kern_exit.c revision 307065
1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: stable/10/sys/kern/kern_exit.c 307065 2016-10-11 18:51:03Z jilles $");
39
40#include "opt_compat.h"
41#include "opt_kdtrace.h"
42#include "opt_ktrace.h"
43#include "opt_procdesc.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/sysproto.h>
48#include <sys/capsicum.h>
49#include <sys/eventhandler.h>
50#include <sys/kernel.h>
51#include <sys/malloc.h>
52#include <sys/lock.h>
53#include <sys/mutex.h>
54#include <sys/proc.h>
55#include <sys/procdesc.h>
56#include <sys/pioctl.h>
57#include <sys/jail.h>
58#include <sys/tty.h>
59#include <sys/wait.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <sys/racct.h>
63#include <sys/resourcevar.h>
64#include <sys/sbuf.h>
65#include <sys/signalvar.h>
66#include <sys/sched.h>
67#include <sys/sx.h>
68#include <sys/syscallsubr.h>
69#include <sys/syslog.h>
70#include <sys/ptrace.h>
71#include <sys/acct.h>		/* for acct_process() function prototype */
72#include <sys/filedesc.h>
73#include <sys/sdt.h>
74#include <sys/shm.h>
75#include <sys/sem.h>
76#include <sys/umtx.h>
77#ifdef KTRACE
78#include <sys/ktrace.h>
79#endif
80
81#include <security/audit/audit.h>
82#include <security/mac/mac_framework.h>
83
84#include <vm/vm.h>
85#include <vm/vm_extern.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/uma.h>
91
92#ifdef KDTRACE_HOOKS
93#include <sys/dtrace_bsd.h>
94dtrace_execexit_func_t	dtrace_fasttrap_exit;
95#endif
96
97SDT_PROVIDER_DECLARE(proc);
98SDT_PROBE_DEFINE1(proc, , , exit, "int");
99
100/* Hook for NFS teardown procedure. */
101void (*nlminfo_release_p)(struct proc *p);
102
103struct proc *
104proc_realparent(struct proc *child)
105{
106	struct proc *p, *parent;
107
108	sx_assert(&proctree_lock, SX_LOCKED);
109	if ((child->p_treeflag & P_TREE_ORPHANED) == 0) {
110		if (child->p_oppid == 0 ||
111		    child->p_pptr->p_pid == child->p_oppid)
112			parent = child->p_pptr;
113		else
114			parent = initproc;
115		return (parent);
116	}
117	for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
118		/* Cannot use LIST_PREV(), since the list head is not known. */
119		p = __containerof(p->p_orphan.le_prev, struct proc,
120		    p_orphan.le_next);
121		KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
122		    ("missing P_ORPHAN %p", p));
123	}
124	parent = __containerof(p->p_orphan.le_prev, struct proc,
125	    p_orphans.lh_first);
126	return (parent);
127}
128
129void
130reaper_abandon_children(struct proc *p, bool exiting)
131{
132	struct proc *p1, *p2, *ptmp;
133
134	sx_assert(&proctree_lock, SX_LOCKED);
135	KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
136	if ((p->p_treeflag & P_TREE_REAPER) == 0)
137		return;
138	p1 = p->p_reaper;
139	LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
140		LIST_REMOVE(p2, p_reapsibling);
141		p2->p_reaper = p1;
142		p2->p_reapsubtree = p->p_reapsubtree;
143		LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
144		if (exiting && p2->p_pptr == p) {
145			PROC_LOCK(p2);
146			proc_reparent(p2, p1);
147			PROC_UNLOCK(p2);
148		}
149	}
150	KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
151	p->p_treeflag &= ~P_TREE_REAPER;
152}
153
154static void
155clear_orphan(struct proc *p)
156{
157	struct proc *p1;
158
159	sx_assert(&proctree_lock, SA_XLOCKED);
160	if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
161		return;
162	if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
163		p1 = LIST_NEXT(p, p_orphan);
164		if (p1 != NULL)
165			p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
166		p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
167	}
168	LIST_REMOVE(p, p_orphan);
169	p->p_treeflag &= ~P_TREE_ORPHANED;
170}
171
172/*
173 * exit -- death of process.
174 */
175void
176sys_sys_exit(struct thread *td, struct sys_exit_args *uap)
177{
178
179	exit1(td, W_EXITCODE(uap->rval, 0));
180	/* NOTREACHED */
181}
182
183/*
184 * Exit: deallocate address space and other resources, change proc state to
185 * zombie, and unlink proc from allproc and parent's lists.  Save exit status
186 * and rusage for wait().  Check for child processes and orphan them.
187 */
188void
189exit1(struct thread *td, int rv)
190{
191	struct proc *p, *nq, *q, *t;
192	struct thread *tdt;
193	struct vnode *ttyvp = NULL;
194
195	mtx_assert(&Giant, MA_NOTOWNED);
196
197	p = td->td_proc;
198	/*
199	 * XXX in case we're rebooting we just let init die in order to
200	 * work around an unsolved stack overflow seen very late during
201	 * shutdown on sparc64 when the gmirror worker process exists.
202	 */
203	if (p == initproc && rebooting == 0) {
204		printf("init died (signal %d, exit %d)\n",
205		    WTERMSIG(rv), WEXITSTATUS(rv));
206		panic("Going nowhere without my init!");
207	}
208
209	/*
210	 * Deref SU mp, since the thread does not return to userspace.
211	 */
212	if (softdep_ast_cleanup != NULL)
213		softdep_ast_cleanup();
214
215	/*
216	 * MUST abort all other threads before proceeding past here.
217	 */
218	PROC_LOCK(p);
219	/*
220	 * First check if some other thread or external request got
221	 * here before us.  If so, act appropriately: exit or suspend.
222	 * We must ensure that stop requests are handled before we set
223	 * P_WEXIT.
224	 */
225	thread_suspend_check(0);
226	while (p->p_flag & P_HADTHREADS) {
227		/*
228		 * Kill off the other threads. This requires
229		 * some co-operation from other parts of the kernel
230		 * so it may not be instantaneous.  With this state set
231		 * any thread entering the kernel from userspace will
232		 * thread_exit() in trap().  Any thread attempting to
233		 * sleep will return immediately with EINTR or EWOULDBLOCK
234		 * which will hopefully force them to back out to userland
235		 * freeing resources as they go.  Any thread attempting
236		 * to return to userland will thread_exit() from userret().
237		 * thread_exit() will unsuspend us when the last of the
238		 * other threads exits.
239		 * If there is already a thread singler after resumption,
240		 * calling thread_single will fail; in that case, we just
241		 * re-check all suspension request, the thread should
242		 * either be suspended there or exit.
243		 */
244		if (!thread_single(p, SINGLE_EXIT))
245			/*
246			 * All other activity in this process is now
247			 * stopped.  Threading support has been turned
248			 * off.
249			 */
250			break;
251		/*
252		 * Recheck for new stop or suspend requests which
253		 * might appear while process lock was dropped in
254		 * thread_single().
255		 */
256		thread_suspend_check(0);
257	}
258	KASSERT(p->p_numthreads == 1,
259	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
260	racct_sub(p, RACCT_NTHR, 1);
261	/*
262	 * Wakeup anyone in procfs' PIOCWAIT.  They should have a hold
263	 * on our vmspace, so we should block below until they have
264	 * released their reference to us.  Note that if they have
265	 * requested S_EXIT stops we will block here until they ack
266	 * via PIOCCONT.
267	 */
268	_STOPEVENT(p, S_EXIT, rv);
269
270	/*
271	 * Ignore any pending request to stop due to a stop signal.
272	 * Once P_WEXIT is set, future requests will be ignored as
273	 * well.
274	 */
275	p->p_flag &= ~P_STOPPED_SIG;
276	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
277
278	/*
279	 * Note that we are exiting and do another wakeup of anyone in
280	 * PIOCWAIT in case they aren't listening for S_EXIT stops or
281	 * decided to wait again after we told them we are exiting.
282	 */
283	p->p_flag |= P_WEXIT;
284	wakeup(&p->p_stype);
285
286	/*
287	 * Wait for any processes that have a hold on our vmspace to
288	 * release their reference.
289	 */
290	while (p->p_lock > 0)
291		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
292
293	p->p_xstat = rv;	/* Let event handler change exit status */
294	PROC_UNLOCK(p);
295	/* Drain the limit callout while we don't have the proc locked */
296	callout_drain(&p->p_limco);
297
298#ifdef AUDIT
299	/*
300	 * The Sun BSM exit token contains two components: an exit status as
301	 * passed to exit(), and a return value to indicate what sort of exit
302	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
303	 * what the return value is.
304	 */
305	AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0);
306	AUDIT_SYSCALL_EXIT(0, td);
307#endif
308
309	/* Are we a task leader? */
310	if (p == p->p_leader) {
311		mtx_lock(&ppeers_lock);
312		q = p->p_peers;
313		while (q != NULL) {
314			PROC_LOCK(q);
315			kern_psignal(q, SIGKILL);
316			PROC_UNLOCK(q);
317			q = q->p_peers;
318		}
319		while (p->p_peers != NULL)
320			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
321		mtx_unlock(&ppeers_lock);
322	}
323
324	/*
325	 * Check if any loadable modules need anything done at process exit.
326	 * E.g. SYSV IPC stuff
327	 * XXX what if one of these generates an error?
328	 */
329	EVENTHANDLER_INVOKE(process_exit, p);
330
331	/*
332	 * If parent is waiting for us to exit or exec,
333	 * P_PPWAIT is set; we will wakeup the parent below.
334	 */
335	PROC_LOCK(p);
336	rv = p->p_xstat;	/* Event handler could change exit status */
337	stopprofclock(p);
338	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
339	p->p_ptevents = 0;
340
341	/*
342	 * Stop the real interval timer.  If the handler is currently
343	 * executing, prevent it from rearming itself and let it finish.
344	 */
345	if (timevalisset(&p->p_realtimer.it_value) &&
346	    callout_stop(&p->p_itcallout) == 0) {
347		timevalclear(&p->p_realtimer.it_interval);
348		msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
349		KASSERT(!timevalisset(&p->p_realtimer.it_value),
350		    ("realtime timer is still armed"));
351	}
352	PROC_UNLOCK(p);
353
354	/*
355	 * Reset any sigio structures pointing to us as a result of
356	 * F_SETOWN with our pid.
357	 */
358	funsetownlst(&p->p_sigiolst);
359
360	/*
361	 * If this process has an nlminfo data area (for lockd), release it
362	 */
363	if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
364		(*nlminfo_release_p)(p);
365
366	/*
367	 * Close open files and release open-file table.
368	 * This may block!
369	 */
370	fdescfree(td);
371
372	/*
373	 * If this thread tickled GEOM, we need to wait for the giggling to
374	 * stop before we return to userland
375	 */
376	if (td->td_pflags & TDP_GEOM)
377		g_waitidle();
378
379	/*
380	 * Remove ourself from our leader's peer list and wake our leader.
381	 */
382	mtx_lock(&ppeers_lock);
383	if (p->p_leader->p_peers) {
384		q = p->p_leader;
385		while (q->p_peers != p)
386			q = q->p_peers;
387		q->p_peers = p->p_peers;
388		wakeup(p->p_leader);
389	}
390	mtx_unlock(&ppeers_lock);
391
392	vmspace_exit(td);
393
394	sx_xlock(&proctree_lock);
395	if (SESS_LEADER(p)) {
396		struct session *sp = p->p_session;
397		struct tty *tp;
398
399		/*
400		 * s_ttyp is not zero'd; we use this to indicate that
401		 * the session once had a controlling terminal. (for
402		 * logging and informational purposes)
403		 */
404		SESS_LOCK(sp);
405		ttyvp = sp->s_ttyvp;
406		tp = sp->s_ttyp;
407		sp->s_ttyvp = NULL;
408		sp->s_ttydp = NULL;
409		sp->s_leader = NULL;
410		SESS_UNLOCK(sp);
411
412		/*
413		 * Signal foreground pgrp and revoke access to
414		 * controlling terminal if it has not been revoked
415		 * already.
416		 *
417		 * Because the TTY may have been revoked in the mean
418		 * time and could already have a new session associated
419		 * with it, make sure we don't send a SIGHUP to a
420		 * foreground process group that does not belong to this
421		 * session.
422		 */
423
424		if (tp != NULL) {
425			tty_lock(tp);
426			if (tp->t_session == sp)
427				tty_signal_pgrp(tp, SIGHUP);
428			tty_unlock(tp);
429		}
430
431		if (ttyvp != NULL) {
432			sx_xunlock(&proctree_lock);
433			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
434				VOP_REVOKE(ttyvp, REVOKEALL);
435				VOP_UNLOCK(ttyvp, 0);
436			}
437			sx_xlock(&proctree_lock);
438		}
439	}
440	fixjobc(p, p->p_pgrp, 0);
441	sx_xunlock(&proctree_lock);
442	(void)acct_process(td);
443
444	/* Release the TTY now we've unlocked everything. */
445	if (ttyvp != NULL)
446		vrele(ttyvp);
447#ifdef KTRACE
448	ktrprocexit(td);
449#endif
450	/*
451	 * Release reference to text vnode
452	 */
453	if (p->p_textvp != NULL) {
454		vrele(p->p_textvp);
455		p->p_textvp = NULL;
456	}
457
458	/*
459	 * Release our limits structure.
460	 */
461	lim_free(p->p_limit);
462	p->p_limit = NULL;
463
464	tidhash_remove(td);
465
466	/*
467	 * Remove proc from allproc queue and pidhash chain.
468	 * Place onto zombproc.  Unlink from parent's child list.
469	 */
470	sx_xlock(&allproc_lock);
471	LIST_REMOVE(p, p_list);
472	LIST_INSERT_HEAD(&zombproc, p, p_list);
473	LIST_REMOVE(p, p_hash);
474	sx_xunlock(&allproc_lock);
475
476	/*
477	 * Call machine-dependent code to release any
478	 * machine-dependent resources other than the address space.
479	 * The address space is released by "vmspace_exitfree(p)" in
480	 * vm_waitproc().
481	 */
482	cpu_exit(td);
483
484	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
485
486	/*
487	 * Reparent all children processes:
488	 * - traced ones to the original parent (or init if we are that parent)
489	 * - the rest to init
490	 */
491	sx_xlock(&proctree_lock);
492	q = LIST_FIRST(&p->p_children);
493	if (q != NULL)		/* only need this if any child is S_ZOMB */
494		wakeup(q->p_reaper);
495	for (; q != NULL; q = nq) {
496		nq = LIST_NEXT(q, p_sibling);
497		PROC_LOCK(q);
498		q->p_sigparent = SIGCHLD;
499
500		if (!(q->p_flag & P_TRACED)) {
501			proc_reparent(q, q->p_reaper);
502		} else {
503			/*
504			 * Traced processes are killed since their existence
505			 * means someone is screwing up.
506			 */
507			t = proc_realparent(q);
508			if (t == p) {
509				proc_reparent(q, q->p_reaper);
510			} else {
511				PROC_LOCK(t);
512				proc_reparent(q, t);
513				PROC_UNLOCK(t);
514			}
515			/*
516			 * Since q was found on our children list, the
517			 * proc_reparent() call moved q to the orphan
518			 * list due to present P_TRACED flag. Clear
519			 * orphan link for q now while q is locked.
520			 */
521			clear_orphan(q);
522			q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
523			q->p_flag2 &= ~P2_PTRACE_FSTP;
524			q->p_ptevents = 0;
525			FOREACH_THREAD_IN_PROC(q, tdt) {
526				tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
527				    TDB_FSTP);
528			}
529			kern_psignal(q, SIGKILL);
530		}
531		PROC_UNLOCK(q);
532	}
533
534	/*
535	 * Also get rid of our orphans.
536	 */
537	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
538		PROC_LOCK(q);
539		CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
540		    q->p_pid);
541		clear_orphan(q);
542		PROC_UNLOCK(q);
543	}
544
545	/* Save exit status. */
546	PROC_LOCK(p);
547	p->p_xthread = td;
548
549	/* Tell the prison that we are gone. */
550	prison_proc_free(p->p_ucred->cr_prison);
551
552#ifdef KDTRACE_HOOKS
553	/*
554	 * Tell the DTrace fasttrap provider about the exit if it
555	 * has declared an interest.
556	 */
557	if (dtrace_fasttrap_exit)
558		dtrace_fasttrap_exit(p);
559#endif
560
561	/*
562	 * Notify interested parties of our demise.
563	 */
564	KNOTE_LOCKED(&p->p_klist, NOTE_EXIT);
565
566#ifdef KDTRACE_HOOKS
567	int reason = CLD_EXITED;
568	if (WCOREDUMP(rv))
569		reason = CLD_DUMPED;
570	else if (WIFSIGNALED(rv))
571		reason = CLD_KILLED;
572	SDT_PROBE1(proc, , , exit, reason);
573#endif
574
575	/*
576	 * Just delete all entries in the p_klist. At this point we won't
577	 * report any more events, and there are nasty race conditions that
578	 * can beat us if we don't.
579	 */
580	knlist_clear(&p->p_klist, 1);
581
582	/*
583	 * If this is a process with a descriptor, we may not need to deliver
584	 * a signal to the parent.  proctree_lock is held over
585	 * procdesc_exit() to serialize concurrent calls to close() and
586	 * exit().
587	 */
588#ifdef PROCDESC
589	if (p->p_procdesc == NULL || procdesc_exit(p)) {
590#endif
591		/*
592		 * Notify parent that we're gone.  If parent has the
593		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
594		 * notify process 1 instead (and hope it will handle this
595		 * situation).
596		 */
597		PROC_LOCK(p->p_pptr);
598		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
599		if (p->p_pptr->p_sigacts->ps_flag &
600		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
601			struct proc *pp;
602
603			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
604			pp = p->p_pptr;
605			PROC_UNLOCK(pp);
606			proc_reparent(p, p->p_reaper);
607			p->p_sigparent = SIGCHLD;
608			PROC_LOCK(p->p_pptr);
609
610			/*
611			 * Notify parent, so in case he was wait(2)ing or
612			 * executing waitpid(2) with our pid, he will
613			 * continue.
614			 */
615			wakeup(pp);
616		} else
617			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
618
619		if (p->p_pptr == p->p_reaper || p->p_pptr == initproc)
620			childproc_exited(p);
621		else if (p->p_sigparent != 0) {
622			if (p->p_sigparent == SIGCHLD)
623				childproc_exited(p);
624			else	/* LINUX thread */
625				kern_psignal(p->p_pptr, p->p_sigparent);
626		}
627#ifdef PROCDESC
628	} else
629		PROC_LOCK(p->p_pptr);
630#endif
631	sx_xunlock(&proctree_lock);
632
633	/*
634	 * The state PRS_ZOMBIE prevents other proesses from sending
635	 * signal to the process, to avoid memory leak, we free memory
636	 * for signal queue at the time when the state is set.
637	 */
638	sigqueue_flush(&p->p_sigqueue);
639	sigqueue_flush(&td->td_sigqueue);
640
641	/*
642	 * We have to wait until after acquiring all locks before
643	 * changing p_state.  We need to avoid all possible context
644	 * switches (including ones from blocking on a mutex) while
645	 * marked as a zombie.  We also have to set the zombie state
646	 * before we release the parent process' proc lock to avoid
647	 * a lost wakeup.  So, we first call wakeup, then we grab the
648	 * sched lock, update the state, and release the parent process'
649	 * proc lock.
650	 */
651	wakeup(p->p_pptr);
652	cv_broadcast(&p->p_pwait);
653	sched_exit(p->p_pptr, td);
654	umtx_thread_exit(td);
655	PROC_SLOCK(p);
656	p->p_state = PRS_ZOMBIE;
657	PROC_UNLOCK(p->p_pptr);
658
659	/*
660	 * Hopefully no one will try to deliver a signal to the process this
661	 * late in the game.
662	 */
663	knlist_destroy(&p->p_klist);
664
665	/*
666	 * Save our children's rusage information in our exit rusage.
667	 */
668	PROC_STATLOCK(p);
669	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
670	PROC_STATUNLOCK(p);
671
672	/*
673	 * Make sure the scheduler takes this thread out of its tables etc.
674	 * This will also release this thread's reference to the ucred.
675	 * Other thread parts to release include pcb bits and such.
676	 */
677	thread_exit();
678}
679
680
681#ifndef _SYS_SYSPROTO_H_
682struct abort2_args {
683	char *why;
684	int nargs;
685	void **args;
686};
687#endif
688
689int
690sys_abort2(struct thread *td, struct abort2_args *uap)
691{
692	struct proc *p = td->td_proc;
693	struct sbuf *sb;
694	void *uargs[16];
695	int error, i, sig;
696
697	/*
698	 * Do it right now so we can log either proper call of abort2(), or
699	 * note, that invalid argument was passed. 512 is big enough to
700	 * handle 16 arguments' descriptions with additional comments.
701	 */
702	sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
703	sbuf_clear(sb);
704	sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
705	    p->p_comm, p->p_pid, td->td_ucred->cr_uid);
706	/*
707	 * Since we can't return from abort2(), send SIGKILL in cases, where
708	 * abort2() was called improperly
709	 */
710	sig = SIGKILL;
711	/* Prevent from DoSes from user-space. */
712	if (uap->nargs < 0 || uap->nargs > 16)
713		goto out;
714	if (uap->nargs > 0) {
715		if (uap->args == NULL)
716			goto out;
717		error = copyin(uap->args, uargs, uap->nargs * sizeof(void *));
718		if (error != 0)
719			goto out;
720	}
721	/*
722	 * Limit size of 'reason' string to 128. Will fit even when
723	 * maximal number of arguments was chosen to be logged.
724	 */
725	if (uap->why != NULL) {
726		error = sbuf_copyin(sb, uap->why, 128);
727		if (error < 0)
728			goto out;
729	} else {
730		sbuf_printf(sb, "(null)");
731	}
732	if (uap->nargs > 0) {
733		sbuf_printf(sb, "(");
734		for (i = 0;i < uap->nargs; i++)
735			sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
736		sbuf_printf(sb, ")");
737	}
738	/*
739	 * Final stage: arguments were proper, string has been
740	 * successfully copied from userspace, and copying pointers
741	 * from user-space succeed.
742	 */
743	sig = SIGABRT;
744out:
745	if (sig == SIGKILL) {
746		sbuf_trim(sb);
747		sbuf_printf(sb, " (Reason text inaccessible)");
748	}
749	sbuf_cat(sb, "\n");
750	sbuf_finish(sb);
751	log(LOG_INFO, "%s", sbuf_data(sb));
752	sbuf_delete(sb);
753	exit1(td, W_EXITCODE(0, sig));
754	return (0);
755}
756
757
758#ifdef COMPAT_43
759/*
760 * The dirty work is handled by kern_wait().
761 */
762int
763owait(struct thread *td, struct owait_args *uap __unused)
764{
765	int error, status;
766
767	error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
768	if (error == 0)
769		td->td_retval[1] = status;
770	return (error);
771}
772#endif /* COMPAT_43 */
773
774/*
775 * The dirty work is handled by kern_wait().
776 */
777int
778sys_wait4(struct thread *td, struct wait4_args *uap)
779{
780	struct rusage ru, *rup;
781	int error, status;
782
783	if (uap->rusage != NULL)
784		rup = &ru;
785	else
786		rup = NULL;
787	error = kern_wait(td, uap->pid, &status, uap->options, rup);
788	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
789		error = copyout(&status, uap->status, sizeof(status));
790	if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
791		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
792	return (error);
793}
794
795int
796sys_wait6(struct thread *td, struct wait6_args *uap)
797{
798	struct __wrusage wru, *wrup;
799	siginfo_t si, *sip;
800	idtype_t idtype;
801	id_t id;
802	int error, status;
803
804	idtype = uap->idtype;
805	id = uap->id;
806
807	if (uap->wrusage != NULL)
808		wrup = &wru;
809	else
810		wrup = NULL;
811
812	if (uap->info != NULL) {
813		sip = &si;
814		bzero(sip, sizeof(*sip));
815	} else
816		sip = NULL;
817
818	/*
819	 *  We expect all callers of wait6() to know about WEXITED and
820	 *  WTRAPPED.
821	 */
822	error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
823
824	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
825		error = copyout(&status, uap->status, sizeof(status));
826	if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
827		error = copyout(&wru, uap->wrusage, sizeof(wru));
828	if (uap->info != NULL && error == 0)
829		error = copyout(&si, uap->info, sizeof(si));
830	return (error);
831}
832
833/*
834 * Reap the remains of a zombie process and optionally return status and
835 * rusage.  Asserts and will release both the proctree_lock and the process
836 * lock as part of its work.
837 */
838void
839proc_reap(struct thread *td, struct proc *p, int *status, int options)
840{
841	struct proc *q, *t;
842
843	sx_assert(&proctree_lock, SA_XLOCKED);
844	PROC_LOCK_ASSERT(p, MA_OWNED);
845	PROC_SLOCK_ASSERT(p, MA_OWNED);
846	KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
847
848	q = td->td_proc;
849
850	PROC_SUNLOCK(p);
851	td->td_retval[0] = p->p_pid;
852	if (status)
853		*status = p->p_xstat;	/* convert to int */
854	if (options & WNOWAIT) {
855		/*
856		 *  Only poll, returning the status.  Caller does not wish to
857		 * release the proc struct just yet.
858		 */
859		PROC_UNLOCK(p);
860		sx_xunlock(&proctree_lock);
861		return;
862	}
863
864	PROC_LOCK(q);
865	sigqueue_take(p->p_ksi);
866	PROC_UNLOCK(q);
867
868	/*
869	 * If we got the child via a ptrace 'attach', we need to give it back
870	 * to the old parent.
871	 */
872	if (p->p_oppid != 0 && p->p_oppid != p->p_pptr->p_pid) {
873		PROC_UNLOCK(p);
874		t = proc_realparent(p);
875		PROC_LOCK(t);
876		PROC_LOCK(p);
877		CTR2(KTR_PTRACE,
878		    "wait: traced child %d moved back to parent %d", p->p_pid,
879		    t->p_pid);
880		proc_reparent(p, t);
881		p->p_oppid = 0;
882		PROC_UNLOCK(p);
883		pksignal(t, SIGCHLD, p->p_ksi);
884		wakeup(t);
885		cv_broadcast(&p->p_pwait);
886		PROC_UNLOCK(t);
887		sx_xunlock(&proctree_lock);
888		return;
889	}
890	p->p_oppid = 0;
891	PROC_UNLOCK(p);
892
893	/*
894	 * Remove other references to this process to ensure we have an
895	 * exclusive reference.
896	 */
897	sx_xlock(&allproc_lock);
898	LIST_REMOVE(p, p_list);	/* off zombproc */
899	sx_xunlock(&allproc_lock);
900	LIST_REMOVE(p, p_sibling);
901	reaper_abandon_children(p, true);
902	LIST_REMOVE(p, p_reapsibling);
903	PROC_LOCK(p);
904	clear_orphan(p);
905	PROC_UNLOCK(p);
906	leavepgrp(p);
907#ifdef PROCDESC
908	if (p->p_procdesc != NULL)
909		procdesc_reap(p);
910#endif
911	sx_xunlock(&proctree_lock);
912
913	/*
914	 * As a side effect of this lock, we know that all other writes to
915	 * this proc are visible now, so no more locking is needed for p.
916	 */
917	PROC_LOCK(p);
918	p->p_xstat = 0;		/* XXX: why? */
919	PROC_UNLOCK(p);
920	PROC_LOCK(q);
921	ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
922	PROC_UNLOCK(q);
923
924	/*
925	 * Decrement the count of procs running with this uid.
926	 */
927	(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
928
929	/*
930	 * Destroy resource accounting information associated with the process.
931	 */
932#ifdef RACCT
933	if (racct_enable) {
934		PROC_LOCK(p);
935		racct_sub(p, RACCT_NPROC, 1);
936		PROC_UNLOCK(p);
937	}
938#endif
939	racct_proc_exit(p);
940
941	/*
942	 * Free credentials, arguments, and sigacts.
943	 */
944	crfree(p->p_ucred);
945	proc_set_cred(p, NULL);
946	pargs_drop(p->p_args);
947	p->p_args = NULL;
948	sigacts_free(p->p_sigacts);
949	p->p_sigacts = NULL;
950
951	/*
952	 * Do any thread-system specific cleanups.
953	 */
954	thread_wait(p);
955
956	/*
957	 * Give vm and machine-dependent layer a chance to free anything that
958	 * cpu_exit couldn't release while still running in process context.
959	 */
960	vm_waitproc(p);
961#ifdef MAC
962	mac_proc_destroy(p);
963#endif
964	KASSERT(FIRST_THREAD_IN_PROC(p),
965	    ("proc_reap: no residual thread!"));
966	uma_zfree(proc_zone, p);
967	atomic_add_int(&nprocs, -1);
968}
969
970static int
971proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
972    int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
973    int check_only)
974{
975	struct rusage *rup;
976
977	sx_assert(&proctree_lock, SA_XLOCKED);
978
979	PROC_LOCK(p);
980
981	switch (idtype) {
982	case P_ALL:
983		break;
984	case P_PID:
985		if (p->p_pid != (pid_t)id) {
986			PROC_UNLOCK(p);
987			return (0);
988		}
989		break;
990	case P_PGID:
991		if (p->p_pgid != (pid_t)id) {
992			PROC_UNLOCK(p);
993			return (0);
994		}
995		break;
996	case P_SID:
997		if (p->p_session->s_sid != (pid_t)id) {
998			PROC_UNLOCK(p);
999			return (0);
1000		}
1001		break;
1002	case P_UID:
1003		if (p->p_ucred->cr_uid != (uid_t)id) {
1004			PROC_UNLOCK(p);
1005			return (0);
1006		}
1007		break;
1008	case P_GID:
1009		if (p->p_ucred->cr_gid != (gid_t)id) {
1010			PROC_UNLOCK(p);
1011			return (0);
1012		}
1013		break;
1014	case P_JAILID:
1015		if (p->p_ucred->cr_prison->pr_id != (int)id) {
1016			PROC_UNLOCK(p);
1017			return (0);
1018		}
1019		break;
1020	/*
1021	 * It seems that the thread structures get zeroed out
1022	 * at process exit.  This makes it impossible to
1023	 * support P_SETID, P_CID or P_CPUID.
1024	 */
1025	default:
1026		PROC_UNLOCK(p);
1027		return (0);
1028	}
1029
1030	if (p_canwait(td, p)) {
1031		PROC_UNLOCK(p);
1032		return (0);
1033	}
1034
1035	if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
1036		PROC_UNLOCK(p);
1037		return (0);
1038	}
1039
1040	/*
1041	 * This special case handles a kthread spawned by linux_clone
1042	 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1043	 * functions need to be able to distinguish between waiting
1044	 * on a process and waiting on a thread.  It is a thread if
1045	 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1046	 * signifies we want to wait for threads and not processes.
1047	 */
1048	if ((p->p_sigparent != SIGCHLD) ^
1049	    ((options & WLINUXCLONE) != 0)) {
1050		PROC_UNLOCK(p);
1051		return (0);
1052	}
1053
1054	if (siginfo != NULL) {
1055		bzero(siginfo, sizeof(*siginfo));
1056		siginfo->si_errno = 0;
1057
1058		/*
1059		 * SUSv4 requires that the si_signo value is always
1060		 * SIGCHLD. Obey it despite the rfork(2) interface
1061		 * allows to request other signal for child exit
1062		 * notification.
1063		 */
1064		siginfo->si_signo = SIGCHLD;
1065
1066		/*
1067		 *  This is still a rough estimate.  We will fix the
1068		 *  cases TRAPPED, STOPPED, and CONTINUED later.
1069		 */
1070		if (WCOREDUMP(p->p_xstat)) {
1071			siginfo->si_code = CLD_DUMPED;
1072			siginfo->si_status = WTERMSIG(p->p_xstat);
1073		} else if (WIFSIGNALED(p->p_xstat)) {
1074			siginfo->si_code = CLD_KILLED;
1075			siginfo->si_status = WTERMSIG(p->p_xstat);
1076		} else {
1077			siginfo->si_code = CLD_EXITED;
1078			siginfo->si_status = WEXITSTATUS(p->p_xstat);
1079		}
1080
1081		siginfo->si_pid = p->p_pid;
1082		siginfo->si_uid = p->p_ucred->cr_uid;
1083
1084		/*
1085		 * The si_addr field would be useful additional
1086		 * detail, but apparently the PC value may be lost
1087		 * when we reach this point.  bzero() above sets
1088		 * siginfo->si_addr to NULL.
1089		 */
1090	}
1091
1092	/*
1093	 * There should be no reason to limit resources usage info to
1094	 * exited processes only.  A snapshot about any resources used
1095	 * by a stopped process may be exactly what is needed.
1096	 */
1097	if (wrusage != NULL) {
1098		rup = &wrusage->wru_self;
1099		*rup = p->p_ru;
1100		PROC_STATLOCK(p);
1101		calcru(p, &rup->ru_utime, &rup->ru_stime);
1102		PROC_STATUNLOCK(p);
1103
1104		rup = &wrusage->wru_children;
1105		*rup = p->p_stats->p_cru;
1106		calccru(p, &rup->ru_utime, &rup->ru_stime);
1107	}
1108
1109	if (p->p_state == PRS_ZOMBIE && !check_only) {
1110		PROC_SLOCK(p);
1111		proc_reap(td, p, status, options);
1112		return (-1);
1113	}
1114	PROC_UNLOCK(p);
1115	return (1);
1116}
1117
1118int
1119kern_wait(struct thread *td, pid_t pid, int *status, int options,
1120    struct rusage *rusage)
1121{
1122	struct __wrusage wru, *wrup;
1123	idtype_t idtype;
1124	id_t id;
1125	int ret;
1126
1127	/*
1128	 * Translate the special pid values into the (idtype, pid)
1129	 * pair for kern_wait6.  The WAIT_MYPGRP case is handled by
1130	 * kern_wait6() on its own.
1131	 */
1132	if (pid == WAIT_ANY) {
1133		idtype = P_ALL;
1134		id = 0;
1135	} else if (pid < 0) {
1136		idtype = P_PGID;
1137		id = (id_t)-pid;
1138	} else {
1139		idtype = P_PID;
1140		id = (id_t)pid;
1141	}
1142
1143	if (rusage != NULL)
1144		wrup = &wru;
1145	else
1146		wrup = NULL;
1147
1148	/*
1149	 * For backward compatibility we implicitly add flags WEXITED
1150	 * and WTRAPPED here.
1151	 */
1152	options |= WEXITED | WTRAPPED;
1153	ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1154	if (rusage != NULL)
1155		*rusage = wru.wru_self;
1156	return (ret);
1157}
1158
1159int
1160kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1161    int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1162{
1163	struct proc *p, *q;
1164	int error, nfound, ret;
1165
1166	AUDIT_ARG_VALUE((int)idtype);	/* XXX - This is likely wrong! */
1167	AUDIT_ARG_PID((pid_t)id);	/* XXX - This may be wrong! */
1168	AUDIT_ARG_VALUE(options);
1169
1170	q = td->td_proc;
1171
1172	if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1173		PROC_LOCK(q);
1174		id = (id_t)q->p_pgid;
1175		PROC_UNLOCK(q);
1176		idtype = P_PGID;
1177	}
1178
1179	/* If we don't know the option, just return. */
1180	if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1181	    WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1182		return (EINVAL);
1183	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1184		/*
1185		 * We will be unable to find any matching processes,
1186		 * because there are no known events to look for.
1187		 * Prefer to return error instead of blocking
1188		 * indefinitely.
1189		 */
1190		return (EINVAL);
1191	}
1192
1193loop:
1194	if (q->p_flag & P_STATCHILD) {
1195		PROC_LOCK(q);
1196		q->p_flag &= ~P_STATCHILD;
1197		PROC_UNLOCK(q);
1198	}
1199	nfound = 0;
1200	sx_xlock(&proctree_lock);
1201	LIST_FOREACH(p, &q->p_children, p_sibling) {
1202		ret = proc_to_reap(td, p, idtype, id, status, options,
1203		    wrusage, siginfo, 0);
1204		if (ret == 0)
1205			continue;
1206		else if (ret == 1)
1207			nfound++;
1208		else
1209			return (0);
1210
1211		PROC_LOCK(p);
1212		PROC_SLOCK(p);
1213
1214		if ((options & WTRAPPED) != 0 &&
1215		    (p->p_flag & P_TRACED) != 0 &&
1216		    (p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 &&
1217		    (p->p_suspcount == p->p_numthreads) &&
1218		    ((p->p_flag & P_WAITED) == 0)) {
1219			PROC_SUNLOCK(p);
1220			if ((options & WNOWAIT) == 0)
1221				p->p_flag |= P_WAITED;
1222			sx_xunlock(&proctree_lock);
1223			td->td_retval[0] = p->p_pid;
1224
1225			if (status != NULL)
1226				*status = W_STOPCODE(p->p_xstat);
1227			if (siginfo != NULL) {
1228				siginfo->si_status = p->p_xstat;
1229				siginfo->si_code = CLD_TRAPPED;
1230			}
1231			if ((options & WNOWAIT) == 0) {
1232				PROC_LOCK(q);
1233				sigqueue_take(p->p_ksi);
1234				PROC_UNLOCK(q);
1235			}
1236
1237			CTR4(KTR_PTRACE,
1238	    "wait: returning trapped pid %d status %#x (xstat %d) xthread %d",
1239			    p->p_pid, W_STOPCODE(p->p_xstat), p->p_xstat,
1240			    p->p_xthread != NULL ? p->p_xthread->td_tid : -1);
1241			PROC_UNLOCK(p);
1242			return (0);
1243		}
1244		if ((options & WUNTRACED) != 0 &&
1245		    (p->p_flag & P_STOPPED_SIG) != 0 &&
1246		    (p->p_suspcount == p->p_numthreads) &&
1247		    ((p->p_flag & P_WAITED) == 0)) {
1248			PROC_SUNLOCK(p);
1249			if ((options & WNOWAIT) == 0)
1250				p->p_flag |= P_WAITED;
1251			sx_xunlock(&proctree_lock);
1252			td->td_retval[0] = p->p_pid;
1253
1254			if (status != NULL)
1255				*status = W_STOPCODE(p->p_xstat);
1256			if (siginfo != NULL) {
1257				siginfo->si_status = p->p_xstat;
1258				siginfo->si_code = CLD_STOPPED;
1259			}
1260			if ((options & WNOWAIT) == 0) {
1261				PROC_LOCK(q);
1262				sigqueue_take(p->p_ksi);
1263				PROC_UNLOCK(q);
1264			}
1265
1266			PROC_UNLOCK(p);
1267			return (0);
1268		}
1269		PROC_SUNLOCK(p);
1270		if ((options & WCONTINUED) != 0 &&
1271		    (p->p_flag & P_CONTINUED) != 0) {
1272			sx_xunlock(&proctree_lock);
1273			td->td_retval[0] = p->p_pid;
1274			if ((options & WNOWAIT) == 0) {
1275				p->p_flag &= ~P_CONTINUED;
1276				PROC_LOCK(q);
1277				sigqueue_take(p->p_ksi);
1278				PROC_UNLOCK(q);
1279			}
1280			PROC_UNLOCK(p);
1281
1282			if (status != NULL)
1283				*status = SIGCONT;
1284			if (siginfo != NULL) {
1285				siginfo->si_status = SIGCONT;
1286				siginfo->si_code = CLD_CONTINUED;
1287			}
1288			return (0);
1289		}
1290		PROC_UNLOCK(p);
1291	}
1292
1293	/*
1294	 * Look in the orphans list too, to allow the parent to
1295	 * collect it's child exit status even if child is being
1296	 * debugged.
1297	 *
1298	 * Debugger detaches from the parent upon successful
1299	 * switch-over from parent to child.  At this point due to
1300	 * re-parenting the parent loses the child to debugger and a
1301	 * wait4(2) call would report that it has no children to wait
1302	 * for.  By maintaining a list of orphans we allow the parent
1303	 * to successfully wait until the child becomes a zombie.
1304	 */
1305	if (nfound == 0) {
1306		LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1307			ret = proc_to_reap(td, p, idtype, id, NULL, options,
1308			    NULL, NULL, 1);
1309			if (ret != 0) {
1310				KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1311				    (int)td->td_retval[0]));
1312				nfound++;
1313				break;
1314			}
1315		}
1316	}
1317	if (nfound == 0) {
1318		sx_xunlock(&proctree_lock);
1319		return (ECHILD);
1320	}
1321	if (options & WNOHANG) {
1322		sx_xunlock(&proctree_lock);
1323		td->td_retval[0] = 0;
1324		return (0);
1325	}
1326	PROC_LOCK(q);
1327	sx_xunlock(&proctree_lock);
1328	if (q->p_flag & P_STATCHILD) {
1329		q->p_flag &= ~P_STATCHILD;
1330		error = 0;
1331	} else
1332		error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
1333	PROC_UNLOCK(q);
1334	if (error)
1335		return (error);
1336	goto loop;
1337}
1338
1339/*
1340 * Make process 'parent' the new parent of process 'child'.
1341 * Must be called with an exclusive hold of proctree lock.
1342 */
1343void
1344proc_reparent(struct proc *child, struct proc *parent)
1345{
1346
1347	sx_assert(&proctree_lock, SX_XLOCKED);
1348	PROC_LOCK_ASSERT(child, MA_OWNED);
1349	if (child->p_pptr == parent)
1350		return;
1351
1352	PROC_LOCK(child->p_pptr);
1353	sigqueue_take(child->p_ksi);
1354	PROC_UNLOCK(child->p_pptr);
1355	LIST_REMOVE(child, p_sibling);
1356	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1357
1358	clear_orphan(child);
1359	if (child->p_flag & P_TRACED) {
1360		if (LIST_EMPTY(&child->p_pptr->p_orphans)) {
1361			child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1362			LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child,
1363			    p_orphan);
1364		} else {
1365			LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans),
1366			    child, p_orphan);
1367		}
1368		child->p_treeflag |= P_TREE_ORPHANED;
1369	}
1370
1371	child->p_pptr = parent;
1372}
1373