kern_clocksource.c revision 280973
1/*-
2 * Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification, immediately at the beginning of the file.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/kern/kern_clocksource.c 280973 2015-04-02 01:02:42Z jhb $");
29
30/*
31 * Common routines to manage event timers hardware.
32 */
33
34#include "opt_device_polling.h"
35#include "opt_kdtrace.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/bus.h>
40#include <sys/limits.h>
41#include <sys/lock.h>
42#include <sys/kdb.h>
43#include <sys/ktr.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/kernel.h>
47#include <sys/sched.h>
48#include <sys/smp.h>
49#include <sys/sysctl.h>
50#include <sys/timeet.h>
51#include <sys/timetc.h>
52
53#include <machine/atomic.h>
54#include <machine/clock.h>
55#include <machine/cpu.h>
56#include <machine/smp.h>
57
58#ifdef KDTRACE_HOOKS
59#include <sys/dtrace_bsd.h>
60cyclic_clock_func_t	cyclic_clock_func = NULL;
61#endif
62
63int			cpu_deepest_sleep = 0;	/* Deepest Cx state available. */
64int			cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
65int			cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
66
67static void		setuptimer(void);
68static void		loadtimer(sbintime_t now, int first);
69static int		doconfigtimer(void);
70static void		configtimer(int start);
71static int		round_freq(struct eventtimer *et, int freq);
72
73static sbintime_t	getnextcpuevent(int idle);
74static sbintime_t	getnextevent(void);
75static int		handleevents(sbintime_t now, int fake);
76
77static struct mtx	et_hw_mtx;
78
79#define	ET_HW_LOCK(state)						\
80	{								\
81		if (timer->et_flags & ET_FLAGS_PERCPU)			\
82			mtx_lock_spin(&(state)->et_hw_mtx);		\
83		else							\
84			mtx_lock_spin(&et_hw_mtx);			\
85	}
86
87#define	ET_HW_UNLOCK(state)						\
88	{								\
89		if (timer->et_flags & ET_FLAGS_PERCPU)			\
90			mtx_unlock_spin(&(state)->et_hw_mtx);		\
91		else							\
92			mtx_unlock_spin(&et_hw_mtx);			\
93	}
94
95static struct eventtimer *timer = NULL;
96static sbintime_t	timerperiod;	/* Timer period for periodic mode. */
97static sbintime_t	statperiod;	/* statclock() events period. */
98static sbintime_t	profperiod;	/* profclock() events period. */
99static sbintime_t	nexttick;	/* Next global timer tick time. */
100static u_int		busy = 1;	/* Reconfiguration is in progress. */
101static int		profiling = 0;	/* Profiling events enabled. */
102
103static char		timername[32];	/* Wanted timer. */
104TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
105
106static int		singlemul = 0;	/* Multiplier for periodic mode. */
107TUNABLE_INT("kern.eventtimer.singlemul", &singlemul);
108SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RW, &singlemul,
109    0, "Multiplier for periodic mode");
110
111static u_int		idletick = 0;	/* Run periodic events when idle. */
112TUNABLE_INT("kern.eventtimer.idletick", &idletick);
113SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RW, &idletick,
114    0, "Run periodic events when idle");
115
116static int		periodic = 0;	/* Periodic or one-shot mode. */
117static int		want_periodic = 0; /* What mode to prefer. */
118TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
119
120struct pcpu_state {
121	struct mtx	et_hw_mtx;	/* Per-CPU timer mutex. */
122	u_int		action;		/* Reconfiguration requests. */
123	u_int		handle;		/* Immediate handle resuests. */
124	sbintime_t	now;		/* Last tick time. */
125	sbintime_t	nextevent;	/* Next scheduled event on this CPU. */
126	sbintime_t	nexttick;	/* Next timer tick time. */
127	sbintime_t	nexthard;	/* Next hardlock() event. */
128	sbintime_t	nextstat;	/* Next statclock() event. */
129	sbintime_t	nextprof;	/* Next profclock() event. */
130	sbintime_t	nextcall;	/* Next callout event. */
131	sbintime_t	nextcallopt;	/* Next optional callout event. */
132#ifdef KDTRACE_HOOKS
133	sbintime_t	nextcyc;	/* Next OpenSolaris cyclics event. */
134#endif
135	int		ipi;		/* This CPU needs IPI. */
136	int		idle;		/* This CPU is in idle mode. */
137};
138
139static DPCPU_DEFINE(struct pcpu_state, timerstate);
140DPCPU_DEFINE(sbintime_t, hardclocktime);
141
142/*
143 * Timer broadcast IPI handler.
144 */
145int
146hardclockintr(void)
147{
148	sbintime_t now;
149	struct pcpu_state *state;
150	int done;
151
152	if (doconfigtimer() || busy)
153		return (FILTER_HANDLED);
154	state = DPCPU_PTR(timerstate);
155	now = state->now;
156	CTR3(KTR_SPARE2, "ipi  at %d:    now  %d.%08x",
157	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
158	done = handleevents(now, 0);
159	return (done ? FILTER_HANDLED : FILTER_STRAY);
160}
161
162/*
163 * Handle all events for specified time on this CPU
164 */
165static int
166handleevents(sbintime_t now, int fake)
167{
168	sbintime_t t, *hct;
169	struct trapframe *frame;
170	struct pcpu_state *state;
171	int usermode;
172	int done, runs;
173
174	CTR3(KTR_SPARE2, "handle at %d:  now  %d.%08x",
175	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
176	done = 0;
177	if (fake) {
178		frame = NULL;
179		usermode = 0;
180	} else {
181		frame = curthread->td_intr_frame;
182		usermode = TRAPF_USERMODE(frame);
183	}
184
185	state = DPCPU_PTR(timerstate);
186
187	runs = 0;
188	while (now >= state->nexthard) {
189		state->nexthard += tick_sbt;
190		runs++;
191	}
192	if (runs) {
193		hct = DPCPU_PTR(hardclocktime);
194		*hct = state->nexthard - tick_sbt;
195		if (fake < 2) {
196			hardclock_cnt(runs, usermode);
197			done = 1;
198		}
199	}
200	runs = 0;
201	while (now >= state->nextstat) {
202		state->nextstat += statperiod;
203		runs++;
204	}
205	if (runs && fake < 2) {
206		statclock_cnt(runs, usermode);
207		done = 1;
208	}
209	if (profiling) {
210		runs = 0;
211		while (now >= state->nextprof) {
212			state->nextprof += profperiod;
213			runs++;
214		}
215		if (runs && !fake) {
216			profclock_cnt(runs, usermode, TRAPF_PC(frame));
217			done = 1;
218		}
219	} else
220		state->nextprof = state->nextstat;
221	if (now >= state->nextcallopt) {
222		state->nextcall = state->nextcallopt = INT64_MAX;
223		callout_process(now);
224	}
225
226#ifdef KDTRACE_HOOKS
227	if (fake == 0 && now >= state->nextcyc && cyclic_clock_func != NULL) {
228		state->nextcyc = INT64_MAX;
229		(*cyclic_clock_func)(frame);
230	}
231#endif
232
233	t = getnextcpuevent(0);
234	ET_HW_LOCK(state);
235	if (!busy) {
236		state->idle = 0;
237		state->nextevent = t;
238		loadtimer(now, (fake == 2) &&
239		    (timer->et_flags & ET_FLAGS_PERCPU));
240	}
241	ET_HW_UNLOCK(state);
242	return (done);
243}
244
245/*
246 * Schedule binuptime of the next event on current CPU.
247 */
248static sbintime_t
249getnextcpuevent(int idle)
250{
251	sbintime_t event;
252	struct pcpu_state *state;
253	u_int hardfreq;
254
255	state = DPCPU_PTR(timerstate);
256	/* Handle hardclock() events, skipping some if CPU is idle. */
257	event = state->nexthard;
258	if (idle) {
259		hardfreq = (u_int)hz / 2;
260		if (tc_min_ticktock_freq > 2
261#ifdef SMP
262		    && curcpu == CPU_FIRST()
263#endif
264		    )
265			hardfreq = hz / tc_min_ticktock_freq;
266		if (hardfreq > 1)
267			event += tick_sbt * (hardfreq - 1);
268	}
269	/* Handle callout events. */
270	if (event > state->nextcall)
271		event = state->nextcall;
272	if (!idle) { /* If CPU is active - handle other types of events. */
273		if (event > state->nextstat)
274			event = state->nextstat;
275		if (profiling && event > state->nextprof)
276			event = state->nextprof;
277	}
278#ifdef KDTRACE_HOOKS
279	if (event > state->nextcyc)
280		event = state->nextcyc;
281#endif
282	return (event);
283}
284
285/*
286 * Schedule binuptime of the next event on all CPUs.
287 */
288static sbintime_t
289getnextevent(void)
290{
291	struct pcpu_state *state;
292	sbintime_t event;
293#ifdef SMP
294	int	cpu;
295#endif
296	int	c;
297
298	state = DPCPU_PTR(timerstate);
299	event = state->nextevent;
300	c = -1;
301#ifdef SMP
302	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
303		CPU_FOREACH(cpu) {
304			state = DPCPU_ID_PTR(cpu, timerstate);
305			if (event > state->nextevent) {
306				event = state->nextevent;
307				c = cpu;
308			}
309		}
310	}
311#endif
312	CTR4(KTR_SPARE2, "next at %d:    next %d.%08x by %d",
313	    curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
314	return (event);
315}
316
317/* Hardware timer callback function. */
318static void
319timercb(struct eventtimer *et, void *arg)
320{
321	sbintime_t now;
322	sbintime_t *next;
323	struct pcpu_state *state;
324#ifdef SMP
325	int cpu, bcast;
326#endif
327
328	/* Do not touch anything if somebody reconfiguring timers. */
329	if (busy)
330		return;
331	/* Update present and next tick times. */
332	state = DPCPU_PTR(timerstate);
333	if (et->et_flags & ET_FLAGS_PERCPU) {
334		next = &state->nexttick;
335	} else
336		next = &nexttick;
337	now = sbinuptime();
338	if (periodic)
339		*next = now + timerperiod;
340	else
341		*next = -1;	/* Next tick is not scheduled yet. */
342	state->now = now;
343	CTR3(KTR_SPARE2, "intr at %d:    now  %d.%08x",
344	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
345
346#ifdef SMP
347	/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
348	bcast = 0;
349	if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
350		CPU_FOREACH(cpu) {
351			state = DPCPU_ID_PTR(cpu, timerstate);
352			ET_HW_LOCK(state);
353			state->now = now;
354			if (now >= state->nextevent) {
355				state->nextevent += SBT_1S;
356				if (curcpu != cpu) {
357					state->ipi = 1;
358					bcast = 1;
359				}
360			}
361			ET_HW_UNLOCK(state);
362		}
363	}
364#endif
365
366	/* Handle events for this time on this CPU. */
367	handleevents(now, 0);
368
369#ifdef SMP
370	/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
371	if (bcast) {
372		CPU_FOREACH(cpu) {
373			if (curcpu == cpu)
374				continue;
375			state = DPCPU_ID_PTR(cpu, timerstate);
376			if (state->ipi) {
377				state->ipi = 0;
378				ipi_cpu(cpu, IPI_HARDCLOCK);
379			}
380		}
381	}
382#endif
383}
384
385/*
386 * Load new value into hardware timer.
387 */
388static void
389loadtimer(sbintime_t now, int start)
390{
391	struct pcpu_state *state;
392	sbintime_t new;
393	sbintime_t *next;
394	uint64_t tmp;
395	int eq;
396
397	if (timer->et_flags & ET_FLAGS_PERCPU) {
398		state = DPCPU_PTR(timerstate);
399		next = &state->nexttick;
400	} else
401		next = &nexttick;
402	if (periodic) {
403		if (start) {
404			/*
405			 * Try to start all periodic timers aligned
406			 * to period to make events synchronous.
407			 */
408			tmp = now % timerperiod;
409			new = timerperiod - tmp;
410			if (new < tmp)		/* Left less then passed. */
411				new += timerperiod;
412			CTR5(KTR_SPARE2, "load p at %d:   now %d.%08x first in %d.%08x",
413			    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
414			    (int)(new >> 32), (u_int)(new & 0xffffffff));
415			*next = new + now;
416			et_start(timer, new, timerperiod);
417		}
418	} else {
419		new = getnextevent();
420		eq = (new == *next);
421		CTR4(KTR_SPARE2, "load at %d:    next %d.%08x eq %d",
422		    curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
423		if (!eq) {
424			*next = new;
425			et_start(timer, new - now, 0);
426		}
427	}
428}
429
430/*
431 * Prepare event timer parameters after configuration changes.
432 */
433static void
434setuptimer(void)
435{
436	int freq;
437
438	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
439		periodic = 0;
440	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
441		periodic = 1;
442	singlemul = MIN(MAX(singlemul, 1), 20);
443	freq = hz * singlemul;
444	while (freq < (profiling ? profhz : stathz))
445		freq += hz;
446	freq = round_freq(timer, freq);
447	timerperiod = SBT_1S / freq;
448}
449
450/*
451 * Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
452 */
453static int
454doconfigtimer(void)
455{
456	sbintime_t now;
457	struct pcpu_state *state;
458
459	state = DPCPU_PTR(timerstate);
460	switch (atomic_load_acq_int(&state->action)) {
461	case 1:
462		now = sbinuptime();
463		ET_HW_LOCK(state);
464		loadtimer(now, 1);
465		ET_HW_UNLOCK(state);
466		state->handle = 0;
467		atomic_store_rel_int(&state->action, 0);
468		return (1);
469	case 2:
470		ET_HW_LOCK(state);
471		et_stop(timer);
472		ET_HW_UNLOCK(state);
473		state->handle = 0;
474		atomic_store_rel_int(&state->action, 0);
475		return (1);
476	}
477	if (atomic_readandclear_int(&state->handle) && !busy) {
478		now = sbinuptime();
479		handleevents(now, 0);
480		return (1);
481	}
482	return (0);
483}
484
485/*
486 * Reconfigure specified timer.
487 * For per-CPU timers use IPI to make other CPUs to reconfigure.
488 */
489static void
490configtimer(int start)
491{
492	sbintime_t now, next;
493	struct pcpu_state *state;
494	int cpu;
495
496	if (start) {
497		setuptimer();
498		now = sbinuptime();
499	} else
500		now = 0;
501	critical_enter();
502	ET_HW_LOCK(DPCPU_PTR(timerstate));
503	if (start) {
504		/* Initialize time machine parameters. */
505		next = now + timerperiod;
506		if (periodic)
507			nexttick = next;
508		else
509			nexttick = -1;
510		CPU_FOREACH(cpu) {
511			state = DPCPU_ID_PTR(cpu, timerstate);
512			state->now = now;
513			if (!smp_started && cpu != CPU_FIRST())
514				state->nextevent = INT64_MAX;
515			else
516				state->nextevent = next;
517			if (periodic)
518				state->nexttick = next;
519			else
520				state->nexttick = -1;
521			state->nexthard = next;
522			state->nextstat = next;
523			state->nextprof = next;
524			state->nextcall = next;
525			state->nextcallopt = next;
526			hardclock_sync(cpu);
527		}
528		busy = 0;
529		/* Start global timer or per-CPU timer of this CPU. */
530		loadtimer(now, 1);
531	} else {
532		busy = 1;
533		/* Stop global timer or per-CPU timer of this CPU. */
534		et_stop(timer);
535	}
536	ET_HW_UNLOCK(DPCPU_PTR(timerstate));
537#ifdef SMP
538	/* If timer is global or there is no other CPUs yet - we are done. */
539	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
540		critical_exit();
541		return;
542	}
543	/* Set reconfigure flags for other CPUs. */
544	CPU_FOREACH(cpu) {
545		state = DPCPU_ID_PTR(cpu, timerstate);
546		atomic_store_rel_int(&state->action,
547		    (cpu == curcpu) ? 0 : ( start ? 1 : 2));
548	}
549	/* Broadcast reconfigure IPI. */
550	ipi_all_but_self(IPI_HARDCLOCK);
551	/* Wait for reconfiguration completed. */
552restart:
553	cpu_spinwait();
554	CPU_FOREACH(cpu) {
555		if (cpu == curcpu)
556			continue;
557		state = DPCPU_ID_PTR(cpu, timerstate);
558		if (atomic_load_acq_int(&state->action))
559			goto restart;
560	}
561#endif
562	critical_exit();
563}
564
565/*
566 * Calculate nearest frequency supported by hardware timer.
567 */
568static int
569round_freq(struct eventtimer *et, int freq)
570{
571	uint64_t div;
572
573	if (et->et_frequency != 0) {
574		div = lmax((et->et_frequency + freq / 2) / freq, 1);
575		if (et->et_flags & ET_FLAGS_POW2DIV)
576			div = 1 << (flsl(div + div / 2) - 1);
577		freq = (et->et_frequency + div / 2) / div;
578	}
579	if (et->et_min_period > SBT_1S)
580		panic("Event timer \"%s\" doesn't support sub-second periods!",
581		    et->et_name);
582	else if (et->et_min_period != 0)
583		freq = min(freq, SBT2FREQ(et->et_min_period));
584	if (et->et_max_period < SBT_1S && et->et_max_period != 0)
585		freq = max(freq, SBT2FREQ(et->et_max_period));
586	return (freq);
587}
588
589/*
590 * Configure and start event timers (BSP part).
591 */
592void
593cpu_initclocks_bsp(void)
594{
595	struct pcpu_state *state;
596	int base, div, cpu;
597
598	mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
599	CPU_FOREACH(cpu) {
600		state = DPCPU_ID_PTR(cpu, timerstate);
601		mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
602#ifdef KDTRACE_HOOKS
603		state->nextcyc = INT64_MAX;
604#endif
605		state->nextcall = INT64_MAX;
606		state->nextcallopt = INT64_MAX;
607	}
608	periodic = want_periodic;
609	/* Grab requested timer or the best of present. */
610	if (timername[0])
611		timer = et_find(timername, 0, 0);
612	if (timer == NULL && periodic) {
613		timer = et_find(NULL,
614		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
615	}
616	if (timer == NULL) {
617		timer = et_find(NULL,
618		    ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
619	}
620	if (timer == NULL && !periodic) {
621		timer = et_find(NULL,
622		    ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
623	}
624	if (timer == NULL)
625		panic("No usable event timer found!");
626	et_init(timer, timercb, NULL, NULL);
627
628	/* Adapt to timer capabilities. */
629	if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
630		periodic = 0;
631	else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
632		periodic = 1;
633	if (timer->et_flags & ET_FLAGS_C3STOP)
634		cpu_disable_c3_sleep++;
635
636	/*
637	 * We honor the requested 'hz' value.
638	 * We want to run stathz in the neighborhood of 128hz.
639	 * We would like profhz to run as often as possible.
640	 */
641	if (singlemul <= 0 || singlemul > 20) {
642		if (hz >= 1500 || (hz % 128) == 0)
643			singlemul = 1;
644		else if (hz >= 750)
645			singlemul = 2;
646		else
647			singlemul = 4;
648	}
649	if (periodic) {
650		base = round_freq(timer, hz * singlemul);
651		singlemul = max((base + hz / 2) / hz, 1);
652		hz = (base + singlemul / 2) / singlemul;
653		if (base <= 128)
654			stathz = base;
655		else {
656			div = base / 128;
657			if (div >= singlemul && (div % singlemul) == 0)
658				div++;
659			stathz = base / div;
660		}
661		profhz = stathz;
662		while ((profhz + stathz) <= 128 * 64)
663			profhz += stathz;
664		profhz = round_freq(timer, profhz);
665	} else {
666		hz = round_freq(timer, hz);
667		stathz = round_freq(timer, 127);
668		profhz = round_freq(timer, stathz * 64);
669	}
670	tick = 1000000 / hz;
671	tick_sbt = SBT_1S / hz;
672	tick_bt = sbttobt(tick_sbt);
673	statperiod = SBT_1S / stathz;
674	profperiod = SBT_1S / profhz;
675	ET_LOCK();
676	configtimer(1);
677	ET_UNLOCK();
678}
679
680/*
681 * Start per-CPU event timers on APs.
682 */
683void
684cpu_initclocks_ap(void)
685{
686	sbintime_t now;
687	struct pcpu_state *state;
688	struct thread *td;
689
690	state = DPCPU_PTR(timerstate);
691	now = sbinuptime();
692	ET_HW_LOCK(state);
693	state->now = now;
694	hardclock_sync(curcpu);
695	spinlock_enter();
696	ET_HW_UNLOCK(state);
697	td = curthread;
698	td->td_intr_nesting_level++;
699	handleevents(state->now, 2);
700	td->td_intr_nesting_level--;
701	spinlock_exit();
702}
703
704/*
705 * Switch to profiling clock rates.
706 */
707void
708cpu_startprofclock(void)
709{
710
711	ET_LOCK();
712	if (profiling == 0) {
713		if (periodic) {
714			configtimer(0);
715			profiling = 1;
716			configtimer(1);
717		} else
718			profiling = 1;
719	} else
720		profiling++;
721	ET_UNLOCK();
722}
723
724/*
725 * Switch to regular clock rates.
726 */
727void
728cpu_stopprofclock(void)
729{
730
731	ET_LOCK();
732	if (profiling == 1) {
733		if (periodic) {
734			configtimer(0);
735			profiling = 0;
736			configtimer(1);
737		} else
738		profiling = 0;
739	} else
740		profiling--;
741	ET_UNLOCK();
742}
743
744/*
745 * Switch to idle mode (all ticks handled).
746 */
747sbintime_t
748cpu_idleclock(void)
749{
750	sbintime_t now, t;
751	struct pcpu_state *state;
752
753	if (idletick || busy ||
754	    (periodic && (timer->et_flags & ET_FLAGS_PERCPU))
755#ifdef DEVICE_POLLING
756	    || curcpu == CPU_FIRST()
757#endif
758	    )
759		return (-1);
760	state = DPCPU_PTR(timerstate);
761	if (periodic)
762		now = state->now;
763	else
764		now = sbinuptime();
765	CTR3(KTR_SPARE2, "idle at %d:    now  %d.%08x",
766	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
767	t = getnextcpuevent(1);
768	ET_HW_LOCK(state);
769	state->idle = 1;
770	state->nextevent = t;
771	if (!periodic)
772		loadtimer(now, 0);
773	ET_HW_UNLOCK(state);
774	return (MAX(t - now, 0));
775}
776
777/*
778 * Switch to active mode (skip empty ticks).
779 */
780void
781cpu_activeclock(void)
782{
783	sbintime_t now;
784	struct pcpu_state *state;
785	struct thread *td;
786
787	state = DPCPU_PTR(timerstate);
788	if (state->idle == 0 || busy)
789		return;
790	if (periodic)
791		now = state->now;
792	else
793		now = sbinuptime();
794	CTR3(KTR_SPARE2, "active at %d:  now  %d.%08x",
795	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
796	spinlock_enter();
797	td = curthread;
798	td->td_intr_nesting_level++;
799	handleevents(now, 1);
800	td->td_intr_nesting_level--;
801	spinlock_exit();
802}
803
804/*
805 * Change the frequency of the given timer.  This changes et->et_frequency and
806 * if et is the active timer it reconfigures the timer on all CPUs.  This is
807 * intended to be a private interface for the use of et_change_frequency() only.
808 */
809void
810cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
811{
812
813	ET_LOCK();
814	if (et == timer) {
815		configtimer(0);
816		et->et_frequency = newfreq;
817		configtimer(1);
818	} else
819		et->et_frequency = newfreq;
820	ET_UNLOCK();
821}
822
823#ifdef KDTRACE_HOOKS
824void
825clocksource_cyc_set(const struct bintime *bt)
826{
827	sbintime_t now, t;
828	struct pcpu_state *state;
829
830	/* Do not touch anything if somebody reconfiguring timers. */
831	if (busy)
832		return;
833	t = bttosbt(*bt);
834	state = DPCPU_PTR(timerstate);
835	if (periodic)
836		now = state->now;
837	else
838		now = sbinuptime();
839
840	CTR5(KTR_SPARE2, "set_cyc at %d:  now  %d.%08x  t  %d.%08x",
841	    curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
842	    (int)(t >> 32), (u_int)(t & 0xffffffff));
843
844	ET_HW_LOCK(state);
845	if (t == state->nextcyc)
846		goto done;
847	state->nextcyc = t;
848	if (t >= state->nextevent)
849		goto done;
850	state->nextevent = t;
851	if (!periodic)
852		loadtimer(now, 0);
853done:
854	ET_HW_UNLOCK(state);
855}
856#endif
857
858void
859cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
860{
861	struct pcpu_state *state;
862
863	/* Do not touch anything if somebody reconfiguring timers. */
864	if (busy)
865		return;
866	CTR6(KTR_SPARE2, "new co at %d:    on %d at %d.%08x - %d.%08x",
867	    curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
868	    (int)(bt >> 32), (u_int)(bt & 0xffffffff));
869	state = DPCPU_ID_PTR(cpu, timerstate);
870	ET_HW_LOCK(state);
871
872	/*
873	 * If there is callout time already set earlier -- do nothing.
874	 * This check may appear redundant because we check already in
875	 * callout_process() but this double check guarantees we're safe
876	 * with respect to race conditions between interrupts execution
877	 * and scheduling.
878	 */
879	state->nextcallopt = bt_opt;
880	if (bt >= state->nextcall)
881		goto done;
882	state->nextcall = bt;
883	/* If there is some other event set earlier -- do nothing. */
884	if (bt >= state->nextevent)
885		goto done;
886	state->nextevent = bt;
887	/* If timer is periodic -- there is nothing to reprogram. */
888	if (periodic)
889		goto done;
890	/* If timer is global or of the current CPU -- reprogram it. */
891	if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
892		loadtimer(sbinuptime(), 0);
893done:
894		ET_HW_UNLOCK(state);
895		return;
896	}
897	/* Otherwise make other CPU to reprogram it. */
898	state->handle = 1;
899	ET_HW_UNLOCK(state);
900#ifdef SMP
901	ipi_cpu(cpu, IPI_HARDCLOCK);
902#endif
903}
904
905/*
906 * Report or change the active event timers hardware.
907 */
908static int
909sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
910{
911	char buf[32];
912	struct eventtimer *et;
913	int error;
914
915	ET_LOCK();
916	et = timer;
917	snprintf(buf, sizeof(buf), "%s", et->et_name);
918	ET_UNLOCK();
919	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
920	ET_LOCK();
921	et = timer;
922	if (error != 0 || req->newptr == NULL ||
923	    strcasecmp(buf, et->et_name) == 0) {
924		ET_UNLOCK();
925		return (error);
926	}
927	et = et_find(buf, 0, 0);
928	if (et == NULL) {
929		ET_UNLOCK();
930		return (ENOENT);
931	}
932	configtimer(0);
933	et_free(timer);
934	if (et->et_flags & ET_FLAGS_C3STOP)
935		cpu_disable_c3_sleep++;
936	if (timer->et_flags & ET_FLAGS_C3STOP)
937		cpu_disable_c3_sleep--;
938	periodic = want_periodic;
939	timer = et;
940	et_init(timer, timercb, NULL, NULL);
941	configtimer(1);
942	ET_UNLOCK();
943	return (error);
944}
945SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
946    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
947    0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
948
949/*
950 * Report or change the active event timer periodicity.
951 */
952static int
953sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
954{
955	int error, val;
956
957	val = periodic;
958	error = sysctl_handle_int(oidp, &val, 0, req);
959	if (error != 0 || req->newptr == NULL)
960		return (error);
961	ET_LOCK();
962	configtimer(0);
963	periodic = want_periodic = val;
964	configtimer(1);
965	ET_UNLOCK();
966	return (error);
967}
968SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
969    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
970    0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
971
972#include "opt_ddb.h"
973
974#ifdef DDB
975#include <ddb/ddb.h>
976
977DB_SHOW_COMMAND(clocksource, db_show_clocksource)
978{
979	struct pcpu_state *st;
980	int c;
981
982	CPU_FOREACH(c) {
983		st = DPCPU_ID_PTR(c, timerstate);
984		db_printf(
985		    "CPU %2d: action %d handle %d  ipi %d idle %d\n"
986		    "        now %#jx nevent %#jx (%jd)\n"
987		    "        ntick %#jx (%jd) nhard %#jx (%jd)\n"
988		    "        nstat %#jx (%jd) nprof %#jx (%jd)\n"
989		    "        ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
990		    c, st->action, st->handle, st->ipi, st->idle,
991		    (uintmax_t)st->now,
992		    (uintmax_t)st->nextevent,
993		    (uintmax_t)(st->nextevent - st->now) / tick_sbt,
994		    (uintmax_t)st->nexttick,
995		    (uintmax_t)(st->nexttick - st->now) / tick_sbt,
996		    (uintmax_t)st->nexthard,
997		    (uintmax_t)(st->nexthard - st->now) / tick_sbt,
998		    (uintmax_t)st->nextstat,
999		    (uintmax_t)(st->nextstat - st->now) / tick_sbt,
1000		    (uintmax_t)st->nextprof,
1001		    (uintmax_t)(st->nextprof - st->now) / tick_sbt,
1002		    (uintmax_t)st->nextcall,
1003		    (uintmax_t)(st->nextcall - st->now) / tick_sbt,
1004		    (uintmax_t)st->nextcallopt,
1005		    (uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
1006	}
1007}
1008
1009#endif
1010