fdp, sizeof(fd));
137	}
138	return (error);
139#else
140	return (ENOSYS);
141#endif
142}
143
144/* ARGSUSED */
145int
146sys_vfork(struct thread *td, struct vfork_args *uap)
147{
148	int error, flags;
149	struct proc *p2;
150
151	flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
152	error = fork1(td, flags, 0, &p2, NULL, 0);
153	if (error == 0) {
154		td->td_retval[0] = p2->p_pid;
155		td->td_retval[1] = 0;
156	}
157	return (error);
158}
159
160int
161sys_rfork(struct thread *td, struct rfork_args *uap)
162{
163	struct proc *p2;
164	int error;
165
166	/* Don't allow kernel-only flags. */
167	if ((uap->flags & RFKERNELONLY) != 0)
168		return (EINVAL);
169
170	AUDIT_ARG_FFLAGS(uap->flags);
171	error = fork1(td, uap->flags, 0, &p2, NULL, 0);
172	if (error == 0) {
173		td->td_retval[0] = p2 ? p2->p_pid : 0;
174		td->td_retval[1] = 0;
175	}
176	return (error);
177}
178
179int	nprocs = 1;		/* process 0 */
180int	lastpid = 0;
181SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
182    "Last used PID");
183
184/*
185 * Random component to lastpid generation.  We mix in a random factor to make
186 * it a little harder to predict.  We sanity check the modulus value to avoid
187 * doing it in critical paths.  Don't let it be too small or we pointlessly
188 * waste randomness entropy, and don't let it be impossibly large.  Using a
189 * modulus that is too big causes a LOT more process table scans and slows
190 * down fork processing as the pidchecked caching is defeated.
191 */
192static int randompid = 0;
193
194static int
195sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
196{
197	int error, pid;
198
199	error = sysctl_wire_old_buffer(req, sizeof(int));
200	if (error != 0)
201		return(error);
202	sx_xlock(&allproc_lock);
203	pid = randompid;
204	error = sysctl_handle_int(oidp, &pid, 0, req);
205	if (error == 0 && req->newptr != NULL) {
206		if (pid < 0 || pid > pid_max - 100)	/* out of range */
207			pid = pid_max - 100;
208		else if (pid < 2)			/* NOP */
209			pid = 0;
210		else if (pid < 100)			/* Make it reasonable */
211			pid = 100;
212		randompid = pid;
213	}
214	sx_xunlock(&allproc_lock);
215	return (error);
216}
217
218SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
219    0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
220
221static int
222fork_findpid(int flags)
223{
224	struct proc *p;
225	int trypid;
226	static int pidchecked = 0;
227
228	/*
229	 * Requires allproc_lock in order to iterate over the list
230	 * of processes, and proctree_lock to access p_pgrp.
231	 */
232	sx_assert(&allproc_lock, SX_LOCKED);
233	sx_assert(&proctree_lock, SX_LOCKED);
234
235	/*
236	 * Find an unused process ID.  We remember a range of unused IDs
237	 * ready to use (from lastpid+1 through pidchecked-1).
238	 *
239	 * If RFHIGHPID is set (used during system boot), do not allocate
240	 * low-numbered pids.
241	 */
242	trypid = lastpid + 1;
243	if (flags & RFHIGHPID) {
244		if (trypid < 10)
245			trypid = 10;
246	} else {
247		if (randompid)
248			trypid += arc4random() % randompid;
249	}
250retry:
251	/*
252	 * If the process ID prototype has wrapped around,
253	 * restart somewhat above 0, as the low-numbered procs
254	 * tend to include daemons that don't exit.
255	 */
256	if (trypid >= pid_max) {
257		trypid = trypid % pid_max;
258		if (trypid < 100)
259			trypid += 100;
260		pidchecked = 0;
261	}
262	if (trypid >= pidchecked) {
263		int doingzomb = 0;
264
265		pidchecked = PID_MAX;
266		/*
267		 * Scan the active and zombie procs to check whether this pid
268		 * is in use.  Remember the lowest pid that's greater
269		 * than trypid, so we can avoid checking for a while.
270		 */
271		p = LIST_FIRST(&allproc);
272again:
273		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
274			while (p->p_pid == trypid ||
275			    (p->p_pgrp != NULL &&
276			    (p->p_pgrp->pg_id == trypid ||
277			    (p->p_session != NULL &&
278			    p->p_session->s_sid == trypid)))) {
279				trypid++;
280				if (trypid >= pidchecked)
281					goto retry;
282			}
283			if (p->p_pid > trypid && pidchecked > p->p_pid)
284				pidchecked = p->p_pid;
285			if (p->p_pgrp != NULL) {
286				if (p->p_pgrp->pg_id > trypid &&
287				    pidchecked > p->p_pgrp->pg_id)
288					pidchecked = p->p_pgrp->pg_id;
289				if (p->p_session != NULL &&
290				    p->p_session->s_sid > trypid &&
291				    pidchecked > p->p_session->s_sid)
292					pidchecked = p->p_session->s_sid;
293			}
294		}
295		if (!doingzomb) {
296			doingzomb = 1;
297			p = LIST_FIRST(&zombproc);
298			goto again;
299		}
300	}
301
302	/*
303	 * RFHIGHPID does not mess with the lastpid counter during boot.
304	 */
305	if (flags & RFHIGHPID)
306		pidchecked = 0;
307	else
308		lastpid = trypid;
309
310	return (trypid);
311}
312
313static int
314fork_norfproc(struct thread *td, int flags)
315{
316	int error;
317	struct proc *p1;
318
319	KASSERT((flags & RFPROC) == 0,
320	    ("fork_norfproc called with RFPROC set"));
321	p1 = td->td_proc;
322
323	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
324	    (flags & (RFCFDG | RFFDG))) {
325		PROC_LOCK(p1);
326		if (thread_single(p1, SINGLE_BOUNDARY)) {
327			PROC_UNLOCK(p1);
328			return (ERESTART);
329		}
330		PROC_UNLOCK(p1);
331	}
332
333	error = vm_forkproc(td, NULL, NULL, NULL, flags);
334	if (error)
335		goto fail;
336
337	/*
338	 * Close all file descriptors.
339	 */
340	if (flags & RFCFDG) {
341		struct filedesc *fdtmp;
342		fdtmp = fdinit(td->td_proc->p_fd);
343		fdescfree(td);
344		p1->p_fd = fdtmp;
345	}
346
347	/*
348	 * Unshare file descriptors (from parent).
349	 */
350	if (flags & RFFDG)
351		fdunshare(td);
352
353fail:
354	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
355	    (flags & (RFCFDG | RFFDG))) {
356		PROC_LOCK(p1);
357		thread_single_end(p1, SINGLE_BOUNDARY);
358		PROC_UNLOCK(p1);
359	}
360	return (error);
361}
362
363static void
364do_fork(struct thread *td, int flags, struct proc *p2, struct thread *td2,
365    struct vmspace *vm2, int pdflags)
366{
367	struct proc *p1, *pptr;
368	int p2_held, trypid;
369	struct filedesc *fd;
370	struct filedesc_to_leader *fdtol;
371	struct sigacts *newsigacts;
372
373	sx_assert(&proctree_lock, SX_SLOCKED);
374	sx_assert(&allproc_lock, SX_XLOCKED);
375
376	p2_held = 0;
377	p1 = td->td_proc;
378
379	/*
380	 * Increment the nprocs resource before blocking can occur.  There
381	 * are hard-limits as to the number of processes that can run.
382	 */
383	nprocs++;
384
385	trypid = fork_findpid(flags);
386
387	sx_sunlock(&proctree_lock);
388
389	p2->p_state = PRS_NEW;		/* protect against others */
390	p2->p_pid = trypid;
391	AUDIT_ARG_PID(p2->p_pid);
392	LIST_INSERT_HEAD(&allproc, p2, p_list);
393	allproc_gen++;
394	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
395	tidhash_add(td2);
396	PROC_LOCK(p2);
397	PROC_LOCK(p1);
398
399	sx_xunlock(&allproc_lock);
400
401	bcopy(&p1->p_startcopy, &p2->p_startcopy,
402	    __rangeof(struct proc, p_startcopy, p_endcopy));
403	pargs_hold(p2->p_args);
404	PROC_UNLOCK(p1);
405
406	bzero(&p2->p_startzero,
407	    __rangeof(struct proc, p_startzero, p_endzero));
408	p2->p_treeflag = 0;
409
410	p2->p_ucred = crhold(td->td_ucred);
411
412	/* Tell the prison that we exist. */
413	prison_proc_hold(p2->p_ucred->cr_prison);
414
415	PROC_UNLOCK(p2);
416
417	/*
418	 * Malloc things while we don't hold any locks.
419	 */
420	if (flags & RFSIGSHARE)
421		newsigacts = NULL;
422	else
423		newsigacts = sigacts_alloc();
424
425	/*
426	 * Copy filedesc.
427	 */
428	if (flags & RFCFDG) {
429		fd = fdinit(p1->p_fd);
430		fdtol = NULL;
431	} else if (flags & RFFDG) {
432		fd = fdcopy(p1->p_fd);
433		fdtol = NULL;
434	} else {
435		fd = fdshare(p1->p_fd);
436		if (p1->p_fdtol == NULL)
437			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
438			    p1->p_leader);
439		if ((flags & RFTHREAD) != 0) {
440			/*
441			 * Shared file descriptor table, and shared
442			 * process leaders.
443			 */
444			fdtol = p1->p_fdtol;
445			FILEDESC_XLOCK(p1->p_fd);
446			fdtol->fdl_refcount++;
447			FILEDESC_XUNLOCK(p1->p_fd);
448		} else {
449			/*
450			 * Shared file descriptor table, and different
451			 * process leaders.
452			 */
453			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
454			    p1->p_fd, p2);
455		}
456	}
457	/*
458	 * Make a proc table entry for the new process.
459	 * Start by zeroing the section of proc that is zero-initialized,
460	 * then copy the section that is copied directly from the parent.
461	 */
462
463	PROC_LOCK(p2);
464	PROC_LOCK(p1);
465
466	bzero(&td2->td_startzero,
467	    __rangeof(struct thread, td_startzero, td_endzero));
468
469	bcopy(&td->td_startcopy, &td2->td_startcopy,
470	    __rangeof(struct thread, td_startcopy, td_endcopy));
471
472	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
473	td2->td_sigstk = td->td_sigstk;
474	td2->td_flags = TDF_INMEM;
475	td2->td_lend_user_pri = PRI_MAX;
476
477#ifdef VIMAGE
478	td2->td_vnet = NULL;
479	td2->td_vnet_lpush = NULL;
480#endif
481
482	/*
483	 * Allow the scheduler to initialize the child.
484	 */
485	thread_lock(td);
486	sched_fork(td, td2);
487	thread_unlock(td);
488
489	/*
490	 * Duplicate sub-structures as needed.
491	 * Increase reference counts on shared objects.
492	 */
493	p2->p_flag = P_INMEM;
494	p2->p_flag2 = 0;
495	p2->p_swtick = ticks;
496	if (p1->p_flag & P_PROFIL)
497		startprofclock(p2);
498	td2->td_ucred = crhold(p2->p_ucred);
499
500	if (flags & RFSIGSHARE) {
501		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
502	} else {
503		sigacts_copy(newsigacts, p1->p_sigacts);
504		p2->p_sigacts = newsigacts;
505	}
506
507	if (flags & RFTSIGZMB)
508	        p2->p_sigparent = RFTSIGNUM(flags);
509	else if (flags & RFLINUXTHPN)
510	        p2->p_sigparent = SIGUSR1;
511	else
512	        p2->p_sigparent = SIGCHLD;
513
514	p2->p_textvp = p1->p_textvp;
515	p2->p_fd = fd;
516	p2->p_fdtol = fdtol;
517
518	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
519		p2->p_flag |= P_PROTECTED;
520		p2->p_flag2 |= P2_INHERIT_PROTECTED;
521	}
522
523	/*
524	 * p_limit is copy-on-write.  Bump its refcount.
525	 */
526	lim_fork(p1, p2);
527
528	pstats_fork(p1->p_stats, p2->p_stats);
529
530	PROC_UNLOCK(p1);
531	PROC_UNLOCK(p2);
532
533	/* Bump references to the text vnode (for procfs). */
534	if (p2->p_textvp)
535		vref(p2->p_textvp);
536
537	/*
538	 * Set up linkage for kernel based threading.
539	 */
540	if ((flags & RFTHREAD) != 0) {
541		mtx_lock(&ppeers_lock);
542		p2->p_peers = p1->p_peers;
543		p1->p_peers = p2;
544		p2->p_leader = p1->p_leader;
545		mtx_unlock(&ppeers_lock);
546		PROC_LOCK(p1->p_leader);
547		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
548			PROC_UNLOCK(p1->p_leader);
549			/*
550			 * The task leader is exiting, so process p1 is
551			 * going to be killed shortly.  Since p1 obviously
552			 * isn't dead yet, we know that the leader is either
553			 * sending SIGKILL's to all the processes in this
554			 * task or is sleeping waiting for all the peers to
555			 * exit.  We let p1 complete the fork, but we need
556			 * to go ahead and kill the new process p2 since
557			 * the task leader may not get a chance to send
558			 * SIGKILL to it.  We leave it on the list so that
559			 * the task leader will wait for this new process
560			 * to commit suicide.
561			 */
562			PROC_LOCK(p2);
563			kern_psignal(p2, SIGKILL);
564			PROC_UNLOCK(p2);
565		} else
566			PROC_UNLOCK(p1->p_leader);
567	} else {
568		p2->p_peers = NULL;
569		p2->p_leader = p2;
570	}
571
572	sx_xlock(&proctree_lock);
573	PGRP_LOCK(p1->p_pgrp);
574	PROC_LOCK(p2);
575	PROC_LOCK(p1);
576
577	/*
578	 * Preserve some more flags in subprocess.  P_PROFIL has already
579	 * been preserved.
580	 */
581	p2->p_flag |= p1->p_flag & P_SUGID;
582	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
583	SESS_LOCK(p1->p_session);
584	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
585		p2->p_flag |= P_CONTROLT;
586	SESS_UNLOCK(p1->p_session);
587	if (flags & RFPPWAIT)
588		p2->p_flag |= P_PPWAIT;
589
590	p2->p_pgrp = p1->p_pgrp;
591	LIST_INSERT_AFTER(p1, p2, p_pglist);
592	PGRP_UNLOCK(p1->p_pgrp);
593	LIST_INIT(&p2->p_children);
594	LIST_INIT(&p2->p_orphans);
595
596	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
597
598	/*
599	 * If PF_FORK is set, the child process inherits the
600	 * procfs ioctl flags from its parent.
601	 */
602	if (p1->p_pfsflags & PF_FORK) {
603		p2->p_stops = p1->p_stops;
604		p2->p_pfsflags = p1->p_pfsflags;
605	}
606
607	/*
608	 * This begins the section where we must prevent the parent
609	 * from being swapped.
610	 */
611	_PHOLD(p1);
612	PROC_UNLOCK(p1);
613
614	/*
615	 * Attach the new process to its parent.
616	 *
617	 * If RFNOWAIT is set, the newly created process becomes a child
618	 * of init.  This effectively disassociates the child from the
619	 * parent.
620	 */
621	if (flags & RFNOWAIT)
622		pptr = initproc;
623	else
624		pptr = p1;
625	p2->p_pptr = pptr;
626	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
627	sx_xunlock(&proctree_lock);
628
629	/* Inform accounting that we have forked. */
630	p2->p_acflag = AFORK;
631	PROC_UNLOCK(p2);
632
633#ifdef KTRACE
634	ktrprocfork(p1, p2);
635#endif
636
637	/*
638	 * Finish creating the child process.  It will return via a different
639	 * execution path later.  (ie: directly into user mode)
640	 */
641	vm_forkproc(td, p2, td2, vm2, flags);
642
643	if (flags == (RFFDG | RFPROC)) {
644		PCPU_INC(cnt.v_forks);
645		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
646		    p2->p_vmspace->vm_ssize);
647	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
648		PCPU_INC(cnt.v_vforks);
649		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
650		    p2->p_vmspace->vm_ssize);
651	} else if (p1 == &proc0) {
652		PCPU_INC(cnt.v_kthreads);
653		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
654		    p2->p_vmspace->vm_ssize);
655	} else {
656		PCPU_INC(cnt.v_rforks);
657		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
658		    p2->p_vmspace->vm_ssize);
659	}
660
661#ifdef PROCDESC
662	/*
663	 * Associate the process descriptor with the process before anything
664	 * can happen that might cause that process to need the descriptor.
665	 * However, don't do this until after fork(2) can no longer fail.
666	 */
667	if (flags & RFPROCDESC)
668		procdesc_new(p2, pdflags);
669#endif
670
671	/*
672	 * Both processes are set up, now check if any loadable modules want
673	 * to adjust anything.
674	 */
675	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
676
677	/*
678	 * Set the child start time and mark the process as being complete.
679	 */
680	PROC_LOCK(p2);
681	PROC_LOCK(p1);
682	microuptime(&p2->p_stats->p_start);
683	PROC_SLOCK(p2);
684	p2->p_state = PRS_NORMAL;
685	PROC_SUNLOCK(p2);
686
687#ifdef KDTRACE_HOOKS
688	/*
689	 * Tell the DTrace fasttrap provider about the new process so that any
690	 * tracepoints inherited from the parent can be removed. We have to do
691	 * this only after p_state is PRS_NORMAL since the fasttrap module will
692	 * use pfind() later on.
693	 */
694	if ((flags & RFMEM) == 0 && dtrace_fasttrap_fork)
695		dtrace_fasttrap_fork(p1, p2);
696#endif
697	if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED |
698	    P_FOLLOWFORK)) {
699		/*
700		 * Arrange for debugger to receive the fork event.
701		 *
702		 * We can report PL_FLAG_FORKED regardless of
703		 * P_FOLLOWFORK settings, but it does not make a sense
704		 * for runaway child.
705		 */
706		td->td_dbgflags |= TDB_FORK;
707		td->td_dbg_forked = p2->p_pid;
708		td2->td_dbgflags |= TDB_STOPATFORK;
709		_PHOLD(p2);
710		p2_held = 1;
711	}
712	if (flags & RFPPWAIT) {
713		td->td_pflags |= TDP_RFPPWAIT;
714		td->td_rfppwait_p = p2;
715	}
716	PROC_UNLOCK(p2);
717	if ((flags & RFSTOPPED) == 0) {
718		/*
719		 * If RFSTOPPED not requested, make child runnable and
720		 * add to run queue.
721		 */
722		thread_lock(td2);
723		TD_SET_CAN_RUN(td2);
724		sched_add(td2, SRQ_BORING);
725		thread_unlock(td2);
726	}
727
728	/*
729	 * Now can be swapped.
730	 */
731	_PRELE(p1);
732	PROC_UNLOCK(p1);
733
734	/*
735	 * Tell any interested parties about the new process.
736	 */
737	knote_fork(&p1->p_klist, p2->p_pid);
738	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
739
740	/*
741	 * Wait until debugger is attached to child.
742	 */
743	PROC_LOCK(p2);
744	while ((td2->td_dbgflags & TDB_STOPATFORK) != 0)
745		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
746	if (p2_held)
747		_PRELE(p2);
748	PROC_UNLOCK(p2);
749}
750
751int
752fork1(struct thread *td, int flags, int pages, struct proc **procp,
753    int *procdescp, int pdflags)
754{
755	struct proc *p1;
756	struct proc *newproc;
757	int ok;
758	struct thread *td2;
759	struct vmspace *vm2;
760	vm_ooffset_t mem_charged;
761	int error;
762	static int curfail;
763	static struct timeval lastfail;
764#ifdef PROCDESC
765	struct file *fp_procdesc = NULL;
766#endif
767
768	/* Check for the undefined or unimplemented flags. */
769	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
770		return (EINVAL);
771
772	/* Signal value requires RFTSIGZMB. */
773	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
774		return (EINVAL);
775
776	/* Can't copy and clear. */
777	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
778		return (EINVAL);
779
780	/* Check the validity of the signal number. */
781	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
782		return (EINVAL);
783
784#ifdef PROCDESC
785	if ((flags & RFPROCDESC) != 0) {
786		/* Can't not create a process yet get a process descriptor. */
787		if ((flags & RFPROC) == 0)
788			return (EINVAL);
789
790		/* Must provide a place to put a procdesc if creating one. */
791		if (procdescp == NULL)
792			return (EINVAL);
793	}
794#endif
795
796	p1 = td->td_proc;
797
798	/*
799	 * Here we don't create a new process, but we divorce
800	 * certain parts of a process from itself.
801	 */
802	if ((flags & RFPROC) == 0) {
803		*procp = NULL;
804		return (fork_norfproc(td, flags));
805	}
806
807#ifdef PROCDESC
808	/*
809	 * If required, create a process descriptor in the parent first; we
810	 * will abandon it if something goes wrong. We don't finit() until
811	 * later.
812	 */
813	if (flags & RFPROCDESC) {
814		error = falloc(td, &fp_procdesc, procdescp, 0);
815		if (error != 0)
816			return (error);
817	}
818#endif
819
820	mem_charged = 0;
821	vm2 = NULL;
822	if (pages == 0)
823		pages = KSTACK_PAGES;
824	/* Allocate new proc. */
825	newproc = uma_zalloc(proc_zone, M_WAITOK);
826	td2 = FIRST_THREAD_IN_PROC(newproc);
827	if (td2 == NULL) {
828		td2 = thread_alloc(pages);
829		if (td2 == NULL) {
830			error = ENOMEM;
831			goto fail1;
832		}
833		proc_linkup(newproc, td2);
834	} else {
835		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
836			if (td2->td_kstack != 0)
837				vm_thread_dispose(td2);
838			if (!thread_alloc_stack(td2, pages)) {
839				error = ENOMEM;
840				goto fail1;
841			}
842		}
843	}
844
845	if ((flags & RFMEM) == 0) {
846		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
847		if (vm2 == NULL) {
848			error = ENOMEM;
849			goto fail1;
850		}
851		if (!swap_reserve(mem_charged)) {
852			/*
853			 * The swap reservation failed. The accounting
854			 * from the entries of the copied vm2 will be
855			 * substracted in vmspace_free(), so force the
856			 * reservation there.
857			 */
858			swap_reserve_force(mem_charged);
859			error = ENOMEM;
860			goto fail1;
861		}
862	} else
863		vm2 = NULL;
864
865	/*
866	 * XXX: This is ugly; when we copy resource usage, we need to bump
867	 *      per-cred resource counters.
868	 */
869	newproc->p_ucred = p1->p_ucred;
870
871	/*
872	 * Initialize resource accounting for the child process.
873	 */
874	error = racct_proc_fork(p1, newproc);
875	if (error != 0) {
876		error = EAGAIN;
877		goto fail1;
878	}
879
880#ifdef MAC
881	mac_proc_init(newproc);
882#endif
883	knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
884	STAILQ_INIT(&newproc->p_ktr);
885
886	/* We have to lock the process tree while we look for a pid. */
887	sx_slock(&proctree_lock);
888
889	/*
890	 * Although process entries are dynamically created, we still keep
891	 * a global limit on the maximum number we will create.  Don't allow
892	 * a nonprivileged user to use the last ten processes; don't let root
893	 * exceed the limit. The variable nprocs is the current number of
894	 * processes, maxproc is the limit.
895	 */
896	sx_xlock(&allproc_lock);
897	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
898	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
899		error = EAGAIN;
900		goto fail;
901	}
902
903	/*
904	 * Increment the count of procs running with this uid. Don't allow
905	 * a nonprivileged user to exceed their current limit.
906	 *
907	 * XXXRW: Can we avoid privilege here if it's not needed?
908	 */
909	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
910	if (error == 0)
911		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
912	else {
913		PROC_LOCK(p1);
914		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
915		    lim_cur(p1, RLIMIT_NPROC));
916		PROC_UNLOCK(p1);
917	}
918	if (ok) {
919		do_fork(td, flags, newproc, td2, vm2, pdflags);
920
921		/*
922		 * Return child proc pointer to parent.
923		 */
924		*procp = newproc;
925#ifdef PROCDESC
926		if (flags & RFPROCDESC) {
927			procdesc_finit(newproc->p_procdesc, fp_procdesc);
928			fdrop(fp_procdesc, td);
929		}
930#endif
931		racct_proc_fork_done(newproc);
932		return (0);
933	}
934
935	error = EAGAIN;
936fail:
937	sx_sunlock(&proctree_lock);
938	if (ppsratecheck(&lastfail, &curfail, 1))
939		printf("maxproc limit exceeded by uid %u (pid %d); see tuning(7) and login.conf(5)\n",
940		    td->td_ucred->cr_ruid, p1->p_pid);
941	sx_xunlock(&allproc_lock);
942#ifdef MAC
943	mac_proc_destroy(newproc);
944#endif
945	racct_proc_exit(newproc);
946fail1:
947	if (vm2 != NULL)
948		vmspace_free(vm2);
949	uma_zfree(proc_zone, newproc);
950#ifdef PROCDESC
951	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
952		fdclose(td->td_proc->p_fd, fp_procdesc, *procdescp, td);
953		fdrop(fp_procdesc, td);
954	}
955#endif
956	pause("fork", hz / 2);
957	return (error);
958}
959
960/*
961 * Handle the return of a child process from fork1().  This function
962 * is called from the MD fork_trampoline() entry point.
963 */
964void
965fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
966    struct trapframe *frame)
967{
968	struct proc *p;
969	struct thread *td;
970	struct thread *dtd;
971
972	td = curthread;
973	p = td->td_proc;
974	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
975
976	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
977		td, td->td_sched, p->p_pid, td->td_name);
978
979	sched_fork_exit(td);
980	/*
981	* Processes normally resume in mi_switch() after being
982	* cpu_switch()'ed to, but when children start up they arrive here
983	* instead, so we must do much the same things as mi_switch() would.
984	*/
985	if ((dtd = PCPU_GET(deadthread))) {
986		PCPU_SET(deadthread, NULL);
987		thread_stash(dtd);
988	}
989	thread_unlock(td);
990
991	/*
992	 * cpu_set_fork_handler intercepts this function call to
993	 * have this call a non-return function to stay in kernel mode.
994	 * initproc has its own fork handler, but it does return.
995	 */
996	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
997	callout(arg, frame);
998
999	/*
1000	 * Check if a kernel thread misbehaved and returned from its main
1001	 * function.
1002	 */
1003	if (p->p_flag & P_KTHREAD) {
1004		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1005		    td->td_name, p->p_pid);
1006		kproc_exit(0);
1007	}
1008	mtx_assert(&Giant, MA_NOTOWNED);
1009
1010	if (p->p_sysent->sv_schedtail != NULL)
1011		(p->p_sysent->sv_schedtail)(td);
1012}
1013
1014/*
1015 * Simplified back end of syscall(), used when returning from fork()
1016 * directly into user mode.  Giant is not held on entry, and must not
1017 * be held on return.  This function is passed in to fork_exit() as the
1018 * first parameter and is called when returning to a new userland process.
1019 */
1020void
1021fork_return(struct thread *td, struct trapframe *frame)
1022{
1023	struct proc *p, *dbg;
1024
1025	if (td->td_dbgflags & TDB_STOPATFORK) {
1026		p = td->td_proc;
1027		sx_xlock(&proctree_lock);
1028		PROC_LOCK(p);
1029		if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) ==
1030		    (P_TRACED | P_FOLLOWFORK)) {
1031			/*
1032			 * If debugger still wants auto-attach for the
1033			 * parent's children, do it now.
1034			 */
1035			dbg = p->p_pptr->p_pptr;
1036			p->p_flag |= P_TRACED;
1037			p->p_oppid = p->p_pptr->p_pid;
1038			proc_reparent(p, dbg);
1039			sx_xunlock(&proctree_lock);
1040			td->td_dbgflags |= TDB_CHILD;
1041			ptracestop(td, SIGSTOP);
1042			td->td_dbgflags &= ~TDB_CHILD;
1043		} else {
1044			/*
1045			 * ... otherwise clear the request.
1046			 */
1047			sx_xunlock(&proctree_lock);
1048			td->td_dbgflags &= ~TDB_STOPATFORK;
1049			cv_broadcast(&p->p_dbgwait);
1050		}
1051		PROC_UNLOCK(p);
1052	}
1053
1054	userret(td, frame);
1055
1056#ifdef KTRACE
1057	if (KTRPOINT(td, KTR_SYSRET))
1058		ktrsysret(SYS_fork, 0, 0);
1059#endif
1060}
1061