pmap.c revision 287945
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: stable/10/sys/i386/i386/pmap.c 287945 2015-09-17 23:31:44Z rstone $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#else
124#include <sys/cpuset.h>
125#endif
126
127#include <vm/vm.h>
128#include <vm/vm_param.h>
129#include <vm/vm_kern.h>
130#include <vm/vm_page.h>
131#include <vm/vm_map.h>
132#include <vm/vm_object.h>
133#include <vm/vm_extern.h>
134#include <vm/vm_pageout.h>
135#include <vm/vm_pager.h>
136#include <vm/vm_phys.h>
137#include <vm/vm_radix.h>
138#include <vm/vm_reserv.h>
139#include <vm/uma.h>
140
141#ifdef DEV_APIC
142#include <sys/bus.h>
143#include <machine/intr_machdep.h>
144#include <machine/apicvar.h>
145#endif
146#include <machine/cpu.h>
147#include <machine/cputypes.h>
148#include <machine/md_var.h>
149#include <machine/pcb.h>
150#include <machine/specialreg.h>
151#ifdef SMP
152#include <machine/smp.h>
153#endif
154
155#ifdef XBOX
156#include <machine/xbox.h>
157#endif
158
159#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
160#define CPU_ENABLE_SSE
161#endif
162
163#ifndef PMAP_SHPGPERPROC
164#define PMAP_SHPGPERPROC 200
165#endif
166
167#if !defined(DIAGNOSTIC)
168#ifdef __GNUC_GNU_INLINE__
169#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
170#else
171#define PMAP_INLINE	extern inline
172#endif
173#else
174#define PMAP_INLINE
175#endif
176
177#ifdef PV_STATS
178#define PV_STAT(x)	do { x ; } while (0)
179#else
180#define PV_STAT(x)	do { } while (0)
181#endif
182
183#define	pa_index(pa)	((pa) >> PDRSHIFT)
184#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
185
186/*
187 * Get PDEs and PTEs for user/kernel address space
188 */
189#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
190#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
191
192#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
193#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
194#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
195#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
196#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
197
198#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
199    atomic_clear_int((u_int *)(pte), PG_W))
200#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
201
202struct pmap kernel_pmap_store;
203LIST_HEAD(pmaplist, pmap);
204static struct pmaplist allpmaps;
205static struct mtx allpmaps_lock;
206
207vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
208vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
209int pgeflag = 0;		/* PG_G or-in */
210int pseflag = 0;		/* PG_PS or-in */
211
212static int nkpt = NKPT;
213vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
214extern u_int32_t KERNend;
215extern u_int32_t KPTphys;
216
217#if defined(PAE) || defined(PAE_TABLES)
218pt_entry_t pg_nx;
219static uma_zone_t pdptzone;
220#endif
221
222static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pat_works = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
226    "Is page attribute table fully functional?");
227
228static int pg_ps_enabled = 1;
229SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
230    "Are large page mappings enabled?");
231
232#define	PAT_INDEX_SIZE	8
233static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
234
235/*
236 * pmap_mapdev support pre initialization (i.e. console)
237 */
238#define	PMAP_PREINIT_MAPPING_COUNT	8
239static struct pmap_preinit_mapping {
240	vm_paddr_t	pa;
241	vm_offset_t	va;
242	vm_size_t	sz;
243	int		mode;
244} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
245static int pmap_initialized;
246
247static struct rwlock_padalign pvh_global_lock;
248
249/*
250 * Data for the pv entry allocation mechanism
251 */
252static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
253static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
254static struct md_page *pv_table;
255static int shpgperproc = PMAP_SHPGPERPROC;
256
257struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
258int pv_maxchunks;			/* How many chunks we have KVA for */
259vm_offset_t pv_vafree;			/* freelist stored in the PTE */
260
261/*
262 * All those kernel PT submaps that BSD is so fond of
263 */
264struct sysmaps {
265	struct	mtx lock;
266	pt_entry_t *CMAP1;
267	pt_entry_t *CMAP2;
268	caddr_t	CADDR1;
269	caddr_t	CADDR2;
270};
271static struct sysmaps sysmaps_pcpu[MAXCPU];
272pt_entry_t *CMAP3;
273static pd_entry_t *KPTD;
274caddr_t ptvmmap = 0;
275caddr_t CADDR3;
276struct msgbuf *msgbufp = 0;
277
278/*
279 * Crashdump maps.
280 */
281static caddr_t crashdumpmap;
282
283static pt_entry_t *PMAP1 = 0, *PMAP2;
284static pt_entry_t *PADDR1 = 0, *PADDR2;
285#ifdef SMP
286static int PMAP1cpu;
287static int PMAP1changedcpu;
288SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
289	   &PMAP1changedcpu, 0,
290	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
291#endif
292static int PMAP1changed;
293SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
294	   &PMAP1changed, 0,
295	   "Number of times pmap_pte_quick changed PMAP1");
296static int PMAP1unchanged;
297SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
298	   &PMAP1unchanged, 0,
299	   "Number of times pmap_pte_quick didn't change PMAP1");
300static struct mtx PMAP2mutex;
301
302static void	free_pv_chunk(struct pv_chunk *pc);
303static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
304static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
305static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
306static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
307static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
308static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
309static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
310		    vm_offset_t va);
311static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
312
313static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
314static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
315    vm_prot_t prot);
316static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
317    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
318static void pmap_flush_page(vm_page_t m);
319static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
320static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
321static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
322static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
323static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
324static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
325static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
326static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
327static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
328static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
329    vm_prot_t prot);
330static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
331static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
332    struct spglist *free);
333static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
334    struct spglist *free);
335static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
336static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
337    struct spglist *free);
338static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
339					vm_offset_t va);
340static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
341static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
342    vm_page_t m);
343static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
344    pd_entry_t newpde);
345static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
346
347static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags);
348
349static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags);
350static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free);
351static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
352static void pmap_pte_release(pt_entry_t *pte);
353static int pmap_unuse_pt(pmap_t, vm_offset_t, struct spglist *);
354#if defined(PAE) || defined(PAE_TABLES)
355static void *pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
356    int wait);
357#endif
358static void pmap_set_pg(void);
359
360static __inline void pagezero(void *page);
361
362CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
363CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
364
365/*
366 * If you get an error here, then you set KVA_PAGES wrong! See the
367 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
368 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
369 */
370CTASSERT(KERNBASE % (1 << 24) == 0);
371
372/*
373 *	Bootstrap the system enough to run with virtual memory.
374 *
375 *	On the i386 this is called after mapping has already been enabled
376 *	and just syncs the pmap module with what has already been done.
377 *	[We can't call it easily with mapping off since the kernel is not
378 *	mapped with PA == VA, hence we would have to relocate every address
379 *	from the linked base (virtual) address "KERNBASE" to the actual
380 *	(physical) address starting relative to 0]
381 */
382void
383pmap_bootstrap(vm_paddr_t firstaddr)
384{
385	vm_offset_t va;
386	pt_entry_t *pte, *unused;
387	struct sysmaps *sysmaps;
388	int i;
389
390	/*
391	 * Add a physical memory segment (vm_phys_seg) corresponding to the
392	 * preallocated kernel page table pages so that vm_page structures
393	 * representing these pages will be created.  The vm_page structures
394	 * are required for promotion of the corresponding kernel virtual
395	 * addresses to superpage mappings.
396	 */
397	vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
398
399	/*
400	 * Initialize the first available kernel virtual address.  However,
401	 * using "firstaddr" may waste a few pages of the kernel virtual
402	 * address space, because locore may not have mapped every physical
403	 * page that it allocated.  Preferably, locore would provide a first
404	 * unused virtual address in addition to "firstaddr".
405	 */
406	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
407
408	virtual_end = VM_MAX_KERNEL_ADDRESS;
409
410	/*
411	 * Initialize the kernel pmap (which is statically allocated).
412	 */
413	PMAP_LOCK_INIT(kernel_pmap);
414	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
415#if defined(PAE) || defined(PAE_TABLES)
416	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
417#endif
418	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
419	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
420
421 	/*
422	 * Initialize the global pv list lock.
423	 */
424	rw_init(&pvh_global_lock, "pmap pv global");
425
426	LIST_INIT(&allpmaps);
427
428	/*
429	 * Request a spin mutex so that changes to allpmaps cannot be
430	 * preempted by smp_rendezvous_cpus().  Otherwise,
431	 * pmap_update_pde_kernel() could access allpmaps while it is
432	 * being changed.
433	 */
434	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
435	mtx_lock_spin(&allpmaps_lock);
436	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
437	mtx_unlock_spin(&allpmaps_lock);
438
439	/*
440	 * Reserve some special page table entries/VA space for temporary
441	 * mapping of pages.
442	 */
443#define	SYSMAP(c, p, v, n)	\
444	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
445
446	va = virtual_avail;
447	pte = vtopte(va);
448
449	/*
450	 * CMAP1/CMAP2 are used for zeroing and copying pages.
451	 * CMAP3 is used for the idle process page zeroing.
452	 */
453	for (i = 0; i < MAXCPU; i++) {
454		sysmaps = &sysmaps_pcpu[i];
455		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
456		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
457		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
458	}
459	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
460
461	/*
462	 * Crashdump maps.
463	 */
464	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
465
466	/*
467	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
468	 */
469	SYSMAP(caddr_t, unused, ptvmmap, 1)
470
471	/*
472	 * msgbufp is used to map the system message buffer.
473	 */
474	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
475
476	/*
477	 * KPTmap is used by pmap_kextract().
478	 *
479	 * KPTmap is first initialized by locore.  However, that initial
480	 * KPTmap can only support NKPT page table pages.  Here, a larger
481	 * KPTmap is created that can support KVA_PAGES page table pages.
482	 */
483	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
484
485	for (i = 0; i < NKPT; i++)
486		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
487
488	/*
489	 * Adjust the start of the KPTD and KPTmap so that the implementation
490	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
491	 */
492	KPTD -= KPTDI;
493	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
494
495	/*
496	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
497	 * respectively.
498	 */
499	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
500	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
501
502	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
503
504	virtual_avail = va;
505
506	/*
507	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
508	 * physical memory region that is used by the ACPI wakeup code.  This
509	 * mapping must not have PG_G set.
510	 */
511#ifdef XBOX
512	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
513	 * an early stadium, we cannot yet neatly map video memory ... :-(
514	 * Better fixes are very welcome! */
515	if (!arch_i386_is_xbox)
516#endif
517	for (i = 1; i < NKPT; i++)
518		PTD[i] = 0;
519
520	/* Initialize the PAT MSR if present. */
521	pmap_init_pat();
522
523	/* Turn on PG_G on kernel page(s) */
524	pmap_set_pg();
525}
526
527/*
528 * Setup the PAT MSR.
529 */
530void
531pmap_init_pat(void)
532{
533	int pat_table[PAT_INDEX_SIZE];
534	uint64_t pat_msr;
535	u_long cr0, cr4;
536	int i;
537
538	/* Set default PAT index table. */
539	for (i = 0; i < PAT_INDEX_SIZE; i++)
540		pat_table[i] = -1;
541	pat_table[PAT_WRITE_BACK] = 0;
542	pat_table[PAT_WRITE_THROUGH] = 1;
543	pat_table[PAT_UNCACHEABLE] = 3;
544	pat_table[PAT_WRITE_COMBINING] = 3;
545	pat_table[PAT_WRITE_PROTECTED] = 3;
546	pat_table[PAT_UNCACHED] = 3;
547
548	/* Bail if this CPU doesn't implement PAT. */
549	if ((cpu_feature & CPUID_PAT) == 0) {
550		for (i = 0; i < PAT_INDEX_SIZE; i++)
551			pat_index[i] = pat_table[i];
552		pat_works = 0;
553		return;
554	}
555
556	/*
557	 * Due to some Intel errata, we can only safely use the lower 4
558	 * PAT entries.
559	 *
560	 *   Intel Pentium III Processor Specification Update
561	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
562	 * or Mode C Paging)
563	 *
564	 *   Intel Pentium IV  Processor Specification Update
565	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
566	 */
567	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
568	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
569		pat_works = 0;
570
571	/* Initialize default PAT entries. */
572	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
573	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
574	    PAT_VALUE(2, PAT_UNCACHED) |
575	    PAT_VALUE(3, PAT_UNCACHEABLE) |
576	    PAT_VALUE(4, PAT_WRITE_BACK) |
577	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
578	    PAT_VALUE(6, PAT_UNCACHED) |
579	    PAT_VALUE(7, PAT_UNCACHEABLE);
580
581	if (pat_works) {
582		/*
583		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
584		 * Program 5 and 6 as WP and WC.
585		 * Leave 4 and 7 as WB and UC.
586		 */
587		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
588		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
589		    PAT_VALUE(6, PAT_WRITE_COMBINING);
590		pat_table[PAT_UNCACHED] = 2;
591		pat_table[PAT_WRITE_PROTECTED] = 5;
592		pat_table[PAT_WRITE_COMBINING] = 6;
593	} else {
594		/*
595		 * Just replace PAT Index 2 with WC instead of UC-.
596		 */
597		pat_msr &= ~PAT_MASK(2);
598		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
599		pat_table[PAT_WRITE_COMBINING] = 2;
600	}
601
602	/* Disable PGE. */
603	cr4 = rcr4();
604	load_cr4(cr4 & ~CR4_PGE);
605
606	/* Disable caches (CD = 1, NW = 0). */
607	cr0 = rcr0();
608	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
609
610	/* Flushes caches and TLBs. */
611	wbinvd();
612	invltlb();
613
614	/* Update PAT and index table. */
615	wrmsr(MSR_PAT, pat_msr);
616	for (i = 0; i < PAT_INDEX_SIZE; i++)
617		pat_index[i] = pat_table[i];
618
619	/* Flush caches and TLBs again. */
620	wbinvd();
621	invltlb();
622
623	/* Restore caches and PGE. */
624	load_cr0(cr0);
625	load_cr4(cr4);
626}
627
628/*
629 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
630 */
631static void
632pmap_set_pg(void)
633{
634	pt_entry_t *pte;
635	vm_offset_t va, endva;
636
637	if (pgeflag == 0)
638		return;
639
640	endva = KERNBASE + KERNend;
641
642	if (pseflag) {
643		va = KERNBASE + KERNLOAD;
644		while (va  < endva) {
645			pdir_pde(PTD, va) |= pgeflag;
646			invltlb();	/* Play it safe, invltlb() every time */
647			va += NBPDR;
648		}
649	} else {
650		va = (vm_offset_t)btext;
651		while (va < endva) {
652			pte = vtopte(va);
653			if (*pte)
654				*pte |= pgeflag;
655			invltlb();	/* Play it safe, invltlb() every time */
656			va += PAGE_SIZE;
657		}
658	}
659}
660
661/*
662 * Initialize a vm_page's machine-dependent fields.
663 */
664void
665pmap_page_init(vm_page_t m)
666{
667
668	TAILQ_INIT(&m->md.pv_list);
669	m->md.pat_mode = PAT_WRITE_BACK;
670}
671
672#if defined(PAE) || defined(PAE_TABLES)
673static void *
674pmap_pdpt_allocf(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait)
675{
676
677	/* Inform UMA that this allocator uses kernel_map/object. */
678	*flags = UMA_SLAB_KERNEL;
679	return ((void *)kmem_alloc_contig(kernel_arena, bytes, wait, 0x0ULL,
680	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
681}
682#endif
683
684/*
685 * Abuse the pte nodes for unmapped kva to thread a kva freelist through.
686 * Requirements:
687 *  - Must deal with pages in order to ensure that none of the PG_* bits
688 *    are ever set, PG_V in particular.
689 *  - Assumes we can write to ptes without pte_store() atomic ops, even
690 *    on PAE systems.  This should be ok.
691 *  - Assumes nothing will ever test these addresses for 0 to indicate
692 *    no mapping instead of correctly checking PG_V.
693 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
694 * Because PG_V is never set, there can be no mappings to invalidate.
695 */
696static vm_offset_t
697pmap_ptelist_alloc(vm_offset_t *head)
698{
699	pt_entry_t *pte;
700	vm_offset_t va;
701
702	va = *head;
703	if (va == 0)
704		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
705	pte = vtopte(va);
706	*head = *pte;
707	if (*head & PG_V)
708		panic("pmap_ptelist_alloc: va with PG_V set!");
709	*pte = 0;
710	return (va);
711}
712
713static void
714pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
715{
716	pt_entry_t *pte;
717
718	if (va & PG_V)
719		panic("pmap_ptelist_free: freeing va with PG_V set!");
720	pte = vtopte(va);
721	*pte = *head;		/* virtual! PG_V is 0 though */
722	*head = va;
723}
724
725static void
726pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
727{
728	int i;
729	vm_offset_t va;
730
731	*head = 0;
732	for (i = npages - 1; i >= 0; i--) {
733		va = (vm_offset_t)base + i * PAGE_SIZE;
734		pmap_ptelist_free(head, va);
735	}
736}
737
738
739/*
740 *	Initialize the pmap module.
741 *	Called by vm_init, to initialize any structures that the pmap
742 *	system needs to map virtual memory.
743 */
744void
745pmap_init(void)
746{
747	struct pmap_preinit_mapping *ppim;
748	vm_page_t mpte;
749	vm_size_t s;
750	int i, pv_npg;
751
752	/*
753	 * Initialize the vm page array entries for the kernel pmap's
754	 * page table pages.
755	 */
756	for (i = 0; i < NKPT; i++) {
757		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
758		KASSERT(mpte >= vm_page_array &&
759		    mpte < &vm_page_array[vm_page_array_size],
760		    ("pmap_init: page table page is out of range"));
761		mpte->pindex = i + KPTDI;
762		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
763	}
764
765	/*
766	 * Initialize the address space (zone) for the pv entries.  Set a
767	 * high water mark so that the system can recover from excessive
768	 * numbers of pv entries.
769	 */
770	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
771	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
772	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
773	pv_entry_max = roundup(pv_entry_max, _NPCPV);
774	pv_entry_high_water = 9 * (pv_entry_max / 10);
775
776	/*
777	 * If the kernel is running on a virtual machine, then it must assume
778	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
779	 * be prepared for the hypervisor changing the vendor and family that
780	 * are reported by CPUID.  Consequently, the workaround for AMD Family
781	 * 10h Erratum 383 is enabled if the processor's feature set does not
782	 * include at least one feature that is only supported by older Intel
783	 * or newer AMD processors.
784	 */
785	if (vm_guest == VM_GUEST_VM && (cpu_feature & CPUID_SS) == 0 &&
786	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
787	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
788	    AMDID2_FMA4)) == 0)
789		workaround_erratum383 = 1;
790
791	/*
792	 * Are large page mappings supported and enabled?
793	 */
794	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
795	if (pseflag == 0)
796		pg_ps_enabled = 0;
797	else if (pg_ps_enabled) {
798		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
799		    ("pmap_init: can't assign to pagesizes[1]"));
800		pagesizes[1] = NBPDR;
801	}
802
803	/*
804	 * Calculate the size of the pv head table for superpages.
805	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
806	 */
807	pv_npg = trunc_4mpage(vm_phys_segs[vm_phys_nsegs - 1].end -
808	    PAGE_SIZE) / NBPDR + 1;
809
810	/*
811	 * Allocate memory for the pv head table for superpages.
812	 */
813	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
814	s = round_page(s);
815	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
816	    M_WAITOK | M_ZERO);
817	for (i = 0; i < pv_npg; i++)
818		TAILQ_INIT(&pv_table[i].pv_list);
819
820	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
821	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
822	if (pv_chunkbase == NULL)
823		panic("pmap_init: not enough kvm for pv chunks");
824	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
825#if defined(PAE) || defined(PAE_TABLES)
826	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
827	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
828	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
829	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
830#endif
831
832	pmap_initialized = 1;
833	if (!bootverbose)
834		return;
835	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
836		ppim = pmap_preinit_mapping + i;
837		if (ppim->va == 0)
838			continue;
839		printf("PPIM %u: PA=%#jx, VA=%#x, size=%#x, mode=%#x\n", i,
840		    (uintmax_t)ppim->pa, ppim->va, ppim->sz, ppim->mode);
841	}
842}
843
844
845SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
846	"Max number of PV entries");
847SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
848	"Page share factor per proc");
849
850static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
851    "2/4MB page mapping counters");
852
853static u_long pmap_pde_demotions;
854SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
855    &pmap_pde_demotions, 0, "2/4MB page demotions");
856
857static u_long pmap_pde_mappings;
858SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
859    &pmap_pde_mappings, 0, "2/4MB page mappings");
860
861static u_long pmap_pde_p_failures;
862SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
863    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
864
865static u_long pmap_pde_promotions;
866SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
867    &pmap_pde_promotions, 0, "2/4MB page promotions");
868
869/***************************************************
870 * Low level helper routines.....
871 ***************************************************/
872
873/*
874 * Determine the appropriate bits to set in a PTE or PDE for a specified
875 * caching mode.
876 */
877int
878pmap_cache_bits(int mode, boolean_t is_pde)
879{
880	int cache_bits, pat_flag, pat_idx;
881
882	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
883		panic("Unknown caching mode %d\n", mode);
884
885	/* The PAT bit is different for PTE's and PDE's. */
886	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
887
888	/* Map the caching mode to a PAT index. */
889	pat_idx = pat_index[mode];
890
891	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
892	cache_bits = 0;
893	if (pat_idx & 0x4)
894		cache_bits |= pat_flag;
895	if (pat_idx & 0x2)
896		cache_bits |= PG_NC_PCD;
897	if (pat_idx & 0x1)
898		cache_bits |= PG_NC_PWT;
899	return (cache_bits);
900}
901
902/*
903 * The caller is responsible for maintaining TLB consistency.
904 */
905static void
906pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
907{
908	pd_entry_t *pde;
909	pmap_t pmap;
910	boolean_t PTD_updated;
911
912	PTD_updated = FALSE;
913	mtx_lock_spin(&allpmaps_lock);
914	LIST_FOREACH(pmap, &allpmaps, pm_list) {
915		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
916		    PG_FRAME))
917			PTD_updated = TRUE;
918		pde = pmap_pde(pmap, va);
919		pde_store(pde, newpde);
920	}
921	mtx_unlock_spin(&allpmaps_lock);
922	KASSERT(PTD_updated,
923	    ("pmap_kenter_pde: current page table is not in allpmaps"));
924}
925
926/*
927 * After changing the page size for the specified virtual address in the page
928 * table, flush the corresponding entries from the processor's TLB.  Only the
929 * calling processor's TLB is affected.
930 *
931 * The calling thread must be pinned to a processor.
932 */
933static void
934pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
935{
936	u_long cr4;
937
938	if ((newpde & PG_PS) == 0)
939		/* Demotion: flush a specific 2MB page mapping. */
940		invlpg(va);
941	else if ((newpde & PG_G) == 0)
942		/*
943		 * Promotion: flush every 4KB page mapping from the TLB
944		 * because there are too many to flush individually.
945		 */
946		invltlb();
947	else {
948		/*
949		 * Promotion: flush every 4KB page mapping from the TLB,
950		 * including any global (PG_G) mappings.
951		 */
952		cr4 = rcr4();
953		load_cr4(cr4 & ~CR4_PGE);
954		/*
955		 * Although preemption at this point could be detrimental to
956		 * performance, it would not lead to an error.  PG_G is simply
957		 * ignored if CR4.PGE is clear.  Moreover, in case this block
958		 * is re-entered, the load_cr4() either above or below will
959		 * modify CR4.PGE flushing the TLB.
960		 */
961		load_cr4(cr4 | CR4_PGE);
962	}
963}
964#ifdef SMP
965/*
966 * For SMP, these functions have to use the IPI mechanism for coherence.
967 *
968 * N.B.: Before calling any of the following TLB invalidation functions,
969 * the calling processor must ensure that all stores updating a non-
970 * kernel page table are globally performed.  Otherwise, another
971 * processor could cache an old, pre-update entry without being
972 * invalidated.  This can happen one of two ways: (1) The pmap becomes
973 * active on another processor after its pm_active field is checked by
974 * one of the following functions but before a store updating the page
975 * table is globally performed. (2) The pmap becomes active on another
976 * processor before its pm_active field is checked but due to
977 * speculative loads one of the following functions stills reads the
978 * pmap as inactive on the other processor.
979 *
980 * The kernel page table is exempt because its pm_active field is
981 * immutable.  The kernel page table is always active on every
982 * processor.
983 */
984void
985pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
986{
987	cpuset_t other_cpus;
988	u_int cpuid;
989
990	sched_pin();
991	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
992		invlpg(va);
993		smp_invlpg(va);
994	} else {
995		cpuid = PCPU_GET(cpuid);
996		other_cpus = all_cpus;
997		CPU_CLR(cpuid, &other_cpus);
998		if (CPU_ISSET(cpuid, &pmap->pm_active))
999			invlpg(va);
1000		CPU_AND(&other_cpus, &pmap->pm_active);
1001		if (!CPU_EMPTY(&other_cpus))
1002			smp_masked_invlpg(other_cpus, va);
1003	}
1004	sched_unpin();
1005}
1006
1007void
1008pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1009{
1010	cpuset_t other_cpus;
1011	vm_offset_t addr;
1012	u_int cpuid;
1013
1014	sched_pin();
1015	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1016		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1017			invlpg(addr);
1018		smp_invlpg_range(sva, eva);
1019	} else {
1020		cpuid = PCPU_GET(cpuid);
1021		other_cpus = all_cpus;
1022		CPU_CLR(cpuid, &other_cpus);
1023		if (CPU_ISSET(cpuid, &pmap->pm_active))
1024			for (addr = sva; addr < eva; addr += PAGE_SIZE)
1025				invlpg(addr);
1026		CPU_AND(&other_cpus, &pmap->pm_active);
1027		if (!CPU_EMPTY(&other_cpus))
1028			smp_masked_invlpg_range(other_cpus, sva, eva);
1029	}
1030	sched_unpin();
1031}
1032
1033void
1034pmap_invalidate_all(pmap_t pmap)
1035{
1036	cpuset_t other_cpus;
1037	u_int cpuid;
1038
1039	sched_pin();
1040	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
1041		invltlb();
1042		smp_invltlb();
1043	} else {
1044		cpuid = PCPU_GET(cpuid);
1045		other_cpus = all_cpus;
1046		CPU_CLR(cpuid, &other_cpus);
1047		if (CPU_ISSET(cpuid, &pmap->pm_active))
1048			invltlb();
1049		CPU_AND(&other_cpus, &pmap->pm_active);
1050		if (!CPU_EMPTY(&other_cpus))
1051			smp_masked_invltlb(other_cpus);
1052	}
1053	sched_unpin();
1054}
1055
1056void
1057pmap_invalidate_cache(void)
1058{
1059
1060	sched_pin();
1061	wbinvd();
1062	smp_cache_flush();
1063	sched_unpin();
1064}
1065
1066struct pde_action {
1067	cpuset_t invalidate;	/* processors that invalidate their TLB */
1068	vm_offset_t va;
1069	pd_entry_t *pde;
1070	pd_entry_t newpde;
1071	u_int store;		/* processor that updates the PDE */
1072};
1073
1074static void
1075pmap_update_pde_kernel(void *arg)
1076{
1077	struct pde_action *act = arg;
1078	pd_entry_t *pde;
1079	pmap_t pmap;
1080
1081	if (act->store == PCPU_GET(cpuid)) {
1082
1083		/*
1084		 * Elsewhere, this operation requires allpmaps_lock for
1085		 * synchronization.  Here, it does not because it is being
1086		 * performed in the context of an all_cpus rendezvous.
1087		 */
1088		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1089			pde = pmap_pde(pmap, act->va);
1090			pde_store(pde, act->newpde);
1091		}
1092	}
1093}
1094
1095static void
1096pmap_update_pde_user(void *arg)
1097{
1098	struct pde_action *act = arg;
1099
1100	if (act->store == PCPU_GET(cpuid))
1101		pde_store(act->pde, act->newpde);
1102}
1103
1104static void
1105pmap_update_pde_teardown(void *arg)
1106{
1107	struct pde_action *act = arg;
1108
1109	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1110		pmap_update_pde_invalidate(act->va, act->newpde);
1111}
1112
1113/*
1114 * Change the page size for the specified virtual address in a way that
1115 * prevents any possibility of the TLB ever having two entries that map the
1116 * same virtual address using different page sizes.  This is the recommended
1117 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1118 * machine check exception for a TLB state that is improperly diagnosed as a
1119 * hardware error.
1120 */
1121static void
1122pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1123{
1124	struct pde_action act;
1125	cpuset_t active, other_cpus;
1126	u_int cpuid;
1127
1128	sched_pin();
1129	cpuid = PCPU_GET(cpuid);
1130	other_cpus = all_cpus;
1131	CPU_CLR(cpuid, &other_cpus);
1132	if (pmap == kernel_pmap)
1133		active = all_cpus;
1134	else
1135		active = pmap->pm_active;
1136	if (CPU_OVERLAP(&active, &other_cpus)) {
1137		act.store = cpuid;
1138		act.invalidate = active;
1139		act.va = va;
1140		act.pde = pde;
1141		act.newpde = newpde;
1142		CPU_SET(cpuid, &active);
1143		smp_rendezvous_cpus(active,
1144		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1145		    pmap_update_pde_kernel : pmap_update_pde_user,
1146		    pmap_update_pde_teardown, &act);
1147	} else {
1148		if (pmap == kernel_pmap)
1149			pmap_kenter_pde(va, newpde);
1150		else
1151			pde_store(pde, newpde);
1152		if (CPU_ISSET(cpuid, &active))
1153			pmap_update_pde_invalidate(va, newpde);
1154	}
1155	sched_unpin();
1156}
1157#else /* !SMP */
1158/*
1159 * Normal, non-SMP, 486+ invalidation functions.
1160 * We inline these within pmap.c for speed.
1161 */
1162PMAP_INLINE void
1163pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1164{
1165
1166	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1167		invlpg(va);
1168}
1169
1170PMAP_INLINE void
1171pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1172{
1173	vm_offset_t addr;
1174
1175	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1176		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1177			invlpg(addr);
1178}
1179
1180PMAP_INLINE void
1181pmap_invalidate_all(pmap_t pmap)
1182{
1183
1184	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1185		invltlb();
1186}
1187
1188PMAP_INLINE void
1189pmap_invalidate_cache(void)
1190{
1191
1192	wbinvd();
1193}
1194
1195static void
1196pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1197{
1198
1199	if (pmap == kernel_pmap)
1200		pmap_kenter_pde(va, newpde);
1201	else
1202		pde_store(pde, newpde);
1203	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1204		pmap_update_pde_invalidate(va, newpde);
1205}
1206#endif /* !SMP */
1207
1208#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1209
1210void
1211pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
1212{
1213
1214	if (force) {
1215		sva &= ~(vm_offset_t)cpu_clflush_line_size;
1216	} else {
1217		KASSERT((sva & PAGE_MASK) == 0,
1218		    ("pmap_invalidate_cache_range: sva not page-aligned"));
1219		KASSERT((eva & PAGE_MASK) == 0,
1220		    ("pmap_invalidate_cache_range: eva not page-aligned"));
1221	}
1222
1223	if ((cpu_feature & CPUID_SS) != 0 && !force)
1224		; /* If "Self Snoop" is supported and allowed, do nothing. */
1225	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1226	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1227
1228#ifdef DEV_APIC
1229		/*
1230		 * XXX: Some CPUs fault, hang, or trash the local APIC
1231		 * registers if we use CLFLUSH on the local APIC
1232		 * range.  The local APIC is always uncached, so we
1233		 * don't need to flush for that range anyway.
1234		 */
1235		if (pmap_kextract(sva) == lapic_paddr)
1236			return;
1237#endif
1238		/*
1239		 * Otherwise, do per-cache line flush.  Use the mfence
1240		 * instruction to insure that previous stores are
1241		 * included in the write-back.  The processor
1242		 * propagates flush to other processors in the cache
1243		 * coherence domain.
1244		 */
1245		mfence();
1246		for (; sva < eva; sva += cpu_clflush_line_size)
1247			clflush(sva);
1248		mfence();
1249	} else {
1250
1251		/*
1252		 * No targeted cache flush methods are supported by CPU,
1253		 * or the supplied range is bigger than 2MB.
1254		 * Globally invalidate cache.
1255		 */
1256		pmap_invalidate_cache();
1257	}
1258}
1259
1260void
1261pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1262{
1263	int i;
1264
1265	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1266	    (cpu_feature & CPUID_CLFSH) == 0) {
1267		pmap_invalidate_cache();
1268	} else {
1269		for (i = 0; i < count; i++)
1270			pmap_flush_page(pages[i]);
1271	}
1272}
1273
1274/*
1275 * Are we current address space or kernel?  N.B. We return FALSE when
1276 * a pmap's page table is in use because a kernel thread is borrowing
1277 * it.  The borrowed page table can change spontaneously, making any
1278 * dependence on its continued use subject to a race condition.
1279 */
1280static __inline int
1281pmap_is_current(pmap_t pmap)
1282{
1283
1284	return (pmap == kernel_pmap ||
1285	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1286	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1287}
1288
1289/*
1290 * If the given pmap is not the current or kernel pmap, the returned pte must
1291 * be released by passing it to pmap_pte_release().
1292 */
1293pt_entry_t *
1294pmap_pte(pmap_t pmap, vm_offset_t va)
1295{
1296	pd_entry_t newpf;
1297	pd_entry_t *pde;
1298
1299	pde = pmap_pde(pmap, va);
1300	if (*pde & PG_PS)
1301		return (pde);
1302	if (*pde != 0) {
1303		/* are we current address space or kernel? */
1304		if (pmap_is_current(pmap))
1305			return (vtopte(va));
1306		mtx_lock(&PMAP2mutex);
1307		newpf = *pde & PG_FRAME;
1308		if ((*PMAP2 & PG_FRAME) != newpf) {
1309			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1310			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1311		}
1312		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1313	}
1314	return (NULL);
1315}
1316
1317/*
1318 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1319 * being NULL.
1320 */
1321static __inline void
1322pmap_pte_release(pt_entry_t *pte)
1323{
1324
1325	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1326		mtx_unlock(&PMAP2mutex);
1327}
1328
1329/*
1330 * NB:  The sequence of updating a page table followed by accesses to the
1331 * corresponding pages is subject to the situation described in the "AMD64
1332 * Architecture Programmer's Manual Volume 2: System Programming" rev. 3.23,
1333 * "7.3.1 Special Coherency Considerations".  Therefore, issuing the INVLPG
1334 * right after modifying the PTE bits is crucial.
1335 */
1336static __inline void
1337invlcaddr(void *caddr)
1338{
1339
1340	invlpg((u_int)caddr);
1341}
1342
1343/*
1344 * Super fast pmap_pte routine best used when scanning
1345 * the pv lists.  This eliminates many coarse-grained
1346 * invltlb calls.  Note that many of the pv list
1347 * scans are across different pmaps.  It is very wasteful
1348 * to do an entire invltlb for checking a single mapping.
1349 *
1350 * If the given pmap is not the current pmap, pvh_global_lock
1351 * must be held and curthread pinned to a CPU.
1352 */
1353static pt_entry_t *
1354pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1355{
1356	pd_entry_t newpf;
1357	pd_entry_t *pde;
1358
1359	pde = pmap_pde(pmap, va);
1360	if (*pde & PG_PS)
1361		return (pde);
1362	if (*pde != 0) {
1363		/* are we current address space or kernel? */
1364		if (pmap_is_current(pmap))
1365			return (vtopte(va));
1366		rw_assert(&pvh_global_lock, RA_WLOCKED);
1367		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1368		newpf = *pde & PG_FRAME;
1369		if ((*PMAP1 & PG_FRAME) != newpf) {
1370			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1371#ifdef SMP
1372			PMAP1cpu = PCPU_GET(cpuid);
1373#endif
1374			invlcaddr(PADDR1);
1375			PMAP1changed++;
1376		} else
1377#ifdef SMP
1378		if (PMAP1cpu != PCPU_GET(cpuid)) {
1379			PMAP1cpu = PCPU_GET(cpuid);
1380			invlcaddr(PADDR1);
1381			PMAP1changedcpu++;
1382		} else
1383#endif
1384			PMAP1unchanged++;
1385		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1386	}
1387	return (0);
1388}
1389
1390/*
1391 *	Routine:	pmap_extract
1392 *	Function:
1393 *		Extract the physical page address associated
1394 *		with the given map/virtual_address pair.
1395 */
1396vm_paddr_t
1397pmap_extract(pmap_t pmap, vm_offset_t va)
1398{
1399	vm_paddr_t rtval;
1400	pt_entry_t *pte;
1401	pd_entry_t pde;
1402
1403	rtval = 0;
1404	PMAP_LOCK(pmap);
1405	pde = pmap->pm_pdir[va >> PDRSHIFT];
1406	if (pde != 0) {
1407		if ((pde & PG_PS) != 0)
1408			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1409		else {
1410			pte = pmap_pte(pmap, va);
1411			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1412			pmap_pte_release(pte);
1413		}
1414	}
1415	PMAP_UNLOCK(pmap);
1416	return (rtval);
1417}
1418
1419/*
1420 *	Routine:	pmap_extract_and_hold
1421 *	Function:
1422 *		Atomically extract and hold the physical page
1423 *		with the given pmap and virtual address pair
1424 *		if that mapping permits the given protection.
1425 */
1426vm_page_t
1427pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1428{
1429	pd_entry_t pde;
1430	pt_entry_t pte, *ptep;
1431	vm_page_t m;
1432	vm_paddr_t pa;
1433
1434	pa = 0;
1435	m = NULL;
1436	PMAP_LOCK(pmap);
1437retry:
1438	pde = *pmap_pde(pmap, va);
1439	if (pde != 0) {
1440		if (pde & PG_PS) {
1441			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1442				if (vm_page_pa_tryrelock(pmap, (pde &
1443				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1444					goto retry;
1445				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1446				    (va & PDRMASK));
1447				vm_page_hold(m);
1448			}
1449		} else {
1450			ptep = pmap_pte(pmap, va);
1451			pte = *ptep;
1452			pmap_pte_release(ptep);
1453			if (pte != 0 &&
1454			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1455				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1456				    &pa))
1457					goto retry;
1458				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1459				vm_page_hold(m);
1460			}
1461		}
1462	}
1463	PA_UNLOCK_COND(pa);
1464	PMAP_UNLOCK(pmap);
1465	return (m);
1466}
1467
1468/***************************************************
1469 * Low level mapping routines.....
1470 ***************************************************/
1471
1472/*
1473 * Add a wired page to the kva.
1474 * Note: not SMP coherent.
1475 *
1476 * This function may be used before pmap_bootstrap() is called.
1477 */
1478PMAP_INLINE void
1479pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1480{
1481	pt_entry_t *pte;
1482
1483	pte = vtopte(va);
1484	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1485}
1486
1487static __inline void
1488pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1489{
1490	pt_entry_t *pte;
1491
1492	pte = vtopte(va);
1493	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1494}
1495
1496/*
1497 * Remove a page from the kernel pagetables.
1498 * Note: not SMP coherent.
1499 *
1500 * This function may be used before pmap_bootstrap() is called.
1501 */
1502PMAP_INLINE void
1503pmap_kremove(vm_offset_t va)
1504{
1505	pt_entry_t *pte;
1506
1507	pte = vtopte(va);
1508	pte_clear(pte);
1509}
1510
1511/*
1512 *	Used to map a range of physical addresses into kernel
1513 *	virtual address space.
1514 *
1515 *	The value passed in '*virt' is a suggested virtual address for
1516 *	the mapping. Architectures which can support a direct-mapped
1517 *	physical to virtual region can return the appropriate address
1518 *	within that region, leaving '*virt' unchanged. Other
1519 *	architectures should map the pages starting at '*virt' and
1520 *	update '*virt' with the first usable address after the mapped
1521 *	region.
1522 */
1523vm_offset_t
1524pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1525{
1526	vm_offset_t va, sva;
1527	vm_paddr_t superpage_offset;
1528	pd_entry_t newpde;
1529
1530	va = *virt;
1531	/*
1532	 * Does the physical address range's size and alignment permit at
1533	 * least one superpage mapping to be created?
1534	 */
1535	superpage_offset = start & PDRMASK;
1536	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1537		/*
1538		 * Increase the starting virtual address so that its alignment
1539		 * does not preclude the use of superpage mappings.
1540		 */
1541		if ((va & PDRMASK) < superpage_offset)
1542			va = (va & ~PDRMASK) + superpage_offset;
1543		else if ((va & PDRMASK) > superpage_offset)
1544			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1545	}
1546	sva = va;
1547	while (start < end) {
1548		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1549		    pseflag) {
1550			KASSERT((va & PDRMASK) == 0,
1551			    ("pmap_map: misaligned va %#x", va));
1552			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1553			pmap_kenter_pde(va, newpde);
1554			va += NBPDR;
1555			start += NBPDR;
1556		} else {
1557			pmap_kenter(va, start);
1558			va += PAGE_SIZE;
1559			start += PAGE_SIZE;
1560		}
1561	}
1562	pmap_invalidate_range(kernel_pmap, sva, va);
1563	*virt = va;
1564	return (sva);
1565}
1566
1567
1568/*
1569 * Add a list of wired pages to the kva
1570 * this routine is only used for temporary
1571 * kernel mappings that do not need to have
1572 * page modification or references recorded.
1573 * Note that old mappings are simply written
1574 * over.  The page *must* be wired.
1575 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1576 */
1577void
1578pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1579{
1580	pt_entry_t *endpte, oldpte, pa, *pte;
1581	vm_page_t m;
1582
1583	oldpte = 0;
1584	pte = vtopte(sva);
1585	endpte = pte + count;
1586	while (pte < endpte) {
1587		m = *ma++;
1588		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1589		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1590			oldpte |= *pte;
1591			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1592		}
1593		pte++;
1594	}
1595	if (__predict_false((oldpte & PG_V) != 0))
1596		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1597		    PAGE_SIZE);
1598}
1599
1600/*
1601 * This routine tears out page mappings from the
1602 * kernel -- it is meant only for temporary mappings.
1603 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1604 */
1605void
1606pmap_qremove(vm_offset_t sva, int count)
1607{
1608	vm_offset_t va;
1609
1610	va = sva;
1611	while (count-- > 0) {
1612		pmap_kremove(va);
1613		va += PAGE_SIZE;
1614	}
1615	pmap_invalidate_range(kernel_pmap, sva, va);
1616}
1617
1618/***************************************************
1619 * Page table page management routines.....
1620 ***************************************************/
1621static __inline void
1622pmap_free_zero_pages(struct spglist *free)
1623{
1624	vm_page_t m;
1625
1626	while ((m = SLIST_FIRST(free)) != NULL) {
1627		SLIST_REMOVE_HEAD(free, plinks.s.ss);
1628		/* Preserve the page's PG_ZERO setting. */
1629		vm_page_free_toq(m);
1630	}
1631}
1632
1633/*
1634 * Schedule the specified unused page table page to be freed.  Specifically,
1635 * add the page to the specified list of pages that will be released to the
1636 * physical memory manager after the TLB has been updated.
1637 */
1638static __inline void
1639pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
1640    boolean_t set_PG_ZERO)
1641{
1642
1643	if (set_PG_ZERO)
1644		m->flags |= PG_ZERO;
1645	else
1646		m->flags &= ~PG_ZERO;
1647	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
1648}
1649
1650/*
1651 * Inserts the specified page table page into the specified pmap's collection
1652 * of idle page table pages.  Each of a pmap's page table pages is responsible
1653 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1654 * ordered by this virtual address range.
1655 */
1656static __inline int
1657pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1658{
1659
1660	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1661	return (vm_radix_insert(&pmap->pm_root, mpte));
1662}
1663
1664/*
1665 * Looks for a page table page mapping the specified virtual address in the
1666 * specified pmap's collection of idle page table pages.  Returns NULL if there
1667 * is no page table page corresponding to the specified virtual address.
1668 */
1669static __inline vm_page_t
1670pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1671{
1672
1673	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1674	return (vm_radix_lookup(&pmap->pm_root, va >> PDRSHIFT));
1675}
1676
1677/*
1678 * Removes the specified page table page from the specified pmap's collection
1679 * of idle page table pages.  The specified page table page must be a member of
1680 * the pmap's collection.
1681 */
1682static __inline void
1683pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1684{
1685
1686	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1687	vm_radix_remove(&pmap->pm_root, mpte->pindex);
1688}
1689
1690/*
1691 * Decrements a page table page's wire count, which is used to record the
1692 * number of valid page table entries within the page.  If the wire count
1693 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1694 * page table page was unmapped and FALSE otherwise.
1695 */
1696static inline boolean_t
1697pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1698{
1699
1700	--m->wire_count;
1701	if (m->wire_count == 0) {
1702		_pmap_unwire_ptp(pmap, m, free);
1703		return (TRUE);
1704	} else
1705		return (FALSE);
1706}
1707
1708static void
1709_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, struct spglist *free)
1710{
1711	vm_offset_t pteva;
1712
1713	/*
1714	 * unmap the page table page
1715	 */
1716	pmap->pm_pdir[m->pindex] = 0;
1717	--pmap->pm_stats.resident_count;
1718
1719	/*
1720	 * This is a release store so that the ordinary store unmapping
1721	 * the page table page is globally performed before TLB shoot-
1722	 * down is begun.
1723	 */
1724	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1725
1726	/*
1727	 * Do an invltlb to make the invalidated mapping
1728	 * take effect immediately.
1729	 */
1730	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1731	pmap_invalidate_page(pmap, pteva);
1732
1733	/*
1734	 * Put page on a list so that it is released after
1735	 * *ALL* TLB shootdown is done
1736	 */
1737	pmap_add_delayed_free_list(m, free, TRUE);
1738}
1739
1740/*
1741 * After removing a page table entry, this routine is used to
1742 * conditionally free the page, and manage the hold/wire counts.
1743 */
1744static int
1745pmap_unuse_pt(pmap_t pmap, vm_offset_t va, struct spglist *free)
1746{
1747	pd_entry_t ptepde;
1748	vm_page_t mpte;
1749
1750	if (va >= VM_MAXUSER_ADDRESS)
1751		return (0);
1752	ptepde = *pmap_pde(pmap, va);
1753	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1754	return (pmap_unwire_ptp(pmap, mpte, free));
1755}
1756
1757/*
1758 * Initialize the pmap for the swapper process.
1759 */
1760void
1761pmap_pinit0(pmap_t pmap)
1762{
1763
1764	PMAP_LOCK_INIT(pmap);
1765	/*
1766	 * Since the page table directory is shared with the kernel pmap,
1767	 * which is already included in the list "allpmaps", this pmap does
1768	 * not need to be inserted into that list.
1769	 */
1770	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1771#if defined(PAE) || defined(PAE_TABLES)
1772	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1773#endif
1774	pmap->pm_root.rt_root = 0;
1775	CPU_ZERO(&pmap->pm_active);
1776	PCPU_SET(curpmap, pmap);
1777	TAILQ_INIT(&pmap->pm_pvchunk);
1778	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1779}
1780
1781/*
1782 * Initialize a preallocated and zeroed pmap structure,
1783 * such as one in a vmspace structure.
1784 */
1785int
1786pmap_pinit(pmap_t pmap)
1787{
1788	vm_page_t m, ptdpg[NPGPTD];
1789	vm_paddr_t pa;
1790	int i;
1791
1792	/*
1793	 * No need to allocate page table space yet but we do need a valid
1794	 * page directory table.
1795	 */
1796	if (pmap->pm_pdir == NULL) {
1797		pmap->pm_pdir = (pd_entry_t *)kva_alloc(NBPTD);
1798		if (pmap->pm_pdir == NULL)
1799			return (0);
1800#if defined(PAE) || defined(PAE_TABLES)
1801		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1802		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1803		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1804		    ("pmap_pinit: pdpt misaligned"));
1805		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1806		    ("pmap_pinit: pdpt above 4g"));
1807#endif
1808		pmap->pm_root.rt_root = 0;
1809	}
1810	KASSERT(vm_radix_is_empty(&pmap->pm_root),
1811	    ("pmap_pinit: pmap has reserved page table page(s)"));
1812
1813	/*
1814	 * allocate the page directory page(s)
1815	 */
1816	for (i = 0; i < NPGPTD;) {
1817		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1818		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1819		if (m == NULL)
1820			VM_WAIT;
1821		else {
1822			ptdpg[i++] = m;
1823		}
1824	}
1825
1826	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1827
1828	for (i = 0; i < NPGPTD; i++)
1829		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1830			pagezero(pmap->pm_pdir + (i * NPDEPG));
1831
1832	mtx_lock_spin(&allpmaps_lock);
1833	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1834	/* Copy the kernel page table directory entries. */
1835	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1836	mtx_unlock_spin(&allpmaps_lock);
1837
1838	/* install self-referential address mapping entry(s) */
1839	for (i = 0; i < NPGPTD; i++) {
1840		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1841		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1842#if defined(PAE) || defined(PAE_TABLES)
1843		pmap->pm_pdpt[i] = pa | PG_V;
1844#endif
1845	}
1846
1847	CPU_ZERO(&pmap->pm_active);
1848	TAILQ_INIT(&pmap->pm_pvchunk);
1849	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1850
1851	return (1);
1852}
1853
1854/*
1855 * this routine is called if the page table page is not
1856 * mapped correctly.
1857 */
1858static vm_page_t
1859_pmap_allocpte(pmap_t pmap, u_int ptepindex, u_int flags)
1860{
1861	vm_paddr_t ptepa;
1862	vm_page_t m;
1863
1864	/*
1865	 * Allocate a page table page.
1866	 */
1867	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1868	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1869		if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
1870			PMAP_UNLOCK(pmap);
1871			rw_wunlock(&pvh_global_lock);
1872			VM_WAIT;
1873			rw_wlock(&pvh_global_lock);
1874			PMAP_LOCK(pmap);
1875		}
1876
1877		/*
1878		 * Indicate the need to retry.  While waiting, the page table
1879		 * page may have been allocated.
1880		 */
1881		return (NULL);
1882	}
1883	if ((m->flags & PG_ZERO) == 0)
1884		pmap_zero_page(m);
1885
1886	/*
1887	 * Map the pagetable page into the process address space, if
1888	 * it isn't already there.
1889	 */
1890
1891	pmap->pm_stats.resident_count++;
1892
1893	ptepa = VM_PAGE_TO_PHYS(m);
1894	pmap->pm_pdir[ptepindex] =
1895		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1896
1897	return (m);
1898}
1899
1900static vm_page_t
1901pmap_allocpte(pmap_t pmap, vm_offset_t va, u_int flags)
1902{
1903	u_int ptepindex;
1904	pd_entry_t ptepa;
1905	vm_page_t m;
1906
1907	/*
1908	 * Calculate pagetable page index
1909	 */
1910	ptepindex = va >> PDRSHIFT;
1911retry:
1912	/*
1913	 * Get the page directory entry
1914	 */
1915	ptepa = pmap->pm_pdir[ptepindex];
1916
1917	/*
1918	 * This supports switching from a 4MB page to a
1919	 * normal 4K page.
1920	 */
1921	if (ptepa & PG_PS) {
1922		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1923		ptepa = pmap->pm_pdir[ptepindex];
1924	}
1925
1926	/*
1927	 * If the page table page is mapped, we just increment the
1928	 * hold count, and activate it.
1929	 */
1930	if (ptepa) {
1931		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1932		m->wire_count++;
1933	} else {
1934		/*
1935		 * Here if the pte page isn't mapped, or if it has
1936		 * been deallocated.
1937		 */
1938		m = _pmap_allocpte(pmap, ptepindex, flags);
1939		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
1940			goto retry;
1941	}
1942	return (m);
1943}
1944
1945
1946/***************************************************
1947* Pmap allocation/deallocation routines.
1948 ***************************************************/
1949
1950#ifdef SMP
1951/*
1952 * Deal with a SMP shootdown of other users of the pmap that we are
1953 * trying to dispose of.  This can be a bit hairy.
1954 */
1955static cpuset_t *lazymask;
1956static u_int lazyptd;
1957static volatile u_int lazywait;
1958
1959void pmap_lazyfix_action(void);
1960
1961void
1962pmap_lazyfix_action(void)
1963{
1964
1965#ifdef COUNT_IPIS
1966	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1967#endif
1968	if (rcr3() == lazyptd)
1969		load_cr3(curpcb->pcb_cr3);
1970	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1971	atomic_store_rel_int(&lazywait, 1);
1972}
1973
1974static void
1975pmap_lazyfix_self(u_int cpuid)
1976{
1977
1978	if (rcr3() == lazyptd)
1979		load_cr3(curpcb->pcb_cr3);
1980	CPU_CLR_ATOMIC(cpuid, lazymask);
1981}
1982
1983
1984static void
1985pmap_lazyfix(pmap_t pmap)
1986{
1987	cpuset_t mymask, mask;
1988	u_int cpuid, spins;
1989	int lsb;
1990
1991	mask = pmap->pm_active;
1992	while (!CPU_EMPTY(&mask)) {
1993		spins = 50000000;
1994
1995		/* Find least significant set bit. */
1996		lsb = CPU_FFS(&mask);
1997		MPASS(lsb != 0);
1998		lsb--;
1999		CPU_SETOF(lsb, &mask);
2000		mtx_lock_spin(&smp_ipi_mtx);
2001#if defined(PAE) || defined(PAE_TABLES)
2002		lazyptd = vtophys(pmap->pm_pdpt);
2003#else
2004		lazyptd = vtophys(pmap->pm_pdir);
2005#endif
2006		cpuid = PCPU_GET(cpuid);
2007
2008		/* Use a cpuset just for having an easy check. */
2009		CPU_SETOF(cpuid, &mymask);
2010		if (!CPU_CMP(&mask, &mymask)) {
2011			lazymask = &pmap->pm_active;
2012			pmap_lazyfix_self(cpuid);
2013		} else {
2014			atomic_store_rel_int((u_int *)&lazymask,
2015			    (u_int)&pmap->pm_active);
2016			atomic_store_rel_int(&lazywait, 0);
2017			ipi_selected(mask, IPI_LAZYPMAP);
2018			while (lazywait == 0) {
2019				ia32_pause();
2020				if (--spins == 0)
2021					break;
2022			}
2023		}
2024		mtx_unlock_spin(&smp_ipi_mtx);
2025		if (spins == 0)
2026			printf("pmap_lazyfix: spun for 50000000\n");
2027		mask = pmap->pm_active;
2028	}
2029}
2030
2031#else	/* SMP */
2032
2033/*
2034 * Cleaning up on uniprocessor is easy.  For various reasons, we're
2035 * unlikely to have to even execute this code, including the fact
2036 * that the cleanup is deferred until the parent does a wait(2), which
2037 * means that another userland process has run.
2038 */
2039static void
2040pmap_lazyfix(pmap_t pmap)
2041{
2042	u_int cr3;
2043
2044	cr3 = vtophys(pmap->pm_pdir);
2045	if (cr3 == rcr3()) {
2046		load_cr3(curpcb->pcb_cr3);
2047		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
2048	}
2049}
2050#endif	/* SMP */
2051
2052/*
2053 * Release any resources held by the given physical map.
2054 * Called when a pmap initialized by pmap_pinit is being released.
2055 * Should only be called if the map contains no valid mappings.
2056 */
2057void
2058pmap_release(pmap_t pmap)
2059{
2060	vm_page_t m, ptdpg[NPGPTD];
2061	int i;
2062
2063	KASSERT(pmap->pm_stats.resident_count == 0,
2064	    ("pmap_release: pmap resident count %ld != 0",
2065	    pmap->pm_stats.resident_count));
2066	KASSERT(vm_radix_is_empty(&pmap->pm_root),
2067	    ("pmap_release: pmap has reserved page table page(s)"));
2068
2069	pmap_lazyfix(pmap);
2070	mtx_lock_spin(&allpmaps_lock);
2071	LIST_REMOVE(pmap, pm_list);
2072	mtx_unlock_spin(&allpmaps_lock);
2073
2074	for (i = 0; i < NPGPTD; i++)
2075		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2076		    PG_FRAME);
2077
2078	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2079	    sizeof(*pmap->pm_pdir));
2080
2081	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2082
2083	for (i = 0; i < NPGPTD; i++) {
2084		m = ptdpg[i];
2085#if defined(PAE) || defined(PAE_TABLES)
2086		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2087		    ("pmap_release: got wrong ptd page"));
2088#endif
2089		m->wire_count--;
2090		atomic_subtract_int(&cnt.v_wire_count, 1);
2091		vm_page_free_zero(m);
2092	}
2093}
2094
2095static int
2096kvm_size(SYSCTL_HANDLER_ARGS)
2097{
2098	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2099
2100	return (sysctl_handle_long(oidp, &ksize, 0, req));
2101}
2102SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2103    0, 0, kvm_size, "IU", "Size of KVM");
2104
2105static int
2106kvm_free(SYSCTL_HANDLER_ARGS)
2107{
2108	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2109
2110	return (sysctl_handle_long(oidp, &kfree, 0, req));
2111}
2112SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2113    0, 0, kvm_free, "IU", "Amount of KVM free");
2114
2115/*
2116 * grow the number of kernel page table entries, if needed
2117 */
2118void
2119pmap_growkernel(vm_offset_t addr)
2120{
2121	vm_paddr_t ptppaddr;
2122	vm_page_t nkpg;
2123	pd_entry_t newpdir;
2124
2125	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2126	addr = roundup2(addr, NBPDR);
2127	if (addr - 1 >= kernel_map->max_offset)
2128		addr = kernel_map->max_offset;
2129	while (kernel_vm_end < addr) {
2130		if (pdir_pde(PTD, kernel_vm_end)) {
2131			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2132			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2133				kernel_vm_end = kernel_map->max_offset;
2134				break;
2135			}
2136			continue;
2137		}
2138
2139		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2140		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2141		    VM_ALLOC_ZERO);
2142		if (nkpg == NULL)
2143			panic("pmap_growkernel: no memory to grow kernel");
2144
2145		nkpt++;
2146
2147		if ((nkpg->flags & PG_ZERO) == 0)
2148			pmap_zero_page(nkpg);
2149		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2150		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2151		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2152
2153		pmap_kenter_pde(kernel_vm_end, newpdir);
2154		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2155		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2156			kernel_vm_end = kernel_map->max_offset;
2157			break;
2158		}
2159	}
2160}
2161
2162
2163/***************************************************
2164 * page management routines.
2165 ***************************************************/
2166
2167CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2168CTASSERT(_NPCM == 11);
2169CTASSERT(_NPCPV == 336);
2170
2171static __inline struct pv_chunk *
2172pv_to_chunk(pv_entry_t pv)
2173{
2174
2175	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2176}
2177
2178#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2179
2180#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2181#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2182
2183static const uint32_t pc_freemask[_NPCM] = {
2184	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2185	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2186	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2187	PC_FREE0_9, PC_FREE10
2188};
2189
2190SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2191	"Current number of pv entries");
2192
2193#ifdef PV_STATS
2194static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2195
2196SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2197	"Current number of pv entry chunks");
2198SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2199	"Current number of pv entry chunks allocated");
2200SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2201	"Current number of pv entry chunks frees");
2202SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2203	"Number of times tried to get a chunk page but failed.");
2204
2205static long pv_entry_frees, pv_entry_allocs;
2206static int pv_entry_spare;
2207
2208SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2209	"Current number of pv entry frees");
2210SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2211	"Current number of pv entry allocs");
2212SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2213	"Current number of spare pv entries");
2214#endif
2215
2216/*
2217 * We are in a serious low memory condition.  Resort to
2218 * drastic measures to free some pages so we can allocate
2219 * another pv entry chunk.
2220 */
2221static vm_page_t
2222pmap_pv_reclaim(pmap_t locked_pmap)
2223{
2224	struct pch newtail;
2225	struct pv_chunk *pc;
2226	struct md_page *pvh;
2227	pd_entry_t *pde;
2228	pmap_t pmap;
2229	pt_entry_t *pte, tpte;
2230	pv_entry_t pv;
2231	vm_offset_t va;
2232	vm_page_t m, m_pc;
2233	struct spglist free;
2234	uint32_t inuse;
2235	int bit, field, freed;
2236
2237	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2238	pmap = NULL;
2239	m_pc = NULL;
2240	SLIST_INIT(&free);
2241	TAILQ_INIT(&newtail);
2242	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2243	    SLIST_EMPTY(&free))) {
2244		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2245		if (pmap != pc->pc_pmap) {
2246			if (pmap != NULL) {
2247				pmap_invalidate_all(pmap);
2248				if (pmap != locked_pmap)
2249					PMAP_UNLOCK(pmap);
2250			}
2251			pmap = pc->pc_pmap;
2252			/* Avoid deadlock and lock recursion. */
2253			if (pmap > locked_pmap)
2254				PMAP_LOCK(pmap);
2255			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2256				pmap = NULL;
2257				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2258				continue;
2259			}
2260		}
2261
2262		/*
2263		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2264		 */
2265		freed = 0;
2266		for (field = 0; field < _NPCM; field++) {
2267			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2268			    inuse != 0; inuse &= ~(1UL << bit)) {
2269				bit = bsfl(inuse);
2270				pv = &pc->pc_pventry[field * 32 + bit];
2271				va = pv->pv_va;
2272				pde = pmap_pde(pmap, va);
2273				if ((*pde & PG_PS) != 0)
2274					continue;
2275				pte = pmap_pte(pmap, va);
2276				tpte = *pte;
2277				if ((tpte & PG_W) == 0)
2278					tpte = pte_load_clear(pte);
2279				pmap_pte_release(pte);
2280				if ((tpte & PG_W) != 0)
2281					continue;
2282				KASSERT(tpte != 0,
2283				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2284				    pmap, va));
2285				if ((tpte & PG_G) != 0)
2286					pmap_invalidate_page(pmap, va);
2287				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2288				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2289					vm_page_dirty(m);
2290				if ((tpte & PG_A) != 0)
2291					vm_page_aflag_set(m, PGA_REFERENCED);
2292				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2293				if (TAILQ_EMPTY(&m->md.pv_list) &&
2294				    (m->flags & PG_FICTITIOUS) == 0) {
2295					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2296					if (TAILQ_EMPTY(&pvh->pv_list)) {
2297						vm_page_aflag_clear(m,
2298						    PGA_WRITEABLE);
2299					}
2300				}
2301				pc->pc_map[field] |= 1UL << bit;
2302				pmap_unuse_pt(pmap, va, &free);
2303				freed++;
2304			}
2305		}
2306		if (freed == 0) {
2307			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2308			continue;
2309		}
2310		/* Every freed mapping is for a 4 KB page. */
2311		pmap->pm_stats.resident_count -= freed;
2312		PV_STAT(pv_entry_frees += freed);
2313		PV_STAT(pv_entry_spare += freed);
2314		pv_entry_count -= freed;
2315		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2316		for (field = 0; field < _NPCM; field++)
2317			if (pc->pc_map[field] != pc_freemask[field]) {
2318				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2319				    pc_list);
2320				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2321
2322				/*
2323				 * One freed pv entry in locked_pmap is
2324				 * sufficient.
2325				 */
2326				if (pmap == locked_pmap)
2327					goto out;
2328				break;
2329			}
2330		if (field == _NPCM) {
2331			PV_STAT(pv_entry_spare -= _NPCPV);
2332			PV_STAT(pc_chunk_count--);
2333			PV_STAT(pc_chunk_frees++);
2334			/* Entire chunk is free; return it. */
2335			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2336			pmap_qremove((vm_offset_t)pc, 1);
2337			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2338			break;
2339		}
2340	}
2341out:
2342	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2343	if (pmap != NULL) {
2344		pmap_invalidate_all(pmap);
2345		if (pmap != locked_pmap)
2346			PMAP_UNLOCK(pmap);
2347	}
2348	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2349		m_pc = SLIST_FIRST(&free);
2350		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2351		/* Recycle a freed page table page. */
2352		m_pc->wire_count = 1;
2353		atomic_add_int(&cnt.v_wire_count, 1);
2354	}
2355	pmap_free_zero_pages(&free);
2356	return (m_pc);
2357}
2358
2359/*
2360 * free the pv_entry back to the free list
2361 */
2362static void
2363free_pv_entry(pmap_t pmap, pv_entry_t pv)
2364{
2365	struct pv_chunk *pc;
2366	int idx, field, bit;
2367
2368	rw_assert(&pvh_global_lock, RA_WLOCKED);
2369	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2370	PV_STAT(pv_entry_frees++);
2371	PV_STAT(pv_entry_spare++);
2372	pv_entry_count--;
2373	pc = pv_to_chunk(pv);
2374	idx = pv - &pc->pc_pventry[0];
2375	field = idx / 32;
2376	bit = idx % 32;
2377	pc->pc_map[field] |= 1ul << bit;
2378	for (idx = 0; idx < _NPCM; idx++)
2379		if (pc->pc_map[idx] != pc_freemask[idx]) {
2380			/*
2381			 * 98% of the time, pc is already at the head of the
2382			 * list.  If it isn't already, move it to the head.
2383			 */
2384			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2385			    pc)) {
2386				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2387				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2388				    pc_list);
2389			}
2390			return;
2391		}
2392	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2393	free_pv_chunk(pc);
2394}
2395
2396static void
2397free_pv_chunk(struct pv_chunk *pc)
2398{
2399	vm_page_t m;
2400
2401 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2402	PV_STAT(pv_entry_spare -= _NPCPV);
2403	PV_STAT(pc_chunk_count--);
2404	PV_STAT(pc_chunk_frees++);
2405	/* entire chunk is free, return it */
2406	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2407	pmap_qremove((vm_offset_t)pc, 1);
2408	vm_page_unwire(m, 0);
2409	vm_page_free(m);
2410	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2411}
2412
2413/*
2414 * get a new pv_entry, allocating a block from the system
2415 * when needed.
2416 */
2417static pv_entry_t
2418get_pv_entry(pmap_t pmap, boolean_t try)
2419{
2420	static const struct timeval printinterval = { 60, 0 };
2421	static struct timeval lastprint;
2422	int bit, field;
2423	pv_entry_t pv;
2424	struct pv_chunk *pc;
2425	vm_page_t m;
2426
2427	rw_assert(&pvh_global_lock, RA_WLOCKED);
2428	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2429	PV_STAT(pv_entry_allocs++);
2430	pv_entry_count++;
2431	if (pv_entry_count > pv_entry_high_water)
2432		if (ratecheck(&lastprint, &printinterval))
2433			printf("Approaching the limit on PV entries, consider "
2434			    "increasing either the vm.pmap.shpgperproc or the "
2435			    "vm.pmap.pv_entry_max tunable.\n");
2436retry:
2437	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2438	if (pc != NULL) {
2439		for (field = 0; field < _NPCM; field++) {
2440			if (pc->pc_map[field]) {
2441				bit = bsfl(pc->pc_map[field]);
2442				break;
2443			}
2444		}
2445		if (field < _NPCM) {
2446			pv = &pc->pc_pventry[field * 32 + bit];
2447			pc->pc_map[field] &= ~(1ul << bit);
2448			/* If this was the last item, move it to tail */
2449			for (field = 0; field < _NPCM; field++)
2450				if (pc->pc_map[field] != 0) {
2451					PV_STAT(pv_entry_spare--);
2452					return (pv);	/* not full, return */
2453				}
2454			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2455			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2456			PV_STAT(pv_entry_spare--);
2457			return (pv);
2458		}
2459	}
2460	/*
2461	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2462	 * global lock.  If "pv_vafree" is currently non-empty, it will
2463	 * remain non-empty until pmap_ptelist_alloc() completes.
2464	 */
2465	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2466	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2467		if (try) {
2468			pv_entry_count--;
2469			PV_STAT(pc_chunk_tryfail++);
2470			return (NULL);
2471		}
2472		m = pmap_pv_reclaim(pmap);
2473		if (m == NULL)
2474			goto retry;
2475	}
2476	PV_STAT(pc_chunk_count++);
2477	PV_STAT(pc_chunk_allocs++);
2478	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2479	pmap_qenter((vm_offset_t)pc, &m, 1);
2480	pc->pc_pmap = pmap;
2481	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2482	for (field = 1; field < _NPCM; field++)
2483		pc->pc_map[field] = pc_freemask[field];
2484	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2485	pv = &pc->pc_pventry[0];
2486	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2487	PV_STAT(pv_entry_spare += _NPCPV - 1);
2488	return (pv);
2489}
2490
2491static __inline pv_entry_t
2492pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2493{
2494	pv_entry_t pv;
2495
2496	rw_assert(&pvh_global_lock, RA_WLOCKED);
2497	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
2498		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2499			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
2500			break;
2501		}
2502	}
2503	return (pv);
2504}
2505
2506static void
2507pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2508{
2509	struct md_page *pvh;
2510	pv_entry_t pv;
2511	vm_offset_t va_last;
2512	vm_page_t m;
2513
2514	rw_assert(&pvh_global_lock, RA_WLOCKED);
2515	KASSERT((pa & PDRMASK) == 0,
2516	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2517
2518	/*
2519	 * Transfer the 4mpage's pv entry for this mapping to the first
2520	 * page's pv list.
2521	 */
2522	pvh = pa_to_pvh(pa);
2523	va = trunc_4mpage(va);
2524	pv = pmap_pvh_remove(pvh, pmap, va);
2525	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2526	m = PHYS_TO_VM_PAGE(pa);
2527	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2528	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2529	va_last = va + NBPDR - PAGE_SIZE;
2530	do {
2531		m++;
2532		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2533		    ("pmap_pv_demote_pde: page %p is not managed", m));
2534		va += PAGE_SIZE;
2535		pmap_insert_entry(pmap, va, m);
2536	} while (va < va_last);
2537}
2538
2539static void
2540pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2541{
2542	struct md_page *pvh;
2543	pv_entry_t pv;
2544	vm_offset_t va_last;
2545	vm_page_t m;
2546
2547	rw_assert(&pvh_global_lock, RA_WLOCKED);
2548	KASSERT((pa & PDRMASK) == 0,
2549	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2550
2551	/*
2552	 * Transfer the first page's pv entry for this mapping to the
2553	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2554	 * to get_pv_entry(), a transfer avoids the possibility that
2555	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2556	 * removes one of the mappings that is being promoted.
2557	 */
2558	m = PHYS_TO_VM_PAGE(pa);
2559	va = trunc_4mpage(va);
2560	pv = pmap_pvh_remove(&m->md, pmap, va);
2561	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2562	pvh = pa_to_pvh(pa);
2563	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2564	/* Free the remaining NPTEPG - 1 pv entries. */
2565	va_last = va + NBPDR - PAGE_SIZE;
2566	do {
2567		m++;
2568		va += PAGE_SIZE;
2569		pmap_pvh_free(&m->md, pmap, va);
2570	} while (va < va_last);
2571}
2572
2573static void
2574pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2575{
2576	pv_entry_t pv;
2577
2578	pv = pmap_pvh_remove(pvh, pmap, va);
2579	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2580	free_pv_entry(pmap, pv);
2581}
2582
2583static void
2584pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2585{
2586	struct md_page *pvh;
2587
2588	rw_assert(&pvh_global_lock, RA_WLOCKED);
2589	pmap_pvh_free(&m->md, pmap, va);
2590	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2591		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2592		if (TAILQ_EMPTY(&pvh->pv_list))
2593			vm_page_aflag_clear(m, PGA_WRITEABLE);
2594	}
2595}
2596
2597/*
2598 * Create a pv entry for page at pa for
2599 * (pmap, va).
2600 */
2601static void
2602pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2603{
2604	pv_entry_t pv;
2605
2606	rw_assert(&pvh_global_lock, RA_WLOCKED);
2607	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2608	pv = get_pv_entry(pmap, FALSE);
2609	pv->pv_va = va;
2610	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2611}
2612
2613/*
2614 * Conditionally create a pv entry.
2615 */
2616static boolean_t
2617pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2618{
2619	pv_entry_t pv;
2620
2621	rw_assert(&pvh_global_lock, RA_WLOCKED);
2622	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2623	if (pv_entry_count < pv_entry_high_water &&
2624	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2625		pv->pv_va = va;
2626		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
2627		return (TRUE);
2628	} else
2629		return (FALSE);
2630}
2631
2632/*
2633 * Create the pv entries for each of the pages within a superpage.
2634 */
2635static boolean_t
2636pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2637{
2638	struct md_page *pvh;
2639	pv_entry_t pv;
2640
2641	rw_assert(&pvh_global_lock, RA_WLOCKED);
2642	if (pv_entry_count < pv_entry_high_water &&
2643	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2644		pv->pv_va = va;
2645		pvh = pa_to_pvh(pa);
2646		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
2647		return (TRUE);
2648	} else
2649		return (FALSE);
2650}
2651
2652/*
2653 * Fills a page table page with mappings to consecutive physical pages.
2654 */
2655static void
2656pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2657{
2658	pt_entry_t *pte;
2659
2660	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2661		*pte = newpte;
2662		newpte += PAGE_SIZE;
2663	}
2664}
2665
2666/*
2667 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2668 * 2- or 4MB page mapping is invalidated.
2669 */
2670static boolean_t
2671pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2672{
2673	pd_entry_t newpde, oldpde;
2674	pt_entry_t *firstpte, newpte;
2675	vm_paddr_t mptepa;
2676	vm_page_t mpte;
2677	struct spglist free;
2678
2679	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2680	oldpde = *pde;
2681	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2682	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2683	if ((oldpde & PG_A) != 0 && (mpte = pmap_lookup_pt_page(pmap, va)) !=
2684	    NULL)
2685		pmap_remove_pt_page(pmap, mpte);
2686	else {
2687		KASSERT((oldpde & PG_W) == 0,
2688		    ("pmap_demote_pde: page table page for a wired mapping"
2689		    " is missing"));
2690
2691		/*
2692		 * Invalidate the 2- or 4MB page mapping and return
2693		 * "failure" if the mapping was never accessed or the
2694		 * allocation of the new page table page fails.
2695		 */
2696		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2697		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2698		    VM_ALLOC_WIRED)) == NULL) {
2699			SLIST_INIT(&free);
2700			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2701			pmap_invalidate_page(pmap, trunc_4mpage(va));
2702			pmap_free_zero_pages(&free);
2703			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2704			    " in pmap %p", va, pmap);
2705			return (FALSE);
2706		}
2707		if (va < VM_MAXUSER_ADDRESS)
2708			pmap->pm_stats.resident_count++;
2709	}
2710	mptepa = VM_PAGE_TO_PHYS(mpte);
2711
2712	/*
2713	 * If the page mapping is in the kernel's address space, then the
2714	 * KPTmap can provide access to the page table page.  Otherwise,
2715	 * temporarily map the page table page (mpte) into the kernel's
2716	 * address space at either PADDR1 or PADDR2.
2717	 */
2718	if (va >= KERNBASE)
2719		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2720	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2721		if ((*PMAP1 & PG_FRAME) != mptepa) {
2722			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2723#ifdef SMP
2724			PMAP1cpu = PCPU_GET(cpuid);
2725#endif
2726			invlcaddr(PADDR1);
2727			PMAP1changed++;
2728		} else
2729#ifdef SMP
2730		if (PMAP1cpu != PCPU_GET(cpuid)) {
2731			PMAP1cpu = PCPU_GET(cpuid);
2732			invlcaddr(PADDR1);
2733			PMAP1changedcpu++;
2734		} else
2735#endif
2736			PMAP1unchanged++;
2737		firstpte = PADDR1;
2738	} else {
2739		mtx_lock(&PMAP2mutex);
2740		if ((*PMAP2 & PG_FRAME) != mptepa) {
2741			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2742			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2743		}
2744		firstpte = PADDR2;
2745	}
2746	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2747	KASSERT((oldpde & PG_A) != 0,
2748	    ("pmap_demote_pde: oldpde is missing PG_A"));
2749	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2750	    ("pmap_demote_pde: oldpde is missing PG_M"));
2751	newpte = oldpde & ~PG_PS;
2752	if ((newpte & PG_PDE_PAT) != 0)
2753		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2754
2755	/*
2756	 * If the page table page is new, initialize it.
2757	 */
2758	if (mpte->wire_count == 1) {
2759		mpte->wire_count = NPTEPG;
2760		pmap_fill_ptp(firstpte, newpte);
2761	}
2762	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2763	    ("pmap_demote_pde: firstpte and newpte map different physical"
2764	    " addresses"));
2765
2766	/*
2767	 * If the mapping has changed attributes, update the page table
2768	 * entries.
2769	 */
2770	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2771		pmap_fill_ptp(firstpte, newpte);
2772
2773	/*
2774	 * Demote the mapping.  This pmap is locked.  The old PDE has
2775	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2776	 * set.  Thus, there is no danger of a race with another
2777	 * processor changing the setting of PG_A and/or PG_M between
2778	 * the read above and the store below.
2779	 */
2780	if (workaround_erratum383)
2781		pmap_update_pde(pmap, va, pde, newpde);
2782	else if (pmap == kernel_pmap)
2783		pmap_kenter_pde(va, newpde);
2784	else
2785		pde_store(pde, newpde);
2786	if (firstpte == PADDR2)
2787		mtx_unlock(&PMAP2mutex);
2788
2789	/*
2790	 * Invalidate the recursive mapping of the page table page.
2791	 */
2792	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2793
2794	/*
2795	 * Demote the pv entry.  This depends on the earlier demotion
2796	 * of the mapping.  Specifically, the (re)creation of a per-
2797	 * page pv entry might trigger the execution of pmap_collect(),
2798	 * which might reclaim a newly (re)created per-page pv entry
2799	 * and destroy the associated mapping.  In order to destroy
2800	 * the mapping, the PDE must have already changed from mapping
2801	 * the 2mpage to referencing the page table page.
2802	 */
2803	if ((oldpde & PG_MANAGED) != 0)
2804		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2805
2806	pmap_pde_demotions++;
2807	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2808	    " in pmap %p", va, pmap);
2809	return (TRUE);
2810}
2811
2812/*
2813 * Removes a 2- or 4MB page mapping from the kernel pmap.
2814 */
2815static void
2816pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2817{
2818	pd_entry_t newpde;
2819	vm_paddr_t mptepa;
2820	vm_page_t mpte;
2821
2822	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2823	mpte = pmap_lookup_pt_page(pmap, va);
2824	if (mpte == NULL)
2825		panic("pmap_remove_kernel_pde: Missing pt page.");
2826
2827	pmap_remove_pt_page(pmap, mpte);
2828	mptepa = VM_PAGE_TO_PHYS(mpte);
2829	newpde = mptepa | PG_M | PG_A | PG_RW | PG_V;
2830
2831	/*
2832	 * Initialize the page table page.
2833	 */
2834	pagezero((void *)&KPTmap[i386_btop(trunc_4mpage(va))]);
2835
2836	/*
2837	 * Remove the mapping.
2838	 */
2839	if (workaround_erratum383)
2840		pmap_update_pde(pmap, va, pde, newpde);
2841	else
2842		pmap_kenter_pde(va, newpde);
2843
2844	/*
2845	 * Invalidate the recursive mapping of the page table page.
2846	 */
2847	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2848}
2849
2850/*
2851 * pmap_remove_pde: do the things to unmap a superpage in a process
2852 */
2853static void
2854pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2855    struct spglist *free)
2856{
2857	struct md_page *pvh;
2858	pd_entry_t oldpde;
2859	vm_offset_t eva, va;
2860	vm_page_t m, mpte;
2861
2862	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2863	KASSERT((sva & PDRMASK) == 0,
2864	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2865	oldpde = pte_load_clear(pdq);
2866	if (oldpde & PG_W)
2867		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2868
2869	/*
2870	 * Machines that don't support invlpg, also don't support
2871	 * PG_G.
2872	 */
2873	if (oldpde & PG_G)
2874		pmap_invalidate_page(kernel_pmap, sva);
2875	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2876	if (oldpde & PG_MANAGED) {
2877		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2878		pmap_pvh_free(pvh, pmap, sva);
2879		eva = sva + NBPDR;
2880		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2881		    va < eva; va += PAGE_SIZE, m++) {
2882			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2883				vm_page_dirty(m);
2884			if (oldpde & PG_A)
2885				vm_page_aflag_set(m, PGA_REFERENCED);
2886			if (TAILQ_EMPTY(&m->md.pv_list) &&
2887			    TAILQ_EMPTY(&pvh->pv_list))
2888				vm_page_aflag_clear(m, PGA_WRITEABLE);
2889		}
2890	}
2891	if (pmap == kernel_pmap) {
2892		pmap_remove_kernel_pde(pmap, pdq, sva);
2893	} else {
2894		mpte = pmap_lookup_pt_page(pmap, sva);
2895		if (mpte != NULL) {
2896			pmap_remove_pt_page(pmap, mpte);
2897			pmap->pm_stats.resident_count--;
2898			KASSERT(mpte->wire_count == NPTEPG,
2899			    ("pmap_remove_pde: pte page wire count error"));
2900			mpte->wire_count = 0;
2901			pmap_add_delayed_free_list(mpte, free, FALSE);
2902			atomic_subtract_int(&cnt.v_wire_count, 1);
2903		}
2904	}
2905}
2906
2907/*
2908 * pmap_remove_pte: do the things to unmap a page in a process
2909 */
2910static int
2911pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
2912    struct spglist *free)
2913{
2914	pt_entry_t oldpte;
2915	vm_page_t m;
2916
2917	rw_assert(&pvh_global_lock, RA_WLOCKED);
2918	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2919	oldpte = pte_load_clear(ptq);
2920	KASSERT(oldpte != 0,
2921	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2922	if (oldpte & PG_W)
2923		pmap->pm_stats.wired_count -= 1;
2924	/*
2925	 * Machines that don't support invlpg, also don't support
2926	 * PG_G.
2927	 */
2928	if (oldpte & PG_G)
2929		pmap_invalidate_page(kernel_pmap, va);
2930	pmap->pm_stats.resident_count -= 1;
2931	if (oldpte & PG_MANAGED) {
2932		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2933		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2934			vm_page_dirty(m);
2935		if (oldpte & PG_A)
2936			vm_page_aflag_set(m, PGA_REFERENCED);
2937		pmap_remove_entry(pmap, m, va);
2938	}
2939	return (pmap_unuse_pt(pmap, va, free));
2940}
2941
2942/*
2943 * Remove a single page from a process address space
2944 */
2945static void
2946pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
2947{
2948	pt_entry_t *pte;
2949
2950	rw_assert(&pvh_global_lock, RA_WLOCKED);
2951	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2952	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2953	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2954		return;
2955	pmap_remove_pte(pmap, pte, va, free);
2956	pmap_invalidate_page(pmap, va);
2957}
2958
2959/*
2960 *	Remove the given range of addresses from the specified map.
2961 *
2962 *	It is assumed that the start and end are properly
2963 *	rounded to the page size.
2964 */
2965void
2966pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2967{
2968	vm_offset_t pdnxt;
2969	pd_entry_t ptpaddr;
2970	pt_entry_t *pte;
2971	struct spglist free;
2972	int anyvalid;
2973
2974	/*
2975	 * Perform an unsynchronized read.  This is, however, safe.
2976	 */
2977	if (pmap->pm_stats.resident_count == 0)
2978		return;
2979
2980	anyvalid = 0;
2981	SLIST_INIT(&free);
2982
2983	rw_wlock(&pvh_global_lock);
2984	sched_pin();
2985	PMAP_LOCK(pmap);
2986
2987	/*
2988	 * special handling of removing one page.  a very
2989	 * common operation and easy to short circuit some
2990	 * code.
2991	 */
2992	if ((sva + PAGE_SIZE == eva) &&
2993	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2994		pmap_remove_page(pmap, sva, &free);
2995		goto out;
2996	}
2997
2998	for (; sva < eva; sva = pdnxt) {
2999		u_int pdirindex;
3000
3001		/*
3002		 * Calculate index for next page table.
3003		 */
3004		pdnxt = (sva + NBPDR) & ~PDRMASK;
3005		if (pdnxt < sva)
3006			pdnxt = eva;
3007		if (pmap->pm_stats.resident_count == 0)
3008			break;
3009
3010		pdirindex = sva >> PDRSHIFT;
3011		ptpaddr = pmap->pm_pdir[pdirindex];
3012
3013		/*
3014		 * Weed out invalid mappings. Note: we assume that the page
3015		 * directory table is always allocated, and in kernel virtual.
3016		 */
3017		if (ptpaddr == 0)
3018			continue;
3019
3020		/*
3021		 * Check for large page.
3022		 */
3023		if ((ptpaddr & PG_PS) != 0) {
3024			/*
3025			 * Are we removing the entire large page?  If not,
3026			 * demote the mapping and fall through.
3027			 */
3028			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3029				/*
3030				 * The TLB entry for a PG_G mapping is
3031				 * invalidated by pmap_remove_pde().
3032				 */
3033				if ((ptpaddr & PG_G) == 0)
3034					anyvalid = 1;
3035				pmap_remove_pde(pmap,
3036				    &pmap->pm_pdir[pdirindex], sva, &free);
3037				continue;
3038			} else if (!pmap_demote_pde(pmap,
3039			    &pmap->pm_pdir[pdirindex], sva)) {
3040				/* The large page mapping was destroyed. */
3041				continue;
3042			}
3043		}
3044
3045		/*
3046		 * Limit our scan to either the end of the va represented
3047		 * by the current page table page, or to the end of the
3048		 * range being removed.
3049		 */
3050		if (pdnxt > eva)
3051			pdnxt = eva;
3052
3053		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3054		    sva += PAGE_SIZE) {
3055			if (*pte == 0)
3056				continue;
3057
3058			/*
3059			 * The TLB entry for a PG_G mapping is invalidated
3060			 * by pmap_remove_pte().
3061			 */
3062			if ((*pte & PG_G) == 0)
3063				anyvalid = 1;
3064			if (pmap_remove_pte(pmap, pte, sva, &free))
3065				break;
3066		}
3067	}
3068out:
3069	sched_unpin();
3070	if (anyvalid)
3071		pmap_invalidate_all(pmap);
3072	rw_wunlock(&pvh_global_lock);
3073	PMAP_UNLOCK(pmap);
3074	pmap_free_zero_pages(&free);
3075}
3076
3077/*
3078 *	Routine:	pmap_remove_all
3079 *	Function:
3080 *		Removes this physical page from
3081 *		all physical maps in which it resides.
3082 *		Reflects back modify bits to the pager.
3083 *
3084 *	Notes:
3085 *		Original versions of this routine were very
3086 *		inefficient because they iteratively called
3087 *		pmap_remove (slow...)
3088 */
3089
3090void
3091pmap_remove_all(vm_page_t m)
3092{
3093	struct md_page *pvh;
3094	pv_entry_t pv;
3095	pmap_t pmap;
3096	pt_entry_t *pte, tpte;
3097	pd_entry_t *pde;
3098	vm_offset_t va;
3099	struct spglist free;
3100
3101	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3102	    ("pmap_remove_all: page %p is not managed", m));
3103	SLIST_INIT(&free);
3104	rw_wlock(&pvh_global_lock);
3105	sched_pin();
3106	if ((m->flags & PG_FICTITIOUS) != 0)
3107		goto small_mappings;
3108	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3109	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3110		va = pv->pv_va;
3111		pmap = PV_PMAP(pv);
3112		PMAP_LOCK(pmap);
3113		pde = pmap_pde(pmap, va);
3114		(void)pmap_demote_pde(pmap, pde, va);
3115		PMAP_UNLOCK(pmap);
3116	}
3117small_mappings:
3118	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3119		pmap = PV_PMAP(pv);
3120		PMAP_LOCK(pmap);
3121		pmap->pm_stats.resident_count--;
3122		pde = pmap_pde(pmap, pv->pv_va);
3123		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3124		    " a 4mpage in page %p's pv list", m));
3125		pte = pmap_pte_quick(pmap, pv->pv_va);
3126		tpte = pte_load_clear(pte);
3127		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3128		    pmap, pv->pv_va));
3129		if (tpte & PG_W)
3130			pmap->pm_stats.wired_count--;
3131		if (tpte & PG_A)
3132			vm_page_aflag_set(m, PGA_REFERENCED);
3133
3134		/*
3135		 * Update the vm_page_t clean and reference bits.
3136		 */
3137		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3138			vm_page_dirty(m);
3139		pmap_unuse_pt(pmap, pv->pv_va, &free);
3140		pmap_invalidate_page(pmap, pv->pv_va);
3141		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
3142		free_pv_entry(pmap, pv);
3143		PMAP_UNLOCK(pmap);
3144	}
3145	vm_page_aflag_clear(m, PGA_WRITEABLE);
3146	sched_unpin();
3147	rw_wunlock(&pvh_global_lock);
3148	pmap_free_zero_pages(&free);
3149}
3150
3151/*
3152 * pmap_protect_pde: do the things to protect a 4mpage in a process
3153 */
3154static boolean_t
3155pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3156{
3157	pd_entry_t newpde, oldpde;
3158	vm_offset_t eva, va;
3159	vm_page_t m;
3160	boolean_t anychanged;
3161
3162	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3163	KASSERT((sva & PDRMASK) == 0,
3164	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3165	anychanged = FALSE;
3166retry:
3167	oldpde = newpde = *pde;
3168	if (oldpde & PG_MANAGED) {
3169		eva = sva + NBPDR;
3170		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3171		    va < eva; va += PAGE_SIZE, m++)
3172			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3173				vm_page_dirty(m);
3174	}
3175	if ((prot & VM_PROT_WRITE) == 0)
3176		newpde &= ~(PG_RW | PG_M);
3177#if defined(PAE) || defined(PAE_TABLES)
3178	if ((prot & VM_PROT_EXECUTE) == 0)
3179		newpde |= pg_nx;
3180#endif
3181	if (newpde != oldpde) {
3182		if (!pde_cmpset(pde, oldpde, newpde))
3183			goto retry;
3184		if (oldpde & PG_G)
3185			pmap_invalidate_page(pmap, sva);
3186		else
3187			anychanged = TRUE;
3188	}
3189	return (anychanged);
3190}
3191
3192/*
3193 *	Set the physical protection on the
3194 *	specified range of this map as requested.
3195 */
3196void
3197pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3198{
3199	vm_offset_t pdnxt;
3200	pd_entry_t ptpaddr;
3201	pt_entry_t *pte;
3202	boolean_t anychanged, pv_lists_locked;
3203
3204	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
3205	if (prot == VM_PROT_NONE) {
3206		pmap_remove(pmap, sva, eva);
3207		return;
3208	}
3209
3210#if defined(PAE) || defined(PAE_TABLES)
3211	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3212	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3213		return;
3214#else
3215	if (prot & VM_PROT_WRITE)
3216		return;
3217#endif
3218
3219	if (pmap_is_current(pmap))
3220		pv_lists_locked = FALSE;
3221	else {
3222		pv_lists_locked = TRUE;
3223resume:
3224		rw_wlock(&pvh_global_lock);
3225		sched_pin();
3226	}
3227	anychanged = FALSE;
3228
3229	PMAP_LOCK(pmap);
3230	for (; sva < eva; sva = pdnxt) {
3231		pt_entry_t obits, pbits;
3232		u_int pdirindex;
3233
3234		pdnxt = (sva + NBPDR) & ~PDRMASK;
3235		if (pdnxt < sva)
3236			pdnxt = eva;
3237
3238		pdirindex = sva >> PDRSHIFT;
3239		ptpaddr = pmap->pm_pdir[pdirindex];
3240
3241		/*
3242		 * Weed out invalid mappings. Note: we assume that the page
3243		 * directory table is always allocated, and in kernel virtual.
3244		 */
3245		if (ptpaddr == 0)
3246			continue;
3247
3248		/*
3249		 * Check for large page.
3250		 */
3251		if ((ptpaddr & PG_PS) != 0) {
3252			/*
3253			 * Are we protecting the entire large page?  If not,
3254			 * demote the mapping and fall through.
3255			 */
3256			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3257				/*
3258				 * The TLB entry for a PG_G mapping is
3259				 * invalidated by pmap_protect_pde().
3260				 */
3261				if (pmap_protect_pde(pmap,
3262				    &pmap->pm_pdir[pdirindex], sva, prot))
3263					anychanged = TRUE;
3264				continue;
3265			} else {
3266				if (!pv_lists_locked) {
3267					pv_lists_locked = TRUE;
3268					if (!rw_try_wlock(&pvh_global_lock)) {
3269						if (anychanged)
3270							pmap_invalidate_all(
3271							    pmap);
3272						PMAP_UNLOCK(pmap);
3273						goto resume;
3274					}
3275					sched_pin();
3276				}
3277				if (!pmap_demote_pde(pmap,
3278				    &pmap->pm_pdir[pdirindex], sva)) {
3279					/*
3280					 * The large page mapping was
3281					 * destroyed.
3282					 */
3283					continue;
3284				}
3285			}
3286		}
3287
3288		if (pdnxt > eva)
3289			pdnxt = eva;
3290
3291		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3292		    sva += PAGE_SIZE) {
3293			vm_page_t m;
3294
3295retry:
3296			/*
3297			 * Regardless of whether a pte is 32 or 64 bits in
3298			 * size, PG_RW, PG_A, and PG_M are among the least
3299			 * significant 32 bits.
3300			 */
3301			obits = pbits = *pte;
3302			if ((pbits & PG_V) == 0)
3303				continue;
3304
3305			if ((prot & VM_PROT_WRITE) == 0) {
3306				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3307				    (PG_MANAGED | PG_M | PG_RW)) {
3308					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3309					vm_page_dirty(m);
3310				}
3311				pbits &= ~(PG_RW | PG_M);
3312			}
3313#if defined(PAE) || defined(PAE_TABLES)
3314			if ((prot & VM_PROT_EXECUTE) == 0)
3315				pbits |= pg_nx;
3316#endif
3317
3318			if (pbits != obits) {
3319#if defined(PAE) || defined(PAE_TABLES)
3320				if (!atomic_cmpset_64(pte, obits, pbits))
3321					goto retry;
3322#else
3323				if (!atomic_cmpset_int((u_int *)pte, obits,
3324				    pbits))
3325					goto retry;
3326#endif
3327				if (obits & PG_G)
3328					pmap_invalidate_page(pmap, sva);
3329				else
3330					anychanged = TRUE;
3331			}
3332		}
3333	}
3334	if (anychanged)
3335		pmap_invalidate_all(pmap);
3336	if (pv_lists_locked) {
3337		sched_unpin();
3338		rw_wunlock(&pvh_global_lock);
3339	}
3340	PMAP_UNLOCK(pmap);
3341}
3342
3343/*
3344 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3345 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3346 * For promotion to occur, two conditions must be met: (1) the 4KB page
3347 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3348 * mappings must have identical characteristics.
3349 *
3350 * Managed (PG_MANAGED) mappings within the kernel address space are not
3351 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3352 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3353 * pmap.
3354 */
3355static void
3356pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3357{
3358	pd_entry_t newpde;
3359	pt_entry_t *firstpte, oldpte, pa, *pte;
3360	vm_offset_t oldpteva;
3361	vm_page_t mpte;
3362
3363	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3364
3365	/*
3366	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3367	 * either invalid, unused, or does not map the first 4KB physical page
3368	 * within a 2- or 4MB page.
3369	 */
3370	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3371setpde:
3372	newpde = *firstpte;
3373	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3374		pmap_pde_p_failures++;
3375		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3376		    " in pmap %p", va, pmap);
3377		return;
3378	}
3379	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3380		pmap_pde_p_failures++;
3381		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3382		    " in pmap %p", va, pmap);
3383		return;
3384	}
3385	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3386		/*
3387		 * When PG_M is already clear, PG_RW can be cleared without
3388		 * a TLB invalidation.
3389		 */
3390		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3391		    ~PG_RW))
3392			goto setpde;
3393		newpde &= ~PG_RW;
3394	}
3395
3396	/*
3397	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3398	 * PTE maps an unexpected 4KB physical page or does not have identical
3399	 * characteristics to the first PTE.
3400	 */
3401	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3402	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3403setpte:
3404		oldpte = *pte;
3405		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3406			pmap_pde_p_failures++;
3407			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3408			    " in pmap %p", va, pmap);
3409			return;
3410		}
3411		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3412			/*
3413			 * When PG_M is already clear, PG_RW can be cleared
3414			 * without a TLB invalidation.
3415			 */
3416			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3417			    oldpte & ~PG_RW))
3418				goto setpte;
3419			oldpte &= ~PG_RW;
3420			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3421			    (va & ~PDRMASK);
3422			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3423			    " in pmap %p", oldpteva, pmap);
3424		}
3425		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3426			pmap_pde_p_failures++;
3427			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3428			    " in pmap %p", va, pmap);
3429			return;
3430		}
3431		pa -= PAGE_SIZE;
3432	}
3433
3434	/*
3435	 * Save the page table page in its current state until the PDE
3436	 * mapping the superpage is demoted by pmap_demote_pde() or
3437	 * destroyed by pmap_remove_pde().
3438	 */
3439	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3440	KASSERT(mpte >= vm_page_array &&
3441	    mpte < &vm_page_array[vm_page_array_size],
3442	    ("pmap_promote_pde: page table page is out of range"));
3443	KASSERT(mpte->pindex == va >> PDRSHIFT,
3444	    ("pmap_promote_pde: page table page's pindex is wrong"));
3445	if (pmap_insert_pt_page(pmap, mpte)) {
3446		pmap_pde_p_failures++;
3447		CTR2(KTR_PMAP,
3448		    "pmap_promote_pde: failure for va %#x in pmap %p", va,
3449		    pmap);
3450		return;
3451	}
3452
3453	/*
3454	 * Promote the pv entries.
3455	 */
3456	if ((newpde & PG_MANAGED) != 0)
3457		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3458
3459	/*
3460	 * Propagate the PAT index to its proper position.
3461	 */
3462	if ((newpde & PG_PTE_PAT) != 0)
3463		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3464
3465	/*
3466	 * Map the superpage.
3467	 */
3468	if (workaround_erratum383)
3469		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3470	else if (pmap == kernel_pmap)
3471		pmap_kenter_pde(va, PG_PS | newpde);
3472	else
3473		pde_store(pde, PG_PS | newpde);
3474
3475	pmap_pde_promotions++;
3476	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3477	    " in pmap %p", va, pmap);
3478}
3479
3480/*
3481 *	Insert the given physical page (p) at
3482 *	the specified virtual address (v) in the
3483 *	target physical map with the protection requested.
3484 *
3485 *	If specified, the page will be wired down, meaning
3486 *	that the related pte can not be reclaimed.
3487 *
3488 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3489 *	or lose information.  That is, this routine must actually
3490 *	insert this page into the given map NOW.
3491 */
3492int
3493pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3494    u_int flags, int8_t psind)
3495{
3496	pd_entry_t *pde;
3497	pt_entry_t *pte;
3498	pt_entry_t newpte, origpte;
3499	pv_entry_t pv;
3500	vm_paddr_t opa, pa;
3501	vm_page_t mpte, om;
3502	boolean_t invlva, wired;
3503
3504	va = trunc_page(va);
3505	mpte = NULL;
3506	wired = (flags & PMAP_ENTER_WIRED) != 0;
3507
3508	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3509	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3510	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3511	    va));
3512	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3513		VM_OBJECT_ASSERT_LOCKED(m->object);
3514
3515	rw_wlock(&pvh_global_lock);
3516	PMAP_LOCK(pmap);
3517	sched_pin();
3518
3519	/*
3520	 * In the case that a page table page is not
3521	 * resident, we are creating it here.
3522	 */
3523	if (va < VM_MAXUSER_ADDRESS) {
3524		mpte = pmap_allocpte(pmap, va, flags);
3525		if (mpte == NULL) {
3526			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3527			    ("pmap_allocpte failed with sleep allowed"));
3528			sched_unpin();
3529			rw_wunlock(&pvh_global_lock);
3530			PMAP_UNLOCK(pmap);
3531			return (KERN_RESOURCE_SHORTAGE);
3532		}
3533	}
3534
3535	pde = pmap_pde(pmap, va);
3536	if ((*pde & PG_PS) != 0)
3537		panic("pmap_enter: attempted pmap_enter on 4MB page");
3538	pte = pmap_pte_quick(pmap, va);
3539
3540	/*
3541	 * Page Directory table entry not valid, we need a new PT page
3542	 */
3543	if (pte == NULL) {
3544		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3545			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3546	}
3547
3548	pa = VM_PAGE_TO_PHYS(m);
3549	om = NULL;
3550	origpte = *pte;
3551	opa = origpte & PG_FRAME;
3552
3553	/*
3554	 * Mapping has not changed, must be protection or wiring change.
3555	 */
3556	if (origpte && (opa == pa)) {
3557		/*
3558		 * Wiring change, just update stats. We don't worry about
3559		 * wiring PT pages as they remain resident as long as there
3560		 * are valid mappings in them. Hence, if a user page is wired,
3561		 * the PT page will be also.
3562		 */
3563		if (wired && ((origpte & PG_W) == 0))
3564			pmap->pm_stats.wired_count++;
3565		else if (!wired && (origpte & PG_W))
3566			pmap->pm_stats.wired_count--;
3567
3568		/*
3569		 * Remove extra pte reference
3570		 */
3571		if (mpte)
3572			mpte->wire_count--;
3573
3574		if (origpte & PG_MANAGED) {
3575			om = m;
3576			pa |= PG_MANAGED;
3577		}
3578		goto validate;
3579	}
3580
3581	pv = NULL;
3582
3583	/*
3584	 * Mapping has changed, invalidate old range and fall through to
3585	 * handle validating new mapping.
3586	 */
3587	if (opa) {
3588		if (origpte & PG_W)
3589			pmap->pm_stats.wired_count--;
3590		if (origpte & PG_MANAGED) {
3591			om = PHYS_TO_VM_PAGE(opa);
3592			pv = pmap_pvh_remove(&om->md, pmap, va);
3593		}
3594		if (mpte != NULL) {
3595			mpte->wire_count--;
3596			KASSERT(mpte->wire_count > 0,
3597			    ("pmap_enter: missing reference to page table page,"
3598			     " va: 0x%x", va));
3599		}
3600	} else
3601		pmap->pm_stats.resident_count++;
3602
3603	/*
3604	 * Enter on the PV list if part of our managed memory.
3605	 */
3606	if ((m->oflags & VPO_UNMANAGED) == 0) {
3607		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3608		    ("pmap_enter: managed mapping within the clean submap"));
3609		if (pv == NULL)
3610			pv = get_pv_entry(pmap, FALSE);
3611		pv->pv_va = va;
3612		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3613		pa |= PG_MANAGED;
3614	} else if (pv != NULL)
3615		free_pv_entry(pmap, pv);
3616
3617	/*
3618	 * Increment counters
3619	 */
3620	if (wired)
3621		pmap->pm_stats.wired_count++;
3622
3623validate:
3624	/*
3625	 * Now validate mapping with desired protection/wiring.
3626	 */
3627	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3628	if ((prot & VM_PROT_WRITE) != 0) {
3629		newpte |= PG_RW;
3630		if ((newpte & PG_MANAGED) != 0)
3631			vm_page_aflag_set(m, PGA_WRITEABLE);
3632	}
3633#if defined(PAE) || defined(PAE_TABLES)
3634	if ((prot & VM_PROT_EXECUTE) == 0)
3635		newpte |= pg_nx;
3636#endif
3637	if (wired)
3638		newpte |= PG_W;
3639	if (va < VM_MAXUSER_ADDRESS)
3640		newpte |= PG_U;
3641	if (pmap == kernel_pmap)
3642		newpte |= pgeflag;
3643
3644	/*
3645	 * if the mapping or permission bits are different, we need
3646	 * to update the pte.
3647	 */
3648	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3649		newpte |= PG_A;
3650		if ((flags & VM_PROT_WRITE) != 0)
3651			newpte |= PG_M;
3652		if (origpte & PG_V) {
3653			invlva = FALSE;
3654			origpte = pte_load_store(pte, newpte);
3655			if (origpte & PG_A) {
3656				if (origpte & PG_MANAGED)
3657					vm_page_aflag_set(om, PGA_REFERENCED);
3658				if (opa != VM_PAGE_TO_PHYS(m))
3659					invlva = TRUE;
3660#if defined(PAE) || defined(PAE_TABLES)
3661				if ((origpte & PG_NX) == 0 &&
3662				    (newpte & PG_NX) != 0)
3663					invlva = TRUE;
3664#endif
3665			}
3666			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3667				if ((origpte & PG_MANAGED) != 0)
3668					vm_page_dirty(om);
3669				if ((prot & VM_PROT_WRITE) == 0)
3670					invlva = TRUE;
3671			}
3672			if ((origpte & PG_MANAGED) != 0 &&
3673			    TAILQ_EMPTY(&om->md.pv_list) &&
3674			    ((om->flags & PG_FICTITIOUS) != 0 ||
3675			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3676				vm_page_aflag_clear(om, PGA_WRITEABLE);
3677			if (invlva)
3678				pmap_invalidate_page(pmap, va);
3679		} else
3680			pte_store(pte, newpte);
3681	}
3682
3683	/*
3684	 * If both the page table page and the reservation are fully
3685	 * populated, then attempt promotion.
3686	 */
3687	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3688	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3689	    vm_reserv_level_iffullpop(m) == 0)
3690		pmap_promote_pde(pmap, pde, va);
3691
3692	sched_unpin();
3693	rw_wunlock(&pvh_global_lock);
3694	PMAP_UNLOCK(pmap);
3695	return (KERN_SUCCESS);
3696}
3697
3698/*
3699 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3700 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3701 * blocking, (2) a mapping already exists at the specified virtual address, or
3702 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3703 */
3704static boolean_t
3705pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3706{
3707	pd_entry_t *pde, newpde;
3708
3709	rw_assert(&pvh_global_lock, RA_WLOCKED);
3710	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3711	pde = pmap_pde(pmap, va);
3712	if (*pde != 0) {
3713		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3714		    " in pmap %p", va, pmap);
3715		return (FALSE);
3716	}
3717	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3718	    PG_PS | PG_V;
3719	if ((m->oflags & VPO_UNMANAGED) == 0) {
3720		newpde |= PG_MANAGED;
3721
3722		/*
3723		 * Abort this mapping if its PV entry could not be created.
3724		 */
3725		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3726			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3727			    " in pmap %p", va, pmap);
3728			return (FALSE);
3729		}
3730	}
3731#if defined(PAE) || defined(PAE_TABLES)
3732	if ((prot & VM_PROT_EXECUTE) == 0)
3733		newpde |= pg_nx;
3734#endif
3735	if (va < VM_MAXUSER_ADDRESS)
3736		newpde |= PG_U;
3737
3738	/*
3739	 * Increment counters.
3740	 */
3741	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3742
3743	/*
3744	 * Map the superpage.
3745	 */
3746	pde_store(pde, newpde);
3747
3748	pmap_pde_mappings++;
3749	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3750	    " in pmap %p", va, pmap);
3751	return (TRUE);
3752}
3753
3754/*
3755 * Maps a sequence of resident pages belonging to the same object.
3756 * The sequence begins with the given page m_start.  This page is
3757 * mapped at the given virtual address start.  Each subsequent page is
3758 * mapped at a virtual address that is offset from start by the same
3759 * amount as the page is offset from m_start within the object.  The
3760 * last page in the sequence is the page with the largest offset from
3761 * m_start that can be mapped at a virtual address less than the given
3762 * virtual address end.  Not every virtual page between start and end
3763 * is mapped; only those for which a resident page exists with the
3764 * corresponding offset from m_start are mapped.
3765 */
3766void
3767pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3768    vm_page_t m_start, vm_prot_t prot)
3769{
3770	vm_offset_t va;
3771	vm_page_t m, mpte;
3772	vm_pindex_t diff, psize;
3773
3774	VM_OBJECT_ASSERT_LOCKED(m_start->object);
3775
3776	psize = atop(end - start);
3777	mpte = NULL;
3778	m = m_start;
3779	rw_wlock(&pvh_global_lock);
3780	PMAP_LOCK(pmap);
3781	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3782		va = start + ptoa(diff);
3783		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3784		    m->psind == 1 && pg_ps_enabled &&
3785		    pmap_enter_pde(pmap, va, m, prot))
3786			m = &m[NBPDR / PAGE_SIZE - 1];
3787		else
3788			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3789			    mpte);
3790		m = TAILQ_NEXT(m, listq);
3791	}
3792	rw_wunlock(&pvh_global_lock);
3793	PMAP_UNLOCK(pmap);
3794}
3795
3796/*
3797 * this code makes some *MAJOR* assumptions:
3798 * 1. Current pmap & pmap exists.
3799 * 2. Not wired.
3800 * 3. Read access.
3801 * 4. No page table pages.
3802 * but is *MUCH* faster than pmap_enter...
3803 */
3804
3805void
3806pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3807{
3808
3809	rw_wlock(&pvh_global_lock);
3810	PMAP_LOCK(pmap);
3811	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3812	rw_wunlock(&pvh_global_lock);
3813	PMAP_UNLOCK(pmap);
3814}
3815
3816static vm_page_t
3817pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3818    vm_prot_t prot, vm_page_t mpte)
3819{
3820	pt_entry_t *pte;
3821	vm_paddr_t pa;
3822	struct spglist free;
3823
3824	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3825	    (m->oflags & VPO_UNMANAGED) != 0,
3826	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3827	rw_assert(&pvh_global_lock, RA_WLOCKED);
3828	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3829
3830	/*
3831	 * In the case that a page table page is not
3832	 * resident, we are creating it here.
3833	 */
3834	if (va < VM_MAXUSER_ADDRESS) {
3835		u_int ptepindex;
3836		pd_entry_t ptepa;
3837
3838		/*
3839		 * Calculate pagetable page index
3840		 */
3841		ptepindex = va >> PDRSHIFT;
3842		if (mpte && (mpte->pindex == ptepindex)) {
3843			mpte->wire_count++;
3844		} else {
3845			/*
3846			 * Get the page directory entry
3847			 */
3848			ptepa = pmap->pm_pdir[ptepindex];
3849
3850			/*
3851			 * If the page table page is mapped, we just increment
3852			 * the hold count, and activate it.
3853			 */
3854			if (ptepa) {
3855				if (ptepa & PG_PS)
3856					return (NULL);
3857				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3858				mpte->wire_count++;
3859			} else {
3860				mpte = _pmap_allocpte(pmap, ptepindex,
3861				    PMAP_ENTER_NOSLEEP);
3862				if (mpte == NULL)
3863					return (mpte);
3864			}
3865		}
3866	} else {
3867		mpte = NULL;
3868	}
3869
3870	/*
3871	 * This call to vtopte makes the assumption that we are
3872	 * entering the page into the current pmap.  In order to support
3873	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3874	 * But that isn't as quick as vtopte.
3875	 */
3876	pte = vtopte(va);
3877	if (*pte) {
3878		if (mpte != NULL) {
3879			mpte->wire_count--;
3880			mpte = NULL;
3881		}
3882		return (mpte);
3883	}
3884
3885	/*
3886	 * Enter on the PV list if part of our managed memory.
3887	 */
3888	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3889	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3890		if (mpte != NULL) {
3891			SLIST_INIT(&free);
3892			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3893				pmap_invalidate_page(pmap, va);
3894				pmap_free_zero_pages(&free);
3895			}
3896
3897			mpte = NULL;
3898		}
3899		return (mpte);
3900	}
3901
3902	/*
3903	 * Increment counters
3904	 */
3905	pmap->pm_stats.resident_count++;
3906
3907	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3908#if defined(PAE) || defined(PAE_TABLES)
3909	if ((prot & VM_PROT_EXECUTE) == 0)
3910		pa |= pg_nx;
3911#endif
3912
3913	/*
3914	 * Now validate mapping with RO protection
3915	 */
3916	if ((m->oflags & VPO_UNMANAGED) != 0)
3917		pte_store(pte, pa | PG_V | PG_U);
3918	else
3919		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3920	return (mpte);
3921}
3922
3923/*
3924 * Make a temporary mapping for a physical address.  This is only intended
3925 * to be used for panic dumps.
3926 */
3927void *
3928pmap_kenter_temporary(vm_paddr_t pa, int i)
3929{
3930	vm_offset_t va;
3931
3932	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3933	pmap_kenter(va, pa);
3934	invlpg(va);
3935	return ((void *)crashdumpmap);
3936}
3937
3938/*
3939 * This code maps large physical mmap regions into the
3940 * processor address space.  Note that some shortcuts
3941 * are taken, but the code works.
3942 */
3943void
3944pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3945    vm_pindex_t pindex, vm_size_t size)
3946{
3947	pd_entry_t *pde;
3948	vm_paddr_t pa, ptepa;
3949	vm_page_t p;
3950	int pat_mode;
3951
3952	VM_OBJECT_ASSERT_WLOCKED(object);
3953	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3954	    ("pmap_object_init_pt: non-device object"));
3955	if (pseflag &&
3956	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3957		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3958			return;
3959		p = vm_page_lookup(object, pindex);
3960		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3961		    ("pmap_object_init_pt: invalid page %p", p));
3962		pat_mode = p->md.pat_mode;
3963
3964		/*
3965		 * Abort the mapping if the first page is not physically
3966		 * aligned to a 2/4MB page boundary.
3967		 */
3968		ptepa = VM_PAGE_TO_PHYS(p);
3969		if (ptepa & (NBPDR - 1))
3970			return;
3971
3972		/*
3973		 * Skip the first page.  Abort the mapping if the rest of
3974		 * the pages are not physically contiguous or have differing
3975		 * memory attributes.
3976		 */
3977		p = TAILQ_NEXT(p, listq);
3978		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3979		    pa += PAGE_SIZE) {
3980			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3981			    ("pmap_object_init_pt: invalid page %p", p));
3982			if (pa != VM_PAGE_TO_PHYS(p) ||
3983			    pat_mode != p->md.pat_mode)
3984				return;
3985			p = TAILQ_NEXT(p, listq);
3986		}
3987
3988		/*
3989		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3990		 * "size" is a multiple of 2/4M, adding the PAT setting to
3991		 * "pa" will not affect the termination of this loop.
3992		 */
3993		PMAP_LOCK(pmap);
3994		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3995		    size; pa += NBPDR) {
3996			pde = pmap_pde(pmap, addr);
3997			if (*pde == 0) {
3998				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3999				    PG_U | PG_RW | PG_V);
4000				pmap->pm_stats.resident_count += NBPDR /
4001				    PAGE_SIZE;
4002				pmap_pde_mappings++;
4003			}
4004			/* Else continue on if the PDE is already valid. */
4005			addr += NBPDR;
4006		}
4007		PMAP_UNLOCK(pmap);
4008	}
4009}
4010
4011/*
4012 *	Clear the wired attribute from the mappings for the specified range of
4013 *	addresses in the given pmap.  Every valid mapping within that range
4014 *	must have the wired attribute set.  In contrast, invalid mappings
4015 *	cannot have the wired attribute set, so they are ignored.
4016 *
4017 *	The wired attribute of the page table entry is not a hardware feature,
4018 *	so there is no need to invalidate any TLB entries.
4019 */
4020void
4021pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4022{
4023	vm_offset_t pdnxt;
4024	pd_entry_t *pde;
4025	pt_entry_t *pte;
4026	boolean_t pv_lists_locked;
4027
4028	if (pmap_is_current(pmap))
4029		pv_lists_locked = FALSE;
4030	else {
4031		pv_lists_locked = TRUE;
4032resume:
4033		rw_wlock(&pvh_global_lock);
4034		sched_pin();
4035	}
4036	PMAP_LOCK(pmap);
4037	for (; sva < eva; sva = pdnxt) {
4038		pdnxt = (sva + NBPDR) & ~PDRMASK;
4039		if (pdnxt < sva)
4040			pdnxt = eva;
4041		pde = pmap_pde(pmap, sva);
4042		if ((*pde & PG_V) == 0)
4043			continue;
4044		if ((*pde & PG_PS) != 0) {
4045			if ((*pde & PG_W) == 0)
4046				panic("pmap_unwire: pde %#jx is missing PG_W",
4047				    (uintmax_t)*pde);
4048
4049			/*
4050			 * Are we unwiring the entire large page?  If not,
4051			 * demote the mapping and fall through.
4052			 */
4053			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
4054				/*
4055				 * Regardless of whether a pde (or pte) is 32
4056				 * or 64 bits in size, PG_W is among the least
4057				 * significant 32 bits.
4058				 */
4059				atomic_clear_int((u_int *)pde, PG_W);
4060				pmap->pm_stats.wired_count -= NBPDR /
4061				    PAGE_SIZE;
4062				continue;
4063			} else {
4064				if (!pv_lists_locked) {
4065					pv_lists_locked = TRUE;
4066					if (!rw_try_wlock(&pvh_global_lock)) {
4067						PMAP_UNLOCK(pmap);
4068						/* Repeat sva. */
4069						goto resume;
4070					}
4071					sched_pin();
4072				}
4073				if (!pmap_demote_pde(pmap, pde, sva))
4074					panic("pmap_unwire: demotion failed");
4075			}
4076		}
4077		if (pdnxt > eva)
4078			pdnxt = eva;
4079		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
4080		    sva += PAGE_SIZE) {
4081			if ((*pte & PG_V) == 0)
4082				continue;
4083			if ((*pte & PG_W) == 0)
4084				panic("pmap_unwire: pte %#jx is missing PG_W",
4085				    (uintmax_t)*pte);
4086
4087			/*
4088			 * PG_W must be cleared atomically.  Although the pmap
4089			 * lock synchronizes access to PG_W, another processor
4090			 * could be setting PG_M and/or PG_A concurrently.
4091			 *
4092			 * PG_W is among the least significant 32 bits.
4093			 */
4094			atomic_clear_int((u_int *)pte, PG_W);
4095			pmap->pm_stats.wired_count--;
4096		}
4097	}
4098	if (pv_lists_locked) {
4099		sched_unpin();
4100		rw_wunlock(&pvh_global_lock);
4101	}
4102	PMAP_UNLOCK(pmap);
4103}
4104
4105
4106/*
4107 *	Copy the range specified by src_addr/len
4108 *	from the source map to the range dst_addr/len
4109 *	in the destination map.
4110 *
4111 *	This routine is only advisory and need not do anything.
4112 */
4113
4114void
4115pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4116    vm_offset_t src_addr)
4117{
4118	struct spglist free;
4119	vm_offset_t addr;
4120	vm_offset_t end_addr = src_addr + len;
4121	vm_offset_t pdnxt;
4122
4123	if (dst_addr != src_addr)
4124		return;
4125
4126	if (!pmap_is_current(src_pmap))
4127		return;
4128
4129	rw_wlock(&pvh_global_lock);
4130	if (dst_pmap < src_pmap) {
4131		PMAP_LOCK(dst_pmap);
4132		PMAP_LOCK(src_pmap);
4133	} else {
4134		PMAP_LOCK(src_pmap);
4135		PMAP_LOCK(dst_pmap);
4136	}
4137	sched_pin();
4138	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4139		pt_entry_t *src_pte, *dst_pte;
4140		vm_page_t dstmpte, srcmpte;
4141		pd_entry_t srcptepaddr;
4142		u_int ptepindex;
4143
4144		KASSERT(addr < UPT_MIN_ADDRESS,
4145		    ("pmap_copy: invalid to pmap_copy page tables"));
4146
4147		pdnxt = (addr + NBPDR) & ~PDRMASK;
4148		if (pdnxt < addr)
4149			pdnxt = end_addr;
4150		ptepindex = addr >> PDRSHIFT;
4151
4152		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4153		if (srcptepaddr == 0)
4154			continue;
4155
4156		if (srcptepaddr & PG_PS) {
4157			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
4158				continue;
4159			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4160			    ((srcptepaddr & PG_MANAGED) == 0 ||
4161			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4162			    PG_PS_FRAME))) {
4163				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4164				    ~PG_W;
4165				dst_pmap->pm_stats.resident_count +=
4166				    NBPDR / PAGE_SIZE;
4167			}
4168			continue;
4169		}
4170
4171		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4172		KASSERT(srcmpte->wire_count > 0,
4173		    ("pmap_copy: source page table page is unused"));
4174
4175		if (pdnxt > end_addr)
4176			pdnxt = end_addr;
4177
4178		src_pte = vtopte(addr);
4179		while (addr < pdnxt) {
4180			pt_entry_t ptetemp;
4181			ptetemp = *src_pte;
4182			/*
4183			 * we only virtual copy managed pages
4184			 */
4185			if ((ptetemp & PG_MANAGED) != 0) {
4186				dstmpte = pmap_allocpte(dst_pmap, addr,
4187				    PMAP_ENTER_NOSLEEP);
4188				if (dstmpte == NULL)
4189					goto out;
4190				dst_pte = pmap_pte_quick(dst_pmap, addr);
4191				if (*dst_pte == 0 &&
4192				    pmap_try_insert_pv_entry(dst_pmap, addr,
4193				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4194					/*
4195					 * Clear the wired, modified, and
4196					 * accessed (referenced) bits
4197					 * during the copy.
4198					 */
4199					*dst_pte = ptetemp & ~(PG_W | PG_M |
4200					    PG_A);
4201					dst_pmap->pm_stats.resident_count++;
4202	 			} else {
4203					SLIST_INIT(&free);
4204					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4205					    &free)) {
4206						pmap_invalidate_page(dst_pmap,
4207						    addr);
4208						pmap_free_zero_pages(&free);
4209					}
4210					goto out;
4211				}
4212				if (dstmpte->wire_count >= srcmpte->wire_count)
4213					break;
4214			}
4215			addr += PAGE_SIZE;
4216			src_pte++;
4217		}
4218	}
4219out:
4220	sched_unpin();
4221	rw_wunlock(&pvh_global_lock);
4222	PMAP_UNLOCK(src_pmap);
4223	PMAP_UNLOCK(dst_pmap);
4224}
4225
4226static __inline void
4227pagezero(void *page)
4228{
4229#if defined(I686_CPU)
4230	if (cpu_class == CPUCLASS_686) {
4231#if defined(CPU_ENABLE_SSE)
4232		if (cpu_feature & CPUID_SSE2)
4233			sse2_pagezero(page);
4234		else
4235#endif
4236			i686_pagezero(page);
4237	} else
4238#endif
4239		bzero(page, PAGE_SIZE);
4240}
4241
4242/*
4243 *	pmap_zero_page zeros the specified hardware page by mapping
4244 *	the page into KVM and using bzero to clear its contents.
4245 */
4246void
4247pmap_zero_page(vm_page_t m)
4248{
4249	struct sysmaps *sysmaps;
4250
4251	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4252	mtx_lock(&sysmaps->lock);
4253	if (*sysmaps->CMAP2)
4254		panic("pmap_zero_page: CMAP2 busy");
4255	sched_pin();
4256	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4257	    pmap_cache_bits(m->md.pat_mode, 0);
4258	invlcaddr(sysmaps->CADDR2);
4259	pagezero(sysmaps->CADDR2);
4260	*sysmaps->CMAP2 = 0;
4261	sched_unpin();
4262	mtx_unlock(&sysmaps->lock);
4263}
4264
4265/*
4266 *	pmap_zero_page_area zeros the specified hardware page by mapping
4267 *	the page into KVM and using bzero to clear its contents.
4268 *
4269 *	off and size may not cover an area beyond a single hardware page.
4270 */
4271void
4272pmap_zero_page_area(vm_page_t m, int off, int size)
4273{
4274	struct sysmaps *sysmaps;
4275
4276	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4277	mtx_lock(&sysmaps->lock);
4278	if (*sysmaps->CMAP2)
4279		panic("pmap_zero_page_area: CMAP2 busy");
4280	sched_pin();
4281	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4282	    pmap_cache_bits(m->md.pat_mode, 0);
4283	invlcaddr(sysmaps->CADDR2);
4284	if (off == 0 && size == PAGE_SIZE)
4285		pagezero(sysmaps->CADDR2);
4286	else
4287		bzero((char *)sysmaps->CADDR2 + off, size);
4288	*sysmaps->CMAP2 = 0;
4289	sched_unpin();
4290	mtx_unlock(&sysmaps->lock);
4291}
4292
4293/*
4294 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4295 *	the page into KVM and using bzero to clear its contents.  This
4296 *	is intended to be called from the vm_pagezero process only and
4297 *	outside of Giant.
4298 */
4299void
4300pmap_zero_page_idle(vm_page_t m)
4301{
4302
4303	if (*CMAP3)
4304		panic("pmap_zero_page_idle: CMAP3 busy");
4305	sched_pin();
4306	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4307	    pmap_cache_bits(m->md.pat_mode, 0);
4308	invlcaddr(CADDR3);
4309	pagezero(CADDR3);
4310	*CMAP3 = 0;
4311	sched_unpin();
4312}
4313
4314/*
4315 *	pmap_copy_page copies the specified (machine independent)
4316 *	page by mapping the page into virtual memory and using
4317 *	bcopy to copy the page, one machine dependent page at a
4318 *	time.
4319 */
4320void
4321pmap_copy_page(vm_page_t src, vm_page_t dst)
4322{
4323	struct sysmaps *sysmaps;
4324
4325	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4326	mtx_lock(&sysmaps->lock);
4327	if (*sysmaps->CMAP1)
4328		panic("pmap_copy_page: CMAP1 busy");
4329	if (*sysmaps->CMAP2)
4330		panic("pmap_copy_page: CMAP2 busy");
4331	sched_pin();
4332	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4333	    pmap_cache_bits(src->md.pat_mode, 0);
4334	invlcaddr(sysmaps->CADDR1);
4335	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4336	    pmap_cache_bits(dst->md.pat_mode, 0);
4337	invlcaddr(sysmaps->CADDR2);
4338	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4339	*sysmaps->CMAP1 = 0;
4340	*sysmaps->CMAP2 = 0;
4341	sched_unpin();
4342	mtx_unlock(&sysmaps->lock);
4343}
4344
4345int unmapped_buf_allowed = 1;
4346
4347void
4348pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
4349    vm_offset_t b_offset, int xfersize)
4350{
4351	struct sysmaps *sysmaps;
4352	vm_page_t a_pg, b_pg;
4353	char *a_cp, *b_cp;
4354	vm_offset_t a_pg_offset, b_pg_offset;
4355	int cnt;
4356
4357	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4358	mtx_lock(&sysmaps->lock);
4359	if (*sysmaps->CMAP1 != 0)
4360		panic("pmap_copy_pages: CMAP1 busy");
4361	if (*sysmaps->CMAP2 != 0)
4362		panic("pmap_copy_pages: CMAP2 busy");
4363	sched_pin();
4364	while (xfersize > 0) {
4365		a_pg = ma[a_offset >> PAGE_SHIFT];
4366		a_pg_offset = a_offset & PAGE_MASK;
4367		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
4368		b_pg = mb[b_offset >> PAGE_SHIFT];
4369		b_pg_offset = b_offset & PAGE_MASK;
4370		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
4371		*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(a_pg) | PG_A |
4372		    pmap_cache_bits(a_pg->md.pat_mode, 0);
4373		invlcaddr(sysmaps->CADDR1);
4374		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(b_pg) | PG_A |
4375		    PG_M | pmap_cache_bits(b_pg->md.pat_mode, 0);
4376		invlcaddr(sysmaps->CADDR2);
4377		a_cp = sysmaps->CADDR1 + a_pg_offset;
4378		b_cp = sysmaps->CADDR2 + b_pg_offset;
4379		bcopy(a_cp, b_cp, cnt);
4380		a_offset += cnt;
4381		b_offset += cnt;
4382		xfersize -= cnt;
4383	}
4384	*sysmaps->CMAP1 = 0;
4385	*sysmaps->CMAP2 = 0;
4386	sched_unpin();
4387	mtx_unlock(&sysmaps->lock);
4388}
4389
4390/*
4391 * Returns true if the pmap's pv is one of the first
4392 * 16 pvs linked to from this page.  This count may
4393 * be changed upwards or downwards in the future; it
4394 * is only necessary that true be returned for a small
4395 * subset of pmaps for proper page aging.
4396 */
4397boolean_t
4398pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4399{
4400	struct md_page *pvh;
4401	pv_entry_t pv;
4402	int loops = 0;
4403	boolean_t rv;
4404
4405	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4406	    ("pmap_page_exists_quick: page %p is not managed", m));
4407	rv = FALSE;
4408	rw_wlock(&pvh_global_lock);
4409	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4410		if (PV_PMAP(pv) == pmap) {
4411			rv = TRUE;
4412			break;
4413		}
4414		loops++;
4415		if (loops >= 16)
4416			break;
4417	}
4418	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4419		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4420		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4421			if (PV_PMAP(pv) == pmap) {
4422				rv = TRUE;
4423				break;
4424			}
4425			loops++;
4426			if (loops >= 16)
4427				break;
4428		}
4429	}
4430	rw_wunlock(&pvh_global_lock);
4431	return (rv);
4432}
4433
4434/*
4435 *	pmap_page_wired_mappings:
4436 *
4437 *	Return the number of managed mappings to the given physical page
4438 *	that are wired.
4439 */
4440int
4441pmap_page_wired_mappings(vm_page_t m)
4442{
4443	int count;
4444
4445	count = 0;
4446	if ((m->oflags & VPO_UNMANAGED) != 0)
4447		return (count);
4448	rw_wlock(&pvh_global_lock);
4449	count = pmap_pvh_wired_mappings(&m->md, count);
4450	if ((m->flags & PG_FICTITIOUS) == 0) {
4451	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4452	        count);
4453	}
4454	rw_wunlock(&pvh_global_lock);
4455	return (count);
4456}
4457
4458/*
4459 *	pmap_pvh_wired_mappings:
4460 *
4461 *	Return the updated number "count" of managed mappings that are wired.
4462 */
4463static int
4464pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4465{
4466	pmap_t pmap;
4467	pt_entry_t *pte;
4468	pv_entry_t pv;
4469
4470	rw_assert(&pvh_global_lock, RA_WLOCKED);
4471	sched_pin();
4472	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4473		pmap = PV_PMAP(pv);
4474		PMAP_LOCK(pmap);
4475		pte = pmap_pte_quick(pmap, pv->pv_va);
4476		if ((*pte & PG_W) != 0)
4477			count++;
4478		PMAP_UNLOCK(pmap);
4479	}
4480	sched_unpin();
4481	return (count);
4482}
4483
4484/*
4485 * Returns TRUE if the given page is mapped individually or as part of
4486 * a 4mpage.  Otherwise, returns FALSE.
4487 */
4488boolean_t
4489pmap_page_is_mapped(vm_page_t m)
4490{
4491	boolean_t rv;
4492
4493	if ((m->oflags & VPO_UNMANAGED) != 0)
4494		return (FALSE);
4495	rw_wlock(&pvh_global_lock);
4496	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4497	    ((m->flags & PG_FICTITIOUS) == 0 &&
4498	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4499	rw_wunlock(&pvh_global_lock);
4500	return (rv);
4501}
4502
4503/*
4504 * Remove all pages from specified address space
4505 * this aids process exit speeds.  Also, this code
4506 * is special cased for current process only, but
4507 * can have the more generic (and slightly slower)
4508 * mode enabled.  This is much faster than pmap_remove
4509 * in the case of running down an entire address space.
4510 */
4511void
4512pmap_remove_pages(pmap_t pmap)
4513{
4514	pt_entry_t *pte, tpte;
4515	vm_page_t m, mpte, mt;
4516	pv_entry_t pv;
4517	struct md_page *pvh;
4518	struct pv_chunk *pc, *npc;
4519	struct spglist free;
4520	int field, idx;
4521	int32_t bit;
4522	uint32_t inuse, bitmask;
4523	int allfree;
4524
4525	if (pmap != PCPU_GET(curpmap)) {
4526		printf("warning: pmap_remove_pages called with non-current pmap\n");
4527		return;
4528	}
4529	SLIST_INIT(&free);
4530	rw_wlock(&pvh_global_lock);
4531	PMAP_LOCK(pmap);
4532	sched_pin();
4533	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4534		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4535		    pc->pc_pmap));
4536		allfree = 1;
4537		for (field = 0; field < _NPCM; field++) {
4538			inuse = ~pc->pc_map[field] & pc_freemask[field];
4539			while (inuse != 0) {
4540				bit = bsfl(inuse);
4541				bitmask = 1UL << bit;
4542				idx = field * 32 + bit;
4543				pv = &pc->pc_pventry[idx];
4544				inuse &= ~bitmask;
4545
4546				pte = pmap_pde(pmap, pv->pv_va);
4547				tpte = *pte;
4548				if ((tpte & PG_PS) == 0) {
4549					pte = vtopte(pv->pv_va);
4550					tpte = *pte & ~PG_PTE_PAT;
4551				}
4552
4553				if (tpte == 0) {
4554					printf(
4555					    "TPTE at %p  IS ZERO @ VA %08x\n",
4556					    pte, pv->pv_va);
4557					panic("bad pte");
4558				}
4559
4560/*
4561 * We cannot remove wired pages from a process' mapping at this time
4562 */
4563				if (tpte & PG_W) {
4564					allfree = 0;
4565					continue;
4566				}
4567
4568				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4569				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4570				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4571				    m, (uintmax_t)m->phys_addr,
4572				    (uintmax_t)tpte));
4573
4574				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4575				    m < &vm_page_array[vm_page_array_size],
4576				    ("pmap_remove_pages: bad tpte %#jx",
4577				    (uintmax_t)tpte));
4578
4579				pte_clear(pte);
4580
4581				/*
4582				 * Update the vm_page_t clean/reference bits.
4583				 */
4584				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4585					if ((tpte & PG_PS) != 0) {
4586						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4587							vm_page_dirty(mt);
4588					} else
4589						vm_page_dirty(m);
4590				}
4591
4592				/* Mark free */
4593				PV_STAT(pv_entry_frees++);
4594				PV_STAT(pv_entry_spare++);
4595				pv_entry_count--;
4596				pc->pc_map[field] |= bitmask;
4597				if ((tpte & PG_PS) != 0) {
4598					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4599					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4600					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4601					if (TAILQ_EMPTY(&pvh->pv_list)) {
4602						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4603							if (TAILQ_EMPTY(&mt->md.pv_list))
4604								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4605					}
4606					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4607					if (mpte != NULL) {
4608						pmap_remove_pt_page(pmap, mpte);
4609						pmap->pm_stats.resident_count--;
4610						KASSERT(mpte->wire_count == NPTEPG,
4611						    ("pmap_remove_pages: pte page wire count error"));
4612						mpte->wire_count = 0;
4613						pmap_add_delayed_free_list(mpte, &free, FALSE);
4614						atomic_subtract_int(&cnt.v_wire_count, 1);
4615					}
4616				} else {
4617					pmap->pm_stats.resident_count--;
4618					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4619					if (TAILQ_EMPTY(&m->md.pv_list) &&
4620					    (m->flags & PG_FICTITIOUS) == 0) {
4621						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4622						if (TAILQ_EMPTY(&pvh->pv_list))
4623							vm_page_aflag_clear(m, PGA_WRITEABLE);
4624					}
4625					pmap_unuse_pt(pmap, pv->pv_va, &free);
4626				}
4627			}
4628		}
4629		if (allfree) {
4630			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4631			free_pv_chunk(pc);
4632		}
4633	}
4634	sched_unpin();
4635	pmap_invalidate_all(pmap);
4636	rw_wunlock(&pvh_global_lock);
4637	PMAP_UNLOCK(pmap);
4638	pmap_free_zero_pages(&free);
4639}
4640
4641/*
4642 *	pmap_is_modified:
4643 *
4644 *	Return whether or not the specified physical page was modified
4645 *	in any physical maps.
4646 */
4647boolean_t
4648pmap_is_modified(vm_page_t m)
4649{
4650	boolean_t rv;
4651
4652	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4653	    ("pmap_is_modified: page %p is not managed", m));
4654
4655	/*
4656	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4657	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4658	 * is clear, no PTEs can have PG_M set.
4659	 */
4660	VM_OBJECT_ASSERT_WLOCKED(m->object);
4661	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4662		return (FALSE);
4663	rw_wlock(&pvh_global_lock);
4664	rv = pmap_is_modified_pvh(&m->md) ||
4665	    ((m->flags & PG_FICTITIOUS) == 0 &&
4666	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4667	rw_wunlock(&pvh_global_lock);
4668	return (rv);
4669}
4670
4671/*
4672 * Returns TRUE if any of the given mappings were used to modify
4673 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4674 * mappings are supported.
4675 */
4676static boolean_t
4677pmap_is_modified_pvh(struct md_page *pvh)
4678{
4679	pv_entry_t pv;
4680	pt_entry_t *pte;
4681	pmap_t pmap;
4682	boolean_t rv;
4683
4684	rw_assert(&pvh_global_lock, RA_WLOCKED);
4685	rv = FALSE;
4686	sched_pin();
4687	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4688		pmap = PV_PMAP(pv);
4689		PMAP_LOCK(pmap);
4690		pte = pmap_pte_quick(pmap, pv->pv_va);
4691		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4692		PMAP_UNLOCK(pmap);
4693		if (rv)
4694			break;
4695	}
4696	sched_unpin();
4697	return (rv);
4698}
4699
4700/*
4701 *	pmap_is_prefaultable:
4702 *
4703 *	Return whether or not the specified virtual address is elgible
4704 *	for prefault.
4705 */
4706boolean_t
4707pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4708{
4709	pd_entry_t *pde;
4710	pt_entry_t *pte;
4711	boolean_t rv;
4712
4713	rv = FALSE;
4714	PMAP_LOCK(pmap);
4715	pde = pmap_pde(pmap, addr);
4716	if (*pde != 0 && (*pde & PG_PS) == 0) {
4717		pte = vtopte(addr);
4718		rv = *pte == 0;
4719	}
4720	PMAP_UNLOCK(pmap);
4721	return (rv);
4722}
4723
4724/*
4725 *	pmap_is_referenced:
4726 *
4727 *	Return whether or not the specified physical page was referenced
4728 *	in any physical maps.
4729 */
4730boolean_t
4731pmap_is_referenced(vm_page_t m)
4732{
4733	boolean_t rv;
4734
4735	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4736	    ("pmap_is_referenced: page %p is not managed", m));
4737	rw_wlock(&pvh_global_lock);
4738	rv = pmap_is_referenced_pvh(&m->md) ||
4739	    ((m->flags & PG_FICTITIOUS) == 0 &&
4740	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4741	rw_wunlock(&pvh_global_lock);
4742	return (rv);
4743}
4744
4745/*
4746 * Returns TRUE if any of the given mappings were referenced and FALSE
4747 * otherwise.  Both page and 4mpage mappings are supported.
4748 */
4749static boolean_t
4750pmap_is_referenced_pvh(struct md_page *pvh)
4751{
4752	pv_entry_t pv;
4753	pt_entry_t *pte;
4754	pmap_t pmap;
4755	boolean_t rv;
4756
4757	rw_assert(&pvh_global_lock, RA_WLOCKED);
4758	rv = FALSE;
4759	sched_pin();
4760	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
4761		pmap = PV_PMAP(pv);
4762		PMAP_LOCK(pmap);
4763		pte = pmap_pte_quick(pmap, pv->pv_va);
4764		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4765		PMAP_UNLOCK(pmap);
4766		if (rv)
4767			break;
4768	}
4769	sched_unpin();
4770	return (rv);
4771}
4772
4773/*
4774 * Clear the write and modified bits in each of the given page's mappings.
4775 */
4776void
4777pmap_remove_write(vm_page_t m)
4778{
4779	struct md_page *pvh;
4780	pv_entry_t next_pv, pv;
4781	pmap_t pmap;
4782	pd_entry_t *pde;
4783	pt_entry_t oldpte, *pte;
4784	vm_offset_t va;
4785
4786	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4787	    ("pmap_remove_write: page %p is not managed", m));
4788
4789	/*
4790	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
4791	 * set by another thread while the object is locked.  Thus,
4792	 * if PGA_WRITEABLE is clear, no page table entries need updating.
4793	 */
4794	VM_OBJECT_ASSERT_WLOCKED(m->object);
4795	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
4796		return;
4797	rw_wlock(&pvh_global_lock);
4798	sched_pin();
4799	if ((m->flags & PG_FICTITIOUS) != 0)
4800		goto small_mappings;
4801	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4802	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
4803		va = pv->pv_va;
4804		pmap = PV_PMAP(pv);
4805		PMAP_LOCK(pmap);
4806		pde = pmap_pde(pmap, va);
4807		if ((*pde & PG_RW) != 0)
4808			(void)pmap_demote_pde(pmap, pde, va);
4809		PMAP_UNLOCK(pmap);
4810	}
4811small_mappings:
4812	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
4813		pmap = PV_PMAP(pv);
4814		PMAP_LOCK(pmap);
4815		pde = pmap_pde(pmap, pv->pv_va);
4816		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4817		    " a 4mpage in page %p's pv list", m));
4818		pte = pmap_pte_quick(pmap, pv->pv_va);
4819retry:
4820		oldpte = *pte;
4821		if ((oldpte & PG_RW) != 0) {
4822			/*
4823			 * Regardless of whether a pte is 32 or 64 bits
4824			 * in size, PG_RW and PG_M are among the least
4825			 * significant 32 bits.
4826			 */
4827			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4828			    oldpte & ~(PG_RW | PG_M)))
4829				goto retry;
4830			if ((oldpte & PG_M) != 0)
4831				vm_page_dirty(m);
4832			pmap_invalidate_page(pmap, pv->pv_va);
4833		}
4834		PMAP_UNLOCK(pmap);
4835	}
4836	vm_page_aflag_clear(m, PGA_WRITEABLE);
4837	sched_unpin();
4838	rw_wunlock(&pvh_global_lock);
4839}
4840
4841#define	PMAP_TS_REFERENCED_MAX	5
4842
4843/*
4844 *	pmap_ts_referenced:
4845 *
4846 *	Return a count of reference bits for a page, clearing those bits.
4847 *	It is not necessary for every reference bit to be cleared, but it
4848 *	is necessary that 0 only be returned when there are truly no
4849 *	reference bits set.
4850 *
4851 *	XXX: The exact number of bits to check and clear is a matter that
4852 *	should be tested and standardized at some point in the future for
4853 *	optimal aging of shared pages.
4854 */
4855int
4856pmap_ts_referenced(vm_page_t m)
4857{
4858	struct md_page *pvh;
4859	pv_entry_t pv, pvf;
4860	pmap_t pmap;
4861	pd_entry_t *pde;
4862	pt_entry_t *pte;
4863	vm_paddr_t pa;
4864	int rtval = 0;
4865
4866	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4867	    ("pmap_ts_referenced: page %p is not managed", m));
4868	pa = VM_PAGE_TO_PHYS(m);
4869	pvh = pa_to_pvh(pa);
4870	rw_wlock(&pvh_global_lock);
4871	sched_pin();
4872	if ((m->flags & PG_FICTITIOUS) != 0 ||
4873	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
4874		goto small_mappings;
4875	pv = pvf;
4876	do {
4877		pmap = PV_PMAP(pv);
4878		PMAP_LOCK(pmap);
4879		pde = pmap_pde(pmap, pv->pv_va);
4880		if ((*pde & PG_A) != 0) {
4881			/*
4882			 * Since this reference bit is shared by either 1024
4883			 * or 512 4KB pages, it should not be cleared every
4884			 * time it is tested.  Apply a simple "hash" function
4885			 * on the physical page number, the virtual superpage
4886			 * number, and the pmap address to select one 4KB page
4887			 * out of the 1024 or 512 on which testing the
4888			 * reference bit will result in clearing that bit.
4889			 * This function is designed to avoid the selection of
4890			 * the same 4KB page for every 2- or 4MB page mapping.
4891			 *
4892			 * On demotion, a mapping that hasn't been referenced
4893			 * is simply destroyed.  To avoid the possibility of a
4894			 * subsequent page fault on a demoted wired mapping,
4895			 * always leave its reference bit set.  Moreover,
4896			 * since the superpage is wired, the current state of
4897			 * its reference bit won't affect page replacement.
4898			 */
4899			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
4900			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
4901			    (*pde & PG_W) == 0) {
4902				atomic_clear_int((u_int *)pde, PG_A);
4903				pmap_invalidate_page(pmap, pv->pv_va);
4904			}
4905			rtval++;
4906		}
4907		PMAP_UNLOCK(pmap);
4908		/* Rotate the PV list if it has more than one entry. */
4909		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4910			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4911			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
4912		}
4913		if (rtval >= PMAP_TS_REFERENCED_MAX)
4914			goto out;
4915	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
4916small_mappings:
4917	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
4918		goto out;
4919	pv = pvf;
4920	do {
4921		pmap = PV_PMAP(pv);
4922		PMAP_LOCK(pmap);
4923		pde = pmap_pde(pmap, pv->pv_va);
4924		KASSERT((*pde & PG_PS) == 0,
4925		    ("pmap_ts_referenced: found a 4mpage in page %p's pv list",
4926		    m));
4927		pte = pmap_pte_quick(pmap, pv->pv_va);
4928		if ((*pte & PG_A) != 0) {
4929			atomic_clear_int((u_int *)pte, PG_A);
4930			pmap_invalidate_page(pmap, pv->pv_va);
4931			rtval++;
4932		}
4933		PMAP_UNLOCK(pmap);
4934		/* Rotate the PV list if it has more than one entry. */
4935		if (TAILQ_NEXT(pv, pv_next) != NULL) {
4936			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4937			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
4938		}
4939	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
4940	    PMAP_TS_REFERENCED_MAX);
4941out:
4942	sched_unpin();
4943	rw_wunlock(&pvh_global_lock);
4944	return (rtval);
4945}
4946
4947/*
4948 *	Apply the given advice to the specified range of addresses within the
4949 *	given pmap.  Depending on the advice, clear the referenced and/or
4950 *	modified flags in each mapping and set the mapped page's dirty field.
4951 */
4952void
4953pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
4954{
4955	pd_entry_t oldpde, *pde;
4956	pt_entry_t *pte;
4957	vm_offset_t pdnxt;
4958	vm_page_t m;
4959	boolean_t anychanged, pv_lists_locked;
4960
4961	if (advice != MADV_DONTNEED && advice != MADV_FREE)
4962		return;
4963	if (pmap_is_current(pmap))
4964		pv_lists_locked = FALSE;
4965	else {
4966		pv_lists_locked = TRUE;
4967resume:
4968		rw_wlock(&pvh_global_lock);
4969		sched_pin();
4970	}
4971	anychanged = FALSE;
4972	PMAP_LOCK(pmap);
4973	for (; sva < eva; sva = pdnxt) {
4974		pdnxt = (sva + NBPDR) & ~PDRMASK;
4975		if (pdnxt < sva)
4976			pdnxt = eva;
4977		pde = pmap_pde(pmap, sva);
4978		oldpde = *pde;
4979		if ((oldpde & PG_V) == 0)
4980			continue;
4981		else if ((oldpde & PG_PS) != 0) {
4982			if ((oldpde & PG_MANAGED) == 0)
4983				continue;
4984			if (!pv_lists_locked) {
4985				pv_lists_locked = TRUE;
4986				if (!rw_try_wlock(&pvh_global_lock)) {
4987					if (anychanged)
4988						pmap_invalidate_all(pmap);
4989					PMAP_UNLOCK(pmap);
4990					goto resume;
4991				}
4992				sched_pin();
4993			}
4994			if (!pmap_demote_pde(pmap, pde, sva)) {
4995				/*
4996				 * The large page mapping was destroyed.
4997				 */
4998				continue;
4999			}
5000
5001			/*
5002			 * Unless the page mappings are wired, remove the
5003			 * mapping to a single page so that a subsequent
5004			 * access may repromote.  Since the underlying page
5005			 * table page is fully populated, this removal never
5006			 * frees a page table page.
5007			 */
5008			if ((oldpde & PG_W) == 0) {
5009				pte = pmap_pte_quick(pmap, sva);
5010				KASSERT((*pte & PG_V) != 0,
5011				    ("pmap_advise: invalid PTE"));
5012				pmap_remove_pte(pmap, pte, sva, NULL);
5013				anychanged = TRUE;
5014			}
5015		}
5016		if (pdnxt > eva)
5017			pdnxt = eva;
5018		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
5019		    sva += PAGE_SIZE) {
5020			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED |
5021			    PG_V))
5022				continue;
5023			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5024				if (advice == MADV_DONTNEED) {
5025					/*
5026					 * Future calls to pmap_is_modified()
5027					 * can be avoided by making the page
5028					 * dirty now.
5029					 */
5030					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
5031					vm_page_dirty(m);
5032				}
5033				atomic_clear_int((u_int *)pte, PG_M | PG_A);
5034			} else if ((*pte & PG_A) != 0)
5035				atomic_clear_int((u_int *)pte, PG_A);
5036			else
5037				continue;
5038			if ((*pte & PG_G) != 0)
5039				pmap_invalidate_page(pmap, sva);
5040			else
5041				anychanged = TRUE;
5042		}
5043	}
5044	if (anychanged)
5045		pmap_invalidate_all(pmap);
5046	if (pv_lists_locked) {
5047		sched_unpin();
5048		rw_wunlock(&pvh_global_lock);
5049	}
5050	PMAP_UNLOCK(pmap);
5051}
5052
5053/*
5054 *	Clear the modify bits on the specified physical page.
5055 */
5056void
5057pmap_clear_modify(vm_page_t m)
5058{
5059	struct md_page *pvh;
5060	pv_entry_t next_pv, pv;
5061	pmap_t pmap;
5062	pd_entry_t oldpde, *pde;
5063	pt_entry_t oldpte, *pte;
5064	vm_offset_t va;
5065
5066	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5067	    ("pmap_clear_modify: page %p is not managed", m));
5068	VM_OBJECT_ASSERT_WLOCKED(m->object);
5069	KASSERT(!vm_page_xbusied(m),
5070	    ("pmap_clear_modify: page %p is exclusive busied", m));
5071
5072	/*
5073	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
5074	 * If the object containing the page is locked and the page is not
5075	 * exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
5076	 */
5077	if ((m->aflags & PGA_WRITEABLE) == 0)
5078		return;
5079	rw_wlock(&pvh_global_lock);
5080	sched_pin();
5081	if ((m->flags & PG_FICTITIOUS) != 0)
5082		goto small_mappings;
5083	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5084	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5085		va = pv->pv_va;
5086		pmap = PV_PMAP(pv);
5087		PMAP_LOCK(pmap);
5088		pde = pmap_pde(pmap, va);
5089		oldpde = *pde;
5090		if ((oldpde & PG_RW) != 0) {
5091			if (pmap_demote_pde(pmap, pde, va)) {
5092				if ((oldpde & PG_W) == 0) {
5093					/*
5094					 * Write protect the mapping to a
5095					 * single page so that a subsequent
5096					 * write access may repromote.
5097					 */
5098					va += VM_PAGE_TO_PHYS(m) - (oldpde &
5099					    PG_PS_FRAME);
5100					pte = pmap_pte_quick(pmap, va);
5101					oldpte = *pte;
5102					if ((oldpte & PG_V) != 0) {
5103						/*
5104						 * Regardless of whether a pte is 32 or 64 bits
5105						 * in size, PG_RW and PG_M are among the least
5106						 * significant 32 bits.
5107						 */
5108						while (!atomic_cmpset_int((u_int *)pte,
5109						    oldpte,
5110						    oldpte & ~(PG_M | PG_RW)))
5111							oldpte = *pte;
5112						vm_page_dirty(m);
5113						pmap_invalidate_page(pmap, va);
5114					}
5115				}
5116			}
5117		}
5118		PMAP_UNLOCK(pmap);
5119	}
5120small_mappings:
5121	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5122		pmap = PV_PMAP(pv);
5123		PMAP_LOCK(pmap);
5124		pde = pmap_pde(pmap, pv->pv_va);
5125		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
5126		    " a 4mpage in page %p's pv list", m));
5127		pte = pmap_pte_quick(pmap, pv->pv_va);
5128		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
5129			/*
5130			 * Regardless of whether a pte is 32 or 64 bits
5131			 * in size, PG_M is among the least significant
5132			 * 32 bits.
5133			 */
5134			atomic_clear_int((u_int *)pte, PG_M);
5135			pmap_invalidate_page(pmap, pv->pv_va);
5136		}
5137		PMAP_UNLOCK(pmap);
5138	}
5139	sched_unpin();
5140	rw_wunlock(&pvh_global_lock);
5141}
5142
5143/*
5144 * Miscellaneous support routines follow
5145 */
5146
5147/* Adjust the cache mode for a 4KB page mapped via a PTE. */
5148static __inline void
5149pmap_pte_attr(pt_entry_t *pte, int cache_bits)
5150{
5151	u_int opte, npte;
5152
5153	/*
5154	 * The cache mode bits are all in the low 32-bits of the
5155	 * PTE, so we can just spin on updating the low 32-bits.
5156	 */
5157	do {
5158		opte = *(u_int *)pte;
5159		npte = opte & ~PG_PTE_CACHE;
5160		npte |= cache_bits;
5161	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
5162}
5163
5164/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
5165static __inline void
5166pmap_pde_attr(pd_entry_t *pde, int cache_bits)
5167{
5168	u_int opde, npde;
5169
5170	/*
5171	 * The cache mode bits are all in the low 32-bits of the
5172	 * PDE, so we can just spin on updating the low 32-bits.
5173	 */
5174	do {
5175		opde = *(u_int *)pde;
5176		npde = opde & ~PG_PDE_CACHE;
5177		npde |= cache_bits;
5178	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
5179}
5180
5181/*
5182 * Map a set of physical memory pages into the kernel virtual
5183 * address space. Return a pointer to where it is mapped. This
5184 * routine is intended to be used for mapping device memory,
5185 * NOT real memory.
5186 */
5187void *
5188pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
5189{
5190	struct pmap_preinit_mapping *ppim;
5191	vm_offset_t va, offset;
5192	vm_size_t tmpsize;
5193	int i;
5194
5195	offset = pa & PAGE_MASK;
5196	size = round_page(offset + size);
5197	pa = pa & PG_FRAME;
5198
5199	if (pa < KERNLOAD && pa + size <= KERNLOAD)
5200		va = KERNBASE + pa;
5201	else if (!pmap_initialized) {
5202		va = 0;
5203		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5204			ppim = pmap_preinit_mapping + i;
5205			if (ppim->va == 0) {
5206				ppim->pa = pa;
5207				ppim->sz = size;
5208				ppim->mode = mode;
5209				ppim->va = virtual_avail;
5210				virtual_avail += size;
5211				va = ppim->va;
5212				break;
5213			}
5214		}
5215		if (va == 0)
5216			panic("%s: too many preinit mappings", __func__);
5217	} else {
5218		/*
5219		 * If we have a preinit mapping, re-use it.
5220		 */
5221		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5222			ppim = pmap_preinit_mapping + i;
5223			if (ppim->pa == pa && ppim->sz == size &&
5224			    ppim->mode == mode)
5225				return ((void *)(ppim->va + offset));
5226		}
5227		va = kva_alloc(size);
5228		if (va == 0)
5229			panic("%s: Couldn't allocate KVA", __func__);
5230	}
5231	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
5232		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
5233	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5234	pmap_invalidate_cache_range(va, va + size, FALSE);
5235	return ((void *)(va + offset));
5236}
5237
5238void *
5239pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5240{
5241
5242	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5243}
5244
5245void *
5246pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5247{
5248
5249	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5250}
5251
5252void
5253pmap_unmapdev(vm_offset_t va, vm_size_t size)
5254{
5255	struct pmap_preinit_mapping *ppim;
5256	vm_offset_t offset;
5257	int i;
5258
5259	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5260		return;
5261	offset = va & PAGE_MASK;
5262	size = round_page(offset + size);
5263	va = trunc_page(va);
5264	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
5265		ppim = pmap_preinit_mapping + i;
5266		if (ppim->va == va && ppim->sz == size) {
5267			if (pmap_initialized)
5268				return;
5269			ppim->pa = 0;
5270			ppim->va = 0;
5271			ppim->sz = 0;
5272			ppim->mode = 0;
5273			if (va + size == virtual_avail)
5274				virtual_avail = va;
5275			return;
5276		}
5277	}
5278	if (pmap_initialized)
5279		kva_free(va, size);
5280}
5281
5282/*
5283 * Sets the memory attribute for the specified page.
5284 */
5285void
5286pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5287{
5288
5289	m->md.pat_mode = ma;
5290	if ((m->flags & PG_FICTITIOUS) != 0)
5291		return;
5292
5293	/*
5294	 * If "m" is a normal page, flush it from the cache.
5295	 * See pmap_invalidate_cache_range().
5296	 *
5297	 * First, try to find an existing mapping of the page by sf
5298	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5299	 * flushes the cache.
5300	 */
5301	if (sf_buf_invalidate_cache(m))
5302		return;
5303
5304	/*
5305	 * If page is not mapped by sf buffer, but CPU does not
5306	 * support self snoop, map the page transient and do
5307	 * invalidation. In the worst case, whole cache is flushed by
5308	 * pmap_invalidate_cache_range().
5309	 */
5310	if ((cpu_feature & CPUID_SS) == 0)
5311		pmap_flush_page(m);
5312}
5313
5314static void
5315pmap_flush_page(vm_page_t m)
5316{
5317	struct sysmaps *sysmaps;
5318	vm_offset_t sva, eva;
5319
5320	if ((cpu_feature & CPUID_CLFSH) != 0) {
5321		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
5322		mtx_lock(&sysmaps->lock);
5323		if (*sysmaps->CMAP2)
5324			panic("pmap_flush_page: CMAP2 busy");
5325		sched_pin();
5326		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5327		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5328		invlcaddr(sysmaps->CADDR2);
5329		sva = (vm_offset_t)sysmaps->CADDR2;
5330		eva = sva + PAGE_SIZE;
5331
5332		/*
5333		 * Use mfence despite the ordering implied by
5334		 * mtx_{un,}lock() because clflush is not guaranteed
5335		 * to be ordered by any other instruction.
5336		 */
5337		mfence();
5338		for (; sva < eva; sva += cpu_clflush_line_size)
5339			clflush(sva);
5340		mfence();
5341		*sysmaps->CMAP2 = 0;
5342		sched_unpin();
5343		mtx_unlock(&sysmaps->lock);
5344	} else
5345		pmap_invalidate_cache();
5346}
5347
5348/*
5349 * Changes the specified virtual address range's memory type to that given by
5350 * the parameter "mode".  The specified virtual address range must be
5351 * completely contained within either the kernel map.
5352 *
5353 * Returns zero if the change completed successfully, and either EINVAL or
5354 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5355 * of the virtual address range was not mapped, and ENOMEM is returned if
5356 * there was insufficient memory available to complete the change.
5357 */
5358int
5359pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5360{
5361	vm_offset_t base, offset, tmpva;
5362	pd_entry_t *pde;
5363	pt_entry_t *pte;
5364	int cache_bits_pte, cache_bits_pde;
5365	boolean_t changed;
5366
5367	base = trunc_page(va);
5368	offset = va & PAGE_MASK;
5369	size = round_page(offset + size);
5370
5371	/*
5372	 * Only supported on kernel virtual addresses above the recursive map.
5373	 */
5374	if (base < VM_MIN_KERNEL_ADDRESS)
5375		return (EINVAL);
5376
5377	cache_bits_pde = pmap_cache_bits(mode, 1);
5378	cache_bits_pte = pmap_cache_bits(mode, 0);
5379	changed = FALSE;
5380
5381	/*
5382	 * Pages that aren't mapped aren't supported.  Also break down
5383	 * 2/4MB pages into 4KB pages if required.
5384	 */
5385	PMAP_LOCK(kernel_pmap);
5386	for (tmpva = base; tmpva < base + size; ) {
5387		pde = pmap_pde(kernel_pmap, tmpva);
5388		if (*pde == 0) {
5389			PMAP_UNLOCK(kernel_pmap);
5390			return (EINVAL);
5391		}
5392		if (*pde & PG_PS) {
5393			/*
5394			 * If the current 2/4MB page already has
5395			 * the required memory type, then we need not
5396			 * demote this page.  Just increment tmpva to
5397			 * the next 2/4MB page frame.
5398			 */
5399			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5400				tmpva = trunc_4mpage(tmpva) + NBPDR;
5401				continue;
5402			}
5403
5404			/*
5405			 * If the current offset aligns with a 2/4MB
5406			 * page frame and there is at least 2/4MB left
5407			 * within the range, then we need not break
5408			 * down this page into 4KB pages.
5409			 */
5410			if ((tmpva & PDRMASK) == 0 &&
5411			    tmpva + PDRMASK < base + size) {
5412				tmpva += NBPDR;
5413				continue;
5414			}
5415			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5416				PMAP_UNLOCK(kernel_pmap);
5417				return (ENOMEM);
5418			}
5419		}
5420		pte = vtopte(tmpva);
5421		if (*pte == 0) {
5422			PMAP_UNLOCK(kernel_pmap);
5423			return (EINVAL);
5424		}
5425		tmpva += PAGE_SIZE;
5426	}
5427	PMAP_UNLOCK(kernel_pmap);
5428
5429	/*
5430	 * Ok, all the pages exist, so run through them updating their
5431	 * cache mode if required.
5432	 */
5433	for (tmpva = base; tmpva < base + size; ) {
5434		pde = pmap_pde(kernel_pmap, tmpva);
5435		if (*pde & PG_PS) {
5436			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5437				pmap_pde_attr(pde, cache_bits_pde);
5438				changed = TRUE;
5439			}
5440			tmpva = trunc_4mpage(tmpva) + NBPDR;
5441		} else {
5442			pte = vtopte(tmpva);
5443			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5444				pmap_pte_attr(pte, cache_bits_pte);
5445				changed = TRUE;
5446			}
5447			tmpva += PAGE_SIZE;
5448		}
5449	}
5450
5451	/*
5452	 * Flush CPU caches to make sure any data isn't cached that
5453	 * shouldn't be, etc.
5454	 */
5455	if (changed) {
5456		pmap_invalidate_range(kernel_pmap, base, tmpva);
5457		pmap_invalidate_cache_range(base, tmpva, FALSE);
5458	}
5459	return (0);
5460}
5461
5462/*
5463 * perform the pmap work for mincore
5464 */
5465int
5466pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5467{
5468	pd_entry_t *pdep;
5469	pt_entry_t *ptep, pte;
5470	vm_paddr_t pa;
5471	int val;
5472
5473	PMAP_LOCK(pmap);
5474retry:
5475	pdep = pmap_pde(pmap, addr);
5476	if (*pdep != 0) {
5477		if (*pdep & PG_PS) {
5478			pte = *pdep;
5479			/* Compute the physical address of the 4KB page. */
5480			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5481			    PG_FRAME;
5482			val = MINCORE_SUPER;
5483		} else {
5484			ptep = pmap_pte(pmap, addr);
5485			pte = *ptep;
5486			pmap_pte_release(ptep);
5487			pa = pte & PG_FRAME;
5488			val = 0;
5489		}
5490	} else {
5491		pte = 0;
5492		pa = 0;
5493		val = 0;
5494	}
5495	if ((pte & PG_V) != 0) {
5496		val |= MINCORE_INCORE;
5497		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5498			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5499		if ((pte & PG_A) != 0)
5500			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5501	}
5502	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5503	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5504	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5505		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5506		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5507			goto retry;
5508	} else
5509		PA_UNLOCK_COND(*locked_pa);
5510	PMAP_UNLOCK(pmap);
5511	return (val);
5512}
5513
5514void
5515pmap_activate(struct thread *td)
5516{
5517	pmap_t	pmap, oldpmap;
5518	u_int	cpuid;
5519	u_int32_t  cr3;
5520
5521	critical_enter();
5522	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5523	oldpmap = PCPU_GET(curpmap);
5524	cpuid = PCPU_GET(cpuid);
5525#if defined(SMP)
5526	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5527	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5528#else
5529	CPU_CLR(cpuid, &oldpmap->pm_active);
5530	CPU_SET(cpuid, &pmap->pm_active);
5531#endif
5532#if defined(PAE) || defined(PAE_TABLES)
5533	cr3 = vtophys(pmap->pm_pdpt);
5534#else
5535	cr3 = vtophys(pmap->pm_pdir);
5536#endif
5537	/*
5538	 * pmap_activate is for the current thread on the current cpu
5539	 */
5540	td->td_pcb->pcb_cr3 = cr3;
5541	load_cr3(cr3);
5542	PCPU_SET(curpmap, pmap);
5543	critical_exit();
5544}
5545
5546void
5547pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5548{
5549}
5550
5551/*
5552 *	Increase the starting virtual address of the given mapping if a
5553 *	different alignment might result in more superpage mappings.
5554 */
5555void
5556pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5557    vm_offset_t *addr, vm_size_t size)
5558{
5559	vm_offset_t superpage_offset;
5560
5561	if (size < NBPDR)
5562		return;
5563	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5564		offset += ptoa(object->pg_color);
5565	superpage_offset = offset & PDRMASK;
5566	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5567	    (*addr & PDRMASK) == superpage_offset)
5568		return;
5569	if ((*addr & PDRMASK) < superpage_offset)
5570		*addr = (*addr & ~PDRMASK) + superpage_offset;
5571	else
5572		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5573}
5574
5575
5576#if defined(PMAP_DEBUG)
5577pmap_pid_dump(int pid)
5578{
5579	pmap_t pmap;
5580	struct proc *p;
5581	int npte = 0;
5582	int index;
5583
5584	sx_slock(&allproc_lock);
5585	FOREACH_PROC_IN_SYSTEM(p) {
5586		if (p->p_pid != pid)
5587			continue;
5588
5589		if (p->p_vmspace) {
5590			int i,j;
5591			index = 0;
5592			pmap = vmspace_pmap(p->p_vmspace);
5593			for (i = 0; i < NPDEPTD; i++) {
5594				pd_entry_t *pde;
5595				pt_entry_t *pte;
5596				vm_offset_t base = i << PDRSHIFT;
5597
5598				pde = &pmap->pm_pdir[i];
5599				if (pde && pmap_pde_v(pde)) {
5600					for (j = 0; j < NPTEPG; j++) {
5601						vm_offset_t va = base + (j << PAGE_SHIFT);
5602						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5603							if (index) {
5604								index = 0;
5605								printf("\n");
5606							}
5607							sx_sunlock(&allproc_lock);
5608							return (npte);
5609						}
5610						pte = pmap_pte(pmap, va);
5611						if (pte && pmap_pte_v(pte)) {
5612							pt_entry_t pa;
5613							vm_page_t m;
5614							pa = *pte;
5615							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5616							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5617								va, pa, m->hold_count, m->wire_count, m->flags);
5618							npte++;
5619							index++;
5620							if (index >= 2) {
5621								index = 0;
5622								printf("\n");
5623							} else {
5624								printf(" ");
5625							}
5626						}
5627					}
5628				}
5629			}
5630		}
5631	}
5632	sx_sunlock(&allproc_lock);
5633	return (npte);
5634}
5635#endif
5636
5637#if defined(DEBUG)
5638
5639static void	pads(pmap_t pm);
5640void		pmap_pvdump(vm_paddr_t pa);
5641
5642/* print address space of pmap*/
5643static void
5644pads(pmap_t pm)
5645{
5646	int i, j;
5647	vm_paddr_t va;
5648	pt_entry_t *ptep;
5649
5650	if (pm == kernel_pmap)
5651		return;
5652	for (i = 0; i < NPDEPTD; i++)
5653		if (pm->pm_pdir[i])
5654			for (j = 0; j < NPTEPG; j++) {
5655				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5656				if (pm == kernel_pmap && va < KERNBASE)
5657					continue;
5658				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5659					continue;
5660				ptep = pmap_pte(pm, va);
5661				if (pmap_pte_v(ptep))
5662					printf("%x:%x ", va, *ptep);
5663			};
5664
5665}
5666
5667void
5668pmap_pvdump(vm_paddr_t pa)
5669{
5670	pv_entry_t pv;
5671	pmap_t pmap;
5672	vm_page_t m;
5673
5674	printf("pa %x", pa);
5675	m = PHYS_TO_VM_PAGE(pa);
5676	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5677		pmap = PV_PMAP(pv);
5678		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5679		pads(pmap);
5680	}
5681	printf(" ");
5682}
5683#endif
5684