mp_machdep.c revision 268181
1/*-
2 * Copyright (c) 2001-2005 Marcel Moolenaar
3 * Copyright (c) 2000 Doug Rabson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/10/sys/ia64/ia64/mp_machdep.c 268181 2014-07-02 21:53:34Z marcel $");
30
31#include "opt_kstack_pages.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/ktr.h>
36#include <sys/proc.h>
37#include <sys/bus.h>
38#include <sys/kthread.h>
39#include <sys/lock.h>
40#include <sys/malloc.h>
41#include <sys/mutex.h>
42#include <sys/kernel.h>
43#include <sys/pcpu.h>
44#include <sys/sched.h>
45#include <sys/smp.h>
46#include <sys/sysctl.h>
47#include <sys/uuid.h>
48
49#include <machine/atomic.h>
50#include <machine/bootinfo.h>
51#include <machine/cpu.h>
52#include <machine/fpu.h>
53#include <machine/intr.h>
54#include <machine/mca.h>
55#include <machine/md_var.h>
56#include <machine/pal.h>
57#include <machine/pcb.h>
58#include <machine/sal.h>
59#include <machine/smp.h>
60
61#include <vm/vm.h>
62#include <vm/pmap.h>
63#include <vm/vm_extern.h>
64#include <vm/vm_kern.h>
65
66extern uint64_t bdata[];
67
68extern int smp_disabled;
69
70MALLOC_DEFINE(M_SMP, "SMP", "SMP related allocations");
71
72void ia64_ap_startup(void);
73
74#define	SAPIC_ID_GET_ID(x)	((u_int)((x) >> 8) & 0xff)
75#define	SAPIC_ID_GET_EID(x)	((u_int)(x) & 0xff)
76#define	SAPIC_ID_SET(id, eid)	((u_int)(((id) & 0xff) << 8) | ((eid) & 0xff))
77
78/* State used to wake and bootstrap APs. */
79struct ia64_ap_state ia64_ap_state;
80
81int ia64_ipi_ast;
82int ia64_ipi_hardclock;
83int ia64_ipi_highfp;
84int ia64_ipi_nmi;
85int ia64_ipi_preempt;
86int ia64_ipi_rndzvs;
87int ia64_ipi_stop;
88
89static u_int
90sz2shft(uint64_t sz)
91{
92	uint64_t s;
93	u_int shft;
94
95	shft = 12;      /* Start with 4K */
96	s = 1 << shft;
97	while (s < sz) {
98		shft++;
99		s <<= 1;
100	}
101	return (shft);
102}
103
104static u_int
105ia64_ih_ast(struct thread *td, u_int xiv, struct trapframe *tf)
106{
107
108	PCPU_INC(md.stats.pcs_nasts);
109	CTR1(KTR_SMP, "IPI_AST, cpuid=%d", PCPU_GET(cpuid));
110	return (0);
111}
112
113static u_int
114ia64_ih_hardclock(struct thread *td, u_int xiv, struct trapframe *tf)
115{
116
117	PCPU_INC(md.stats.pcs_nhardclocks);
118	CTR1(KTR_SMP, "IPI_HARDCLOCK, cpuid=%d", PCPU_GET(cpuid));
119	hardclockintr();
120	return (0);
121}
122
123static u_int
124ia64_ih_highfp(struct thread *td, u_int xiv, struct trapframe *tf)
125{
126
127	PCPU_INC(md.stats.pcs_nhighfps);
128	ia64_highfp_save_ipi();
129	return (0);
130}
131
132static u_int
133ia64_ih_preempt(struct thread *td, u_int xiv, struct trapframe *tf)
134{
135
136	PCPU_INC(md.stats.pcs_npreempts);
137	CTR1(KTR_SMP, "IPI_PREEMPT, cpuid=%d", PCPU_GET(cpuid));
138	sched_preempt(curthread);
139	return (0);
140}
141
142static u_int
143ia64_ih_rndzvs(struct thread *td, u_int xiv, struct trapframe *tf)
144{
145
146	PCPU_INC(md.stats.pcs_nrdvs);
147	CTR1(KTR_SMP, "IPI_RENDEZVOUS, cpuid=%d", PCPU_GET(cpuid));
148	smp_rendezvous_action();
149	return (0);
150}
151
152static u_int
153ia64_ih_stop(struct thread *td, u_int xiv, struct trapframe *tf)
154{
155	u_int cpuid;
156
157	PCPU_INC(md.stats.pcs_nstops);
158	cpuid = PCPU_GET(cpuid);
159
160	savectx(PCPU_PTR(md.pcb));
161
162	CPU_SET_ATOMIC(cpuid, &stopped_cpus);
163	while (!CPU_ISSET(cpuid, &started_cpus))
164		cpu_spinwait();
165	CPU_CLR_ATOMIC(cpuid, &started_cpus);
166	CPU_CLR_ATOMIC(cpuid, &stopped_cpus);
167	return (0);
168}
169
170struct cpu_group *
171cpu_topo(void)
172{
173
174	return smp_topo_none();
175}
176
177static void
178ia64_store_mca_state(void* arg)
179{
180	struct pcpu *pc = arg;
181	struct thread *td = curthread;
182
183	/*
184	 * ia64_mca_save_state() is CPU-sensitive, so bind ourself to our
185	 * target CPU.
186	 */
187	thread_lock(td);
188	sched_bind(td, pc->pc_cpuid);
189	thread_unlock(td);
190
191	ia64_mca_init_ap();
192
193	/*
194	 * Get and save the CPU specific MCA records. Should we get the
195	 * MCA state for each processor, or just the CMC state?
196	 */
197	ia64_mca_save_state(SAL_INFO_MCA);
198	ia64_mca_save_state(SAL_INFO_CMC);
199
200	kproc_exit(0);
201}
202
203void
204ia64_ap_startup(void)
205{
206	uint64_t vhpt;
207
208	ia64_ap_state.as_trace = 0x100;
209
210	ia64_set_rr(IA64_RR_BASE(5), (5 << 8) | (PAGE_SHIFT << 2) | 1);
211	ia64_set_rr(IA64_RR_BASE(6), (6 << 8) | (LOG2_ID_PAGE_SIZE << 2));
212	ia64_set_rr(IA64_RR_BASE(7), (7 << 8) | (LOG2_ID_PAGE_SIZE << 2));
213	ia64_srlz_d();
214
215	pcpup = ia64_ap_state.as_pcpu;
216	ia64_set_k4((intptr_t)pcpup);
217
218	ia64_ap_state.as_trace = 0x108;
219
220	vhpt = PCPU_GET(md.vhpt);
221	map_vhpt(vhpt);
222	ia64_set_pta(vhpt + (1 << 8) + (pmap_vhpt_log2size << 2) + 1);
223	ia64_srlz_i();
224
225	ia64_ap_state.as_trace = 0x110;
226
227	ia64_ap_state.as_awake = 1;
228	ia64_ap_state.as_delay = 0;
229
230	map_pal_code();
231	map_gateway_page();
232
233	ia64_set_fpsr(IA64_FPSR_DEFAULT);
234
235	/* Wait until it's time for us to be unleashed */
236	while (ia64_ap_state.as_spin)
237		cpu_spinwait();
238
239	/* Initialize curthread. */
240	KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread"));
241	PCPU_SET(curthread, PCPU_GET(idlethread));
242
243	atomic_add_int(&ia64_ap_state.as_awake, 1);
244	while (!smp_started)
245		cpu_spinwait();
246
247	CTR1(KTR_SMP, "SMP: cpu%d launched", PCPU_GET(cpuid));
248
249	cpu_initclocks();
250
251	ia64_set_tpr(0);
252	ia64_srlz_d();
253
254	sched_throw(NULL);
255	/* NOTREACHED */
256}
257
258void
259cpu_mp_setmaxid(void)
260{
261
262	/*
263	 * Count the number of processors in the system by walking the ACPI
264	 * tables. Note that we record the actual number of processors, even
265	 * if this is larger than MAXCPU. We only activate MAXCPU processors.
266	 */
267	mp_ncpus = ia64_count_cpus();
268
269	/*
270	 * Set the largest cpuid we're going to use. This is necessary for
271	 * VM initialization.
272	 */
273	mp_maxid = min(mp_ncpus, MAXCPU) - 1;
274}
275
276int
277cpu_mp_probe(void)
278{
279
280	/*
281	 * If there's only 1 processor, or we don't have a wake-up vector,
282	 * we're not going to enable SMP. Note that no wake-up vector can
283	 * also mean that the wake-up mechanism is not supported. In this
284	 * case we can have multiple processors, but we simply can't wake
285	 * them up...
286	 */
287	return (mp_ncpus > 1 && ia64_ipi_wakeup != 0);
288}
289
290void
291cpu_mp_add(u_int acpi_id, u_int id, u_int eid)
292{
293	struct pcpu *pc;
294	void *dpcpu;
295	u_int cpuid, sapic_id;
296
297	if (smp_disabled)
298		return;
299
300	sapic_id = SAPIC_ID_SET(id, eid);
301	cpuid = (IA64_LID_GET_SAPIC_ID(ia64_get_lid()) == sapic_id)
302	    ? 0 : smp_cpus++;
303
304	KASSERT(!CPU_ISSET(cpuid, &all_cpus),
305	    ("%s: cpu%d already in CPU map", __func__, acpi_id));
306
307	if (cpuid != 0) {
308		pc = (struct pcpu *)malloc(sizeof(*pc), M_SMP, M_WAITOK);
309		pcpu_init(pc, cpuid, sizeof(*pc));
310		dpcpu = (void *)kmem_malloc(kernel_arena, DPCPU_SIZE,
311		    M_WAITOK | M_ZERO);
312		dpcpu_init(dpcpu, cpuid);
313	} else
314		pc = pcpup;
315
316	cpu_pcpu_setup(pc, acpi_id, sapic_id);
317
318	CPU_SET(pc->pc_cpuid, &all_cpus);
319}
320
321void
322cpu_mp_announce()
323{
324	struct pcpu *pc;
325	uint32_t sapic_id;
326	int i;
327
328	for (i = 0; i <= mp_maxid; i++) {
329		pc = pcpu_find(i);
330		if (pc != NULL) {
331			sapic_id = IA64_LID_GET_SAPIC_ID(pc->pc_md.lid);
332			printf("cpu%d: ACPI Id=%x, SAPIC Id=%x, SAPIC Eid=%x",
333			    i, pc->pc_acpi_id, SAPIC_ID_GET_ID(sapic_id),
334			    SAPIC_ID_GET_EID(sapic_id));
335			if (i == 0)
336				printf(" (BSP)\n");
337			else
338				printf("\n");
339		}
340	}
341}
342
343void
344cpu_mp_start()
345{
346	struct ia64_sal_result result;
347	struct ia64_fdesc *fd;
348	struct pcpu *pc;
349	uintptr_t state;
350	u_char *stp;
351
352	state = ia64_tpa((uintptr_t)&ia64_ap_state);
353	fd = (struct ia64_fdesc *) os_boot_rendez;
354	result = ia64_sal_entry(SAL_SET_VECTORS, SAL_OS_BOOT_RENDEZ,
355	    ia64_tpa(fd->func), state, 0, 0, 0, 0);
356
357	ia64_ap_state.as_pgtbl_pte = PTE_PRESENT | PTE_MA_WB |
358	    PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RW |
359	    (bootinfo->bi_pbvm_pgtbl & PTE_PPN_MASK);
360	ia64_ap_state.as_pgtbl_itir = sz2shft(bootinfo->bi_pbvm_pgtblsz) << 2;
361	ia64_ap_state.as_text_va = IA64_PBVM_BASE;
362	ia64_ap_state.as_text_pte = PTE_PRESENT | PTE_MA_WB |
363	    PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RX |
364	    (ia64_tpa(IA64_PBVM_BASE) & PTE_PPN_MASK);
365	ia64_ap_state.as_text_itir = bootinfo->bi_text_mapped << 2;
366	ia64_ap_state.as_data_va = (uintptr_t)bdata;
367	ia64_ap_state.as_data_pte = PTE_PRESENT | PTE_MA_WB |
368	    PTE_ACCESSED | PTE_DIRTY | PTE_PL_KERN | PTE_AR_RW |
369	    (ia64_tpa((uintptr_t)bdata) & PTE_PPN_MASK);
370	ia64_ap_state.as_data_itir = bootinfo->bi_data_mapped << 2;
371
372	/* Keep 'em spinning until we unleash them... */
373	ia64_ap_state.as_spin = 1;
374
375	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
376		pc->pc_md.current_pmap = kernel_pmap;
377		/* The BSP is obviously running already. */
378		if (pc->pc_cpuid == 0) {
379			pc->pc_md.awake = 1;
380			continue;
381		}
382
383		ia64_ap_state.as_pcpu = pc;
384		pc->pc_md.vhpt = pmap_alloc_vhpt();
385		if (pc->pc_md.vhpt == 0) {
386			printf("SMP: WARNING: unable to allocate VHPT"
387			    " for cpu%d", pc->pc_cpuid);
388			continue;
389		}
390
391		stp = malloc(KSTACK_PAGES * PAGE_SIZE, M_SMP, M_WAITOK);
392		ia64_ap_state.as_kstack = stp;
393		ia64_ap_state.as_kstack_top = stp + KSTACK_PAGES * PAGE_SIZE;
394
395		ia64_ap_state.as_trace = 0;
396		ia64_ap_state.as_delay = 2000;
397		ia64_ap_state.as_awake = 0;
398
399		if (bootverbose)
400			printf("SMP: waking up cpu%d\n", pc->pc_cpuid);
401
402		/* Here she goes... */
403		ipi_send(pc, ia64_ipi_wakeup);
404		do {
405			DELAY(1000);
406		} while (--ia64_ap_state.as_delay > 0);
407
408		pc->pc_md.awake = ia64_ap_state.as_awake;
409
410		if (!ia64_ap_state.as_awake) {
411			printf("SMP: WARNING: cpu%d did not wake up (code "
412			    "%#lx)\n", pc->pc_cpuid,
413			    ia64_ap_state.as_trace - state);
414		}
415	}
416}
417
418static void
419cpu_mp_unleash(void *dummy)
420{
421	struct pcpu *pc;
422	int cpus;
423
424	if (mp_ncpus <= 1)
425		return;
426
427	/* Allocate XIVs for IPIs */
428	ia64_ipi_ast = ia64_xiv_alloc(PI_DULL, IA64_XIV_IPI, ia64_ih_ast);
429	ia64_ipi_hardclock = ia64_xiv_alloc(PI_REALTIME, IA64_XIV_IPI,
430	    ia64_ih_hardclock);
431	ia64_ipi_highfp = ia64_xiv_alloc(PI_AV, IA64_XIV_IPI, ia64_ih_highfp);
432	ia64_ipi_preempt = ia64_xiv_alloc(PI_SOFT, IA64_XIV_IPI,
433	    ia64_ih_preempt);
434	ia64_ipi_rndzvs = ia64_xiv_alloc(PI_AV, IA64_XIV_IPI, ia64_ih_rndzvs);
435	ia64_ipi_stop = ia64_xiv_alloc(PI_REALTIME, IA64_XIV_IPI, ia64_ih_stop);
436
437	/* Reserve the NMI vector for IPI_STOP_HARD if possible */
438	ia64_ipi_nmi = (ia64_xiv_reserve(2, IA64_XIV_IPI, ia64_ih_stop) != 0)
439	    ? ia64_ipi_stop : 0x400;	/* DM=NMI, Vector=n/a */
440
441	cpus = 0;
442	smp_cpus = 0;
443	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
444		cpus++;
445		if (pc->pc_md.awake) {
446			kproc_create(ia64_store_mca_state, pc, NULL, 0, 0,
447			    "mca %u", pc->pc_cpuid);
448			smp_cpus++;
449		}
450	}
451
452	ia64_ap_state.as_awake = 1;
453	ia64_ap_state.as_spin = 0;
454
455	while (ia64_ap_state.as_awake != smp_cpus)
456		cpu_spinwait();
457
458	if (smp_cpus != cpus || cpus != mp_ncpus) {
459		printf("SMP: %d CPUs found; %d CPUs usable; %d CPUs woken\n",
460		    mp_ncpus, cpus, smp_cpus);
461	}
462
463	/* XXX Atomic set operation? */
464	smp_started = 1;
465
466	/*
467	 * Now that all CPUs are up and running, bind interrupts to each of
468	 * them.
469	 */
470	ia64_bind_intr();
471}
472SYSINIT(start_aps, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, cpu_mp_unleash, NULL);
473
474/*
475 * send an IPI to a set of cpus.
476 */
477void
478ipi_selected(cpuset_t cpus, int ipi)
479{
480	struct pcpu *pc;
481
482	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
483		if (CPU_ISSET(pc->pc_cpuid, &cpus))
484			ipi_send(pc, ipi);
485	}
486}
487
488/*
489 * send an IPI to a specific CPU.
490 */
491void
492ipi_cpu(int cpu, u_int ipi)
493{
494
495	ipi_send(cpuid_to_pcpu[cpu], ipi);
496}
497
498/*
499 * send an IPI to all CPUs EXCEPT myself.
500 */
501void
502ipi_all_but_self(int ipi)
503{
504	struct pcpu *pc;
505
506	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
507		if (pc != pcpup)
508			ipi_send(pc, ipi);
509	}
510}
511
512/*
513 * Send an IPI to the specified processor.
514 */
515void
516ipi_send(struct pcpu *cpu, int xiv)
517{
518	u_int sapic_id;
519
520	KASSERT(xiv != 0, ("ipi_send"));
521
522	sapic_id = IA64_LID_GET_SAPIC_ID(cpu->pc_md.lid);
523
524	ia64_mf();
525	ia64_st8(&(ia64_pib->ib_ipi[sapic_id][0]), xiv);
526	ia64_mf_a();
527	CTR3(KTR_SMP, "ipi_send(%p, %d): cpuid=%d", cpu, xiv, PCPU_GET(cpuid));
528}
529