npx.c revision 276084
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/10/sys/i386/isa/npx.c 276084 2014-12-22 21:32:39Z jhb $");
35
36#include "opt_cpu.h"
37#include "opt_isa.h"
38#include "opt_npx.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/kernel.h>
44#include <sys/lock.h>
45#include <sys/malloc.h>
46#include <sys/module.h>
47#include <sys/mutex.h>
48#include <sys/mutex.h>
49#include <sys/proc.h>
50#include <sys/smp.h>
51#include <sys/sysctl.h>
52#include <machine/bus.h>
53#include <sys/rman.h>
54#ifdef NPX_DEBUG
55#include <sys/syslog.h>
56#endif
57#include <sys/signalvar.h>
58#include <vm/uma.h>
59
60#include <machine/asmacros.h>
61#include <machine/cputypes.h>
62#include <machine/frame.h>
63#include <machine/md_var.h>
64#include <machine/pcb.h>
65#include <machine/psl.h>
66#include <machine/resource.h>
67#include <machine/specialreg.h>
68#include <machine/segments.h>
69#include <machine/ucontext.h>
70
71#include <machine/intr_machdep.h>
72#ifdef XEN
73#include <xen/xen-os.h>
74#include <xen/hypervisor.h>
75#endif
76
77#ifdef DEV_ISA
78#include <isa/isavar.h>
79#endif
80
81#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
82#define CPU_ENABLE_SSE
83#endif
84
85/*
86 * 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
87 */
88
89#if defined(__GNUCLIKE_ASM) && !defined(lint)
90
91#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
92#define	fnclex()		__asm __volatile("fnclex")
93#define	fninit()		__asm __volatile("fninit")
94#define	fnsave(addr)		__asm __volatile("fnsave %0" : "=m" (*(addr)))
95#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
96#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
97#define	fp_divide_by_0()	__asm __volatile( \
98				    "fldz; fld1; fdiv %st,%st(1); fnop")
99#define	frstor(addr)		__asm __volatile("frstor %0" : : "m" (*(addr)))
100#ifdef CPU_ENABLE_SSE
101#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
102#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
103#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
104#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
105
106static __inline void
107xrstor(char *addr, uint64_t mask)
108{
109	uint32_t low, hi;
110
111	low = mask;
112	hi = mask >> 32;
113	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
114}
115
116static __inline void
117xsave(char *addr, uint64_t mask)
118{
119	uint32_t low, hi;
120
121	low = mask;
122	hi = mask >> 32;
123	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
124	    "memory");
125}
126
127static __inline void
128xsaveopt(char *addr, uint64_t mask)
129{
130	uint32_t low, hi;
131
132	low = mask;
133	hi = mask >> 32;
134	__asm __volatile("xsaveopt %0" : "=m" (*addr) : "a" (low), "d" (hi) :
135	    "memory");
136}
137#endif
138#else	/* !(__GNUCLIKE_ASM && !lint) */
139
140void	fldcw(u_short cw);
141void	fnclex(void);
142void	fninit(void);
143void	fnsave(caddr_t addr);
144void	fnstcw(caddr_t addr);
145void	fnstsw(caddr_t addr);
146void	fp_divide_by_0(void);
147void	frstor(caddr_t addr);
148#ifdef CPU_ENABLE_SSE
149void	fxsave(caddr_t addr);
150void	fxrstor(caddr_t addr);
151void	ldmxcsr(u_int csr);
152void	stmxcsr(u_int *csr);
153void	xrstor(char *addr, uint64_t mask);
154void	xsave(char *addr, uint64_t mask);
155void	xsaveopt(char *addr, uint64_t mask);
156#endif
157
158#endif	/* __GNUCLIKE_ASM && !lint */
159
160#ifdef XEN
161#define	start_emulating()	(HYPERVISOR_fpu_taskswitch(1))
162#define	stop_emulating()	(HYPERVISOR_fpu_taskswitch(0))
163#else
164#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
165#define	stop_emulating()	clts()
166#endif
167
168#ifdef CPU_ENABLE_SSE
169#define GET_FPU_CW(thread) \
170	(cpu_fxsr ? \
171		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
172		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
173#define GET_FPU_SW(thread) \
174	(cpu_fxsr ? \
175		(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
176		(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
177#define SET_FPU_CW(savefpu, value) do { \
178	if (cpu_fxsr) \
179		(savefpu)->sv_xmm.sv_env.en_cw = (value); \
180	else \
181		(savefpu)->sv_87.sv_env.en_cw = (value); \
182} while (0)
183#else /* CPU_ENABLE_SSE */
184#define GET_FPU_CW(thread) \
185	(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
186#define GET_FPU_SW(thread) \
187	(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
188#define SET_FPU_CW(savefpu, value) \
189	(savefpu)->sv_87.sv_env.en_cw = (value)
190#endif /* CPU_ENABLE_SSE */
191
192#ifdef CPU_ENABLE_SSE
193CTASSERT(sizeof(union savefpu) == 512);
194CTASSERT(sizeof(struct xstate_hdr) == 64);
195CTASSERT(sizeof(struct savefpu_ymm) == 832);
196
197/*
198 * This requirement is to make it easier for asm code to calculate
199 * offset of the fpu save area from the pcb address. FPU save area
200 * must be 64-byte aligned.
201 */
202CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
203
204static	void	fpu_clean_state(void);
205#endif
206
207static	void	fpusave(union savefpu *);
208static	void	fpurstor(union savefpu *);
209
210int	hw_float;
211
212SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
213    &hw_float, 0, "Floating point instructions executed in hardware");
214
215#ifdef CPU_ENABLE_SSE
216int use_xsave;
217uint64_t xsave_mask;
218#endif
219static	uma_zone_t fpu_save_area_zone;
220static	union savefpu *npx_initialstate;
221
222#ifdef CPU_ENABLE_SSE
223struct xsave_area_elm_descr {
224	u_int	offset;
225	u_int	size;
226} *xsave_area_desc;
227
228static int use_xsaveopt;
229#endif
230
231static	volatile u_int		npx_traps_while_probing;
232
233alias_for_inthand_t probetrap;
234__asm("								\n\
235	.text							\n\
236	.p2align 2,0x90						\n\
237	.type	" __XSTRING(CNAME(probetrap)) ",@function	\n\
238" __XSTRING(CNAME(probetrap)) ":				\n\
239	ss							\n\
240	incl	" __XSTRING(CNAME(npx_traps_while_probing)) "	\n\
241	fnclex							\n\
242	iret							\n\
243");
244
245/*
246 * Determine if an FPU is present and how to use it.
247 */
248static int
249npx_probe(void)
250{
251	struct gate_descriptor save_idt_npxtrap;
252	u_short control, status;
253
254	/*
255	 * Modern CPUs all have an FPU that uses the INT16 interface
256	 * and provide a simple way to verify that, so handle the
257	 * common case right away.
258	 */
259	if (cpu_feature & CPUID_FPU) {
260		hw_float = 1;
261		return (1);
262	}
263
264	save_idt_npxtrap = idt[IDT_MF];
265	setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
266	    GSEL(GCODE_SEL, SEL_KPL));
267
268	/*
269	 * Don't trap while we're probing.
270	 */
271	stop_emulating();
272
273	/*
274	 * Finish resetting the coprocessor, if any.  If there is an error
275	 * pending, then we may get a bogus IRQ13, but npx_intr() will handle
276	 * it OK.  Bogus halts have never been observed, but we enabled
277	 * IRQ13 and cleared the BUSY# latch early to handle them anyway.
278	 */
279	fninit();
280
281	/*
282	 * Don't use fwait here because it might hang.
283	 * Don't use fnop here because it usually hangs if there is no FPU.
284	 */
285	DELAY(1000);		/* wait for any IRQ13 */
286#ifdef DIAGNOSTIC
287	if (npx_traps_while_probing != 0)
288		printf("fninit caused %u bogus npx trap(s)\n",
289		       npx_traps_while_probing);
290#endif
291	/*
292	 * Check for a status of mostly zero.
293	 */
294	status = 0x5a5a;
295	fnstsw(&status);
296	if ((status & 0xb8ff) == 0) {
297		/*
298		 * Good, now check for a proper control word.
299		 */
300		control = 0x5a5a;
301		fnstcw(&control);
302		if ((control & 0x1f3f) == 0x033f) {
303			/*
304			 * We have an npx, now divide by 0 to see if exception
305			 * 16 works.
306			 */
307			control &= ~(1 << 2);	/* enable divide by 0 trap */
308			fldcw(control);
309#ifdef FPU_ERROR_BROKEN
310			/*
311			 * FPU error signal doesn't work on some CPU
312			 * accelerator board.
313			 */
314			hw_float = 1;
315			return (1);
316#endif
317			npx_traps_while_probing = 0;
318			fp_divide_by_0();
319			if (npx_traps_while_probing != 0) {
320				/*
321				 * Good, exception 16 works.
322				 */
323				hw_float = 1;
324				goto cleanup;
325			}
326			printf(
327	"FPU does not use exception 16 for error reporting\n");
328			goto cleanup;
329		}
330	}
331
332	/*
333	 * Probe failed.  Floating point simply won't work.
334	 * Notify user and disable FPU/MMX/SSE instruction execution.
335	 */
336	printf("WARNING: no FPU!\n");
337	__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
338	    "n" (CR0_EM | CR0_MP) : "ax");
339
340cleanup:
341	idt[IDT_MF] = save_idt_npxtrap;
342	return (hw_float);
343}
344
345#ifdef CPU_ENABLE_SSE
346/*
347 * Enable XSAVE if supported and allowed by user.
348 * Calculate the xsave_mask.
349 */
350static void
351npxinit_bsp1(void)
352{
353	u_int cp[4];
354	uint64_t xsave_mask_user;
355
356	if (cpu_fxsr && (cpu_feature2 & CPUID2_XSAVE) != 0) {
357		use_xsave = 1;
358		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
359	}
360	if (!use_xsave)
361		return;
362
363	cpuid_count(0xd, 0x0, cp);
364	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
365	if ((cp[0] & xsave_mask) != xsave_mask)
366		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
367	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
368	xsave_mask_user = xsave_mask;
369	TUNABLE_QUAD_FETCH("hw.xsave_mask", &xsave_mask_user);
370	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
371	xsave_mask &= xsave_mask_user;
372	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
373		xsave_mask &= ~XFEATURE_AVX512;
374	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
375		xsave_mask &= ~XFEATURE_MPX;
376
377	cpuid_count(0xd, 0x1, cp);
378	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0)
379		use_xsaveopt = 1;
380}
381#endif
382/*
383
384 * Calculate the fpu save area size.
385 */
386static void
387npxinit_bsp2(void)
388{
389#ifdef CPU_ENABLE_SSE
390	u_int cp[4];
391
392	if (use_xsave) {
393		cpuid_count(0xd, 0x0, cp);
394		cpu_max_ext_state_size = cp[1];
395
396		/*
397		 * Reload the cpu_feature2, since we enabled OSXSAVE.
398		 */
399		do_cpuid(1, cp);
400		cpu_feature2 = cp[2];
401	} else
402#endif
403		cpu_max_ext_state_size = sizeof(union savefpu);
404}
405
406/*
407 * Initialize floating point unit.
408 */
409void
410npxinit(bool bsp)
411{
412	static union savefpu dummy;
413	register_t saveintr;
414#ifdef CPU_ENABLE_SSE
415	u_int mxcsr;
416#endif
417	u_short control;
418
419	if (bsp) {
420		if (!npx_probe())
421			return;
422#ifdef CPU_ENABLE_SSE
423		npxinit_bsp1();
424#endif
425	}
426
427#ifdef CPU_ENABLE_SSE
428	if (use_xsave) {
429		load_cr4(rcr4() | CR4_XSAVE);
430		load_xcr(XCR0, xsave_mask);
431	}
432#endif
433
434	/*
435	 * XCR0 shall be set up before CPU can report the save area size.
436	 */
437	if (bsp)
438		npxinit_bsp2();
439
440	/*
441	 * fninit has the same h/w bugs as fnsave.  Use the detoxified
442	 * fnsave to throw away any junk in the fpu.  fpusave() initializes
443	 * the fpu.
444	 *
445	 * It is too early for critical_enter() to work on AP.
446	 */
447	saveintr = intr_disable();
448	stop_emulating();
449#ifdef CPU_ENABLE_SSE
450	if (cpu_fxsr)
451		fninit();
452	else
453#endif
454		fnsave(&dummy);
455	control = __INITIAL_NPXCW__;
456	fldcw(control);
457#ifdef CPU_ENABLE_SSE
458	if (cpu_fxsr) {
459		mxcsr = __INITIAL_MXCSR__;
460		ldmxcsr(mxcsr);
461	}
462#endif
463	start_emulating();
464	intr_restore(saveintr);
465}
466
467/*
468 * On the boot CPU we generate a clean state that is used to
469 * initialize the floating point unit when it is first used by a
470 * process.
471 */
472static void
473npxinitstate(void *arg __unused)
474{
475	register_t saveintr;
476#ifdef CPU_ENABLE_SSE
477	int cp[4], i, max_ext_n;
478#endif
479
480	if (!hw_float)
481		return;
482
483	npx_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
484	    M_WAITOK | M_ZERO);
485	saveintr = intr_disable();
486	stop_emulating();
487
488	fpusave(npx_initialstate);
489#ifdef CPU_ENABLE_SSE
490	if (cpu_fxsr) {
491		if (npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask)
492			cpu_mxcsr_mask =
493			    npx_initialstate->sv_xmm.sv_env.en_mxcsr_mask;
494		else
495			cpu_mxcsr_mask = 0xFFBF;
496
497		/*
498		 * The fninit instruction does not modify XMM
499		 * registers.  The fpusave call dumped the garbage
500		 * contained in the registers after reset to the
501		 * initial state saved.  Clear XMM registers file
502		 * image to make the startup program state and signal
503		 * handler XMM register content predictable.
504		 */
505		bzero(npx_initialstate->sv_xmm.sv_fp,
506		    sizeof(npx_initialstate->sv_xmm.sv_fp));
507		bzero(npx_initialstate->sv_xmm.sv_xmm,
508		    sizeof(npx_initialstate->sv_xmm.sv_xmm));
509	} else
510#endif
511		bzero(npx_initialstate->sv_87.sv_ac,
512		    sizeof(npx_initialstate->sv_87.sv_ac));
513
514#ifdef CPU_ENABLE_SSE
515	/*
516	 * Create a table describing the layout of the CPU Extended
517	 * Save Area.
518	 */
519	if (use_xsave) {
520		if (xsave_mask >> 32 != 0)
521			max_ext_n = fls(xsave_mask >> 32) + 32;
522		else
523			max_ext_n = fls(xsave_mask);
524		xsave_area_desc = malloc(max_ext_n * sizeof(struct
525		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
526		/* x87 state */
527		xsave_area_desc[0].offset = 0;
528		xsave_area_desc[0].size = 160;
529		/* XMM */
530		xsave_area_desc[1].offset = 160;
531		xsave_area_desc[1].size = 288 - 160;
532
533		for (i = 2; i < max_ext_n; i++) {
534			cpuid_count(0xd, i, cp);
535			xsave_area_desc[i].offset = cp[1];
536			xsave_area_desc[i].size = cp[0];
537		}
538	}
539#endif
540
541	fpu_save_area_zone = uma_zcreate("FPU_save_area",
542	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
543	    XSAVE_AREA_ALIGN - 1, 0);
544
545	start_emulating();
546	intr_restore(saveintr);
547}
548SYSINIT(npxinitstate, SI_SUB_DRIVERS, SI_ORDER_ANY, npxinitstate, NULL);
549
550/*
551 * Free coprocessor (if we have it).
552 */
553void
554npxexit(td)
555	struct thread *td;
556{
557
558	critical_enter();
559	if (curthread == PCPU_GET(fpcurthread)) {
560		stop_emulating();
561		fpusave(curpcb->pcb_save);
562		start_emulating();
563		PCPU_SET(fpcurthread, NULL);
564	}
565	critical_exit();
566#ifdef NPX_DEBUG
567	if (hw_float) {
568		u_int	masked_exceptions;
569
570		masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
571		/*
572		 * Log exceptions that would have trapped with the old
573		 * control word (overflow, divide by 0, and invalid operand).
574		 */
575		if (masked_exceptions & 0x0d)
576			log(LOG_ERR,
577	"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
578			    td->td_proc->p_pid, td->td_proc->p_comm,
579			    masked_exceptions);
580	}
581#endif
582}
583
584int
585npxformat()
586{
587
588	if (!hw_float)
589		return (_MC_FPFMT_NODEV);
590#ifdef	CPU_ENABLE_SSE
591	if (cpu_fxsr)
592		return (_MC_FPFMT_XMM);
593#endif
594	return (_MC_FPFMT_387);
595}
596
597/*
598 * The following mechanism is used to ensure that the FPE_... value
599 * that is passed as a trapcode to the signal handler of the user
600 * process does not have more than one bit set.
601 *
602 * Multiple bits may be set if the user process modifies the control
603 * word while a status word bit is already set.  While this is a sign
604 * of bad coding, we have no choise than to narrow them down to one
605 * bit, since we must not send a trapcode that is not exactly one of
606 * the FPE_ macros.
607 *
608 * The mechanism has a static table with 127 entries.  Each combination
609 * of the 7 FPU status word exception bits directly translates to a
610 * position in this table, where a single FPE_... value is stored.
611 * This FPE_... value stored there is considered the "most important"
612 * of the exception bits and will be sent as the signal code.  The
613 * precedence of the bits is based upon Intel Document "Numerical
614 * Applications", Chapter "Special Computational Situations".
615 *
616 * The macro to choose one of these values does these steps: 1) Throw
617 * away status word bits that cannot be masked.  2) Throw away the bits
618 * currently masked in the control word, assuming the user isn't
619 * interested in them anymore.  3) Reinsert status word bit 7 (stack
620 * fault) if it is set, which cannot be masked but must be presered.
621 * 4) Use the remaining bits to point into the trapcode table.
622 *
623 * The 6 maskable bits in order of their preference, as stated in the
624 * above referenced Intel manual:
625 * 1  Invalid operation (FP_X_INV)
626 * 1a   Stack underflow
627 * 1b   Stack overflow
628 * 1c   Operand of unsupported format
629 * 1d   SNaN operand.
630 * 2  QNaN operand (not an exception, irrelavant here)
631 * 3  Any other invalid-operation not mentioned above or zero divide
632 *      (FP_X_INV, FP_X_DZ)
633 * 4  Denormal operand (FP_X_DNML)
634 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
635 * 6  Inexact result (FP_X_IMP)
636 */
637static char fpetable[128] = {
638	0,
639	FPE_FLTINV,	/*  1 - INV */
640	FPE_FLTUND,	/*  2 - DNML */
641	FPE_FLTINV,	/*  3 - INV | DNML */
642	FPE_FLTDIV,	/*  4 - DZ */
643	FPE_FLTINV,	/*  5 - INV | DZ */
644	FPE_FLTDIV,	/*  6 - DNML | DZ */
645	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
646	FPE_FLTOVF,	/*  8 - OFL */
647	FPE_FLTINV,	/*  9 - INV | OFL */
648	FPE_FLTUND,	/*  A - DNML | OFL */
649	FPE_FLTINV,	/*  B - INV | DNML | OFL */
650	FPE_FLTDIV,	/*  C - DZ | OFL */
651	FPE_FLTINV,	/*  D - INV | DZ | OFL */
652	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
653	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
654	FPE_FLTUND,	/* 10 - UFL */
655	FPE_FLTINV,	/* 11 - INV | UFL */
656	FPE_FLTUND,	/* 12 - DNML | UFL */
657	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
658	FPE_FLTDIV,	/* 14 - DZ | UFL */
659	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
660	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
661	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
662	FPE_FLTOVF,	/* 18 - OFL | UFL */
663	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
664	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
665	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
666	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
667	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
668	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
669	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
670	FPE_FLTRES,	/* 20 - IMP */
671	FPE_FLTINV,	/* 21 - INV | IMP */
672	FPE_FLTUND,	/* 22 - DNML | IMP */
673	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
674	FPE_FLTDIV,	/* 24 - DZ | IMP */
675	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
676	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
677	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
678	FPE_FLTOVF,	/* 28 - OFL | IMP */
679	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
680	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
681	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
682	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
683	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
684	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
685	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
686	FPE_FLTUND,	/* 30 - UFL | IMP */
687	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
688	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
689	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
690	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
691	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
692	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
693	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
694	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
695	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
696	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
697	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
698	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
699	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
700	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
701	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
702	FPE_FLTSUB,	/* 40 - STK */
703	FPE_FLTSUB,	/* 41 - INV | STK */
704	FPE_FLTUND,	/* 42 - DNML | STK */
705	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
706	FPE_FLTDIV,	/* 44 - DZ | STK */
707	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
708	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
709	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
710	FPE_FLTOVF,	/* 48 - OFL | STK */
711	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
712	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
713	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
714	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
715	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
716	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
717	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
718	FPE_FLTUND,	/* 50 - UFL | STK */
719	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
720	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
721	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
722	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
723	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
724	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
725	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
726	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
727	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
728	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
729	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
730	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
731	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
732	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
733	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
734	FPE_FLTRES,	/* 60 - IMP | STK */
735	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
736	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
737	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
738	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
739	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
740	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
741	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
742	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
743	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
744	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
745	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
746	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
747	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
748	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
749	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
750	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
751	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
752	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
753	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
754	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
755	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
756	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
757	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
758	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
759	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
760	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
761	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
762	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
763	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
764	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
765	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
766};
767
768/*
769 * Read the FP status and control words, then generate si_code value
770 * for SIGFPE.  The error code chosen will be one of the
771 * FPE_... macros.  It will be sent as the second argument to old
772 * BSD-style signal handlers and as "siginfo_t->si_code" (second
773 * argument) to SA_SIGINFO signal handlers.
774 *
775 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
776 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
777 * usermode code which understands the FPU hardware enough to enable
778 * the exceptions, can also handle clearing the exception state in the
779 * handler.  The only consequence of not clearing the exception is the
780 * rethrow of the SIGFPE on return from the signal handler and
781 * reexecution of the corresponding instruction.
782 *
783 * For XMM traps, the exceptions were never cleared.
784 */
785int
786npxtrap_x87(void)
787{
788	u_short control, status;
789
790	if (!hw_float) {
791		printf(
792	"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
793		       PCPU_GET(fpcurthread), curthread, hw_float);
794		panic("npxtrap from nowhere");
795	}
796	critical_enter();
797
798	/*
799	 * Interrupt handling (for another interrupt) may have pushed the
800	 * state to memory.  Fetch the relevant parts of the state from
801	 * wherever they are.
802	 */
803	if (PCPU_GET(fpcurthread) != curthread) {
804		control = GET_FPU_CW(curthread);
805		status = GET_FPU_SW(curthread);
806	} else {
807		fnstcw(&control);
808		fnstsw(&status);
809	}
810	critical_exit();
811	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
812}
813
814#ifdef CPU_ENABLE_SSE
815int
816npxtrap_sse(void)
817{
818	u_int mxcsr;
819
820	if (!hw_float) {
821		printf(
822	"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
823		       PCPU_GET(fpcurthread), curthread, hw_float);
824		panic("npxtrap from nowhere");
825	}
826	critical_enter();
827	if (PCPU_GET(fpcurthread) != curthread)
828		mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
829	else
830		stmxcsr(&mxcsr);
831	critical_exit();
832	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
833}
834#endif
835
836/*
837 * Implement device not available (DNA) exception
838 *
839 * It would be better to switch FP context here (if curthread != fpcurthread)
840 * and not necessarily for every context switch, but it is too hard to
841 * access foreign pcb's.
842 */
843
844static int err_count = 0;
845
846int
847npxdna(void)
848{
849
850	if (!hw_float)
851		return (0);
852	critical_enter();
853	if (PCPU_GET(fpcurthread) == curthread) {
854		printf("npxdna: fpcurthread == curthread %d times\n",
855		    ++err_count);
856		stop_emulating();
857		critical_exit();
858		return (1);
859	}
860	if (PCPU_GET(fpcurthread) != NULL) {
861		printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
862		       PCPU_GET(fpcurthread),
863		       PCPU_GET(fpcurthread)->td_proc->p_pid,
864		       curthread, curthread->td_proc->p_pid);
865		panic("npxdna");
866	}
867	stop_emulating();
868	/*
869	 * Record new context early in case frstor causes a trap.
870	 */
871	PCPU_SET(fpcurthread, curthread);
872
873#ifdef CPU_ENABLE_SSE
874	if (cpu_fxsr)
875		fpu_clean_state();
876#endif
877
878	if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
879		/*
880		 * This is the first time this thread has used the FPU or
881		 * the PCB doesn't contain a clean FPU state.  Explicitly
882		 * load an initial state.
883		 *
884		 * We prefer to restore the state from the actual save
885		 * area in PCB instead of directly loading from
886		 * npx_initialstate, to ignite the XSAVEOPT
887		 * tracking engine.
888		 */
889		bcopy(npx_initialstate, curpcb->pcb_save, cpu_max_ext_state_size);
890		fpurstor(curpcb->pcb_save);
891		if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
892			fldcw(curpcb->pcb_initial_npxcw);
893		curpcb->pcb_flags |= PCB_NPXINITDONE;
894		if (PCB_USER_FPU(curpcb))
895			curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
896	} else {
897		fpurstor(curpcb->pcb_save);
898	}
899	critical_exit();
900
901	return (1);
902}
903
904/*
905 * Wrapper for fpusave() called from context switch routines.
906 *
907 * npxsave() must be called with interrupts disabled, so that it clears
908 * fpcurthread atomically with saving the state.  We require callers to do the
909 * disabling, since most callers need to disable interrupts anyway to call
910 * npxsave() atomically with checking fpcurthread.
911 */
912void
913npxsave(addr)
914	union savefpu *addr;
915{
916
917	stop_emulating();
918#ifdef CPU_ENABLE_SSE
919	if (use_xsaveopt)
920		xsaveopt((char *)addr, xsave_mask);
921	else
922#endif
923		fpusave(addr);
924	start_emulating();
925	PCPU_SET(fpcurthread, NULL);
926}
927
928/*
929 * Unconditionally save the current co-processor state across suspend and
930 * resume.
931 */
932void
933npxsuspend(union savefpu *addr)
934{
935	register_t cr0;
936
937	if (!hw_float)
938		return;
939	if (PCPU_GET(fpcurthread) == NULL) {
940		bcopy(npx_initialstate, addr, cpu_max_ext_state_size);
941		return;
942	}
943	cr0 = rcr0();
944	stop_emulating();
945	fpusave(addr);
946	load_cr0(cr0);
947}
948
949void
950npxresume(union savefpu *addr)
951{
952	register_t cr0;
953
954	if (!hw_float)
955		return;
956
957	cr0 = rcr0();
958	npxinit(false);
959	stop_emulating();
960	fpurstor(addr);
961	load_cr0(cr0);
962}
963
964void
965npxdrop()
966{
967	struct thread *td;
968
969	/*
970	 * Discard pending exceptions in the !cpu_fxsr case so that unmasked
971	 * ones don't cause a panic on the next frstor.
972	 */
973#ifdef CPU_ENABLE_SSE
974	if (!cpu_fxsr)
975#endif
976		fnclex();
977
978	td = PCPU_GET(fpcurthread);
979	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
980	CRITICAL_ASSERT(td);
981	PCPU_SET(fpcurthread, NULL);
982	td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
983	start_emulating();
984}
985
986/*
987 * Get the user state of the FPU into pcb->pcb_user_save without
988 * dropping ownership (if possible).  It returns the FPU ownership
989 * status.
990 */
991int
992npxgetregs(struct thread *td)
993{
994	struct pcb *pcb;
995#ifdef CPU_ENABLE_SSE
996	uint64_t *xstate_bv, bit;
997	char *sa;
998	int max_ext_n, i;
999#endif
1000	int owned;
1001
1002	if (!hw_float)
1003		return (_MC_FPOWNED_NONE);
1004
1005	pcb = td->td_pcb;
1006	if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
1007		bcopy(npx_initialstate, get_pcb_user_save_pcb(pcb),
1008		    cpu_max_ext_state_size);
1009		SET_FPU_CW(get_pcb_user_save_pcb(pcb), pcb->pcb_initial_npxcw);
1010		npxuserinited(td);
1011		return (_MC_FPOWNED_PCB);
1012	}
1013	critical_enter();
1014	if (td == PCPU_GET(fpcurthread)) {
1015		fpusave(get_pcb_user_save_pcb(pcb));
1016#ifdef CPU_ENABLE_SSE
1017		if (!cpu_fxsr)
1018#endif
1019			/*
1020			 * fnsave initializes the FPU and destroys whatever
1021			 * context it contains.  Make sure the FPU owner
1022			 * starts with a clean state next time.
1023			 */
1024			npxdrop();
1025		owned = _MC_FPOWNED_FPU;
1026	} else {
1027		owned = _MC_FPOWNED_PCB;
1028	}
1029	critical_exit();
1030#ifdef CPU_ENABLE_SSE
1031	if (use_xsave) {
1032		/*
1033		 * Handle partially saved state.
1034		 */
1035		sa = (char *)get_pcb_user_save_pcb(pcb);
1036		xstate_bv = (uint64_t *)(sa + sizeof(union savefpu) +
1037		    offsetof(struct xstate_hdr, xstate_bv));
1038		if (xsave_mask >> 32 != 0)
1039			max_ext_n = fls(xsave_mask >> 32) + 32;
1040		else
1041			max_ext_n = fls(xsave_mask);
1042		for (i = 0; i < max_ext_n; i++) {
1043			bit = 1ULL << i;
1044			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
1045				continue;
1046			bcopy((char *)npx_initialstate +
1047			    xsave_area_desc[i].offset,
1048			    sa + xsave_area_desc[i].offset,
1049			    xsave_area_desc[i].size);
1050			*xstate_bv |= bit;
1051		}
1052	}
1053#endif
1054	return (owned);
1055}
1056
1057void
1058npxuserinited(struct thread *td)
1059{
1060	struct pcb *pcb;
1061
1062	pcb = td->td_pcb;
1063	if (PCB_USER_FPU(pcb))
1064		pcb->pcb_flags |= PCB_NPXINITDONE;
1065	pcb->pcb_flags |= PCB_NPXUSERINITDONE;
1066}
1067
1068#ifdef CPU_ENABLE_SSE
1069int
1070npxsetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
1071{
1072	struct xstate_hdr *hdr, *ehdr;
1073	size_t len, max_len;
1074	uint64_t bv;
1075
1076	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
1077	if (xfpustate == NULL)
1078		return (0);
1079	if (!use_xsave)
1080		return (EOPNOTSUPP);
1081
1082	len = xfpustate_size;
1083	if (len < sizeof(struct xstate_hdr))
1084		return (EINVAL);
1085	max_len = cpu_max_ext_state_size - sizeof(union savefpu);
1086	if (len > max_len)
1087		return (EINVAL);
1088
1089	ehdr = (struct xstate_hdr *)xfpustate;
1090	bv = ehdr->xstate_bv;
1091
1092	/*
1093	 * Avoid #gp.
1094	 */
1095	if (bv & ~xsave_mask)
1096		return (EINVAL);
1097
1098	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
1099
1100	hdr->xstate_bv = bv;
1101	bcopy(xfpustate + sizeof(struct xstate_hdr),
1102	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
1103
1104	return (0);
1105}
1106#endif
1107
1108int
1109npxsetregs(struct thread *td, union savefpu *addr, char *xfpustate,
1110	size_t xfpustate_size)
1111{
1112	struct pcb *pcb;
1113#ifdef CPU_ENABLE_SSE
1114	int error;
1115#endif
1116
1117	if (!hw_float)
1118		return (ENXIO);
1119
1120	pcb = td->td_pcb;
1121	critical_enter();
1122	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
1123#ifdef CPU_ENABLE_SSE
1124		error = npxsetxstate(td, xfpustate, xfpustate_size);
1125		if (error != 0) {
1126			critical_exit();
1127			return (error);
1128		}
1129		if (!cpu_fxsr)
1130#endif
1131			fnclex();	/* As in npxdrop(). */
1132		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1133		fpurstor(get_pcb_user_save_td(td));
1134		critical_exit();
1135		pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
1136	} else {
1137		critical_exit();
1138#ifdef CPU_ENABLE_SSE
1139		error = npxsetxstate(td, xfpustate, xfpustate_size);
1140		if (error != 0)
1141			return (error);
1142#endif
1143		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
1144		npxuserinited(td);
1145	}
1146	return (0);
1147}
1148
1149static void
1150fpusave(addr)
1151	union savefpu *addr;
1152{
1153
1154#ifdef CPU_ENABLE_SSE
1155	if (use_xsave)
1156		xsave((char *)addr, xsave_mask);
1157	else if (cpu_fxsr)
1158		fxsave(addr);
1159	else
1160#endif
1161		fnsave(addr);
1162}
1163
1164#ifdef CPU_ENABLE_SSE
1165/*
1166 * On AuthenticAMD processors, the fxrstor instruction does not restore
1167 * the x87's stored last instruction pointer, last data pointer, and last
1168 * opcode values, except in the rare case in which the exception summary
1169 * (ES) bit in the x87 status word is set to 1.
1170 *
1171 * In order to avoid leaking this information across processes, we clean
1172 * these values by performing a dummy load before executing fxrstor().
1173 */
1174static void
1175fpu_clean_state(void)
1176{
1177	static float dummy_variable = 0.0;
1178	u_short status;
1179
1180	/*
1181	 * Clear the ES bit in the x87 status word if it is currently
1182	 * set, in order to avoid causing a fault in the upcoming load.
1183	 */
1184	fnstsw(&status);
1185	if (status & 0x80)
1186		fnclex();
1187
1188	/*
1189	 * Load the dummy variable into the x87 stack.  This mangles
1190	 * the x87 stack, but we don't care since we're about to call
1191	 * fxrstor() anyway.
1192	 */
1193	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
1194}
1195#endif /* CPU_ENABLE_SSE */
1196
1197static void
1198fpurstor(addr)
1199	union savefpu *addr;
1200{
1201
1202#ifdef CPU_ENABLE_SSE
1203	if (use_xsave)
1204		xrstor((char *)addr, xsave_mask);
1205	else if (cpu_fxsr)
1206		fxrstor(addr);
1207	else
1208#endif
1209		frstor(addr);
1210}
1211
1212#ifdef DEV_ISA
1213/*
1214 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
1215 */
1216static struct isa_pnp_id npxisa_ids[] = {
1217	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
1218	{ 0 }
1219};
1220
1221static int
1222npxisa_probe(device_t dev)
1223{
1224	int result;
1225	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
1226		device_quiet(dev);
1227	}
1228	return(result);
1229}
1230
1231static int
1232npxisa_attach(device_t dev)
1233{
1234	return (0);
1235}
1236
1237static device_method_t npxisa_methods[] = {
1238	/* Device interface */
1239	DEVMETHOD(device_probe,		npxisa_probe),
1240	DEVMETHOD(device_attach,	npxisa_attach),
1241	DEVMETHOD(device_detach,	bus_generic_detach),
1242	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1243	DEVMETHOD(device_suspend,	bus_generic_suspend),
1244	DEVMETHOD(device_resume,	bus_generic_resume),
1245
1246	{ 0, 0 }
1247};
1248
1249static driver_t npxisa_driver = {
1250	"npxisa",
1251	npxisa_methods,
1252	1,			/* no softc */
1253};
1254
1255static devclass_t npxisa_devclass;
1256
1257DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
1258#ifndef PC98
1259DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
1260#endif
1261#endif /* DEV_ISA */
1262
1263static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
1264    "Kernel contexts for FPU state");
1265
1266#define	FPU_KERN_CTX_NPXINITDONE 0x01
1267#define	FPU_KERN_CTX_DUMMY	 0x02
1268
1269struct fpu_kern_ctx {
1270	union savefpu *prev;
1271	uint32_t flags;
1272	char hwstate1[];
1273};
1274
1275struct fpu_kern_ctx *
1276fpu_kern_alloc_ctx(u_int flags)
1277{
1278	struct fpu_kern_ctx *res;
1279	size_t sz;
1280
1281	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
1282	    cpu_max_ext_state_size;
1283	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
1284	    M_NOWAIT : M_WAITOK) | M_ZERO);
1285	return (res);
1286}
1287
1288void
1289fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
1290{
1291
1292	/* XXXKIB clear the memory ? */
1293	free(ctx, M_FPUKERN_CTX);
1294}
1295
1296static union savefpu *
1297fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
1298{
1299	vm_offset_t p;
1300
1301	p = (vm_offset_t)&ctx->hwstate1;
1302	p = roundup2(p, XSAVE_AREA_ALIGN);
1303	return ((union savefpu *)p);
1304}
1305
1306int
1307fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
1308{
1309	struct pcb *pcb;
1310
1311	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1312		ctx->flags = FPU_KERN_CTX_DUMMY;
1313		return (0);
1314	}
1315	pcb = td->td_pcb;
1316	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1317	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1318	ctx->flags = 0;
1319	if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
1320		ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
1321	npxexit(td);
1322	ctx->prev = pcb->pcb_save;
1323	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1324	pcb->pcb_flags |= PCB_KERNNPX;
1325	pcb->pcb_flags &= ~PCB_NPXINITDONE;
1326	return (0);
1327}
1328
1329int
1330fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1331{
1332	struct pcb *pcb;
1333
1334	if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1335		return (0);
1336	pcb = td->td_pcb;
1337	critical_enter();
1338	if (curthread == PCPU_GET(fpcurthread))
1339		npxdrop();
1340	critical_exit();
1341	pcb->pcb_save = ctx->prev;
1342	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1343		if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
1344			pcb->pcb_flags |= PCB_NPXINITDONE;
1345		else
1346			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1347		pcb->pcb_flags &= ~PCB_KERNNPX;
1348	} else {
1349		if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
1350			pcb->pcb_flags |= PCB_NPXINITDONE;
1351		else
1352			pcb->pcb_flags &= ~PCB_NPXINITDONE;
1353		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1354	}
1355	return (0);
1356}
1357
1358int
1359fpu_kern_thread(u_int flags)
1360{
1361	struct pcb *pcb;
1362
1363	pcb = curpcb;
1364	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1365	    ("Only kthread may use fpu_kern_thread"));
1366	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1367	    ("mangled pcb_save"));
1368	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1369
1370	curpcb->pcb_flags |= PCB_KERNNPX;
1371	return (0);
1372}
1373
1374int
1375is_fpu_kern_thread(u_int flags)
1376{
1377
1378	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1379		return (0);
1380	return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
1381}
1382
1383/*
1384 * FPU save area alloc/free/init utility routines
1385 */
1386union savefpu *
1387fpu_save_area_alloc(void)
1388{
1389
1390	return (uma_zalloc(fpu_save_area_zone, 0));
1391}
1392
1393void
1394fpu_save_area_free(union savefpu *fsa)
1395{
1396
1397	uma_zfree(fpu_save_area_zone, fsa);
1398}
1399
1400void
1401fpu_save_area_reset(union savefpu *fsa)
1402{
1403
1404	bcopy(npx_initialstate, fsa, cpu_max_ext_state_size);
1405}
1406