pmap.c revision 270920
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/10/sys/i386/xen/pmap.c 270920 2014-09-01 07:58:15Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_cpu.h"
100#include "opt_pmap.h"
101#include "opt_smp.h"
102#include "opt_xbox.h"
103
104#include <sys/param.h>
105#include <sys/systm.h>
106#include <sys/kernel.h>
107#include <sys/ktr.h>
108#include <sys/lock.h>
109#include <sys/malloc.h>
110#include <sys/mman.h>
111#include <sys/msgbuf.h>
112#include <sys/mutex.h>
113#include <sys/proc.h>
114#include <sys/rwlock.h>
115#include <sys/sf_buf.h>
116#include <sys/sx.h>
117#include <sys/vmmeter.h>
118#include <sys/sched.h>
119#include <sys/sysctl.h>
120#ifdef SMP
121#include <sys/smp.h>
122#else
123#include <sys/cpuset.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/pcb.h>
141#include <machine/specialreg.h>
142#ifdef SMP
143#include <machine/smp.h>
144#endif
145
146#ifdef XBOX
147#include <machine/xbox.h>
148#endif
149
150#include <xen/interface/xen.h>
151#include <xen/hypervisor.h>
152#include <machine/xen/hypercall.h>
153#include <machine/xen/xenvar.h>
154#include <machine/xen/xenfunc.h>
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#define DIAGNOSTIC
165
166#if !defined(DIAGNOSTIC)
167#ifdef __GNUC_GNU_INLINE__
168#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
169#else
170#define PMAP_INLINE	extern inline
171#endif
172#else
173#define PMAP_INLINE
174#endif
175
176#ifdef PV_STATS
177#define PV_STAT(x)	do { x ; } while (0)
178#else
179#define PV_STAT(x)	do { } while (0)
180#endif
181
182/*
183 * Get PDEs and PTEs for user/kernel address space
184 */
185#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
186#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
187
188#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
189#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
190#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
191#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
192#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
193
194#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
195
196#define HAMFISTED_LOCKING
197#ifdef HAMFISTED_LOCKING
198static struct mtx createdelete_lock;
199#endif
200
201struct pmap kernel_pmap_store;
202LIST_HEAD(pmaplist, pmap);
203static struct pmaplist allpmaps;
204static struct mtx allpmaps_lock;
205
206vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
207vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
208int pgeflag = 0;		/* PG_G or-in */
209int pseflag = 0;		/* PG_PS or-in */
210
211int nkpt;
212vm_offset_t kernel_vm_end;
213extern u_int32_t KERNend;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217#endif
218
219static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
220
221static int pat_works;			/* Is page attribute table sane? */
222
223/*
224 * This lock is defined as static in other pmap implementations.  It cannot,
225 * however, be defined as static here, because it is (ab)used to serialize
226 * queued page table changes in other sources files.
227 */
228struct rwlock pvh_global_lock;
229
230/*
231 * Data for the pv entry allocation mechanism
232 */
233static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
234static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
235static int shpgperproc = PMAP_SHPGPERPROC;
236
237struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
238int pv_maxchunks;			/* How many chunks we have KVA for */
239vm_offset_t pv_vafree;			/* freelist stored in the PTE */
240
241/*
242 * All those kernel PT submaps that BSD is so fond of
243 */
244struct sysmaps {
245	struct	mtx lock;
246	pt_entry_t *CMAP1;
247	pt_entry_t *CMAP2;
248	caddr_t	CADDR1;
249	caddr_t	CADDR2;
250};
251static struct sysmaps sysmaps_pcpu[MAXCPU];
252pt_entry_t *CMAP3;
253caddr_t ptvmmap = 0;
254caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_chunk(struct pv_chunk *pc);
282static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
283static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
284static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
285static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
286		    vm_offset_t va);
287
288static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
289    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
290static void pmap_flush_page(vm_page_t m);
291static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
292static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
293    vm_page_t *free);
294static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
295    vm_page_t *free);
296static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
297					vm_offset_t va);
298static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
299    vm_page_t m);
300
301static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
302
303static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
304static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
305static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
306static void pmap_pte_release(pt_entry_t *pte);
307static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
308static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
309
310static __inline void pagezero(void *page);
311
312CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
313CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
314
315/*
316 * If you get an error here, then you set KVA_PAGES wrong! See the
317 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
318 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
319 */
320CTASSERT(KERNBASE % (1 << 24) == 0);
321
322void
323pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
324{
325	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
326
327	switch (type) {
328	case SH_PD_SET_VA:
329#if 0
330		xen_queue_pt_update(shadow_pdir_ma,
331				    xpmap_ptom(val & ~(PG_RW)));
332#endif
333		xen_queue_pt_update(pdir_ma,
334				    xpmap_ptom(val));
335		break;
336	case SH_PD_SET_VA_MA:
337#if 0
338		xen_queue_pt_update(shadow_pdir_ma,
339				    val & ~(PG_RW));
340#endif
341		xen_queue_pt_update(pdir_ma, val);
342		break;
343	case SH_PD_SET_VA_CLEAR:
344#if 0
345		xen_queue_pt_update(shadow_pdir_ma, 0);
346#endif
347		xen_queue_pt_update(pdir_ma, 0);
348		break;
349	}
350}
351
352/*
353 *	Bootstrap the system enough to run with virtual memory.
354 *
355 *	On the i386 this is called after mapping has already been enabled
356 *	and just syncs the pmap module with what has already been done.
357 *	[We can't call it easily with mapping off since the kernel is not
358 *	mapped with PA == VA, hence we would have to relocate every address
359 *	from the linked base (virtual) address "KERNBASE" to the actual
360 *	(physical) address starting relative to 0]
361 */
362void
363pmap_bootstrap(vm_paddr_t firstaddr)
364{
365	vm_offset_t va;
366	pt_entry_t *pte, *unused;
367	struct sysmaps *sysmaps;
368	int i;
369
370	/*
371	 * Initialize the first available kernel virtual address.  However,
372	 * using "firstaddr" may waste a few pages of the kernel virtual
373	 * address space, because locore may not have mapped every physical
374	 * page that it allocated.  Preferably, locore would provide a first
375	 * unused virtual address in addition to "firstaddr".
376	 */
377	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
378
379	virtual_end = VM_MAX_KERNEL_ADDRESS;
380
381	/*
382	 * Initialize the kernel pmap (which is statically allocated).
383	 */
384	PMAP_LOCK_INIT(kernel_pmap);
385	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
386#ifdef PAE
387	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
388#endif
389	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
390	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
391
392 	/*
393	 * Initialize the global pv list lock.
394	 */
395	rw_init_flags(&pvh_global_lock, "pmap pv global", RW_RECURSE);
396
397	LIST_INIT(&allpmaps);
398	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
399	mtx_lock_spin(&allpmaps_lock);
400	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
401	mtx_unlock_spin(&allpmaps_lock);
402	if (nkpt == 0)
403		nkpt = NKPT;
404
405	/*
406	 * Reserve some special page table entries/VA space for temporary
407	 * mapping of pages.
408	 */
409#define	SYSMAP(c, p, v, n)	\
410	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
411
412	va = virtual_avail;
413	pte = vtopte(va);
414
415	/*
416	 * CMAP1/CMAP2 are used for zeroing and copying pages.
417	 * CMAP3 is used for the idle process page zeroing.
418	 */
419	for (i = 0; i < MAXCPU; i++) {
420		sysmaps = &sysmaps_pcpu[i];
421		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
422		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
423		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
424		PT_SET_MA(sysmaps->CADDR1, 0);
425		PT_SET_MA(sysmaps->CADDR2, 0);
426	}
427	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
428	PT_SET_MA(CADDR3, 0);
429
430	/*
431	 * Crashdump maps.
432	 */
433	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
434
435	/*
436	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
437	 */
438	SYSMAP(caddr_t, unused, ptvmmap, 1)
439
440	/*
441	 * msgbufp is used to map the system message buffer.
442	 */
443	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
444
445	/*
446	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
447	 * respectively.
448	 */
449	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
450	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
451
452	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
453
454	virtual_avail = va;
455
456	/*
457	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
458	 * physical memory region that is used by the ACPI wakeup code.  This
459	 * mapping must not have PG_G set.
460	 */
461#ifndef XEN
462	/*
463	 * leave here deliberately to show that this is not supported
464	 */
465#ifdef XBOX
466	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
467	 * an early stadium, we cannot yet neatly map video memory ... :-(
468	 * Better fixes are very welcome! */
469	if (!arch_i386_is_xbox)
470#endif
471	for (i = 1; i < NKPT; i++)
472		PTD[i] = 0;
473
474	/* Initialize the PAT MSR if present. */
475	pmap_init_pat();
476
477	/* Turn on PG_G on kernel page(s) */
478	pmap_set_pg();
479#endif
480
481#ifdef HAMFISTED_LOCKING
482	mtx_init(&createdelete_lock, "pmap create/delete", NULL, MTX_DEF);
483#endif
484}
485
486/*
487 * Setup the PAT MSR.
488 */
489void
490pmap_init_pat(void)
491{
492	uint64_t pat_msr;
493
494	/* Bail if this CPU doesn't implement PAT. */
495	if (!(cpu_feature & CPUID_PAT))
496		return;
497
498	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
499	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
500		/*
501		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
502		 * Program 4 and 5 as WP and WC.
503		 * Leave 6 and 7 as UC and UC-.
504		 */
505		pat_msr = rdmsr(MSR_PAT);
506		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
507		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
508		    PAT_VALUE(5, PAT_WRITE_COMBINING);
509		pat_works = 1;
510	} else {
511		/*
512		 * Due to some Intel errata, we can only safely use the lower 4
513		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
514		 * of UC-.
515		 *
516		 *   Intel Pentium III Processor Specification Update
517		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
518		 * or Mode C Paging)
519		 *
520		 *   Intel Pentium IV  Processor Specification Update
521		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
522		 */
523		pat_msr = rdmsr(MSR_PAT);
524		pat_msr &= ~PAT_MASK(2);
525		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
526		pat_works = 0;
527	}
528	wrmsr(MSR_PAT, pat_msr);
529}
530
531/*
532 * Initialize a vm_page's machine-dependent fields.
533 */
534void
535pmap_page_init(vm_page_t m)
536{
537
538	TAILQ_INIT(&m->md.pv_list);
539	m->md.pat_mode = PAT_WRITE_BACK;
540}
541
542/*
543 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
544 * Requirements:
545 *  - Must deal with pages in order to ensure that none of the PG_* bits
546 *    are ever set, PG_V in particular.
547 *  - Assumes we can write to ptes without pte_store() atomic ops, even
548 *    on PAE systems.  This should be ok.
549 *  - Assumes nothing will ever test these addresses for 0 to indicate
550 *    no mapping instead of correctly checking PG_V.
551 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
552 * Because PG_V is never set, there can be no mappings to invalidate.
553 */
554static int ptelist_count = 0;
555static vm_offset_t
556pmap_ptelist_alloc(vm_offset_t *head)
557{
558	vm_offset_t va;
559	vm_offset_t *phead = (vm_offset_t *)*head;
560
561	if (ptelist_count == 0) {
562		printf("out of memory!!!!!!\n");
563		return (0);	/* Out of memory */
564	}
565	ptelist_count--;
566	va = phead[ptelist_count];
567	return (va);
568}
569
570static void
571pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
572{
573	vm_offset_t *phead = (vm_offset_t *)*head;
574
575	phead[ptelist_count++] = va;
576}
577
578static void
579pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
580{
581	int i, nstackpages;
582	vm_offset_t va;
583	vm_page_t m;
584
585	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
586	for (i = 0; i < nstackpages; i++) {
587		va = (vm_offset_t)base + i * PAGE_SIZE;
588		m = vm_page_alloc(NULL, i,
589		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
590		    VM_ALLOC_ZERO);
591		pmap_qenter(va, &m, 1);
592	}
593
594	*head = (vm_offset_t)base;
595	for (i = npages - 1; i >= nstackpages; i--) {
596		va = (vm_offset_t)base + i * PAGE_SIZE;
597		pmap_ptelist_free(head, va);
598	}
599}
600
601
602/*
603 *	Initialize the pmap module.
604 *	Called by vm_init, to initialize any structures that the pmap
605 *	system needs to map virtual memory.
606 */
607void
608pmap_init(void)
609{
610
611	/*
612	 * Initialize the address space (zone) for the pv entries.  Set a
613	 * high water mark so that the system can recover from excessive
614	 * numbers of pv entries.
615	 */
616	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
617	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
618	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
619	pv_entry_max = roundup(pv_entry_max, _NPCPV);
620	pv_entry_high_water = 9 * (pv_entry_max / 10);
621
622	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
623	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
624	if (pv_chunkbase == NULL)
625		panic("pmap_init: not enough kvm for pv chunks");
626	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
627}
628
629
630SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
631	"Max number of PV entries");
632SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
633	"Page share factor per proc");
634
635static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
636    "2/4MB page mapping counters");
637
638static u_long pmap_pde_mappings;
639SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
640    &pmap_pde_mappings, 0, "2/4MB page mappings");
641
642/***************************************************
643 * Low level helper routines.....
644 ***************************************************/
645
646/*
647 * Determine the appropriate bits to set in a PTE or PDE for a specified
648 * caching mode.
649 */
650int
651pmap_cache_bits(int mode, boolean_t is_pde)
652{
653	int pat_flag, pat_index, cache_bits;
654
655	/* The PAT bit is different for PTE's and PDE's. */
656	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
657
658	/* If we don't support PAT, map extended modes to older ones. */
659	if (!(cpu_feature & CPUID_PAT)) {
660		switch (mode) {
661		case PAT_UNCACHEABLE:
662		case PAT_WRITE_THROUGH:
663		case PAT_WRITE_BACK:
664			break;
665		case PAT_UNCACHED:
666		case PAT_WRITE_COMBINING:
667		case PAT_WRITE_PROTECTED:
668			mode = PAT_UNCACHEABLE;
669			break;
670		}
671	}
672
673	/* Map the caching mode to a PAT index. */
674	if (pat_works) {
675		switch (mode) {
676			case PAT_UNCACHEABLE:
677				pat_index = 3;
678				break;
679			case PAT_WRITE_THROUGH:
680				pat_index = 1;
681				break;
682			case PAT_WRITE_BACK:
683				pat_index = 0;
684				break;
685			case PAT_UNCACHED:
686				pat_index = 2;
687				break;
688			case PAT_WRITE_COMBINING:
689				pat_index = 5;
690				break;
691			case PAT_WRITE_PROTECTED:
692				pat_index = 4;
693				break;
694			default:
695				panic("Unknown caching mode %d\n", mode);
696		}
697	} else {
698		switch (mode) {
699			case PAT_UNCACHED:
700			case PAT_UNCACHEABLE:
701			case PAT_WRITE_PROTECTED:
702				pat_index = 3;
703				break;
704			case PAT_WRITE_THROUGH:
705				pat_index = 1;
706				break;
707			case PAT_WRITE_BACK:
708				pat_index = 0;
709				break;
710			case PAT_WRITE_COMBINING:
711				pat_index = 2;
712				break;
713			default:
714				panic("Unknown caching mode %d\n", mode);
715		}
716	}
717
718	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
719	cache_bits = 0;
720	if (pat_index & 0x4)
721		cache_bits |= pat_flag;
722	if (pat_index & 0x2)
723		cache_bits |= PG_NC_PCD;
724	if (pat_index & 0x1)
725		cache_bits |= PG_NC_PWT;
726	return (cache_bits);
727}
728#ifdef SMP
729/*
730 * For SMP, these functions have to use the IPI mechanism for coherence.
731 *
732 * N.B.: Before calling any of the following TLB invalidation functions,
733 * the calling processor must ensure that all stores updating a non-
734 * kernel page table are globally performed.  Otherwise, another
735 * processor could cache an old, pre-update entry without being
736 * invalidated.  This can happen one of two ways: (1) The pmap becomes
737 * active on another processor after its pm_active field is checked by
738 * one of the following functions but before a store updating the page
739 * table is globally performed. (2) The pmap becomes active on another
740 * processor before its pm_active field is checked but due to
741 * speculative loads one of the following functions stills reads the
742 * pmap as inactive on the other processor.
743 *
744 * The kernel page table is exempt because its pm_active field is
745 * immutable.  The kernel page table is always active on every
746 * processor.
747 */
748void
749pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
750{
751	cpuset_t other_cpus;
752	u_int cpuid;
753
754	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
755	    pmap, va);
756
757	sched_pin();
758	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
759		invlpg(va);
760		smp_invlpg(va);
761	} else {
762		cpuid = PCPU_GET(cpuid);
763		other_cpus = all_cpus;
764		CPU_CLR(cpuid, &other_cpus);
765		if (CPU_ISSET(cpuid, &pmap->pm_active))
766			invlpg(va);
767		CPU_AND(&other_cpus, &pmap->pm_active);
768		if (!CPU_EMPTY(&other_cpus))
769			smp_masked_invlpg(other_cpus, va);
770	}
771	sched_unpin();
772	PT_UPDATES_FLUSH();
773}
774
775void
776pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
777{
778	cpuset_t other_cpus;
779	vm_offset_t addr;
780	u_int cpuid;
781
782	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
783	    pmap, sva, eva);
784
785	sched_pin();
786	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
787		for (addr = sva; addr < eva; addr += PAGE_SIZE)
788			invlpg(addr);
789		smp_invlpg_range(sva, eva);
790	} else {
791		cpuid = PCPU_GET(cpuid);
792		other_cpus = all_cpus;
793		CPU_CLR(cpuid, &other_cpus);
794		if (CPU_ISSET(cpuid, &pmap->pm_active))
795			for (addr = sva; addr < eva; addr += PAGE_SIZE)
796				invlpg(addr);
797		CPU_AND(&other_cpus, &pmap->pm_active);
798		if (!CPU_EMPTY(&other_cpus))
799			smp_masked_invlpg_range(other_cpus, sva, eva);
800	}
801	sched_unpin();
802	PT_UPDATES_FLUSH();
803}
804
805void
806pmap_invalidate_all(pmap_t pmap)
807{
808	cpuset_t other_cpus;
809	u_int cpuid;
810
811	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
812
813	sched_pin();
814	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
815		invltlb();
816		smp_invltlb();
817	} else {
818		cpuid = PCPU_GET(cpuid);
819		other_cpus = all_cpus;
820		CPU_CLR(cpuid, &other_cpus);
821		if (CPU_ISSET(cpuid, &pmap->pm_active))
822			invltlb();
823		CPU_AND(&other_cpus, &pmap->pm_active);
824		if (!CPU_EMPTY(&other_cpus))
825			smp_masked_invltlb(other_cpus);
826	}
827	sched_unpin();
828}
829
830void
831pmap_invalidate_cache(void)
832{
833
834	sched_pin();
835	wbinvd();
836	smp_cache_flush();
837	sched_unpin();
838}
839#else /* !SMP */
840/*
841 * Normal, non-SMP, 486+ invalidation functions.
842 * We inline these within pmap.c for speed.
843 */
844PMAP_INLINE void
845pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
846{
847	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
848	    pmap, va);
849
850	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
851		invlpg(va);
852	PT_UPDATES_FLUSH();
853}
854
855PMAP_INLINE void
856pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
857{
858	vm_offset_t addr;
859
860	if (eva - sva > PAGE_SIZE)
861		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
862		    pmap, sva, eva);
863
864	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
865		for (addr = sva; addr < eva; addr += PAGE_SIZE)
866			invlpg(addr);
867	PT_UPDATES_FLUSH();
868}
869
870PMAP_INLINE void
871pmap_invalidate_all(pmap_t pmap)
872{
873
874	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
875
876	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
877		invltlb();
878}
879
880PMAP_INLINE void
881pmap_invalidate_cache(void)
882{
883
884	wbinvd();
885}
886#endif /* !SMP */
887
888#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
889
890void
891pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
892{
893
894	KASSERT((sva & PAGE_MASK) == 0,
895	    ("pmap_invalidate_cache_range: sva not page-aligned"));
896	KASSERT((eva & PAGE_MASK) == 0,
897	    ("pmap_invalidate_cache_range: eva not page-aligned"));
898
899	if (cpu_feature & CPUID_SS)
900		; /* If "Self Snoop" is supported, do nothing. */
901	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
902	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
903
904		/*
905		 * Otherwise, do per-cache line flush.  Use the mfence
906		 * instruction to insure that previous stores are
907		 * included in the write-back.  The processor
908		 * propagates flush to other processors in the cache
909		 * coherence domain.
910		 */
911		mfence();
912		for (; sva < eva; sva += cpu_clflush_line_size)
913			clflush(sva);
914		mfence();
915	} else {
916
917		/*
918		 * No targeted cache flush methods are supported by CPU,
919		 * or the supplied range is bigger than 2MB.
920		 * Globally invalidate cache.
921		 */
922		pmap_invalidate_cache();
923	}
924}
925
926void
927pmap_invalidate_cache_pages(vm_page_t *pages, int count)
928{
929	int i;
930
931	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
932	    (cpu_feature & CPUID_CLFSH) == 0) {
933		pmap_invalidate_cache();
934	} else {
935		for (i = 0; i < count; i++)
936			pmap_flush_page(pages[i]);
937	}
938}
939
940/*
941 * Are we current address space or kernel?  N.B. We return FALSE when
942 * a pmap's page table is in use because a kernel thread is borrowing
943 * it.  The borrowed page table can change spontaneously, making any
944 * dependence on its continued use subject to a race condition.
945 */
946static __inline int
947pmap_is_current(pmap_t pmap)
948{
949
950	return (pmap == kernel_pmap ||
951	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
952	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
953}
954
955/*
956 * If the given pmap is not the current or kernel pmap, the returned pte must
957 * be released by passing it to pmap_pte_release().
958 */
959pt_entry_t *
960pmap_pte(pmap_t pmap, vm_offset_t va)
961{
962	pd_entry_t newpf;
963	pd_entry_t *pde;
964
965	pde = pmap_pde(pmap, va);
966	if (*pde & PG_PS)
967		return (pde);
968	if (*pde != 0) {
969		/* are we current address space or kernel? */
970		if (pmap_is_current(pmap))
971			return (vtopte(va));
972		mtx_lock(&PMAP2mutex);
973		newpf = *pde & PG_FRAME;
974		if ((*PMAP2 & PG_FRAME) != newpf) {
975			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
976			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
977			    pmap, va, (*PMAP2 & 0xffffffff));
978		}
979		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
980	}
981	return (NULL);
982}
983
984/*
985 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
986 * being NULL.
987 */
988static __inline void
989pmap_pte_release(pt_entry_t *pte)
990{
991
992	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
993		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
994		    *PMAP2);
995		rw_wlock(&pvh_global_lock);
996		PT_SET_VA(PMAP2, 0, TRUE);
997		rw_wunlock(&pvh_global_lock);
998		mtx_unlock(&PMAP2mutex);
999	}
1000}
1001
1002static __inline void
1003invlcaddr(void *caddr)
1004{
1005
1006	invlpg((u_int)caddr);
1007	PT_UPDATES_FLUSH();
1008}
1009
1010/*
1011 * Super fast pmap_pte routine best used when scanning
1012 * the pv lists.  This eliminates many coarse-grained
1013 * invltlb calls.  Note that many of the pv list
1014 * scans are across different pmaps.  It is very wasteful
1015 * to do an entire invltlb for checking a single mapping.
1016 *
1017 * If the given pmap is not the current pmap, pvh_global_lock
1018 * must be held and curthread pinned to a CPU.
1019 */
1020static pt_entry_t *
1021pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1022{
1023	pd_entry_t newpf;
1024	pd_entry_t *pde;
1025
1026	pde = pmap_pde(pmap, va);
1027	if (*pde & PG_PS)
1028		return (pde);
1029	if (*pde != 0) {
1030		/* are we current address space or kernel? */
1031		if (pmap_is_current(pmap))
1032			return (vtopte(va));
1033		rw_assert(&pvh_global_lock, RA_WLOCKED);
1034		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1035		newpf = *pde & PG_FRAME;
1036		if ((*PMAP1 & PG_FRAME) != newpf) {
1037			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1038			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1039			    pmap, va, (u_long)*PMAP1);
1040
1041#ifdef SMP
1042			PMAP1cpu = PCPU_GET(cpuid);
1043#endif
1044			PMAP1changed++;
1045		} else
1046#ifdef SMP
1047		if (PMAP1cpu != PCPU_GET(cpuid)) {
1048			PMAP1cpu = PCPU_GET(cpuid);
1049			invlcaddr(PADDR1);
1050			PMAP1changedcpu++;
1051		} else
1052#endif
1053			PMAP1unchanged++;
1054		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1055	}
1056	return (0);
1057}
1058
1059/*
1060 *	Routine:	pmap_extract
1061 *	Function:
1062 *		Extract the physical page address associated
1063 *		with the given map/virtual_address pair.
1064 */
1065vm_paddr_t
1066pmap_extract(pmap_t pmap, vm_offset_t va)
1067{
1068	vm_paddr_t rtval;
1069	pt_entry_t *pte;
1070	pd_entry_t pde;
1071	pt_entry_t pteval;
1072
1073	rtval = 0;
1074	PMAP_LOCK(pmap);
1075	pde = pmap->pm_pdir[va >> PDRSHIFT];
1076	if (pde != 0) {
1077		if ((pde & PG_PS) != 0) {
1078			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1079			PMAP_UNLOCK(pmap);
1080			return rtval;
1081		}
1082		pte = pmap_pte(pmap, va);
1083		pteval = *pte ? xpmap_mtop(*pte) : 0;
1084		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1085		pmap_pte_release(pte);
1086	}
1087	PMAP_UNLOCK(pmap);
1088	return (rtval);
1089}
1090
1091/*
1092 *	Routine:	pmap_extract_ma
1093 *	Function:
1094 *		Like pmap_extract, but returns machine address
1095 */
1096vm_paddr_t
1097pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1098{
1099	vm_paddr_t rtval;
1100	pt_entry_t *pte;
1101	pd_entry_t pde;
1102
1103	rtval = 0;
1104	PMAP_LOCK(pmap);
1105	pde = pmap->pm_pdir[va >> PDRSHIFT];
1106	if (pde != 0) {
1107		if ((pde & PG_PS) != 0) {
1108			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1109			PMAP_UNLOCK(pmap);
1110			return rtval;
1111		}
1112		pte = pmap_pte(pmap, va);
1113		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1114		pmap_pte_release(pte);
1115	}
1116	PMAP_UNLOCK(pmap);
1117	return (rtval);
1118}
1119
1120/*
1121 *	Routine:	pmap_extract_and_hold
1122 *	Function:
1123 *		Atomically extract and hold the physical page
1124 *		with the given pmap and virtual address pair
1125 *		if that mapping permits the given protection.
1126 */
1127vm_page_t
1128pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1129{
1130	pd_entry_t pde;
1131	pt_entry_t pte, *ptep;
1132	vm_page_t m;
1133	vm_paddr_t pa;
1134
1135	pa = 0;
1136	m = NULL;
1137	PMAP_LOCK(pmap);
1138retry:
1139	pde = PT_GET(pmap_pde(pmap, va));
1140	if (pde != 0) {
1141		if (pde & PG_PS) {
1142			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1143				if (vm_page_pa_tryrelock(pmap, (pde &
1144				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1145					goto retry;
1146				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1147				    (va & PDRMASK));
1148				vm_page_hold(m);
1149			}
1150		} else {
1151			ptep = pmap_pte(pmap, va);
1152			pte = PT_GET(ptep);
1153			pmap_pte_release(ptep);
1154			if (pte != 0 &&
1155			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1156				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1157				    &pa))
1158					goto retry;
1159				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1160				vm_page_hold(m);
1161			}
1162		}
1163	}
1164	PA_UNLOCK_COND(pa);
1165	PMAP_UNLOCK(pmap);
1166	return (m);
1167}
1168
1169/***************************************************
1170 * Low level mapping routines.....
1171 ***************************************************/
1172
1173/*
1174 * Add a wired page to the kva.
1175 * Note: not SMP coherent.
1176 *
1177 * This function may be used before pmap_bootstrap() is called.
1178 */
1179void
1180pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1181{
1182
1183	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1184}
1185
1186void
1187pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1188{
1189	pt_entry_t *pte;
1190
1191	pte = vtopte(va);
1192	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1193}
1194
1195static __inline void
1196pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1197{
1198
1199	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1200}
1201
1202/*
1203 * Remove a page from the kernel pagetables.
1204 * Note: not SMP coherent.
1205 *
1206 * This function may be used before pmap_bootstrap() is called.
1207 */
1208PMAP_INLINE void
1209pmap_kremove(vm_offset_t va)
1210{
1211	pt_entry_t *pte;
1212
1213	pte = vtopte(va);
1214	PT_CLEAR_VA(pte, FALSE);
1215}
1216
1217/*
1218 *	Used to map a range of physical addresses into kernel
1219 *	virtual address space.
1220 *
1221 *	The value passed in '*virt' is a suggested virtual address for
1222 *	the mapping. Architectures which can support a direct-mapped
1223 *	physical to virtual region can return the appropriate address
1224 *	within that region, leaving '*virt' unchanged. Other
1225 *	architectures should map the pages starting at '*virt' and
1226 *	update '*virt' with the first usable address after the mapped
1227 *	region.
1228 */
1229vm_offset_t
1230pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1231{
1232	vm_offset_t va, sva;
1233
1234	va = sva = *virt;
1235	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1236	    va, start, end, prot);
1237	while (start < end) {
1238		pmap_kenter(va, start);
1239		va += PAGE_SIZE;
1240		start += PAGE_SIZE;
1241	}
1242	pmap_invalidate_range(kernel_pmap, sva, va);
1243	*virt = va;
1244	return (sva);
1245}
1246
1247
1248/*
1249 * Add a list of wired pages to the kva
1250 * this routine is only used for temporary
1251 * kernel mappings that do not need to have
1252 * page modification or references recorded.
1253 * Note that old mappings are simply written
1254 * over.  The page *must* be wired.
1255 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1256 */
1257void
1258pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1259{
1260	pt_entry_t *endpte, *pte;
1261	vm_paddr_t pa;
1262	vm_offset_t va = sva;
1263	int mclcount = 0;
1264	multicall_entry_t mcl[16];
1265	multicall_entry_t *mclp = mcl;
1266	int error;
1267
1268	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1269	pte = vtopte(sva);
1270	endpte = pte + count;
1271	while (pte < endpte) {
1272		pa = VM_PAGE_TO_MACH(*ma) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1273
1274		mclp->op = __HYPERVISOR_update_va_mapping;
1275		mclp->args[0] = va;
1276		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1277		mclp->args[2] = (uint32_t)(pa >> 32);
1278		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1279
1280		va += PAGE_SIZE;
1281		pte++;
1282		ma++;
1283		mclp++;
1284		mclcount++;
1285		if (mclcount == 16) {
1286			error = HYPERVISOR_multicall(mcl, mclcount);
1287			mclp = mcl;
1288			mclcount = 0;
1289			KASSERT(error == 0, ("bad multicall %d", error));
1290		}
1291	}
1292	if (mclcount) {
1293		error = HYPERVISOR_multicall(mcl, mclcount);
1294		KASSERT(error == 0, ("bad multicall %d", error));
1295	}
1296
1297#ifdef INVARIANTS
1298	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1299		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1300#endif
1301}
1302
1303/*
1304 * This routine tears out page mappings from the
1305 * kernel -- it is meant only for temporary mappings.
1306 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1307 */
1308void
1309pmap_qremove(vm_offset_t sva, int count)
1310{
1311	vm_offset_t va;
1312
1313	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1314	va = sva;
1315	rw_wlock(&pvh_global_lock);
1316	critical_enter();
1317	while (count-- > 0) {
1318		pmap_kremove(va);
1319		va += PAGE_SIZE;
1320	}
1321	PT_UPDATES_FLUSH();
1322	pmap_invalidate_range(kernel_pmap, sva, va);
1323	critical_exit();
1324	rw_wunlock(&pvh_global_lock);
1325}
1326
1327/***************************************************
1328 * Page table page management routines.....
1329 ***************************************************/
1330static __inline void
1331pmap_free_zero_pages(vm_page_t free)
1332{
1333	vm_page_t m;
1334
1335	while (free != NULL) {
1336		m = free;
1337		free = (void *)m->object;
1338		m->object = NULL;
1339		vm_page_free_zero(m);
1340	}
1341}
1342
1343/*
1344 * Decrements a page table page's wire count, which is used to record the
1345 * number of valid page table entries within the page.  If the wire count
1346 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1347 * page table page was unmapped and FALSE otherwise.
1348 */
1349static inline boolean_t
1350pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1351{
1352
1353	--m->wire_count;
1354	if (m->wire_count == 0) {
1355		_pmap_unwire_ptp(pmap, m, free);
1356		return (TRUE);
1357	} else
1358		return (FALSE);
1359}
1360
1361static void
1362_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1363{
1364	vm_offset_t pteva;
1365
1366	PT_UPDATES_FLUSH();
1367	/*
1368	 * unmap the page table page
1369	 */
1370	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1371	/*
1372	 * page *might* contain residual mapping :-/
1373	 */
1374	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1375	pmap_zero_page(m);
1376	--pmap->pm_stats.resident_count;
1377
1378	/*
1379	 * This is a release store so that the ordinary store unmapping
1380	 * the page table page is globally performed before TLB shoot-
1381	 * down is begun.
1382	 */
1383	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1384
1385	/*
1386	 * Do an invltlb to make the invalidated mapping
1387	 * take effect immediately.
1388	 */
1389	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1390	pmap_invalidate_page(pmap, pteva);
1391
1392	/*
1393	 * Put page on a list so that it is released after
1394	 * *ALL* TLB shootdown is done
1395	 */
1396	m->object = (void *)*free;
1397	*free = m;
1398}
1399
1400/*
1401 * After removing a page table entry, this routine is used to
1402 * conditionally free the page, and manage the hold/wire counts.
1403 */
1404static int
1405pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1406{
1407	pd_entry_t ptepde;
1408	vm_page_t mpte;
1409
1410	if (va >= VM_MAXUSER_ADDRESS)
1411		return (0);
1412	ptepde = PT_GET(pmap_pde(pmap, va));
1413	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1414	return (pmap_unwire_ptp(pmap, mpte, free));
1415}
1416
1417/*
1418 * Initialize the pmap for the swapper process.
1419 */
1420void
1421pmap_pinit0(pmap_t pmap)
1422{
1423
1424	PMAP_LOCK_INIT(pmap);
1425	/*
1426	 * Since the page table directory is shared with the kernel pmap,
1427	 * which is already included in the list "allpmaps", this pmap does
1428	 * not need to be inserted into that list.
1429	 */
1430	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1431#ifdef PAE
1432	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1433#endif
1434	CPU_ZERO(&pmap->pm_active);
1435	PCPU_SET(curpmap, pmap);
1436	TAILQ_INIT(&pmap->pm_pvchunk);
1437	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1438}
1439
1440/*
1441 * Initialize a preallocated and zeroed pmap structure,
1442 * such as one in a vmspace structure.
1443 */
1444int
1445pmap_pinit(pmap_t pmap)
1446{
1447	vm_page_t m, ptdpg[NPGPTD + 1];
1448	int npgptd = NPGPTD + 1;
1449	int i;
1450
1451#ifdef HAMFISTED_LOCKING
1452	mtx_lock(&createdelete_lock);
1453#endif
1454
1455	/*
1456	 * No need to allocate page table space yet but we do need a valid
1457	 * page directory table.
1458	 */
1459	if (pmap->pm_pdir == NULL) {
1460		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1461		if (pmap->pm_pdir == NULL) {
1462#ifdef HAMFISTED_LOCKING
1463			mtx_unlock(&createdelete_lock);
1464#endif
1465			return (0);
1466		}
1467#ifdef PAE
1468		pmap->pm_pdpt = (pd_entry_t *)kva_alloc(1);
1469#endif
1470	}
1471
1472	/*
1473	 * allocate the page directory page(s)
1474	 */
1475	for (i = 0; i < npgptd;) {
1476		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1477		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1478		if (m == NULL)
1479			VM_WAIT;
1480		else {
1481			ptdpg[i++] = m;
1482		}
1483	}
1484
1485	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1486
1487	for (i = 0; i < NPGPTD; i++)
1488		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1489			pagezero(pmap->pm_pdir + (i * NPDEPG));
1490
1491	mtx_lock_spin(&allpmaps_lock);
1492	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1493	/* Copy the kernel page table directory entries. */
1494	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1495	mtx_unlock_spin(&allpmaps_lock);
1496
1497#ifdef PAE
1498	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1499	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1500		bzero(pmap->pm_pdpt, PAGE_SIZE);
1501	for (i = 0; i < NPGPTD; i++) {
1502		vm_paddr_t ma;
1503
1504		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1505		pmap->pm_pdpt[i] = ma | PG_V;
1506
1507	}
1508#endif
1509	for (i = 0; i < NPGPTD; i++) {
1510		pt_entry_t *pd;
1511		vm_paddr_t ma;
1512
1513		ma = VM_PAGE_TO_MACH(ptdpg[i]);
1514		pd = pmap->pm_pdir + (i * NPDEPG);
1515		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1516#if 0
1517		xen_pgd_pin(ma);
1518#endif
1519	}
1520
1521#ifdef PAE
1522	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1523#endif
1524	rw_wlock(&pvh_global_lock);
1525	xen_flush_queue();
1526	xen_pgdpt_pin(VM_PAGE_TO_MACH(ptdpg[NPGPTD]));
1527	for (i = 0; i < NPGPTD; i++) {
1528		vm_paddr_t ma = VM_PAGE_TO_MACH(ptdpg[i]);
1529		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1530	}
1531	xen_flush_queue();
1532	rw_wunlock(&pvh_global_lock);
1533	CPU_ZERO(&pmap->pm_active);
1534	TAILQ_INIT(&pmap->pm_pvchunk);
1535	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1536
1537#ifdef HAMFISTED_LOCKING
1538	mtx_unlock(&createdelete_lock);
1539#endif
1540	return (1);
1541}
1542
1543/*
1544 * this routine is called if the page table page is not
1545 * mapped correctly.
1546 */
1547static vm_page_t
1548_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1549{
1550	vm_paddr_t ptema;
1551	vm_page_t m;
1552
1553	/*
1554	 * Allocate a page table page.
1555	 */
1556	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1557	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1558		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1559			PMAP_UNLOCK(pmap);
1560			rw_wunlock(&pvh_global_lock);
1561			VM_WAIT;
1562			rw_wlock(&pvh_global_lock);
1563			PMAP_LOCK(pmap);
1564		}
1565
1566		/*
1567		 * Indicate the need to retry.  While waiting, the page table
1568		 * page may have been allocated.
1569		 */
1570		return (NULL);
1571	}
1572	if ((m->flags & PG_ZERO) == 0)
1573		pmap_zero_page(m);
1574
1575	/*
1576	 * Map the pagetable page into the process address space, if
1577	 * it isn't already there.
1578	 */
1579
1580	pmap->pm_stats.resident_count++;
1581
1582	ptema = VM_PAGE_TO_MACH(m);
1583	xen_pt_pin(ptema);
1584	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1585		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1586
1587	KASSERT(pmap->pm_pdir[ptepindex],
1588	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1589	return (m);
1590}
1591
1592static vm_page_t
1593pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1594{
1595	u_int ptepindex;
1596	pd_entry_t ptema;
1597	vm_page_t m;
1598
1599	/*
1600	 * Calculate pagetable page index
1601	 */
1602	ptepindex = va >> PDRSHIFT;
1603retry:
1604	/*
1605	 * Get the page directory entry
1606	 */
1607	ptema = pmap->pm_pdir[ptepindex];
1608
1609	/*
1610	 * This supports switching from a 4MB page to a
1611	 * normal 4K page.
1612	 */
1613	if (ptema & PG_PS) {
1614		/*
1615		 * XXX
1616		 */
1617		pmap->pm_pdir[ptepindex] = 0;
1618		ptema = 0;
1619		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1620		pmap_invalidate_all(kernel_pmap);
1621	}
1622
1623	/*
1624	 * If the page table page is mapped, we just increment the
1625	 * hold count, and activate it.
1626	 */
1627	if (ptema & PG_V) {
1628		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1629		m->wire_count++;
1630	} else {
1631		/*
1632		 * Here if the pte page isn't mapped, or if it has
1633		 * been deallocated.
1634		 */
1635		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1636		    pmap, va, flags);
1637		m = _pmap_allocpte(pmap, ptepindex, flags);
1638		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1639			goto retry;
1640
1641		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1642	}
1643	return (m);
1644}
1645
1646
1647/***************************************************
1648* Pmap allocation/deallocation routines.
1649 ***************************************************/
1650
1651#ifdef SMP
1652/*
1653 * Deal with a SMP shootdown of other users of the pmap that we are
1654 * trying to dispose of.  This can be a bit hairy.
1655 */
1656static cpuset_t *lazymask;
1657static u_int lazyptd;
1658static volatile u_int lazywait;
1659
1660void pmap_lazyfix_action(void);
1661
1662void
1663pmap_lazyfix_action(void)
1664{
1665
1666#ifdef COUNT_IPIS
1667	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1668#endif
1669	if (rcr3() == lazyptd)
1670		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1671	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1672	atomic_store_rel_int(&lazywait, 1);
1673}
1674
1675static void
1676pmap_lazyfix_self(u_int cpuid)
1677{
1678
1679	if (rcr3() == lazyptd)
1680		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1681	CPU_CLR_ATOMIC(cpuid, lazymask);
1682}
1683
1684
1685static void
1686pmap_lazyfix(pmap_t pmap)
1687{
1688	cpuset_t mymask, mask;
1689	u_int cpuid, spins;
1690	int lsb;
1691
1692	mask = pmap->pm_active;
1693	while (!CPU_EMPTY(&mask)) {
1694		spins = 50000000;
1695
1696		/* Find least significant set bit. */
1697		lsb = CPU_FFS(&mask);
1698		MPASS(lsb != 0);
1699		lsb--;
1700		CPU_SETOF(lsb, &mask);
1701		mtx_lock_spin(&smp_ipi_mtx);
1702#ifdef PAE
1703		lazyptd = vtophys(pmap->pm_pdpt);
1704#else
1705		lazyptd = vtophys(pmap->pm_pdir);
1706#endif
1707		cpuid = PCPU_GET(cpuid);
1708
1709		/* Use a cpuset just for having an easy check. */
1710		CPU_SETOF(cpuid, &mymask);
1711		if (!CPU_CMP(&mask, &mymask)) {
1712			lazymask = &pmap->pm_active;
1713			pmap_lazyfix_self(cpuid);
1714		} else {
1715			atomic_store_rel_int((u_int *)&lazymask,
1716			    (u_int)&pmap->pm_active);
1717			atomic_store_rel_int(&lazywait, 0);
1718			ipi_selected(mask, IPI_LAZYPMAP);
1719			while (lazywait == 0) {
1720				ia32_pause();
1721				if (--spins == 0)
1722					break;
1723			}
1724		}
1725		mtx_unlock_spin(&smp_ipi_mtx);
1726		if (spins == 0)
1727			printf("pmap_lazyfix: spun for 50000000\n");
1728		mask = pmap->pm_active;
1729	}
1730}
1731
1732#else	/* SMP */
1733
1734/*
1735 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1736 * unlikely to have to even execute this code, including the fact
1737 * that the cleanup is deferred until the parent does a wait(2), which
1738 * means that another userland process has run.
1739 */
1740static void
1741pmap_lazyfix(pmap_t pmap)
1742{
1743	u_int cr3;
1744
1745	cr3 = vtophys(pmap->pm_pdir);
1746	if (cr3 == rcr3()) {
1747		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1748		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
1749	}
1750}
1751#endif	/* SMP */
1752
1753/*
1754 * Release any resources held by the given physical map.
1755 * Called when a pmap initialized by pmap_pinit is being released.
1756 * Should only be called if the map contains no valid mappings.
1757 */
1758void
1759pmap_release(pmap_t pmap)
1760{
1761	vm_page_t m, ptdpg[2*NPGPTD+1];
1762	vm_paddr_t ma;
1763	int i;
1764#ifdef PAE
1765	int npgptd = NPGPTD + 1;
1766#else
1767	int npgptd = NPGPTD;
1768#endif
1769
1770	KASSERT(pmap->pm_stats.resident_count == 0,
1771	    ("pmap_release: pmap resident count %ld != 0",
1772	    pmap->pm_stats.resident_count));
1773	PT_UPDATES_FLUSH();
1774
1775#ifdef HAMFISTED_LOCKING
1776	mtx_lock(&createdelete_lock);
1777#endif
1778
1779	pmap_lazyfix(pmap);
1780	mtx_lock_spin(&allpmaps_lock);
1781	LIST_REMOVE(pmap, pm_list);
1782	mtx_unlock_spin(&allpmaps_lock);
1783
1784	for (i = 0; i < NPGPTD; i++)
1785		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1786	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1787#ifdef PAE
1788	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1789#endif
1790
1791	for (i = 0; i < npgptd; i++) {
1792		m = ptdpg[i];
1793		ma = VM_PAGE_TO_MACH(m);
1794		/* unpinning L1 and L2 treated the same */
1795#if 0
1796                xen_pgd_unpin(ma);
1797#else
1798		if (i == NPGPTD)
1799	                xen_pgd_unpin(ma);
1800#endif
1801#ifdef PAE
1802		if (i < NPGPTD)
1803			KASSERT(VM_PAGE_TO_MACH(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1804			    ("pmap_release: got wrong ptd page"));
1805#endif
1806		m->wire_count--;
1807		atomic_subtract_int(&cnt.v_wire_count, 1);
1808		vm_page_free(m);
1809	}
1810#ifdef PAE
1811	pmap_qremove((vm_offset_t)pmap->pm_pdpt, 1);
1812#endif
1813
1814#ifdef HAMFISTED_LOCKING
1815	mtx_unlock(&createdelete_lock);
1816#endif
1817}
1818
1819static int
1820kvm_size(SYSCTL_HANDLER_ARGS)
1821{
1822	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1823
1824	return (sysctl_handle_long(oidp, &ksize, 0, req));
1825}
1826SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1827    0, 0, kvm_size, "IU", "Size of KVM");
1828
1829static int
1830kvm_free(SYSCTL_HANDLER_ARGS)
1831{
1832	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1833
1834	return (sysctl_handle_long(oidp, &kfree, 0, req));
1835}
1836SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1837    0, 0, kvm_free, "IU", "Amount of KVM free");
1838
1839/*
1840 * grow the number of kernel page table entries, if needed
1841 */
1842void
1843pmap_growkernel(vm_offset_t addr)
1844{
1845	struct pmap *pmap;
1846	vm_paddr_t ptppaddr;
1847	vm_page_t nkpg;
1848	pd_entry_t newpdir;
1849
1850	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1851	if (kernel_vm_end == 0) {
1852		kernel_vm_end = KERNBASE;
1853		nkpt = 0;
1854		while (pdir_pde(PTD, kernel_vm_end)) {
1855			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1856			nkpt++;
1857			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1858				kernel_vm_end = kernel_map->max_offset;
1859				break;
1860			}
1861		}
1862	}
1863	addr = roundup2(addr, NBPDR);
1864	if (addr - 1 >= kernel_map->max_offset)
1865		addr = kernel_map->max_offset;
1866	while (kernel_vm_end < addr) {
1867		if (pdir_pde(PTD, kernel_vm_end)) {
1868			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1869			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1870				kernel_vm_end = kernel_map->max_offset;
1871				break;
1872			}
1873			continue;
1874		}
1875
1876		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1877		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1878		    VM_ALLOC_ZERO);
1879		if (nkpg == NULL)
1880			panic("pmap_growkernel: no memory to grow kernel");
1881
1882		nkpt++;
1883
1884		if ((nkpg->flags & PG_ZERO) == 0)
1885			pmap_zero_page(nkpg);
1886		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1887		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1888		rw_wlock(&pvh_global_lock);
1889		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1890		mtx_lock_spin(&allpmaps_lock);
1891		LIST_FOREACH(pmap, &allpmaps, pm_list)
1892			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1893
1894		mtx_unlock_spin(&allpmaps_lock);
1895		rw_wunlock(&pvh_global_lock);
1896
1897		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
1898		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1899			kernel_vm_end = kernel_map->max_offset;
1900			break;
1901		}
1902	}
1903}
1904
1905
1906/***************************************************
1907 * page management routines.
1908 ***************************************************/
1909
1910CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1911CTASSERT(_NPCM == 11);
1912CTASSERT(_NPCPV == 336);
1913
1914static __inline struct pv_chunk *
1915pv_to_chunk(pv_entry_t pv)
1916{
1917
1918	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
1919}
1920
1921#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1922
1923#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1924#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1925
1926static const uint32_t pc_freemask[_NPCM] = {
1927	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1928	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1929	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1930	PC_FREE0_9, PC_FREE10
1931};
1932
1933SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1934	"Current number of pv entries");
1935
1936#ifdef PV_STATS
1937static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1938
1939SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1940	"Current number of pv entry chunks");
1941SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1942	"Current number of pv entry chunks allocated");
1943SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1944	"Current number of pv entry chunks frees");
1945SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1946	"Number of times tried to get a chunk page but failed.");
1947
1948static long pv_entry_frees, pv_entry_allocs;
1949static int pv_entry_spare;
1950
1951SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1952	"Current number of pv entry frees");
1953SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1954	"Current number of pv entry allocs");
1955SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1956	"Current number of spare pv entries");
1957#endif
1958
1959/*
1960 * We are in a serious low memory condition.  Resort to
1961 * drastic measures to free some pages so we can allocate
1962 * another pv entry chunk.
1963 */
1964static vm_page_t
1965pmap_pv_reclaim(pmap_t locked_pmap)
1966{
1967	struct pch newtail;
1968	struct pv_chunk *pc;
1969	pmap_t pmap;
1970	pt_entry_t *pte, tpte;
1971	pv_entry_t pv;
1972	vm_offset_t va;
1973	vm_page_t free, m, m_pc;
1974	uint32_t inuse;
1975	int bit, field, freed;
1976
1977	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
1978	pmap = NULL;
1979	free = m_pc = NULL;
1980	TAILQ_INIT(&newtail);
1981	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
1982	    free == NULL)) {
1983		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
1984		if (pmap != pc->pc_pmap) {
1985			if (pmap != NULL) {
1986				pmap_invalidate_all(pmap);
1987				if (pmap != locked_pmap)
1988					PMAP_UNLOCK(pmap);
1989			}
1990			pmap = pc->pc_pmap;
1991			/* Avoid deadlock and lock recursion. */
1992			if (pmap > locked_pmap)
1993				PMAP_LOCK(pmap);
1994			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
1995				pmap = NULL;
1996				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
1997				continue;
1998			}
1999		}
2000
2001		/*
2002		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2003		 */
2004		freed = 0;
2005		for (field = 0; field < _NPCM; field++) {
2006			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2007			    inuse != 0; inuse &= ~(1UL << bit)) {
2008				bit = bsfl(inuse);
2009				pv = &pc->pc_pventry[field * 32 + bit];
2010				va = pv->pv_va;
2011				pte = pmap_pte(pmap, va);
2012				tpte = *pte;
2013				if ((tpte & PG_W) == 0)
2014					tpte = pte_load_clear(pte);
2015				pmap_pte_release(pte);
2016				if ((tpte & PG_W) != 0)
2017					continue;
2018				KASSERT(tpte != 0,
2019				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2020				    pmap, va));
2021				if ((tpte & PG_G) != 0)
2022					pmap_invalidate_page(pmap, va);
2023				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2024				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2025					vm_page_dirty(m);
2026				if ((tpte & PG_A) != 0)
2027					vm_page_aflag_set(m, PGA_REFERENCED);
2028				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2029				if (TAILQ_EMPTY(&m->md.pv_list))
2030					vm_page_aflag_clear(m, PGA_WRITEABLE);
2031				pc->pc_map[field] |= 1UL << bit;
2032				pmap_unuse_pt(pmap, va, &free);
2033				freed++;
2034			}
2035		}
2036		if (freed == 0) {
2037			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2038			continue;
2039		}
2040		/* Every freed mapping is for a 4 KB page. */
2041		pmap->pm_stats.resident_count -= freed;
2042		PV_STAT(pv_entry_frees += freed);
2043		PV_STAT(pv_entry_spare += freed);
2044		pv_entry_count -= freed;
2045		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2046		for (field = 0; field < _NPCM; field++)
2047			if (pc->pc_map[field] != pc_freemask[field]) {
2048				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2049				    pc_list);
2050				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2051
2052				/*
2053				 * One freed pv entry in locked_pmap is
2054				 * sufficient.
2055				 */
2056				if (pmap == locked_pmap)
2057					goto out;
2058				break;
2059			}
2060		if (field == _NPCM) {
2061			PV_STAT(pv_entry_spare -= _NPCPV);
2062			PV_STAT(pc_chunk_count--);
2063			PV_STAT(pc_chunk_frees++);
2064			/* Entire chunk is free; return it. */
2065			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2066			pmap_qremove((vm_offset_t)pc, 1);
2067			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2068			break;
2069		}
2070	}
2071out:
2072	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2073	if (pmap != NULL) {
2074		pmap_invalidate_all(pmap);
2075		if (pmap != locked_pmap)
2076			PMAP_UNLOCK(pmap);
2077	}
2078	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2079		m_pc = free;
2080		free = (void *)m_pc->object;
2081		/* Recycle a freed page table page. */
2082		m_pc->wire_count = 1;
2083		atomic_add_int(&cnt.v_wire_count, 1);
2084	}
2085	pmap_free_zero_pages(free);
2086	return (m_pc);
2087}
2088
2089/*
2090 * free the pv_entry back to the free list
2091 */
2092static void
2093free_pv_entry(pmap_t pmap, pv_entry_t pv)
2094{
2095	struct pv_chunk *pc;
2096	int idx, field, bit;
2097
2098	rw_assert(&pvh_global_lock, RA_WLOCKED);
2099	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2100	PV_STAT(pv_entry_frees++);
2101	PV_STAT(pv_entry_spare++);
2102	pv_entry_count--;
2103	pc = pv_to_chunk(pv);
2104	idx = pv - &pc->pc_pventry[0];
2105	field = idx / 32;
2106	bit = idx % 32;
2107	pc->pc_map[field] |= 1ul << bit;
2108	for (idx = 0; idx < _NPCM; idx++)
2109		if (pc->pc_map[idx] != pc_freemask[idx]) {
2110			/*
2111			 * 98% of the time, pc is already at the head of the
2112			 * list.  If it isn't already, move it to the head.
2113			 */
2114			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2115			    pc)) {
2116				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2117				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2118				    pc_list);
2119			}
2120			return;
2121		}
2122	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2123	free_pv_chunk(pc);
2124}
2125
2126static void
2127free_pv_chunk(struct pv_chunk *pc)
2128{
2129	vm_page_t m;
2130
2131 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2132	PV_STAT(pv_entry_spare -= _NPCPV);
2133	PV_STAT(pc_chunk_count--);
2134	PV_STAT(pc_chunk_frees++);
2135	/* entire chunk is free, return it */
2136	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2137	pmap_qremove((vm_offset_t)pc, 1);
2138	vm_page_unwire(m, 0);
2139	vm_page_free(m);
2140	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2141}
2142
2143/*
2144 * get a new pv_entry, allocating a block from the system
2145 * when needed.
2146 */
2147static pv_entry_t
2148get_pv_entry(pmap_t pmap, boolean_t try)
2149{
2150	static const struct timeval printinterval = { 60, 0 };
2151	static struct timeval lastprint;
2152	int bit, field;
2153	pv_entry_t pv;
2154	struct pv_chunk *pc;
2155	vm_page_t m;
2156
2157	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2158	rw_assert(&pvh_global_lock, RA_WLOCKED);
2159	PV_STAT(pv_entry_allocs++);
2160	pv_entry_count++;
2161	if (pv_entry_count > pv_entry_high_water)
2162		if (ratecheck(&lastprint, &printinterval))
2163			printf("Approaching the limit on PV entries, consider "
2164			    "increasing either the vm.pmap.shpgperproc or the "
2165			    "vm.pmap.pv_entry_max tunable.\n");
2166retry:
2167	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2168	if (pc != NULL) {
2169		for (field = 0; field < _NPCM; field++) {
2170			if (pc->pc_map[field]) {
2171				bit = bsfl(pc->pc_map[field]);
2172				break;
2173			}
2174		}
2175		if (field < _NPCM) {
2176			pv = &pc->pc_pventry[field * 32 + bit];
2177			pc->pc_map[field] &= ~(1ul << bit);
2178			/* If this was the last item, move it to tail */
2179			for (field = 0; field < _NPCM; field++)
2180				if (pc->pc_map[field] != 0) {
2181					PV_STAT(pv_entry_spare--);
2182					return (pv);	/* not full, return */
2183				}
2184			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2185			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2186			PV_STAT(pv_entry_spare--);
2187			return (pv);
2188		}
2189	}
2190	/*
2191	 * Access to the ptelist "pv_vafree" is synchronized by the page
2192	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2193	 * remain non-empty until pmap_ptelist_alloc() completes.
2194	 */
2195	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2196	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2197		if (try) {
2198			pv_entry_count--;
2199			PV_STAT(pc_chunk_tryfail++);
2200			return (NULL);
2201		}
2202		m = pmap_pv_reclaim(pmap);
2203		if (m == NULL)
2204			goto retry;
2205	}
2206	PV_STAT(pc_chunk_count++);
2207	PV_STAT(pc_chunk_allocs++);
2208	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2209	pmap_qenter((vm_offset_t)pc, &m, 1);
2210	if ((m->flags & PG_ZERO) == 0)
2211		pagezero(pc);
2212	pc->pc_pmap = pmap;
2213	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2214	for (field = 1; field < _NPCM; field++)
2215		pc->pc_map[field] = pc_freemask[field];
2216	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2217	pv = &pc->pc_pventry[0];
2218	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2219	PV_STAT(pv_entry_spare += _NPCPV - 1);
2220	return (pv);
2221}
2222
2223static __inline pv_entry_t
2224pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2225{
2226	pv_entry_t pv;
2227
2228	rw_assert(&pvh_global_lock, RA_WLOCKED);
2229	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2230		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2231			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2232			break;
2233		}
2234	}
2235	return (pv);
2236}
2237
2238static void
2239pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2240{
2241	pv_entry_t pv;
2242
2243	pv = pmap_pvh_remove(pvh, pmap, va);
2244	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2245	free_pv_entry(pmap, pv);
2246}
2247
2248static void
2249pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2250{
2251
2252	rw_assert(&pvh_global_lock, RA_WLOCKED);
2253	pmap_pvh_free(&m->md, pmap, va);
2254	if (TAILQ_EMPTY(&m->md.pv_list))
2255		vm_page_aflag_clear(m, PGA_WRITEABLE);
2256}
2257
2258/*
2259 * Conditionally create a pv entry.
2260 */
2261static boolean_t
2262pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2263{
2264	pv_entry_t pv;
2265
2266	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2267	rw_assert(&pvh_global_lock, RA_WLOCKED);
2268	if (pv_entry_count < pv_entry_high_water &&
2269	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2270		pv->pv_va = va;
2271		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2272		return (TRUE);
2273	} else
2274		return (FALSE);
2275}
2276
2277/*
2278 * pmap_remove_pte: do the things to unmap a page in a process
2279 */
2280static int
2281pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2282{
2283	pt_entry_t oldpte;
2284	vm_page_t m;
2285
2286	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2287	    pmap, (u_long)*ptq, va);
2288
2289	rw_assert(&pvh_global_lock, RA_WLOCKED);
2290	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2291	oldpte = *ptq;
2292	PT_SET_VA_MA(ptq, 0, TRUE);
2293	KASSERT(oldpte != 0,
2294	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2295	if (oldpte & PG_W)
2296		pmap->pm_stats.wired_count -= 1;
2297	/*
2298	 * Machines that don't support invlpg, also don't support
2299	 * PG_G.
2300	 */
2301	if (oldpte & PG_G)
2302		pmap_invalidate_page(kernel_pmap, va);
2303	pmap->pm_stats.resident_count -= 1;
2304	if (oldpte & PG_MANAGED) {
2305		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2306		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2307			vm_page_dirty(m);
2308		if (oldpte & PG_A)
2309			vm_page_aflag_set(m, PGA_REFERENCED);
2310		pmap_remove_entry(pmap, m, va);
2311	}
2312	return (pmap_unuse_pt(pmap, va, free));
2313}
2314
2315/*
2316 * Remove a single page from a process address space
2317 */
2318static void
2319pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2320{
2321	pt_entry_t *pte;
2322
2323	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2324	    pmap, va);
2325
2326	rw_assert(&pvh_global_lock, RA_WLOCKED);
2327	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2328	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2329	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2330		return;
2331	pmap_remove_pte(pmap, pte, va, free);
2332	pmap_invalidate_page(pmap, va);
2333	if (*PMAP1)
2334		PT_SET_MA(PADDR1, 0);
2335
2336}
2337
2338/*
2339 *	Remove the given range of addresses from the specified map.
2340 *
2341 *	It is assumed that the start and end are properly
2342 *	rounded to the page size.
2343 */
2344void
2345pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2346{
2347	vm_offset_t pdnxt;
2348	pd_entry_t ptpaddr;
2349	pt_entry_t *pte;
2350	vm_page_t free = NULL;
2351	int anyvalid;
2352
2353	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2354	    pmap, sva, eva);
2355
2356	/*
2357	 * Perform an unsynchronized read.  This is, however, safe.
2358	 */
2359	if (pmap->pm_stats.resident_count == 0)
2360		return;
2361
2362	anyvalid = 0;
2363
2364	rw_wlock(&pvh_global_lock);
2365	sched_pin();
2366	PMAP_LOCK(pmap);
2367
2368	/*
2369	 * special handling of removing one page.  a very
2370	 * common operation and easy to short circuit some
2371	 * code.
2372	 */
2373	if ((sva + PAGE_SIZE == eva) &&
2374	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2375		pmap_remove_page(pmap, sva, &free);
2376		goto out;
2377	}
2378
2379	for (; sva < eva; sva = pdnxt) {
2380		u_int pdirindex;
2381
2382		/*
2383		 * Calculate index for next page table.
2384		 */
2385		pdnxt = (sva + NBPDR) & ~PDRMASK;
2386		if (pdnxt < sva)
2387			pdnxt = eva;
2388		if (pmap->pm_stats.resident_count == 0)
2389			break;
2390
2391		pdirindex = sva >> PDRSHIFT;
2392		ptpaddr = pmap->pm_pdir[pdirindex];
2393
2394		/*
2395		 * Weed out invalid mappings. Note: we assume that the page
2396		 * directory table is always allocated, and in kernel virtual.
2397		 */
2398		if (ptpaddr == 0)
2399			continue;
2400
2401		/*
2402		 * Check for large page.
2403		 */
2404		if ((ptpaddr & PG_PS) != 0) {
2405			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2406			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2407			anyvalid = 1;
2408			continue;
2409		}
2410
2411		/*
2412		 * Limit our scan to either the end of the va represented
2413		 * by the current page table page, or to the end of the
2414		 * range being removed.
2415		 */
2416		if (pdnxt > eva)
2417			pdnxt = eva;
2418
2419		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2420		    sva += PAGE_SIZE) {
2421			if ((*pte & PG_V) == 0)
2422				continue;
2423
2424			/*
2425			 * The TLB entry for a PG_G mapping is invalidated
2426			 * by pmap_remove_pte().
2427			 */
2428			if ((*pte & PG_G) == 0)
2429				anyvalid = 1;
2430			if (pmap_remove_pte(pmap, pte, sva, &free))
2431				break;
2432		}
2433	}
2434	PT_UPDATES_FLUSH();
2435	if (*PMAP1)
2436		PT_SET_VA_MA(PMAP1, 0, TRUE);
2437out:
2438	if (anyvalid)
2439		pmap_invalidate_all(pmap);
2440	sched_unpin();
2441	rw_wunlock(&pvh_global_lock);
2442	PMAP_UNLOCK(pmap);
2443	pmap_free_zero_pages(free);
2444}
2445
2446/*
2447 *	Routine:	pmap_remove_all
2448 *	Function:
2449 *		Removes this physical page from
2450 *		all physical maps in which it resides.
2451 *		Reflects back modify bits to the pager.
2452 *
2453 *	Notes:
2454 *		Original versions of this routine were very
2455 *		inefficient because they iteratively called
2456 *		pmap_remove (slow...)
2457 */
2458
2459void
2460pmap_remove_all(vm_page_t m)
2461{
2462	pv_entry_t pv;
2463	pmap_t pmap;
2464	pt_entry_t *pte, tpte;
2465	vm_page_t free;
2466
2467	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2468	    ("pmap_remove_all: page %p is not managed", m));
2469	free = NULL;
2470	rw_wlock(&pvh_global_lock);
2471	sched_pin();
2472	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2473		pmap = PV_PMAP(pv);
2474		PMAP_LOCK(pmap);
2475		pmap->pm_stats.resident_count--;
2476		pte = pmap_pte_quick(pmap, pv->pv_va);
2477		tpte = *pte;
2478		PT_SET_VA_MA(pte, 0, TRUE);
2479		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
2480		    pmap, pv->pv_va));
2481		if (tpte & PG_W)
2482			pmap->pm_stats.wired_count--;
2483		if (tpte & PG_A)
2484			vm_page_aflag_set(m, PGA_REFERENCED);
2485
2486		/*
2487		 * Update the vm_page_t clean and reference bits.
2488		 */
2489		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2490			vm_page_dirty(m);
2491		pmap_unuse_pt(pmap, pv->pv_va, &free);
2492		pmap_invalidate_page(pmap, pv->pv_va);
2493		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2494		free_pv_entry(pmap, pv);
2495		PMAP_UNLOCK(pmap);
2496	}
2497	vm_page_aflag_clear(m, PGA_WRITEABLE);
2498	PT_UPDATES_FLUSH();
2499	if (*PMAP1)
2500		PT_SET_MA(PADDR1, 0);
2501	sched_unpin();
2502	rw_wunlock(&pvh_global_lock);
2503	pmap_free_zero_pages(free);
2504}
2505
2506/*
2507 *	Set the physical protection on the
2508 *	specified range of this map as requested.
2509 */
2510void
2511pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2512{
2513	vm_offset_t pdnxt;
2514	pd_entry_t ptpaddr;
2515	pt_entry_t *pte;
2516	int anychanged;
2517
2518	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2519	    pmap, sva, eva, prot);
2520
2521	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2522		pmap_remove(pmap, sva, eva);
2523		return;
2524	}
2525
2526#ifdef PAE
2527	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2528	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2529		return;
2530#else
2531	if (prot & VM_PROT_WRITE)
2532		return;
2533#endif
2534
2535	anychanged = 0;
2536
2537	rw_wlock(&pvh_global_lock);
2538	sched_pin();
2539	PMAP_LOCK(pmap);
2540	for (; sva < eva; sva = pdnxt) {
2541		pt_entry_t obits, pbits;
2542		u_int pdirindex;
2543
2544		pdnxt = (sva + NBPDR) & ~PDRMASK;
2545		if (pdnxt < sva)
2546			pdnxt = eva;
2547
2548		pdirindex = sva >> PDRSHIFT;
2549		ptpaddr = pmap->pm_pdir[pdirindex];
2550
2551		/*
2552		 * Weed out invalid mappings. Note: we assume that the page
2553		 * directory table is always allocated, and in kernel virtual.
2554		 */
2555		if (ptpaddr == 0)
2556			continue;
2557
2558		/*
2559		 * Check for large page.
2560		 */
2561		if ((ptpaddr & PG_PS) != 0) {
2562			if ((prot & VM_PROT_WRITE) == 0)
2563				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2564#ifdef PAE
2565			if ((prot & VM_PROT_EXECUTE) == 0)
2566				pmap->pm_pdir[pdirindex] |= pg_nx;
2567#endif
2568			anychanged = 1;
2569			continue;
2570		}
2571
2572		if (pdnxt > eva)
2573			pdnxt = eva;
2574
2575		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2576		    sva += PAGE_SIZE) {
2577			vm_page_t m;
2578
2579retry:
2580			/*
2581			 * Regardless of whether a pte is 32 or 64 bits in
2582			 * size, PG_RW, PG_A, and PG_M are among the least
2583			 * significant 32 bits.
2584			 */
2585			obits = pbits = *pte;
2586			if ((pbits & PG_V) == 0)
2587				continue;
2588
2589			if ((prot & VM_PROT_WRITE) == 0) {
2590				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
2591				    (PG_MANAGED | PG_M | PG_RW)) {
2592					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) &
2593					    PG_FRAME);
2594					vm_page_dirty(m);
2595				}
2596				pbits &= ~(PG_RW | PG_M);
2597			}
2598#ifdef PAE
2599			if ((prot & VM_PROT_EXECUTE) == 0)
2600				pbits |= pg_nx;
2601#endif
2602
2603			if (pbits != obits) {
2604				obits = *pte;
2605				PT_SET_VA_MA(pte, pbits, TRUE);
2606				if (*pte != pbits)
2607					goto retry;
2608				if (obits & PG_G)
2609					pmap_invalidate_page(pmap, sva);
2610				else
2611					anychanged = 1;
2612			}
2613		}
2614	}
2615	PT_UPDATES_FLUSH();
2616	if (*PMAP1)
2617		PT_SET_VA_MA(PMAP1, 0, TRUE);
2618	if (anychanged)
2619		pmap_invalidate_all(pmap);
2620	sched_unpin();
2621	rw_wunlock(&pvh_global_lock);
2622	PMAP_UNLOCK(pmap);
2623}
2624
2625/*
2626 *	Insert the given physical page (p) at
2627 *	the specified virtual address (v) in the
2628 *	target physical map with the protection requested.
2629 *
2630 *	If specified, the page will be wired down, meaning
2631 *	that the related pte can not be reclaimed.
2632 *
2633 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2634 *	or lose information.  That is, this routine must actually
2635 *	insert this page into the given map NOW.
2636 */
2637int
2638pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2639    u_int flags, int8_t psind __unused)
2640{
2641	pd_entry_t *pde;
2642	pt_entry_t *pte;
2643	pt_entry_t newpte, origpte;
2644	pv_entry_t pv;
2645	vm_paddr_t opa, pa;
2646	vm_page_t mpte, om;
2647	boolean_t invlva, wired;
2648
2649	CTR5(KTR_PMAP,
2650	    "pmap_enter: pmap=%08p va=0x%08x ma=0x%08x prot=0x%x flags=0x%x",
2651	    pmap, va, VM_PAGE_TO_MACH(m), prot, flags);
2652	va = trunc_page(va);
2653	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2654	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2655	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
2656	    va));
2657	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
2658		VM_OBJECT_ASSERT_LOCKED(m->object);
2659
2660	mpte = NULL;
2661	wired = (flags & PMAP_ENTER_WIRED) != 0;
2662
2663	rw_wlock(&pvh_global_lock);
2664	PMAP_LOCK(pmap);
2665	sched_pin();
2666
2667	/*
2668	 * In the case that a page table page is not
2669	 * resident, we are creating it here.
2670	 */
2671	if (va < VM_MAXUSER_ADDRESS) {
2672		mpte = pmap_allocpte(pmap, va, flags);
2673		if (mpte == NULL) {
2674			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
2675			    ("pmap_allocpte failed with sleep allowed"));
2676			sched_unpin();
2677			rw_wunlock(&pvh_global_lock);
2678			PMAP_UNLOCK(pmap);
2679			return (KERN_RESOURCE_SHORTAGE);
2680		}
2681	}
2682
2683	pde = pmap_pde(pmap, va);
2684	if ((*pde & PG_PS) != 0)
2685		panic("pmap_enter: attempted pmap_enter on 4MB page");
2686	pte = pmap_pte_quick(pmap, va);
2687
2688	/*
2689	 * Page Directory table entry not valid, we need a new PT page
2690	 */
2691	if (pte == NULL) {
2692		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2693			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2694	}
2695
2696	pa = VM_PAGE_TO_PHYS(m);
2697	om = NULL;
2698	opa = origpte = 0;
2699
2700#if 0
2701	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2702		pte, *pte));
2703#endif
2704	origpte = *pte;
2705	if (origpte)
2706		origpte = xpmap_mtop(origpte);
2707	opa = origpte & PG_FRAME;
2708
2709	/*
2710	 * Mapping has not changed, must be protection or wiring change.
2711	 */
2712	if (origpte && (opa == pa)) {
2713		/*
2714		 * Wiring change, just update stats. We don't worry about
2715		 * wiring PT pages as they remain resident as long as there
2716		 * are valid mappings in them. Hence, if a user page is wired,
2717		 * the PT page will be also.
2718		 */
2719		if (wired && ((origpte & PG_W) == 0))
2720			pmap->pm_stats.wired_count++;
2721		else if (!wired && (origpte & PG_W))
2722			pmap->pm_stats.wired_count--;
2723
2724		/*
2725		 * Remove extra pte reference
2726		 */
2727		if (mpte)
2728			mpte->wire_count--;
2729
2730		if (origpte & PG_MANAGED) {
2731			om = m;
2732			pa |= PG_MANAGED;
2733		}
2734		goto validate;
2735	}
2736
2737	pv = NULL;
2738
2739	/*
2740	 * Mapping has changed, invalidate old range and fall through to
2741	 * handle validating new mapping.
2742	 */
2743	if (opa) {
2744		if (origpte & PG_W)
2745			pmap->pm_stats.wired_count--;
2746		if (origpte & PG_MANAGED) {
2747			om = PHYS_TO_VM_PAGE(opa);
2748			pv = pmap_pvh_remove(&om->md, pmap, va);
2749		} else if (va < VM_MAXUSER_ADDRESS)
2750			printf("va=0x%x is unmanaged :-( \n", va);
2751
2752		if (mpte != NULL) {
2753			mpte->wire_count--;
2754			KASSERT(mpte->wire_count > 0,
2755			    ("pmap_enter: missing reference to page table page,"
2756			     " va: 0x%x", va));
2757		}
2758	} else
2759		pmap->pm_stats.resident_count++;
2760
2761	/*
2762	 * Enter on the PV list if part of our managed memory.
2763	 */
2764	if ((m->oflags & VPO_UNMANAGED) == 0) {
2765		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2766		    ("pmap_enter: managed mapping within the clean submap"));
2767		if (pv == NULL)
2768			pv = get_pv_entry(pmap, FALSE);
2769		pv->pv_va = va;
2770		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2771		pa |= PG_MANAGED;
2772	} else if (pv != NULL)
2773		free_pv_entry(pmap, pv);
2774
2775	/*
2776	 * Increment counters
2777	 */
2778	if (wired)
2779		pmap->pm_stats.wired_count++;
2780
2781validate:
2782	/*
2783	 * Now validate mapping with desired protection/wiring.
2784	 */
2785	newpte = (pt_entry_t)(pa | PG_V);
2786	if ((prot & VM_PROT_WRITE) != 0) {
2787		newpte |= PG_RW;
2788		if ((newpte & PG_MANAGED) != 0)
2789			vm_page_aflag_set(m, PGA_WRITEABLE);
2790	}
2791#ifdef PAE
2792	if ((prot & VM_PROT_EXECUTE) == 0)
2793		newpte |= pg_nx;
2794#endif
2795	if (wired)
2796		newpte |= PG_W;
2797	if (va < VM_MAXUSER_ADDRESS)
2798		newpte |= PG_U;
2799	if (pmap == kernel_pmap)
2800		newpte |= pgeflag;
2801
2802	critical_enter();
2803	/*
2804	 * if the mapping or permission bits are different, we need
2805	 * to update the pte.
2806	 */
2807	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2808		if (origpte) {
2809			invlva = FALSE;
2810			origpte = *pte;
2811			PT_SET_VA(pte, newpte | PG_A, FALSE);
2812			if (origpte & PG_A) {
2813				if (origpte & PG_MANAGED)
2814					vm_page_aflag_set(om, PGA_REFERENCED);
2815				if (opa != VM_PAGE_TO_PHYS(m))
2816					invlva = TRUE;
2817#ifdef PAE
2818				if ((origpte & PG_NX) == 0 &&
2819				    (newpte & PG_NX) != 0)
2820					invlva = TRUE;
2821#endif
2822			}
2823			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
2824				if ((origpte & PG_MANAGED) != 0)
2825					vm_page_dirty(om);
2826				if ((prot & VM_PROT_WRITE) == 0)
2827					invlva = TRUE;
2828			}
2829			if ((origpte & PG_MANAGED) != 0 &&
2830			    TAILQ_EMPTY(&om->md.pv_list))
2831				vm_page_aflag_clear(om, PGA_WRITEABLE);
2832			if (invlva)
2833				pmap_invalidate_page(pmap, va);
2834		} else{
2835			PT_SET_VA(pte, newpte | PG_A, FALSE);
2836		}
2837
2838	}
2839	PT_UPDATES_FLUSH();
2840	critical_exit();
2841	if (*PMAP1)
2842		PT_SET_VA_MA(PMAP1, 0, TRUE);
2843	sched_unpin();
2844	rw_wunlock(&pvh_global_lock);
2845	PMAP_UNLOCK(pmap);
2846	return (KERN_SUCCESS);
2847}
2848
2849/*
2850 * Maps a sequence of resident pages belonging to the same object.
2851 * The sequence begins with the given page m_start.  This page is
2852 * mapped at the given virtual address start.  Each subsequent page is
2853 * mapped at a virtual address that is offset from start by the same
2854 * amount as the page is offset from m_start within the object.  The
2855 * last page in the sequence is the page with the largest offset from
2856 * m_start that can be mapped at a virtual address less than the given
2857 * virtual address end.  Not every virtual page between start and end
2858 * is mapped; only those for which a resident page exists with the
2859 * corresponding offset from m_start are mapped.
2860 */
2861void
2862pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2863    vm_page_t m_start, vm_prot_t prot)
2864{
2865	vm_page_t m, mpte;
2866	vm_pindex_t diff, psize;
2867	multicall_entry_t mcl[16];
2868	multicall_entry_t *mclp = mcl;
2869	int error, count = 0;
2870
2871	VM_OBJECT_ASSERT_LOCKED(m_start->object);
2872
2873	psize = atop(end - start);
2874	mpte = NULL;
2875	m = m_start;
2876	rw_wlock(&pvh_global_lock);
2877	PMAP_LOCK(pmap);
2878	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2879		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2880		    prot, mpte);
2881		m = TAILQ_NEXT(m, listq);
2882		if (count == 16) {
2883			error = HYPERVISOR_multicall(mcl, count);
2884			KASSERT(error == 0, ("bad multicall %d", error));
2885			mclp = mcl;
2886			count = 0;
2887		}
2888	}
2889	if (count) {
2890		error = HYPERVISOR_multicall(mcl, count);
2891		KASSERT(error == 0, ("bad multicall %d", error));
2892	}
2893	rw_wunlock(&pvh_global_lock);
2894	PMAP_UNLOCK(pmap);
2895}
2896
2897/*
2898 * this code makes some *MAJOR* assumptions:
2899 * 1. Current pmap & pmap exists.
2900 * 2. Not wired.
2901 * 3. Read access.
2902 * 4. No page table pages.
2903 * but is *MUCH* faster than pmap_enter...
2904 */
2905
2906void
2907pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2908{
2909	multicall_entry_t mcl, *mclp;
2910	int count = 0;
2911	mclp = &mcl;
2912
2913	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2914	    pmap, va, m, prot);
2915
2916	rw_wlock(&pvh_global_lock);
2917	PMAP_LOCK(pmap);
2918	(void)pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2919	if (count)
2920		HYPERVISOR_multicall(&mcl, count);
2921	rw_wunlock(&pvh_global_lock);
2922	PMAP_UNLOCK(pmap);
2923}
2924
2925#ifdef notyet
2926void
2927pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2928{
2929	int i, error, index = 0;
2930	multicall_entry_t mcl[16];
2931	multicall_entry_t *mclp = mcl;
2932
2933	PMAP_LOCK(pmap);
2934	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2935		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2936			continue;
2937
2938		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2939		if (index == 16) {
2940			error = HYPERVISOR_multicall(mcl, index);
2941			mclp = mcl;
2942			index = 0;
2943			KASSERT(error == 0, ("bad multicall %d", error));
2944		}
2945	}
2946	if (index) {
2947		error = HYPERVISOR_multicall(mcl, index);
2948		KASSERT(error == 0, ("bad multicall %d", error));
2949	}
2950
2951	PMAP_UNLOCK(pmap);
2952}
2953#endif
2954
2955static vm_page_t
2956pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2957    vm_prot_t prot, vm_page_t mpte)
2958{
2959	pt_entry_t *pte;
2960	vm_paddr_t pa;
2961	vm_page_t free;
2962	multicall_entry_t *mcl = *mclpp;
2963
2964	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2965	    (m->oflags & VPO_UNMANAGED) != 0,
2966	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2967	rw_assert(&pvh_global_lock, RA_WLOCKED);
2968	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2969
2970	/*
2971	 * In the case that a page table page is not
2972	 * resident, we are creating it here.
2973	 */
2974	if (va < VM_MAXUSER_ADDRESS) {
2975		u_int ptepindex;
2976		pd_entry_t ptema;
2977
2978		/*
2979		 * Calculate pagetable page index
2980		 */
2981		ptepindex = va >> PDRSHIFT;
2982		if (mpte && (mpte->pindex == ptepindex)) {
2983			mpte->wire_count++;
2984		} else {
2985			/*
2986			 * Get the page directory entry
2987			 */
2988			ptema = pmap->pm_pdir[ptepindex];
2989
2990			/*
2991			 * If the page table page is mapped, we just increment
2992			 * the hold count, and activate it.
2993			 */
2994			if (ptema & PG_V) {
2995				if (ptema & PG_PS)
2996					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2997				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2998				mpte->wire_count++;
2999			} else {
3000				mpte = _pmap_allocpte(pmap, ptepindex,
3001				    PMAP_ENTER_NOSLEEP);
3002				if (mpte == NULL)
3003					return (mpte);
3004			}
3005		}
3006	} else {
3007		mpte = NULL;
3008	}
3009
3010	/*
3011	 * This call to vtopte makes the assumption that we are
3012	 * entering the page into the current pmap.  In order to support
3013	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3014	 * But that isn't as quick as vtopte.
3015	 */
3016	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3017	pte = vtopte(va);
3018	if (*pte & PG_V) {
3019		if (mpte != NULL) {
3020			mpte->wire_count--;
3021			mpte = NULL;
3022		}
3023		return (mpte);
3024	}
3025
3026	/*
3027	 * Enter on the PV list if part of our managed memory.
3028	 */
3029	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3030	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3031		if (mpte != NULL) {
3032			free = NULL;
3033			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3034				pmap_invalidate_page(pmap, va);
3035				pmap_free_zero_pages(free);
3036			}
3037
3038			mpte = NULL;
3039		}
3040		return (mpte);
3041	}
3042
3043	/*
3044	 * Increment counters
3045	 */
3046	pmap->pm_stats.resident_count++;
3047
3048	pa = VM_PAGE_TO_PHYS(m);
3049#ifdef PAE
3050	if ((prot & VM_PROT_EXECUTE) == 0)
3051		pa |= pg_nx;
3052#endif
3053
3054#if 0
3055	/*
3056	 * Now validate mapping with RO protection
3057	 */
3058	if ((m->oflags & VPO_UNMANAGED) != 0)
3059		pte_store(pte, pa | PG_V | PG_U);
3060	else
3061		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3062#else
3063	/*
3064	 * Now validate mapping with RO protection
3065	 */
3066	if ((m->oflags & VPO_UNMANAGED) != 0)
3067		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3068	else
3069		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3070
3071	mcl->op = __HYPERVISOR_update_va_mapping;
3072	mcl->args[0] = va;
3073	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3074	mcl->args[2] = (uint32_t)(pa >> 32);
3075	mcl->args[3] = 0;
3076	*mclpp = mcl + 1;
3077	*count = *count + 1;
3078#endif
3079	return (mpte);
3080}
3081
3082/*
3083 * Make a temporary mapping for a physical address.  This is only intended
3084 * to be used for panic dumps.
3085 */
3086void *
3087pmap_kenter_temporary(vm_paddr_t pa, int i)
3088{
3089	vm_offset_t va;
3090	vm_paddr_t ma = xpmap_ptom(pa);
3091
3092	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3093	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3094	invlpg(va);
3095	return ((void *)crashdumpmap);
3096}
3097
3098/*
3099 * This code maps large physical mmap regions into the
3100 * processor address space.  Note that some shortcuts
3101 * are taken, but the code works.
3102 */
3103void
3104pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3105    vm_pindex_t pindex, vm_size_t size)
3106{
3107	pd_entry_t *pde;
3108	vm_paddr_t pa, ptepa;
3109	vm_page_t p;
3110	int pat_mode;
3111
3112	VM_OBJECT_ASSERT_WLOCKED(object);
3113	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3114	    ("pmap_object_init_pt: non-device object"));
3115	if (pseflag &&
3116	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3117		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3118			return;
3119		p = vm_page_lookup(object, pindex);
3120		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3121		    ("pmap_object_init_pt: invalid page %p", p));
3122		pat_mode = p->md.pat_mode;
3123
3124		/*
3125		 * Abort the mapping if the first page is not physically
3126		 * aligned to a 2/4MB page boundary.
3127		 */
3128		ptepa = VM_PAGE_TO_PHYS(p);
3129		if (ptepa & (NBPDR - 1))
3130			return;
3131
3132		/*
3133		 * Skip the first page.  Abort the mapping if the rest of
3134		 * the pages are not physically contiguous or have differing
3135		 * memory attributes.
3136		 */
3137		p = TAILQ_NEXT(p, listq);
3138		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3139		    pa += PAGE_SIZE) {
3140			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3141			    ("pmap_object_init_pt: invalid page %p", p));
3142			if (pa != VM_PAGE_TO_PHYS(p) ||
3143			    pat_mode != p->md.pat_mode)
3144				return;
3145			p = TAILQ_NEXT(p, listq);
3146		}
3147
3148		/*
3149		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3150		 * "size" is a multiple of 2/4M, adding the PAT setting to
3151		 * "pa" will not affect the termination of this loop.
3152		 */
3153		PMAP_LOCK(pmap);
3154		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3155		    size; pa += NBPDR) {
3156			pde = pmap_pde(pmap, addr);
3157			if (*pde == 0) {
3158				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3159				    PG_U | PG_RW | PG_V);
3160				pmap->pm_stats.resident_count += NBPDR /
3161				    PAGE_SIZE;
3162				pmap_pde_mappings++;
3163			}
3164			/* Else continue on if the PDE is already valid. */
3165			addr += NBPDR;
3166		}
3167		PMAP_UNLOCK(pmap);
3168	}
3169}
3170
3171/*
3172 *	Clear the wired attribute from the mappings for the specified range of
3173 *	addresses in the given pmap.  Every valid mapping within that range
3174 *	must have the wired attribute set.  In contrast, invalid mappings
3175 *	cannot have the wired attribute set, so they are ignored.
3176 *
3177 *	The wired attribute of the page table entry is not a hardware feature,
3178 *	so there is no need to invalidate any TLB entries.
3179 */
3180void
3181pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3182{
3183	vm_offset_t pdnxt;
3184	pd_entry_t *pde;
3185	pt_entry_t *pte;
3186
3187	CTR3(KTR_PMAP, "pmap_unwire: pmap=%p sva=0x%x eva=0x%x", pmap, sva,
3188	    eva);
3189	rw_wlock(&pvh_global_lock);
3190	sched_pin();
3191	PMAP_LOCK(pmap);
3192	for (; sva < eva; sva = pdnxt) {
3193		pdnxt = (sva + NBPDR) & ~PDRMASK;
3194		if (pdnxt < sva)
3195			pdnxt = eva;
3196		pde = pmap_pde(pmap, sva);
3197		if ((*pde & PG_V) == 0)
3198			continue;
3199		if ((*pde & PG_PS) != 0)
3200			panic("pmap_unwire: unexpected PG_PS in pde %#jx",
3201			    (uintmax_t)*pde);
3202		if (pdnxt > eva)
3203			pdnxt = eva;
3204		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3205		    sva += PAGE_SIZE) {
3206			if ((*pte & PG_V) == 0)
3207				continue;
3208			if ((*pte & PG_W) == 0)
3209				panic("pmap_unwire: pte %#jx is missing PG_W",
3210				    (uintmax_t)*pte);
3211			PT_SET_VA_MA(pte, *pte & ~PG_W, FALSE);
3212			pmap->pm_stats.wired_count--;
3213		}
3214	}
3215	if (*PMAP1)
3216		PT_CLEAR_VA(PMAP1, FALSE);
3217	PT_UPDATES_FLUSH();
3218	sched_unpin();
3219	rw_wunlock(&pvh_global_lock);
3220	PMAP_UNLOCK(pmap);
3221}
3222
3223
3224/*
3225 *	Copy the range specified by src_addr/len
3226 *	from the source map to the range dst_addr/len
3227 *	in the destination map.
3228 *
3229 *	This routine is only advisory and need not do anything.
3230 */
3231
3232void
3233pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3234    vm_offset_t src_addr)
3235{
3236	vm_page_t   free;
3237	vm_offset_t addr;
3238	vm_offset_t end_addr = src_addr + len;
3239	vm_offset_t pdnxt;
3240
3241	if (dst_addr != src_addr)
3242		return;
3243
3244	if (!pmap_is_current(src_pmap)) {
3245		CTR2(KTR_PMAP,
3246		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3247		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3248
3249		return;
3250	}
3251	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3252	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3253
3254#ifdef HAMFISTED_LOCKING
3255	mtx_lock(&createdelete_lock);
3256#endif
3257
3258	rw_wlock(&pvh_global_lock);
3259	if (dst_pmap < src_pmap) {
3260		PMAP_LOCK(dst_pmap);
3261		PMAP_LOCK(src_pmap);
3262	} else {
3263		PMAP_LOCK(src_pmap);
3264		PMAP_LOCK(dst_pmap);
3265	}
3266	sched_pin();
3267	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3268		pt_entry_t *src_pte, *dst_pte;
3269		vm_page_t dstmpte, srcmpte;
3270		pd_entry_t srcptepaddr;
3271		u_int ptepindex;
3272
3273		KASSERT(addr < UPT_MIN_ADDRESS,
3274		    ("pmap_copy: invalid to pmap_copy page tables"));
3275
3276		pdnxt = (addr + NBPDR) & ~PDRMASK;
3277		if (pdnxt < addr)
3278			pdnxt = end_addr;
3279		ptepindex = addr >> PDRSHIFT;
3280
3281		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3282		if (srcptepaddr == 0)
3283			continue;
3284
3285		if (srcptepaddr & PG_PS) {
3286			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3287				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3288				dst_pmap->pm_stats.resident_count +=
3289				    NBPDR / PAGE_SIZE;
3290			}
3291			continue;
3292		}
3293
3294		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3295		KASSERT(srcmpte->wire_count > 0,
3296		    ("pmap_copy: source page table page is unused"));
3297
3298		if (pdnxt > end_addr)
3299			pdnxt = end_addr;
3300
3301		src_pte = vtopte(addr);
3302		while (addr < pdnxt) {
3303			pt_entry_t ptetemp;
3304			ptetemp = *src_pte;
3305			/*
3306			 * we only virtual copy managed pages
3307			 */
3308			if ((ptetemp & PG_MANAGED) != 0) {
3309				dstmpte = pmap_allocpte(dst_pmap, addr,
3310				    PMAP_ENTER_NOSLEEP);
3311				if (dstmpte == NULL)
3312					goto out;
3313				dst_pte = pmap_pte_quick(dst_pmap, addr);
3314				if (*dst_pte == 0 &&
3315				    pmap_try_insert_pv_entry(dst_pmap, addr,
3316				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3317					/*
3318					 * Clear the wired, modified, and
3319					 * accessed (referenced) bits
3320					 * during the copy.
3321					 */
3322					KASSERT(ptetemp != 0, ("src_pte not set"));
3323					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3324					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3325					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3326						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3327					dst_pmap->pm_stats.resident_count++;
3328	 			} else {
3329					free = NULL;
3330					if (pmap_unwire_ptp(dst_pmap, dstmpte,
3331					    &free)) {
3332						pmap_invalidate_page(dst_pmap,
3333						    addr);
3334						pmap_free_zero_pages(free);
3335					}
3336					goto out;
3337				}
3338				if (dstmpte->wire_count >= srcmpte->wire_count)
3339					break;
3340			}
3341			addr += PAGE_SIZE;
3342			src_pte++;
3343		}
3344	}
3345out:
3346	PT_UPDATES_FLUSH();
3347	sched_unpin();
3348	rw_wunlock(&pvh_global_lock);
3349	PMAP_UNLOCK(src_pmap);
3350	PMAP_UNLOCK(dst_pmap);
3351
3352#ifdef HAMFISTED_LOCKING
3353	mtx_unlock(&createdelete_lock);
3354#endif
3355}
3356
3357static __inline void
3358pagezero(void *page)
3359{
3360#if defined(I686_CPU)
3361	if (cpu_class == CPUCLASS_686) {
3362#if defined(CPU_ENABLE_SSE)
3363		if (cpu_feature & CPUID_SSE2)
3364			sse2_pagezero(page);
3365		else
3366#endif
3367			i686_pagezero(page);
3368	} else
3369#endif
3370		bzero(page, PAGE_SIZE);
3371}
3372
3373/*
3374 *	pmap_zero_page zeros the specified hardware page by mapping
3375 *	the page into KVM and using bzero to clear its contents.
3376 */
3377void
3378pmap_zero_page(vm_page_t m)
3379{
3380	struct sysmaps *sysmaps;
3381
3382	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3383	mtx_lock(&sysmaps->lock);
3384	if (*sysmaps->CMAP2)
3385		panic("pmap_zero_page: CMAP2 busy");
3386	sched_pin();
3387	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3388	pagezero(sysmaps->CADDR2);
3389	PT_SET_MA(sysmaps->CADDR2, 0);
3390	sched_unpin();
3391	mtx_unlock(&sysmaps->lock);
3392}
3393
3394/*
3395 *	pmap_zero_page_area zeros the specified hardware page by mapping
3396 *	the page into KVM and using bzero to clear its contents.
3397 *
3398 *	off and size may not cover an area beyond a single hardware page.
3399 */
3400void
3401pmap_zero_page_area(vm_page_t m, int off, int size)
3402{
3403	struct sysmaps *sysmaps;
3404
3405	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3406	mtx_lock(&sysmaps->lock);
3407	if (*sysmaps->CMAP2)
3408		panic("pmap_zero_page_area: CMAP2 busy");
3409	sched_pin();
3410	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3411
3412	if (off == 0 && size == PAGE_SIZE)
3413		pagezero(sysmaps->CADDR2);
3414	else
3415		bzero((char *)sysmaps->CADDR2 + off, size);
3416	PT_SET_MA(sysmaps->CADDR2, 0);
3417	sched_unpin();
3418	mtx_unlock(&sysmaps->lock);
3419}
3420
3421/*
3422 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3423 *	the page into KVM and using bzero to clear its contents.  This
3424 *	is intended to be called from the vm_pagezero process only and
3425 *	outside of Giant.
3426 */
3427void
3428pmap_zero_page_idle(vm_page_t m)
3429{
3430
3431	if (*CMAP3)
3432		panic("pmap_zero_page_idle: CMAP3 busy");
3433	sched_pin();
3434	PT_SET_MA(CADDR3, PG_V | PG_RW | VM_PAGE_TO_MACH(m) | PG_A | PG_M);
3435	pagezero(CADDR3);
3436	PT_SET_MA(CADDR3, 0);
3437	sched_unpin();
3438}
3439
3440/*
3441 *	pmap_copy_page copies the specified (machine independent)
3442 *	page by mapping the page into virtual memory and using
3443 *	bcopy to copy the page, one machine dependent page at a
3444 *	time.
3445 */
3446void
3447pmap_copy_page(vm_page_t src, vm_page_t dst)
3448{
3449	struct sysmaps *sysmaps;
3450
3451	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3452	mtx_lock(&sysmaps->lock);
3453	if (*sysmaps->CMAP1)
3454		panic("pmap_copy_page: CMAP1 busy");
3455	if (*sysmaps->CMAP2)
3456		panic("pmap_copy_page: CMAP2 busy");
3457	sched_pin();
3458	PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(src) | PG_A);
3459	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | VM_PAGE_TO_MACH(dst) | PG_A | PG_M);
3460	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3461	PT_SET_MA(sysmaps->CADDR1, 0);
3462	PT_SET_MA(sysmaps->CADDR2, 0);
3463	sched_unpin();
3464	mtx_unlock(&sysmaps->lock);
3465}
3466
3467int unmapped_buf_allowed = 1;
3468
3469void
3470pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
3471    vm_offset_t b_offset, int xfersize)
3472{
3473	struct sysmaps *sysmaps;
3474	vm_page_t a_pg, b_pg;
3475	char *a_cp, *b_cp;
3476	vm_offset_t a_pg_offset, b_pg_offset;
3477	int cnt;
3478
3479	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3480	mtx_lock(&sysmaps->lock);
3481	if (*sysmaps->CMAP1 != 0)
3482		panic("pmap_copy_pages: CMAP1 busy");
3483	if (*sysmaps->CMAP2 != 0)
3484		panic("pmap_copy_pages: CMAP2 busy");
3485	sched_pin();
3486	while (xfersize > 0) {
3487		a_pg = ma[a_offset >> PAGE_SHIFT];
3488		a_pg_offset = a_offset & PAGE_MASK;
3489		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
3490		b_pg = mb[b_offset >> PAGE_SHIFT];
3491		b_pg_offset = b_offset & PAGE_MASK;
3492		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
3493		PT_SET_MA(sysmaps->CADDR1, PG_V | VM_PAGE_TO_MACH(a_pg) | PG_A);
3494		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
3495		    VM_PAGE_TO_MACH(b_pg) | PG_A | PG_M);
3496		a_cp = sysmaps->CADDR1 + a_pg_offset;
3497		b_cp = sysmaps->CADDR2 + b_pg_offset;
3498		bcopy(a_cp, b_cp, cnt);
3499		a_offset += cnt;
3500		b_offset += cnt;
3501		xfersize -= cnt;
3502	}
3503	PT_SET_MA(sysmaps->CADDR1, 0);
3504	PT_SET_MA(sysmaps->CADDR2, 0);
3505	sched_unpin();
3506	mtx_unlock(&sysmaps->lock);
3507}
3508
3509/*
3510 * Returns true if the pmap's pv is one of the first
3511 * 16 pvs linked to from this page.  This count may
3512 * be changed upwards or downwards in the future; it
3513 * is only necessary that true be returned for a small
3514 * subset of pmaps for proper page aging.
3515 */
3516boolean_t
3517pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3518{
3519	pv_entry_t pv;
3520	int loops = 0;
3521	boolean_t rv;
3522
3523	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3524	    ("pmap_page_exists_quick: page %p is not managed", m));
3525	rv = FALSE;
3526	rw_wlock(&pvh_global_lock);
3527	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3528		if (PV_PMAP(pv) == pmap) {
3529			rv = TRUE;
3530			break;
3531		}
3532		loops++;
3533		if (loops >= 16)
3534			break;
3535	}
3536	rw_wunlock(&pvh_global_lock);
3537	return (rv);
3538}
3539
3540/*
3541 *	pmap_page_wired_mappings:
3542 *
3543 *	Return the number of managed mappings to the given physical page
3544 *	that are wired.
3545 */
3546int
3547pmap_page_wired_mappings(vm_page_t m)
3548{
3549	pv_entry_t pv;
3550	pt_entry_t *pte;
3551	pmap_t pmap;
3552	int count;
3553
3554	count = 0;
3555	if ((m->oflags & VPO_UNMANAGED) != 0)
3556		return (count);
3557	rw_wlock(&pvh_global_lock);
3558	sched_pin();
3559	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3560		pmap = PV_PMAP(pv);
3561		PMAP_LOCK(pmap);
3562		pte = pmap_pte_quick(pmap, pv->pv_va);
3563		if ((*pte & PG_W) != 0)
3564			count++;
3565		PMAP_UNLOCK(pmap);
3566	}
3567	sched_unpin();
3568	rw_wunlock(&pvh_global_lock);
3569	return (count);
3570}
3571
3572/*
3573 * Returns TRUE if the given page is mapped.  Otherwise, returns FALSE.
3574 */
3575boolean_t
3576pmap_page_is_mapped(vm_page_t m)
3577{
3578
3579	if ((m->oflags & VPO_UNMANAGED) != 0)
3580		return (FALSE);
3581	return (!TAILQ_EMPTY(&m->md.pv_list));
3582}
3583
3584/*
3585 * Remove all pages from specified address space
3586 * this aids process exit speeds.  Also, this code
3587 * is special cased for current process only, but
3588 * can have the more generic (and slightly slower)
3589 * mode enabled.  This is much faster than pmap_remove
3590 * in the case of running down an entire address space.
3591 */
3592void
3593pmap_remove_pages(pmap_t pmap)
3594{
3595	pt_entry_t *pte, tpte;
3596	vm_page_t m, free = NULL;
3597	pv_entry_t pv;
3598	struct pv_chunk *pc, *npc;
3599	int field, idx;
3600	int32_t bit;
3601	uint32_t inuse, bitmask;
3602	int allfree;
3603
3604	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3605
3606	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3607		printf("warning: pmap_remove_pages called with non-current pmap\n");
3608		return;
3609	}
3610	rw_wlock(&pvh_global_lock);
3611	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3612	PMAP_LOCK(pmap);
3613	sched_pin();
3614	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3615		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
3616		    pc->pc_pmap));
3617		allfree = 1;
3618		for (field = 0; field < _NPCM; field++) {
3619			inuse = ~pc->pc_map[field] & pc_freemask[field];
3620			while (inuse != 0) {
3621				bit = bsfl(inuse);
3622				bitmask = 1UL << bit;
3623				idx = field * 32 + bit;
3624				pv = &pc->pc_pventry[idx];
3625				inuse &= ~bitmask;
3626
3627				pte = vtopte(pv->pv_va);
3628				tpte = *pte ? xpmap_mtop(*pte) : 0;
3629
3630				if (tpte == 0) {
3631					printf(
3632					    "TPTE at %p  IS ZERO @ VA %08x\n",
3633					    pte, pv->pv_va);
3634					panic("bad pte");
3635				}
3636
3637/*
3638 * We cannot remove wired pages from a process' mapping at this time
3639 */
3640				if (tpte & PG_W) {
3641					allfree = 0;
3642					continue;
3643				}
3644
3645				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3646				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3647				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3648				    m, (uintmax_t)m->phys_addr,
3649				    (uintmax_t)tpte));
3650
3651				KASSERT(m < &vm_page_array[vm_page_array_size],
3652					("pmap_remove_pages: bad tpte %#jx",
3653					(uintmax_t)tpte));
3654
3655
3656				PT_CLEAR_VA(pte, FALSE);
3657
3658				/*
3659				 * Update the vm_page_t clean/reference bits.
3660				 */
3661				if (tpte & PG_M)
3662					vm_page_dirty(m);
3663
3664				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3665				if (TAILQ_EMPTY(&m->md.pv_list))
3666					vm_page_aflag_clear(m, PGA_WRITEABLE);
3667
3668				pmap_unuse_pt(pmap, pv->pv_va, &free);
3669
3670				/* Mark free */
3671				PV_STAT(pv_entry_frees++);
3672				PV_STAT(pv_entry_spare++);
3673				pv_entry_count--;
3674				pc->pc_map[field] |= bitmask;
3675				pmap->pm_stats.resident_count--;
3676			}
3677		}
3678		PT_UPDATES_FLUSH();
3679		if (allfree) {
3680			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3681			free_pv_chunk(pc);
3682		}
3683	}
3684	PT_UPDATES_FLUSH();
3685	if (*PMAP1)
3686		PT_SET_MA(PADDR1, 0);
3687
3688	sched_unpin();
3689	pmap_invalidate_all(pmap);
3690	rw_wunlock(&pvh_global_lock);
3691	PMAP_UNLOCK(pmap);
3692	pmap_free_zero_pages(free);
3693}
3694
3695/*
3696 *	pmap_is_modified:
3697 *
3698 *	Return whether or not the specified physical page was modified
3699 *	in any physical maps.
3700 */
3701boolean_t
3702pmap_is_modified(vm_page_t m)
3703{
3704	pv_entry_t pv;
3705	pt_entry_t *pte;
3706	pmap_t pmap;
3707	boolean_t rv;
3708
3709	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3710	    ("pmap_is_modified: page %p is not managed", m));
3711	rv = FALSE;
3712
3713	/*
3714	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3715	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
3716	 * is clear, no PTEs can have PG_M set.
3717	 */
3718	VM_OBJECT_ASSERT_WLOCKED(m->object);
3719	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3720		return (rv);
3721	rw_wlock(&pvh_global_lock);
3722	sched_pin();
3723	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3724		pmap = PV_PMAP(pv);
3725		PMAP_LOCK(pmap);
3726		pte = pmap_pte_quick(pmap, pv->pv_va);
3727		rv = (*pte & PG_M) != 0;
3728		PMAP_UNLOCK(pmap);
3729		if (rv)
3730			break;
3731	}
3732	if (*PMAP1)
3733		PT_SET_MA(PADDR1, 0);
3734	sched_unpin();
3735	rw_wunlock(&pvh_global_lock);
3736	return (rv);
3737}
3738
3739/*
3740 *	pmap_is_prefaultable:
3741 *
3742 *	Return whether or not the specified virtual address is elgible
3743 *	for prefault.
3744 */
3745static boolean_t
3746pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3747{
3748	pt_entry_t *pte;
3749	boolean_t rv = FALSE;
3750
3751	return (rv);
3752
3753	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3754		pte = vtopte(addr);
3755		rv = (*pte == 0);
3756	}
3757	return (rv);
3758}
3759
3760boolean_t
3761pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3762{
3763	boolean_t rv;
3764
3765	PMAP_LOCK(pmap);
3766	rv = pmap_is_prefaultable_locked(pmap, addr);
3767	PMAP_UNLOCK(pmap);
3768	return (rv);
3769}
3770
3771boolean_t
3772pmap_is_referenced(vm_page_t m)
3773{
3774	pv_entry_t pv;
3775	pt_entry_t *pte;
3776	pmap_t pmap;
3777	boolean_t rv;
3778
3779	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3780	    ("pmap_is_referenced: page %p is not managed", m));
3781	rv = FALSE;
3782	rw_wlock(&pvh_global_lock);
3783	sched_pin();
3784	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3785		pmap = PV_PMAP(pv);
3786		PMAP_LOCK(pmap);
3787		pte = pmap_pte_quick(pmap, pv->pv_va);
3788		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
3789		PMAP_UNLOCK(pmap);
3790		if (rv)
3791			break;
3792	}
3793	if (*PMAP1)
3794		PT_SET_MA(PADDR1, 0);
3795	sched_unpin();
3796	rw_wunlock(&pvh_global_lock);
3797	return (rv);
3798}
3799
3800void
3801pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3802{
3803	int i, npages = round_page(len) >> PAGE_SHIFT;
3804	for (i = 0; i < npages; i++) {
3805		pt_entry_t *pte;
3806		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3807		rw_wlock(&pvh_global_lock);
3808		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3809		rw_wunlock(&pvh_global_lock);
3810		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3811		pmap_pte_release(pte);
3812	}
3813}
3814
3815void
3816pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3817{
3818	int i, npages = round_page(len) >> PAGE_SHIFT;
3819	for (i = 0; i < npages; i++) {
3820		pt_entry_t *pte;
3821		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3822		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3823		rw_wlock(&pvh_global_lock);
3824		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3825		rw_wunlock(&pvh_global_lock);
3826		pmap_pte_release(pte);
3827	}
3828}
3829
3830/*
3831 * Clear the write and modified bits in each of the given page's mappings.
3832 */
3833void
3834pmap_remove_write(vm_page_t m)
3835{
3836	pv_entry_t pv;
3837	pmap_t pmap;
3838	pt_entry_t oldpte, *pte;
3839
3840	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3841	    ("pmap_remove_write: page %p is not managed", m));
3842
3843	/*
3844	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
3845	 * set by another thread while the object is locked.  Thus,
3846	 * if PGA_WRITEABLE is clear, no page table entries need updating.
3847	 */
3848	VM_OBJECT_ASSERT_WLOCKED(m->object);
3849	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
3850		return;
3851	rw_wlock(&pvh_global_lock);
3852	sched_pin();
3853	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
3854		pmap = PV_PMAP(pv);
3855		PMAP_LOCK(pmap);
3856		pte = pmap_pte_quick(pmap, pv->pv_va);
3857retry:
3858		oldpte = *pte;
3859		if ((oldpte & PG_RW) != 0) {
3860			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3861
3862			/*
3863			 * Regardless of whether a pte is 32 or 64 bits
3864			 * in size, PG_RW and PG_M are among the least
3865			 * significant 32 bits.
3866			 */
3867			PT_SET_VA_MA(pte, newpte, TRUE);
3868			if (*pte != newpte)
3869				goto retry;
3870
3871			if ((oldpte & PG_M) != 0)
3872				vm_page_dirty(m);
3873			pmap_invalidate_page(pmap, pv->pv_va);
3874		}
3875		PMAP_UNLOCK(pmap);
3876	}
3877	vm_page_aflag_clear(m, PGA_WRITEABLE);
3878	PT_UPDATES_FLUSH();
3879	if (*PMAP1)
3880		PT_SET_MA(PADDR1, 0);
3881	sched_unpin();
3882	rw_wunlock(&pvh_global_lock);
3883}
3884
3885/*
3886 *	pmap_ts_referenced:
3887 *
3888 *	Return a count of reference bits for a page, clearing those bits.
3889 *	It is not necessary for every reference bit to be cleared, but it
3890 *	is necessary that 0 only be returned when there are truly no
3891 *	reference bits set.
3892 *
3893 *	XXX: The exact number of bits to check and clear is a matter that
3894 *	should be tested and standardized at some point in the future for
3895 *	optimal aging of shared pages.
3896 */
3897int
3898pmap_ts_referenced(vm_page_t m)
3899{
3900	pv_entry_t pv, pvf, pvn;
3901	pmap_t pmap;
3902	pt_entry_t *pte;
3903	int rtval = 0;
3904
3905	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3906	    ("pmap_ts_referenced: page %p is not managed", m));
3907	rw_wlock(&pvh_global_lock);
3908	sched_pin();
3909	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3910		pvf = pv;
3911		do {
3912			pvn = TAILQ_NEXT(pv, pv_next);
3913			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3914			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3915			pmap = PV_PMAP(pv);
3916			PMAP_LOCK(pmap);
3917			pte = pmap_pte_quick(pmap, pv->pv_va);
3918			if ((*pte & PG_A) != 0) {
3919				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3920				pmap_invalidate_page(pmap, pv->pv_va);
3921				rtval++;
3922				if (rtval > 4)
3923					pvn = NULL;
3924			}
3925			PMAP_UNLOCK(pmap);
3926		} while ((pv = pvn) != NULL && pv != pvf);
3927	}
3928	PT_UPDATES_FLUSH();
3929	if (*PMAP1)
3930		PT_SET_MA(PADDR1, 0);
3931	sched_unpin();
3932	rw_wunlock(&pvh_global_lock);
3933	return (rtval);
3934}
3935
3936/*
3937 *	Apply the given advice to the specified range of addresses within the
3938 *	given pmap.  Depending on the advice, clear the referenced and/or
3939 *	modified flags in each mapping and set the mapped page's dirty field.
3940 */
3941void
3942pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
3943{
3944	pd_entry_t oldpde;
3945	pt_entry_t *pte;
3946	vm_offset_t pdnxt;
3947	vm_page_t m;
3948	boolean_t anychanged;
3949
3950	if (advice != MADV_DONTNEED && advice != MADV_FREE)
3951		return;
3952	anychanged = FALSE;
3953	rw_wlock(&pvh_global_lock);
3954	sched_pin();
3955	PMAP_LOCK(pmap);
3956	for (; sva < eva; sva = pdnxt) {
3957		pdnxt = (sva + NBPDR) & ~PDRMASK;
3958		if (pdnxt < sva)
3959			pdnxt = eva;
3960		oldpde = pmap->pm_pdir[sva >> PDRSHIFT];
3961		if ((oldpde & (PG_PS | PG_V)) != PG_V)
3962			continue;
3963		if (pdnxt > eva)
3964			pdnxt = eva;
3965		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3966		    sva += PAGE_SIZE) {
3967			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
3968			    PG_V))
3969				continue;
3970			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3971				if (advice == MADV_DONTNEED) {
3972					/*
3973					 * Future calls to pmap_is_modified()
3974					 * can be avoided by making the page
3975					 * dirty now.
3976					 */
3977					m = PHYS_TO_VM_PAGE(xpmap_mtop(*pte) &
3978					    PG_FRAME);
3979					vm_page_dirty(m);
3980				}
3981				PT_SET_VA_MA(pte, *pte & ~(PG_M | PG_A), TRUE);
3982			} else if ((*pte & PG_A) != 0)
3983				PT_SET_VA_MA(pte, *pte & ~PG_A, TRUE);
3984			else
3985				continue;
3986			if ((*pte & PG_G) != 0)
3987				pmap_invalidate_page(pmap, sva);
3988			else
3989				anychanged = TRUE;
3990		}
3991	}
3992	PT_UPDATES_FLUSH();
3993	if (*PMAP1)
3994		PT_SET_VA_MA(PMAP1, 0, TRUE);
3995	if (anychanged)
3996		pmap_invalidate_all(pmap);
3997	sched_unpin();
3998	rw_wunlock(&pvh_global_lock);
3999	PMAP_UNLOCK(pmap);
4000}
4001
4002/*
4003 *	Clear the modify bits on the specified physical page.
4004 */
4005void
4006pmap_clear_modify(vm_page_t m)
4007{
4008	pv_entry_t pv;
4009	pmap_t pmap;
4010	pt_entry_t *pte;
4011
4012	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4013	    ("pmap_clear_modify: page %p is not managed", m));
4014	VM_OBJECT_ASSERT_WLOCKED(m->object);
4015	KASSERT(!vm_page_xbusied(m),
4016	    ("pmap_clear_modify: page %p is exclusive busied", m));
4017
4018	/*
4019	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4020	 * If the object containing the page is locked and the page is not
4021	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
4022	 */
4023	if ((m->aflags & PGA_WRITEABLE) == 0)
4024		return;
4025	rw_wlock(&pvh_global_lock);
4026	sched_pin();
4027	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4028		pmap = PV_PMAP(pv);
4029		PMAP_LOCK(pmap);
4030		pte = pmap_pte_quick(pmap, pv->pv_va);
4031		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4032			/*
4033			 * Regardless of whether a pte is 32 or 64 bits
4034			 * in size, PG_M is among the least significant
4035			 * 32 bits.
4036			 */
4037			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
4038			pmap_invalidate_page(pmap, pv->pv_va);
4039		}
4040		PMAP_UNLOCK(pmap);
4041	}
4042	sched_unpin();
4043	rw_wunlock(&pvh_global_lock);
4044}
4045
4046/*
4047 * Miscellaneous support routines follow
4048 */
4049
4050/*
4051 * Map a set of physical memory pages into the kernel virtual
4052 * address space. Return a pointer to where it is mapped. This
4053 * routine is intended to be used for mapping device memory,
4054 * NOT real memory.
4055 */
4056void *
4057pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4058{
4059	vm_offset_t va, offset;
4060	vm_size_t tmpsize;
4061
4062	offset = pa & PAGE_MASK;
4063	size = round_page(offset + size);
4064	pa = pa & PG_FRAME;
4065
4066	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4067		va = KERNBASE + pa;
4068	else
4069		va = kva_alloc(size);
4070	if (!va)
4071		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4072
4073	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4074		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4075	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4076	pmap_invalidate_cache_range(va, va + size);
4077	return ((void *)(va + offset));
4078}
4079
4080void *
4081pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4082{
4083
4084	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4085}
4086
4087void *
4088pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4089{
4090
4091	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4092}
4093
4094void
4095pmap_unmapdev(vm_offset_t va, vm_size_t size)
4096{
4097	vm_offset_t base, offset;
4098
4099	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4100		return;
4101	base = trunc_page(va);
4102	offset = va & PAGE_MASK;
4103	size = round_page(offset + size);
4104	kva_free(base, size);
4105}
4106
4107/*
4108 * Sets the memory attribute for the specified page.
4109 */
4110void
4111pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4112{
4113
4114	m->md.pat_mode = ma;
4115	if ((m->flags & PG_FICTITIOUS) != 0)
4116		return;
4117
4118	/*
4119	 * If "m" is a normal page, flush it from the cache.
4120	 * See pmap_invalidate_cache_range().
4121	 *
4122	 * First, try to find an existing mapping of the page by sf
4123	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4124	 * flushes the cache.
4125	 */
4126	if (sf_buf_invalidate_cache(m))
4127		return;
4128
4129	/*
4130	 * If page is not mapped by sf buffer, but CPU does not
4131	 * support self snoop, map the page transient and do
4132	 * invalidation. In the worst case, whole cache is flushed by
4133	 * pmap_invalidate_cache_range().
4134	 */
4135	if ((cpu_feature & CPUID_SS) == 0)
4136		pmap_flush_page(m);
4137}
4138
4139static void
4140pmap_flush_page(vm_page_t m)
4141{
4142	struct sysmaps *sysmaps;
4143	vm_offset_t sva, eva;
4144
4145	if ((cpu_feature & CPUID_CLFSH) != 0) {
4146		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4147		mtx_lock(&sysmaps->lock);
4148		if (*sysmaps->CMAP2)
4149			panic("pmap_flush_page: CMAP2 busy");
4150		sched_pin();
4151		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4152		    VM_PAGE_TO_MACH(m) | PG_A | PG_M |
4153		    pmap_cache_bits(m->md.pat_mode, 0));
4154		invlcaddr(sysmaps->CADDR2);
4155		sva = (vm_offset_t)sysmaps->CADDR2;
4156		eva = sva + PAGE_SIZE;
4157
4158		/*
4159		 * Use mfence despite the ordering implied by
4160		 * mtx_{un,}lock() because clflush is not guaranteed
4161		 * to be ordered by any other instruction.
4162		 */
4163		mfence();
4164		for (; sva < eva; sva += cpu_clflush_line_size)
4165			clflush(sva);
4166		mfence();
4167		PT_SET_MA(sysmaps->CADDR2, 0);
4168		sched_unpin();
4169		mtx_unlock(&sysmaps->lock);
4170	} else
4171		pmap_invalidate_cache();
4172}
4173
4174/*
4175 * Changes the specified virtual address range's memory type to that given by
4176 * the parameter "mode".  The specified virtual address range must be
4177 * completely contained within either the kernel map.
4178 *
4179 * Returns zero if the change completed successfully, and either EINVAL or
4180 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4181 * of the virtual address range was not mapped, and ENOMEM is returned if
4182 * there was insufficient memory available to complete the change.
4183 */
4184int
4185pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4186{
4187	vm_offset_t base, offset, tmpva;
4188	pt_entry_t *pte;
4189	u_int opte, npte;
4190	pd_entry_t *pde;
4191	boolean_t changed;
4192
4193	base = trunc_page(va);
4194	offset = va & PAGE_MASK;
4195	size = round_page(offset + size);
4196
4197	/* Only supported on kernel virtual addresses. */
4198	if (base <= VM_MAXUSER_ADDRESS)
4199		return (EINVAL);
4200
4201	/* 4MB pages and pages that aren't mapped aren't supported. */
4202	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4203		pde = pmap_pde(kernel_pmap, tmpva);
4204		if (*pde & PG_PS)
4205			return (EINVAL);
4206		if ((*pde & PG_V) == 0)
4207			return (EINVAL);
4208		pte = vtopte(va);
4209		if ((*pte & PG_V) == 0)
4210			return (EINVAL);
4211	}
4212
4213	changed = FALSE;
4214
4215	/*
4216	 * Ok, all the pages exist and are 4k, so run through them updating
4217	 * their cache mode.
4218	 */
4219	for (tmpva = base; size > 0; ) {
4220		pte = vtopte(tmpva);
4221
4222		/*
4223		 * The cache mode bits are all in the low 32-bits of the
4224		 * PTE, so we can just spin on updating the low 32-bits.
4225		 */
4226		do {
4227			opte = *(u_int *)pte;
4228			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4229			npte |= pmap_cache_bits(mode, 0);
4230			PT_SET_VA_MA(pte, npte, TRUE);
4231		} while (npte != opte && (*pte != npte));
4232		if (npte != opte)
4233			changed = TRUE;
4234		tmpva += PAGE_SIZE;
4235		size -= PAGE_SIZE;
4236	}
4237
4238	/*
4239	 * Flush CPU caches to make sure any data isn't cached that
4240	 * shouldn't be, etc.
4241	 */
4242	if (changed) {
4243		pmap_invalidate_range(kernel_pmap, base, tmpva);
4244		pmap_invalidate_cache_range(base, tmpva);
4245	}
4246	return (0);
4247}
4248
4249/*
4250 * perform the pmap work for mincore
4251 */
4252int
4253pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
4254{
4255	pt_entry_t *ptep, pte;
4256	vm_paddr_t pa;
4257	int val;
4258
4259	PMAP_LOCK(pmap);
4260retry:
4261	ptep = pmap_pte(pmap, addr);
4262	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4263	pmap_pte_release(ptep);
4264	val = 0;
4265	if ((pte & PG_V) != 0) {
4266		val |= MINCORE_INCORE;
4267		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4268			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
4269		if ((pte & PG_A) != 0)
4270			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
4271	}
4272	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
4273	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
4274	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
4275		pa = pte & PG_FRAME;
4276		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
4277		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
4278			goto retry;
4279	} else
4280		PA_UNLOCK_COND(*locked_pa);
4281	PMAP_UNLOCK(pmap);
4282	return (val);
4283}
4284
4285void
4286pmap_activate(struct thread *td)
4287{
4288	pmap_t	pmap, oldpmap;
4289	u_int	cpuid;
4290	u_int32_t  cr3;
4291
4292	critical_enter();
4293	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4294	oldpmap = PCPU_GET(curpmap);
4295	cpuid = PCPU_GET(cpuid);
4296#if defined(SMP)
4297	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
4298	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
4299#else
4300	CPU_CLR(cpuid, &oldpmap->pm_active);
4301	CPU_SET(cpuid, &pmap->pm_active);
4302#endif
4303#ifdef PAE
4304	cr3 = vtophys(pmap->pm_pdpt);
4305#else
4306	cr3 = vtophys(pmap->pm_pdir);
4307#endif
4308	/*
4309	 * pmap_activate is for the current thread on the current cpu
4310	 */
4311	td->td_pcb->pcb_cr3 = cr3;
4312	PT_UPDATES_FLUSH();
4313	load_cr3(cr3);
4314	PCPU_SET(curpmap, pmap);
4315	critical_exit();
4316}
4317
4318void
4319pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4320{
4321}
4322
4323/*
4324 *	Increase the starting virtual address of the given mapping if a
4325 *	different alignment might result in more superpage mappings.
4326 */
4327void
4328pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4329    vm_offset_t *addr, vm_size_t size)
4330{
4331	vm_offset_t superpage_offset;
4332
4333	if (size < NBPDR)
4334		return;
4335	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4336		offset += ptoa(object->pg_color);
4337	superpage_offset = offset & PDRMASK;
4338	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4339	    (*addr & PDRMASK) == superpage_offset)
4340		return;
4341	if ((*addr & PDRMASK) < superpage_offset)
4342		*addr = (*addr & ~PDRMASK) + superpage_offset;
4343	else
4344		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4345}
4346
4347void
4348pmap_suspend()
4349{
4350	pmap_t pmap;
4351	int i, pdir, offset;
4352	vm_paddr_t pdirma;
4353	mmu_update_t mu[4];
4354
4355	/*
4356	 * We need to remove the recursive mapping structure from all
4357	 * our pmaps so that Xen doesn't get confused when it restores
4358	 * the page tables. The recursive map lives at page directory
4359	 * index PTDPTDI. We assume that the suspend code has stopped
4360	 * the other vcpus (if any).
4361	 */
4362	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4363		for (i = 0; i < 4; i++) {
4364			/*
4365			 * Figure out which page directory (L2) page
4366			 * contains this bit of the recursive map and
4367			 * the offset within that page of the map
4368			 * entry
4369			 */
4370			pdir = (PTDPTDI + i) / NPDEPG;
4371			offset = (PTDPTDI + i) % NPDEPG;
4372			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4373			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4374			mu[i].val = 0;
4375		}
4376		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4377	}
4378}
4379
4380void
4381pmap_resume()
4382{
4383	pmap_t pmap;
4384	int i, pdir, offset;
4385	vm_paddr_t pdirma;
4386	mmu_update_t mu[4];
4387
4388	/*
4389	 * Restore the recursive map that we removed on suspend.
4390	 */
4391	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4392		for (i = 0; i < 4; i++) {
4393			/*
4394			 * Figure out which page directory (L2) page
4395			 * contains this bit of the recursive map and
4396			 * the offset within that page of the map
4397			 * entry
4398			 */
4399			pdir = (PTDPTDI + i) / NPDEPG;
4400			offset = (PTDPTDI + i) % NPDEPG;
4401			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4402			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4403			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4404		}
4405		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4406	}
4407}
4408
4409#if defined(PMAP_DEBUG)
4410pmap_pid_dump(int pid)
4411{
4412	pmap_t pmap;
4413	struct proc *p;
4414	int npte = 0;
4415	int index;
4416
4417	sx_slock(&allproc_lock);
4418	FOREACH_PROC_IN_SYSTEM(p) {
4419		if (p->p_pid != pid)
4420			continue;
4421
4422		if (p->p_vmspace) {
4423			int i,j;
4424			index = 0;
4425			pmap = vmspace_pmap(p->p_vmspace);
4426			for (i = 0; i < NPDEPTD; i++) {
4427				pd_entry_t *pde;
4428				pt_entry_t *pte;
4429				vm_offset_t base = i << PDRSHIFT;
4430
4431				pde = &pmap->pm_pdir[i];
4432				if (pde && pmap_pde_v(pde)) {
4433					for (j = 0; j < NPTEPG; j++) {
4434						vm_offset_t va = base + (j << PAGE_SHIFT);
4435						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4436							if (index) {
4437								index = 0;
4438								printf("\n");
4439							}
4440							sx_sunlock(&allproc_lock);
4441							return (npte);
4442						}
4443						pte = pmap_pte(pmap, va);
4444						if (pte && pmap_pte_v(pte)) {
4445							pt_entry_t pa;
4446							vm_page_t m;
4447							pa = PT_GET(pte);
4448							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4449							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4450								va, pa, m->hold_count, m->wire_count, m->flags);
4451							npte++;
4452							index++;
4453							if (index >= 2) {
4454								index = 0;
4455								printf("\n");
4456							} else {
4457								printf(" ");
4458							}
4459						}
4460					}
4461				}
4462			}
4463		}
4464	}
4465	sx_sunlock(&allproc_lock);
4466	return (npte);
4467}
4468#endif
4469
4470#if defined(DEBUG)
4471
4472static void	pads(pmap_t pm);
4473void		pmap_pvdump(vm_paddr_t pa);
4474
4475/* print address space of pmap*/
4476static void
4477pads(pmap_t pm)
4478{
4479	int i, j;
4480	vm_paddr_t va;
4481	pt_entry_t *ptep;
4482
4483	if (pm == kernel_pmap)
4484		return;
4485	for (i = 0; i < NPDEPTD; i++)
4486		if (pm->pm_pdir[i])
4487			for (j = 0; j < NPTEPG; j++) {
4488				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4489				if (pm == kernel_pmap && va < KERNBASE)
4490					continue;
4491				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4492					continue;
4493				ptep = pmap_pte(pm, va);
4494				if (pmap_pte_v(ptep))
4495					printf("%x:%x ", va, *ptep);
4496			};
4497
4498}
4499
4500void
4501pmap_pvdump(vm_paddr_t pa)
4502{
4503	pv_entry_t pv;
4504	pmap_t pmap;
4505	vm_page_t m;
4506
4507	printf("pa %x", pa);
4508	m = PHYS_TO_VM_PAGE(pa);
4509	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4510		pmap = PV_PMAP(pv);
4511		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4512		pads(pmap);
4513	}
4514	printf(" ");
4515}
4516#endif
4517